An overview of dense eigenvalue solvers for distributed memory systems

Davor Davidović¹

Centre for Informatics and Computing, Ruđer Bošković Institute, Zagreb, Croatia, davor.davidovic@irb.hr

MIPRO 2021

Data Science and Biomedical Engineering (DS-BE) 29 Sep - 1 Oct 2021, Opatija, Croatia

Outline

- Motivation
- 2 Introduction
- 3 High performance eigenvalue solvers
- 4 Conclusion

Motivation

Motivation

Eigenvalue problems

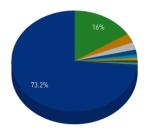
- Fundamental mathematical problem in many research fields
 - molecular dynamics,
 - computational quantum chemistry,
 - finite element modeling,
 - multivariate statistics.
- \bullet Solving an extremely large-scale eigenproblem with $> 10^{10}$ elements
- The most time-consuming part of the codes

Motivation

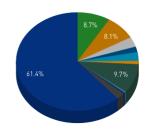
- Computationally demand problem with complexity $O(n^3)$
- \bullet The solution requires large machines \to supercomputers and large computational clusters
- Many scientific software are using the eigensolvers from the highly-tuned libraries (e.g. MKL, ScaLAPACK, cuSOLVER)
- ullet GPU accelerators are becoming more attractive o much higher performance compared to CPU (> 100×)

Motivation

Accelerator/Co-Processor System Share



Accelerator/Co-Processor Performance Share



- NVIDIA Tesla V100
- NVIDIA A100
- NVIDIA Tesla V100 SXM2 NVIDIA Tesla P100
- NVIDIA A100 SXM4 40 GB
- NVIDIA A100 40GB NVIDIA Volta GV100
- NVIDIA Tesla K40
- NVIDIA A100 80GB
- Matrix-2000
- Others

 $^{1}\mathsf{Source} \colon \mathsf{https://www.top500.org}$

- 2 Introduction
- 3 High performance eigenvalue solvers

Eigenvalue problem

Problem statement

• The standard eigenproblem is defined as:

$$AX = X\Lambda$$
,

where $A \in \mathbb{R}^{n \times n}$ is a square matrix, $\Lambda \in \mathbb{C}^{n \times n}$ is diagonal with the sought-after eigenvalues λ_i and the columns of $X \in \mathbb{R}^{n \times n}$ contain the associated eigenvectors.

Generalized eigenproblem

$$AX = BX\Lambda \tag{1}$$

where A and B are square. If B = I then it becomes the standard eigenvalue problem.

Problem solving - eigensolvers

Introduction

Direct eigensolvers \rightarrow dense matrices, all eigenvalues

Reduce dense matrix to tridiagonal/Hessenberg form (T)

$$Q^TAQ \rightarrow T$$
,

2 Compute eigenvalues of T

$$TX = X\Lambda$$
,

Divide&Conquer, MRRR, bisection and invert iteration, QR iteration

Iterative eigensolvers \rightarrow sparse matrices and/or subset of eigenvalues

- Iterative process → until convergence
- QR algorithm, Krylov subspace iteration, Jacobi, Power iteration

Problem solving - choosing the right solver

Choose the right method/implementation based on the type of the problem your try to solve

Problem types

Motivation

- Number of eigenvalues required → all, inner/outer spectrum, smallest/largest
- Shape of the matrix (A) → rectangular/square, symmetric/unsymmetric, unitary, symmetric positive definite,...
- **3 Structure of the matrix** → dense, sparse, band, tridiagonal, structured sparseness, Toeplitz,...
- 4 Are eigenvectors required?

Conclusion

Outline

- Motivation
- 2 Introduction
- 3 High performance eigenvalue solvers
- 4 Conclusion

Eigensolvers

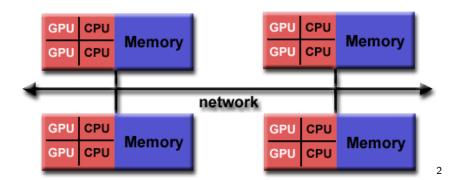
The scope of this research

- Only the maintained and open access libraries are observed
- Focus on dense eigensolvers for distributed memory systems
- GPU-accelerated

Type of solvers based on memory architectures

- Shared memory systems
- Distributed memory systems
- Hybrid memory systems

Hybrid memory systems



 $^{^2 {\}sf Source: https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial} \leftarrow \texttt{\texttt{?}} \qquad \texttt{\texttt{?}}$

Shared-memory eigensolvers

Introduction

- Exploit parallelism on a node level
- Multi-CPU + (optionally) GPUs
- Parallelisation models: OpenMP, POSIX threads, CUDA (OpenCL)
- Advantages: Easy to program and use, large number of available libraries, highly-tuned, no expensive memory copies through network
- Disadvantages: Low scalability, bounded by the available main/GPU memory, cannot compute large-scale problems

Numerical libraries

LAPACK, MKL, OpenBLAS, MAGMA, cuSOLVER, Eigen, ...

Distributed-memory eigensolvers

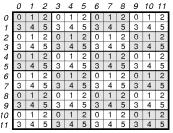
- Run across numerous computer nodes
- Hybrid models: MPI, OpenMP, CUDA
- Advantages: Scalable, capable to solve extremely large eigenproblems, high efficiency
- Disadvantages: Expensive memory transfers through network, hard to program, small number of GPU-based libraries

Numerical libraries

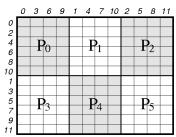
ScaLAPACK, ELPA, Elemental, EigenEXA, FEAST, SLATE, PARPACK....

ScaLAPACK

- Standard in distributed memory Linear Algebra
- CPU-only, based on MPI parallel model
- PxSYEV (QR alg.) and PxSYEVD (Divide&Conquer) routines for all eigenpairs of symmetric/Hermitian matrix
- ullet Approach based on reducing the matrix A into tridiagonal form
- Parallelisation: 2D Block Cyclic Distribution of input matrix A



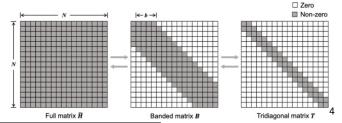
(a) block distribution over 2 x 3 grid.

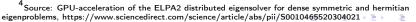


(b) data distribution from processor point-of-view.

ELPA

- Compute eigenvalues and eigenvectors of large dense symmetric matrices
- ELPA1: One stage approach → reduce from dense A to tridiagonal form
- ELPA2: Two stage approach → reduce from A to band from then to tridiagonal
- ullet Support distributed GPU in ELPA2 o back-transformation part in computing the eigenvectors





SLATE

- Software for Linear Algebra Targeting Exascale under development
- Aims to replace ScaLAPACK but with support for different accelerators and hybrid computational model (MPI+OpenMP+GPU)
- Currently supports only symmetric eigenproblems
- Based on the two-stage reduction to tridiagonal/bidiagonal form

An overview of the libraries

Library	Distributed	GPU	Hybrid	Parallel model	Sparsity	Eigenproblem
LAPACK	×	×	×	OpenMP/pthreads	d/b	std/gen nsym/sym
MAGMA	×	yes (multi-GPU)	yes	OpenMP/pthreads/CUDA	d/s/b	std/gen nsym/sym
cuSolver	×	yes (multi-GPU)	×	CUDA	d/s	std/gen sym
EIGEN	×	×	×	OpenMP	d	std/gen nsym/sym
ScaLAPACK	yes	×	×	MPI/BLASC	d	std/gen sym
ELPA	yes	yes (GPU)	×	MPI/OpenMP/CUDA	d	std/gen sym
EigenEXA	yes	×	×	MPI/OpenMP	d	std sym
FEAST	yes	×	×	MPI	d/s/b	std/gen nsym/sym
Intel MKL	yes	yes (Intel GPU)	×	MPI/OpenMP/pthreads	d/b/s	std/gen nsym/sym
Elemental/Hydrogen	yes	yes (Hydrogen)	yes (Hydrogen)	MPI/OpenMP/(CUDA)	d	std sym
SLATE	yes	yes	yes	MPI/OpenMP/CUDA	d	std sym
P_ARPACK	yes	×	×	MPI/BLACS	s	std/gen nysm/sym
LIS	yes	×	×	MPI/OpenMP	d/s	? ?

Legend

Sparsity: $d \rightarrow \text{dense}, s \rightarrow \text{sparse}, b \rightarrow \text{band}$

 ${\sf Eigenproblem:} \ \textit{std} \ \rightarrow \ \mathsf{standard}, \ \textit{gen} \ \rightarrow \ \mathsf{generalized}, \ \textit{nsym} \ \rightarrow$

non-sysmmetric, $sym \rightarrow symmetric$

Outline

- Motivation
- 2 Introduction
- 3 High performance eigenvalue solvers
- 4 Conclusion

Conclusion

- Large number of distributed memory eigensolvers but only ELPA and SLATE support GPUs,
- Support only a limited types of eigenproblems,
- The performance is usually compared only with ScaLAPACK
 - \rightarrow does not give a good comparison with other GPU-based libraries.

Future work

- Benchmark of the modern distributed eigensolvers (side-by-side),
- Analyze the scalability and the performance challenges on the current eigensolvers, and predict their behavior on future computing architectures systems,
- Extend and optimized the existing distributed eigensolvers for multi-GPU platforms and for specific eigenproblem types.

Thank you for your attention!

