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Abstract 23 

Crude oils are extremely complex organic mixtures, composed of various constituents ranging 24 

in size, shape and polarity. Obtaining a detailed insight into the petroleum composition is of 25 

highest priority for quality evaluation of crude oils and crude oil product performances. The 26 

stability of crude oils and their components represents one of the major challenges in petroleum 27 

industry, since there is no existing single method to determine the stability of all fractions. In 28 

this study, statistical multi-way analysis (MWA) and machine learning (ML) methods were 29 

coupled with diffusion-ordered NMR spectroscopy (DOSY) and compared to different crude 30 

oil stability affecting parameters in order to explore possibilities to predict crude oil stability. 31 

The potential of this approach was explored to identify and classify the crude oils of different 32 

origin according to their composition, stability, density and diffusion properties. With the 33 

application of MWA using the TUCKER3 decomposition model for a set of DOSY NMR 34 

spectra, the principal components were determined for the model (5,5,5), which described 35 

99.89% of the total variance. The reduced space of the first 3 principal components was used 36 

for the sample classification. Similar samples were identified, and reduced space was further 37 

utilized for the regression of measured stabilities. Extensive ML multivariate linear regression 38 

was carried out for modeling crude oil stability in relation to DOSY NMR spectra and other 39 

measured properties, such as aromaticity, API gravity, percentage of aliphatic chains, 40 

asphaltene content and relative diffusivities. In both MWA and ML cases the best predictive 41 

models were determined. For such complex mixtures as crude oils are, exceptionally good 42 

correlations were obtained, proving that this new and robust model can accurately predict crude 43 

oil stability and other important parameters relevant for petroleum industry thus showing a great 44 

potential for practical applications.  45 
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1.    Introduction 46 

Crude oil is a highly complex organic mixture composed of various aliphatic and 47 

aromatic hydrocarbons ranging in size, shape and polarity. Obtaining a detailed insight into 48 

chemical composition is of highest priority for quality evaluation of crude oils and crude oil 49 

product performances [1,2]. According to their polarity, the components of crude oil are often 50 

divided into four main groups: asphaltenes, saturates, aromatics and resins. Asphaltenes are the 51 

heaviest and the most polar crude oil components, composed of aromatic and saturated rings, 52 

aliphatic moieties, some heteroatoms, such as nitrogen, oxygen and sulfur, and traces of 53 

transition metals [3–5]. During petroleum processing, asphaltenes may form aggregates and 54 

precipitates, leading to serious problems in production, transportation and storage. The stability 55 

of asphaltenes in crude oils and petroleum products is one of the major challenges in petroleum 56 

industry, since there is no existing single method to determine stability of all oil fractions [6–57 

9]. 58 

Nuclear magnetic resonance (NMR) spectroscopy has emerged as a valuable tool for 59 

studying crude oils and their derivatives [10–18]. However, proton and carbon NMR spectra of 60 

petroleum samples are characterized by severely overlapping signals, which are difficult to 61 

straightforwardly assign and analyze. Further insight into the nature and structure of crude oils 62 

can be obtained by diffusion ordered NMR spectroscopy (DOSY) [14–18]. This approach can 63 

be applied to measure translational diffusion properties of individual components in complex 64 

mixtures without their physical separation. DOSY NMR spectra are pseudo-two-dimensional, 65 

where one dimension is represented by chemical shifts and the other by translational diffusion 66 

coefficients, which depend on the shape and size of a molecule or an aggregate in the sample. 67 

Crude oils originating from different geographical regions contain various types of compounds 68 

that can be separated and identified according to their diffusion coefficients. Nevertheless, even 69 

with the state-of-the-art NMR techniques one is still not able to perform a complete 70 
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differentiation among crude oil samples based on spectral inspection only (Figs. 2 and 3). 71 

Hence, further evaluation and spectral processing by statistical methods are required to explore 72 

the correlation between the origin and physical properties of crude oils. Recently, it has been 73 

shown that petroleum samples of different origin can be identified, clustered and well-separated 74 

by employing a combination of DOSY NMR spectroscopy and multi-way analysis [17]. 75 

Moreover, an advanced statistical model based on trilinear decomposition algorithm has been 76 

developed, validated and applied to evaluate DOSY NMR spectra. In a similar study, proton 77 

NMR spectra have been processed by principal component analysis to reveal characteristic 78 

spectral areas responsible for sample differentiation and classification [18]. 79 

In this study, multi-way analysis and machine learning methods are combined to predict 80 

the crude oil stability based on NMR spectroscopy. For this purpose, capabilities of DOSY 81 

NMR coupled with both multi-way and machine learning multivariate linear regression 82 

analyses have been explored to identify and classify crude oils of different origin according to 83 

their content, stability, density and diffusion properties. 84 

2.    Experimental 85 

Samples 86 

All crude oil samples were obtained from geographical regions designated in Tables 1, 87 

2 and S1. 88 

2.1.    Asphaltene content analysis 89 

Asphaltenes were extracted from the crude oil samples by employing the standard 90 

ASTM D 6560-17 method to determine the content of insoluble asphaltenes in heptane [19]. 91 

The crude oil samples were refluxed in heptane and mixed with the precipitate. Subsequently, 92 

asphaltenes, waxy substances and inorganic material were collected on a filter paper. In the 93 

next step, the waxy substances were removed by washing with hot heptane in an extractor, 94 
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while the asphaltenes were separated from the inorganic material by dissolving in hot toluene. 95 

The extraction solvent was evaporated. 96 

2.2.    Stability testing 97 

Stability testing was based on the ASTM D 7157-18 standard method [20]. The sample 98 

solutions were prepared in toluene at three different concentrations and analyzed by ROFA 99 

France automated stability analyzer equipped with an optical probe for detecting the asphaltene 100 

flocculation. Stability parameters Stotal (overall stability of the sample), Sasph (peptizability or 101 

ability of asphaltenes to remain in a dispersed state) and Sresin (aromaticity of the resins and their 102 

capability to maintain asphaltenes in solution) were calculated as well as intrinsic stability from 103 

volumes of toluene and n-heptane and mass of the samples. 104 

2.3.    NMR measurements 105 

NMR experiments were performed at 298 K and chemical shifts were reported relative 106 

to tetramethylsilane (TMS) internal standard. The samples (100 μL) were dissolved in 500 μL 107 

of a deuterated solvent. One-dimensional 1H NMR spectra were recorded on a Bruker Avance 108 

Neo 300 NMR spectrometer in chloroform-d (99.8%, Aldrich) using a C/H dual 5 mm probe 109 

with 32 scans, 10 s recycle delay, 7.6 μs π/2 pulse length and 16 K time domain. 1H NMR 110 

DOSY spectra were acquired in toluene-d8 (99.5%, CIL) on a Bruker Avance 600 NMR 111 

spectrometer using a 5 mm TBI probe equipped with z-gradients. Triplicate measurements were 112 

carried out using a dstebpgp3s pulse sequence with convection compensation, 16 scans, 113 

6.0 kHz spectral width, 600 μs spoil gradients, 16 K time domain, 150 μs gradient recovery and 114 

5 ms eddy current delays. The gradient strength was varied from 2 % to 95 % in 16 steps, while 115 

both the small (2.0 ms) and the big (70.0 ms) delta were kept constant. 116 

2.4.    Multi-way analysis 117 

Multi-way analysis (MWA) presents decomposition of multidimensional datasets 118 

represented as multidimensional numerical arrays (or a higher order data tensor). It could be 119 
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considered as an extension of principal component analysis [21]. Data tensor is composed from 120 

sequences of numbers dependent on different physical dimensions or ways. In this case, the 3rd 121 

order tensor consists of two-dimensional DOSY NMR spectra for different crude oil samples. 122 

Each DOSY NMR spectrum was extracted with 128×2192 records providing the total 123 

dimensions of the 3rd order tensor: 18×128×2192. The data in this 3rd order tensor depend on 124 

three independent variables: chemical shift, magnetic gradient pulse amplitude and sample 125 

diversity [17]. To extract the quantitative classification information, MWA was used as a tool 126 

that allows detection of variabilities among all investigated samples based on their 127 

2-dimensional DOSY NMR datasets. After tensor decomposition, each DOSY NMR spectrum 128 

was finally represented as one point in reduced space. 129 

MWA on the set of DOSY NMR spectra placed in the 3rd order tensor was carried out 130 

using the 3-way decomposition model TUCKER3 [22]: 131 

X = AG(C ⊗ B)τ + E                            (1) 132 

where A, B, and C are the 1st-way, 2nd-way, and 3rd-way loadings matrices, respectively (symbol 133 

⊗ represents Kronecker matrix product) (Fig. 1). 134 

 135 

Fig. 1. Graphical representation of the TUCKER3 model. 136 

The G matrix is the core-array and is associated with the amount of variation explained 137 

by loadings in the different modes. MWA was performed by using the code moonee [23–26] 138 

developed in-house. 139 
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2.5.    Machine learning multivariate linear regression 140 

Measured stability data was used as dependent variable in two cases. Firstly, this data 141 

was regressed on the first three principal components of the reduced space of DOSY NMR 142 

spectra. In the second case, stability data was regressed to 6 other measured properties. 143 

Extensive machine learning (ML) procedure was applied for generation of all possible 144 

multivariate linear regression (MLR) models with any possible linear combination of original 145 

variables as well as their higher-order polynomial terms (up to the 4th order in the first case and 146 

up to the 2nd order in the second case). Total numbers of generated different models for each 147 

dependent variable were 1 717 869 184 and 134 217 728 for the first and the second case, 148 

respectively. 149 

MLR was performed using the following expression for matrices of coefficients B 150 

calculated by singular value decomposition: 151 

  𝑩 = (𝑿τ𝑿)−𝟏𝑿τ𝒀                              (2) 152 

where 𝑿 and 𝒀 are the matrices of independent and dependent variables, respectively. For each 153 

model, leave-one-out cross-validation (LOO-CV) was performed, and various statistical 154 

parameters were computed. Methodical validation of models by LOO-CV provided an optimal 155 

representation selected on the basis of adjusted and predicted R2 values as well as LOO-CV 156 

mean squared error. 157 

3.     Results and Discussion 158 

3.1.    Evaluation of crude oil properties by standard testing methods 159 

Chosen crude oil properties, such as the asphaltene content (wasph), stability parameters 160 

(Sasph, Sresin, Stotal) and API gravity values (ρAPI) of analyzed crude oil samples are shown in 161 

Table 1. API values indicated that all analyzed crude oils belong to lighter and medium crude 162 

oil categories. 163 
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The overall stability of crude oils decreases with the increase in asphaltene content. 164 

However, a comparison of some test samples show that the crude oil stability does not 165 

exclusively depend on the content of asphaltenes, especially in light crude oils. Parameters, 166 

such as the composition and structure of resins, aromatics and other components affect the total 167 

stability. Furthermore, the stability of crude oils depends on various processes that involve 168 

blending, dilution, temperature and pressure changes. 169 

Table 1. Comparison of crude oil properties determined by standard methods. 170 

Sample No. Designation wasph / %
 a Sasph

 b Sresin
 c Stotal

 d ρAPI
 e 

1 North Africa 1 2.50 0.75 0.58 2.33 29.93 

2 Southwest Asia 1 0.15 0.41 1.88 3.18 38.15 

3 Southwest Asia 2 2.25 0.6 1.15 2.92 31.21 

4 Southwest Asia 3 2.74 0.76 0.57 2.39 30.13 

5 Central Europe 1 1.19 0.77 0.69 3.02 30.11 

6 Eastern Europe 1 0.80 0.77 1.07 4.61 29.58 

7 Eastern Europe 2 0.26 0.78 1.01 4.54 36.39 

8 Central Europe 2 1.01 0.77 0.73 3.22 30.24 

9 West Africa 0.01 0.44 1.63 2.94 32.42 

10 Southwest Asia 4 3.12 0.74 0.59 2.25 29.94 

11 Southwest Asia 5 1.58 0.77 0.48 2.12 35.24 

12 Eastern Europe 3 0.64 0.65 0.95 2.72 35.05 

13 NorthEast Asia 1.45 0.77 0.68 2.97 29.58 

14 North Africa 2 0.37 0.65 0.81 2.33 37.15 

15 North Asia 0.71 0.75 1.15 4.68 33.51 

16 Central Europe 3 0.14 0.64 0.97 2.71 37.51 

17 Central America 0.62 0.70 1.43 4.69 41.70 
a  asphaltene content according to gravimetric analysis 171 
b  peptizability or ability of asphaltenes to remain in a dispersed state 172 
c  aromaticity of the resins and their capability to maintain asphaltenes in solution 173 
d  total stability or overall stability of the sample 174 
e  gravity according to American Petroleum Institute (API) 175 

 176 
3.2.    NMR spectroscopy 177 

Typical proton NMR spectra of crude oil samples are displayed in Fig 2. Severe peak 178 

overlapping makes these spectra difficult to analyze and only information on different classes 179 
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of hydrocarbons can be obtained. One of the features that can be determined from 1H NMR 180 

spectra is the aromaticity (Har), usually expressed as the content (in percentage) of aromatic 181 

hydrogen atoms. It can be calculated as the ratio between the sum of all aromatic hydrogen 182 

integrals (IHar) and the total amount of hydrogen atoms (consisting of the sum of all aliphatic 183 

and aromatic hydrogen integrals, IHaliph and IHar), using the previously described procedure 184 

[18,27,28]: 185 

                            𝐻ar[%] =
∑𝐼Har

∑𝐼Haliph+
∑𝐼Har

     (3) 186 

In order to assure more accurate Har calculation by avoiding overlapping signals of crude 187 

oil aromatic hydrogens with toluene aromatic hydrogens, corresponding 1H NMR spectra were 188 

measured in deuterated chloroform. 189 

Characteristic signals in the 1H NMR spectra of crude oil samples corresponding to 190 

aromatic and aliphatic protons were found in the chemical shift regions 6.5–9.0 and 0.5–4.0 191 

ppm, respectively (Fig. 2). As shown in Table 2, the aromaticity depends on the sample origin, 192 

having values in the range of 2.10 % – 7.29 %. If compared with data summarized in Table 1, 193 

Har is well correlated with the asphaltene content, which is in agreement with the presence of 194 

condensed aromatic rings in the asphaltene structure. On the other hand, no correlations were 195 

observed as expected between the percentage of aliphatic chains calculated from the integral at 196 

1.3 ppm (I1,3ppm) and the asphaltene content, since aliphatic chains are present in all major crude 197 

oil components. 198 
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 199 

Fig. 2. 1H NMR spectra of (a) Southwest Asia 1 and (b) North Africa 2 crude oil samples. 200 

Table 2. Crude oil parameters calculated from 1H and DOSY NMR spectra. 201 

Sample No. Designation Har / % a I1,3ppm / % b drel,0.9 ppm c drel,1.3 ppm d 

1 North Africa 1 5.70 56.75 0.52 0.51 

2 Southwest Asia 1 3.37 52.63 0.51 0.48 

3 Southwest Asia 2 4.24 56.49 0.55 0.53 

4 Southwest Asia 3 4.41 57.78 0.58 0.56 

5 Central Europe 1 7.29 61.25 0.53 0.50 

6 Eastern Europe 1 4.68 61.39 0.50 0.54 

7 Eastern Europe 2 3.69 59.59 0.54 0.54 

8 Central Europe 2 4.19 68.64 0.58 0.57 

9 West Africa 4.54 44.83 0.50 0.52 

10 Southwest Asia 4 5.53 61.40 0.53 0.52 

11 Southwest Asia 5 5.66 53.16 0.55 0.54 

12 Eastern Europe 3 3.96 60.14 0.51 0.51 

13 NorthEast Asia 4.84 59.48 0.57 0.56 

14 North Africa 2 2.10 58.92 0.80 0.74 

15 North Asia 4.65 79.63 0.57 0.57 

16 Central Europe 3 3.49 69.94 0.51 0.51 

17 Central America 2.82 63.58 0.77 0.52 
a aromaticity calculated as the difference between the sum of all signal integrals and those corresponding to 202 

aliphatic protons 203 
b  percentage of aliphatic chains obtained from the integral of  the proton signal at 1.3 ppm 204 
c  relative diffusivities calculated from the DOSY signal at 0.9 ppm 205 
d  relative diffusivities calculated from the DOSY signal at 1.3 ppm 206 
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Further insight into the content and motional behavior of the crude oil components was 207 

obtained from DOSY NMR experiments. Representative DOSY NMR spectra of crude oil 208 

samples (Fig. 3) revealed differences in the shape and intensity of characteristic peaks. These 209 

signals belong to species with different diffusion properties and can be used to distinguish 210 

between the samples. Motional behavior of individual components is quantitatively described 211 

by their translational diffusion coefficients (D). However, the accuracy and reproducibility of 212 

the diffusion measurements is largely affected by experimental conditions. This impact can be 213 

minimized by introducing the relative diffusivity, drel = Dsample/Dtoluene. As shown for the signals 214 

at 0.9 and 1.3 ppm in Table 2, as well as for other resonances in Table S1, only the components 215 

of North Africa 2 and Central America samples exhibited considerably higher drel than average. 216 

On the other hand, diffusion properties of other crude oils were very similar to each other, 217 

despite their different origin. Hence, in order to separate and classify all crude oils additional 218 

information was extracted from DOSY NMR spectra by statistical analysis. For that purpose, 219 

an approach was employed that combines MWA and ML methods described in the following 220 

chapters. 221 

 222 

Fig. 3. DOSY NMR spectra of (a) Southwest Asia 1 and (b) North Africa 2 crude oil samples. 223 

3.3.    MWA 224 

Using the TUCKER3 decomposition model for a set of DOSY NMR spectra, a 225 

progressive decomposition model search was performed starting from the model with 226 
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dimensions (1,1,1). This was the simplest decomposition model which already explained 227 

97.60 % of the total variance (Fig. 4). The search passed through all possible models up to the 228 

final tested decomposition model (5,5,5) that described 99.89 % of the total variance. Each 229 

dimension was gradually increased by 1 giving the total number of generated models 230 

5×5×5=125. Explained variances for all investigated models are presented in Fig. 4. 231 

 232 

Fig. 4. Explained variance in TUCKER3 models in dependence of model dimensionality used 233 

in decomposition of 3rd-order data tensor (DOSY NMR spectra). 234 

Model (5,5,5) was chosen for further analysis, while the first three components from this 235 

model were used for classification of samples, visualization and later regression. These three 236 

components described 99.72 % of the total variance. Their loadings plots are presented in Fig. 237 

5. This percentage of the total described variance is high enough to ensure that the most 238 

important properties of the investigated systems relevant for the proper analysis were retained 239 

within the model. 240 
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 241 

Fig. 5. Classification of the petroleum samples spanned in the space of the first three principal 242 

components for 3rd-way loadings calculated by TUCKER3 decomposition. 243 

In the reduced space of 3rd-way loadings presented on Fig. 5, DOSY NMR spectra of the 244 

samples were represented as points (labeled as in Tables 1, 2 and S1). The distribution of all 245 

samples in this 3-dimensional space can be used for a classification of these samples based on 246 

their DOSY spectra. The sample 14 is highly distinguishable from the other samples, which is 247 

clear from the presented distribution. Moreover, from the variability among the samples one 248 

can see that the samples 6 and 12 are very similar. Investigation of 2-dimensional projections 249 

confirms that the same applies to the sample pairs (10,11) and (5,13). 250 

3.4.    Machine learning multivariate linear regression 251 

3.4.1.   Modeling stability with DOSY NMR spectra 252 

To establish a connection between measured stability data and DOSY NMR spectra, 253 

extensive ML procedure was utilized. Stability data Sasph, Sresin and Stotal from Table 1 were 254 

regressed to the first three principal components in the 3-dimensional reduced space of DOSY 255 
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NMR spectra. In this way, each crude oil sample was represented by the point in the reduced 256 

three-dimensional space and stability was modeled using these three predictors as independent 257 

variables. The total number of generated different models for each dependent variable was 1 258 

717 869 184 (models were built as linear combination of original variables, as well as their 259 

higher-order polynomial terms, up to the 4th order). The 4th order was shown to be sufficient for 260 

building excellent regression models. Models with polynomial terms up to the 3rd order had 261 

predicted R2 of 0.89 (for all three measured stability values). It was therefore justified to push 262 

it up to the order of 4 judging the model quality on the basis of adjusted R2, predicted R2 and 263 

LOO-CV mean-squared-error ensuring that there was no overfitting. 264 

The best determined models among all different 1 717 869 184 tested models had 265 

predicted R2 to be bigger than 0.98. For the measured stability of asphaltenes Sasph, predicted R2 266 

was 0.9808 whereas for Sresin predicted R2 value was 0.9892 (Fig. 6). The quality of these models 267 

ensures that the crude oil stability in any similar crude oil sample can be predicted from the 268 

DOSY NMR spectra. This fact provides a broad range of possible applications using the DOSY 269 

NMR spectra for these or similar complex samples without the need for any additional chemical 270 

analyses. Properly predicting the stability of crude oils could e.g. directly reduce asphaltene 271 

remediation costs [29]. 272 

 273 

Fig. 6. The best multivariate regression model of the measured asphaltene and resin stability 274 

determined by machine learning: a) Sasph, and b) Sresin in dependence on the 1st, 2nd and 3rd 275 
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principal component of the DOSY NMR spectra of crude oil samples obtained by MWA. 276 

(Spheres represent points in 3D reduced space, and the planes are cuts of polynomial regression 277 

model, for easier interpretation 4th-dimension is represented redundantly with the color and with 278 

the size of the spheres.) 279 

3.4.2.  Modeling stability with other measured properties 280 

Stability data was also regressed on 6 other measured properties: Har, I1.3 ppm, wasph, ρAPI, 281 

drel,0.9 ppm and drel,1.3 ppm (Tables 1 and 2). These measured properties were selected and their 282 

selection was further confirmed by investigation of linear correlation matrix with measured 283 

stability data where these properties showed some degree of linear correlation (|R|>0.6). In this 284 

case the number of possible models with linear combination of terms up to the polynomial order 285 

2 was 134 217 728. Using parallelized ML code [23], it was possible to test all these models 286 

within one day and several excellent candidates were found. This search provided several 287 

regression models with values of predicted R2 higher than 0.99 for all three measured stability 288 

parameters with the best ones having the following values of predicted R2:  289 

R2(Sasph)=0.9998, R2(Sresin)=0.9997 and R2(Stotal)=0.9999. 290 

These are particularly good values for such complex mixtures, proving that this new 291 

model can accurately predict the crude oil stability and other important process parameters 292 

relevant for petroleum industry. 293 

Best determined models: 294 

Sasph = 1.73E+00 +9.13E−01× Har +1.99E−02× I1.3 ppm −5.84E−02× wasph −3.39E−02× ρAPI 295 

−1.76E+01× drel,0.9 ppm −3.99E−02× Har
2 −1.21E−02× Har × ρAPI −1.40E−03× I1.3 ppm

2 296 

−1.11E−02× I1.3 ppm × wasph +3.09E−01× I1.3 ppm × drel,0.9 ppm +3.66E−02× wasph
2 +1.06E+00× 297 

wasph × drel,0.9 ppm +2.02E−01× ρAPI × drel,1.3 ppm −5.03E+00× drel,0.9 ppm × drel,1.3 ppm 298 

Sresin = −2.77E+01 +1.52E+01× wasph +4.25E+00× drel,0.9 ppm +8.02E+01× drel,1.3 ppm 299 

+7.83E−02× Har
2 −7.88E−01× Har × wasph +3.75E−03× I1.3 ppm

2 +1.82E−02× I1.3 ppm × wasph 300 

−6.05E−03× I1.3 ppm × ρAPI −5.48E−01× I1.3 ppm × drel,1.3 ppm −1.40E−01× wasph × ρAPI 301 

−1.49E+01× wasph × drel,0.9 ppm +1.85E−02× ρAPI
2 −1.27E+00× ρAPI × drel,1.3 ppm  302 
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Stotal = 1.78E+02 −9.21E+00× wasph −7.15E+00× ρAPI −2.04E+02× drel,1.3 ppm +2.52E−02× Har 303 

× I1.3 ppm −9.44E−02× Har × ρAPI +1.83E+00× Har × drel,1.3 ppm −6.71E−04× I1.3 ppm
2 304 

−1.26E−02× wasph × ρAPI +1.68E+01× wasph × drel,1.3 ppm +4.79E−03× ρAPI
2 +1.32E+01× ρAPI × 305 

drel,0.9 ppm −5.59E+02× drel,0.9 ppm
2 +3.39E+02× drel,0.9 ppm × drel,1.3 ppm 306 

4.    Conclusion 307 

With the application of multi-way analysis using the TUCKER3 decomposition model 308 

for a set of DOSY NMR spectra, principal components were determined for the model (5,5,5). 309 

This decomposition model described 99.89% of the total variance. A classification of crude oil 310 

samples using the reduced space of the first 3 principal components was performed. Similar 311 

samples were identified and reduced space was further utilized for the regression of measured 312 

stabilities. Extensive machine learning multivariate linear regression was proven useful for 313 

modeling crude oil stability based on DOSY NMR spectra and other measured properties. For 314 

both cases, very good models were established, up to the 4th polynomial order in the first case 315 

and up to the 2nd polynomial order in the second one. This approach can serve as an excellent 316 

tool for predicting stability of complex petroleum samples and can be applied for other similar 317 

systems. 318 
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