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∗ Centre for Informatics and Computing, Rud̄er Bošković Institute, Zagreb, Croatia, davor.davidovic@irb.hr
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Abstract—Solving large-scale eigenvalue problems is a cen-
tral problem in many research areas, such as electronic struc-
ture calculations, macromolecular simulations, solid states,
theoretical physics, and combinatorial optimization. The
computation of the required eigenvalues and the correspond-
ing eigenvectors of the large matrices is a challenging task
that requires considerable computational time. Therefore,
the computation of such problems is usually performed on
large computational resources consisting of a large number
of computational nodes interconnected by fast network and
often equipped with accelerators, such as graphic processing
units. Nowadays, when the whole world is vying for the first
exascale supercomputer and the computational appetite of
researchers is greater than ever, the need for scalable and
powerful eigenvalue solvers capable of utilising such large
machines with distributed memory is crucial for further
breakthroughs in research. This paper reviews existing nu-
merical linear algebra packages and libraries that implement
solvers for dense eigenvalue problems and are tailored to
distributed-memory systems. The survey analysis has shown
that there are numerous eigenvalue solvers for distributed
memory systems. However, not many of them are able to
exploit the full potential of modern, heterogeneous, GPU-
based machines with complex memory hierarchies.

Keywords—eigenvalue solvers, high-performance comput-
ing, distributed-memory, large-scale systems

I. INTRODUCTION

Computing the eigenvalues and eigenvectors of a given
system is a fundamental computational problem in many
research fields and often the main computational bottle-
neck in many scientific codes. The problem becomes par-
ticularly challenging in the fields of structural dynamics,
quantum chemistry, and control theory when eigenvalues
and eigenvectors of extremely large matrices are sought-
after. To tackle such problems, numerous computational
libraries have been developed, tailored for specific classes
of eigenvalue problems. The most significant ones, glob-
ally accepted as a standard in both academia and industry,
are the LAPACK [1], developed for the shared-memory
systems, and the ScaLAPACK [2], a version of the LA-
PACK for the distributed-memory systems. These two
libraries are widely used as basic building blocks for other
computational libraries, in various scientific codes but
also in computational software platforms like R, Matlab,
Octave, and SciLab.

Nowadays, we witness a rapid development of never
larger computational systems that consist of a huge num-
ber of computational nodes. It is not uncommon that each
computational node has two or more multi-core processors
accompanied by graphical processing units (GPUs) and

a complex memory hierarchy. These new architectures
pose a challenging task to the existing eigenvalue solver
packages in terms of portability, scalability, and efficiency
of the code. It is of the most significant importance that
the development of the new computing architectures is
followed by the development of the novel eigenvalue
solvers that can exploit the full computational potential
of such systems.

This research aims to give a brief overview of the
existing high-performance eigenvalue solver solutions and
how efficient are they in solving large eigenvalue problems
on modern, distributed and heterogeneous computing sys-
tems.

This paper is organized as follows. A brief intro-
duction to the eigenvalue problems is given in Sec-
tion II. Section III describes the available computational
libraries implementing eigensolvers for shared-memory
and distributed-memory parallel systems. An overview of
the performance and comparison of distributed eigenvalue
solvers is presented in Section IV. The paper is concluded
in Section V with the discussion on the state-of-the-art
eigensolvers for distributed-memory systems.

II. EIGENVALUE PROBLEM FORMULATION

The standard eigenvalue problem is defined, in matrix
representation, as:

AX = XΛ, (1)

where A ∈ Rn×n is a square matrix, Λ =
diag(λ1, λ2, . . . , λn) ∈ Cn×n is a diagonal matrix with
the sought-after eigenvalues, and the columns of X ∈
Rn×n contains the associated eigenvectors [3], with n
being the matrix dimension. The eigenvalue λi and its
corresponding eigenvector xi form an eigenpair (λi, xi).
If matrix A is complex, then the resulting eigenvectors are
also complex. In the case A is symmetric or Hermitian (A
is complex and is equal to its conjugate-transpose), then
the eigenvalues are real numbers (λi ∈ Rn).

However, in many real-world cases, one has to compute
the eigenvalues (Λ) and the corresponding eigenvectors
(X) of the systems:

AX = BXΛ, (2)

where both matrices A and B are squared. This type of
eigenvalue problem is called a generalized eigenproblem.
Note that the standard eigenproblem is a special case of
the generalized eigenproblem in which matrix B is the
identity matrix.



To solve an eigenvalue problem on a computer, one
must choose an appropriate numerical method and com-
putational approach that will ensure both the performance
and accuracy of the solution obtained. Which method
or approach to choose depends mainly on the properties
of the given eigenvalue problem (i.e., the properties of
the matrices A and B in (1) and (2)) and these prop-
erties are: 1) the type of matrix, which can be sym-
metric/unsymmetric, Hermitian/non-Hermitian, general or
unitary, 2) the structure of the matrix - dense, band, sparse,
structured sparsity, Toeplitz and others - and 3) the number
of eigenvalues required - all eigenvalues, inner/outer spec-
trum, smallest/largest eigenvalues and whether or not the
eigenvectors are also computed. Since the focus of this re-
search is on dense eigenvalue problems, only methods and
approaches for dense eigenvalue problems are discussed in
the following text.

The first (and very rough) division of eigenvalue solvers
is whether all eigenvalues and the corresponding eigen-
vectors are needed or only a subset. In the first case,
the so-called direct eigenvalue solvers are used, while
in the second case, the iterative eigenvalue solvers are
the better choice. In principle, all eigenvalue solvers are
iterative processes, including the direct solvers. However,
the direct solvers have the first steps in which the matrix A
is reduced to a canonical form in a predetermined number
of steps by applying orthogonal transformations (e.g., to
the tridiagonal form for symmetric matrices or to the
upper/lower Hessenberg form for non-symmetric ones). In
the following steps, the eigenpairs are computed from the
obtained canonical form using fast iterative eigensolvers
such as MRRR [4], bisection and inverse iteration [5],
Divide-and-Conquer [6] or QR iteration [3]. To obtain
the eigenvectors of the initial matrix A, the accumulated
reduction transformations are applied to the computed
eigenvectors of the canonical form. This approach is
sometimes referred to as the one-step approach.

The computational cost of obtaining the eigenpairs from
a tridiagonal or Hessenberg matrix is O(n2) in the worst
case, while computing the eigenpairs directly from A costs
O(n3) (and is entirely cast in the form of the memory-
bound BLAS -2 operations). The computational bottleneck
now becomes the reduction phase (with a cost of O(n3)),
where only half of the computations of the reduction phase
computations can be performed in terms of optimized,
compute-bound BLAS-3 operations. To further improve
performance (increase the ratio of BLAS-3 operations),
a two-stage (or multi-stage) [7] approach is proposed
that successively reduces the dense matrix A to the band
matrix form (i.e a diagonal matrix with a few non-zero
sub/super diagonals) and then reduces the band matrix to
the tridiagonal or Hessenberg matrix form.

The generalized eigenvalue problems are usually solved
by first reducing them to the standard form. This is
usually done by reducing either the matrix A or B to
diagonal/triangular form. The other approach is to simul-
taneously reduce A and B to upper/lower Hessenberg or
tridiagonal form using the QZ algorithm [8] [3].

On the other hand, iterative solvers (working on the
dense matrix A) are a common choice when a smaller
subset of eigenvalues is sought. One of the most popular
eigenvalue solvers is the QR algorithm [3], Krylov sub-
space iterations (such as Lanczos/Arnoldi methods), Jacobi
methods, and power iterations [3].

III. HIGH-PERFORMANCE EIGENVALUE SOLVERS

In this section, we present the most popular high-
performance numerical linear algebra packages that im-
plement parallel eigenvalue solvers for dense eigenvalue
problems. Nowadays, one can find a large number of
different eigenvalue solvers, however, most of them are
the result of single research papers, which are often not
properly maintained, outdated, or whose developers have
stopped further maintenance of the code. Therefore, in the
rest of the article we will only consider eigenvalue solvers
(and numerical packages) that are regularly maintained,
freely available and mature.

Eigensolvers are divided into two categories, shared-
memory and distributed-memory eigensolvers. The first
category contains the eigensolvers tailored for shared-
memory systems, i.e., eigensolvers that can exploit par-
allelism at the level of multi-core CPUs and optionally
GPUs of a single machine. The second category comprises
the eigensolvers that can distribute their workload across
multiple compute nodes (machines), each consisting of
multi-core CPUs and (optionally) GPU accelerators.

The shared memory solutions are usually based on the
OpenMP and pthread programming models for exploit-
ing parallelism at CPU level and GPU-specific models
(CUDA, OpenCL) for GPU acceleration. The distributed
memory models are mostly based on the Messing Passing
Interface (MPI), a standardized and portable inter-machine
communication standard.

A. Shared-memory solutions

The best known and most widely used package for
linear algebra is called LAPACK [1]. It provides routines
for solving standard and advanced numerical problems in
linear algebra such as linear systems, least-square prob-
lem, eigenvalue, and singular value problems, and related
matrix factorizations such as Schur, Cholesky, QR, and
LU. It has been adopted and used by numerous software
packages and forms the basis for almost all other linear
algebra packages and libraries. LAPACK is known for
its high performance and scalability on shared memory
computer systems with multi-layered memory hierarchies.
The algorithms are organized into matrix blocks (which
act as basic building blocks) whose size can be tailored to
a particular memory tier to achieve high performance on
a variety of modern machines. The building blocks (basic
matrix operations) depend on the highly tuned library -
Basic Linear Algebra Subprograms (BLAS) [9].

LAPACK provides a large number of solvers for almost
all types of eigenproblems. Dense eigensolvers are divided
into three phases: 1) reducing the dense initial matrix into
a condensed matrix form, 2) computing the eigenvalues
and eigenvectors of the obtained matrix in condensed



form, 3) (if eigenvectors are needed) back-transforming the
eigenvectors of the condensed form into those of the dense
initial matrix. The dense symmetric (Hermitian) eigen-
problems are solved by calling the driver routines xSYEV
(xHYEV) or xSYEVD (xHYEVD), which compute all
eigenvalues and optionally eigenvectors. The xSY,HEEVR
and xSY,HEEVX routines, which use the MRRR and QR
algorithms, respectively, compute a subset of eigenval-
ues and corresponding eigenvectors. The above routines,
which are implemented as a one-step approach, are also
available as two-step variants. LAPACK also implements
the variants for solving symmetric and non-symmetric
generalized eigenvalue problems.

LAPACK also provides computational routines for
reducing a dense symmetric and rectangular matrix
into tridiagonal form (xSYTRD and xGEBRD, respec-
tively) and a nonsymmetric matrix into Hessenberg form
(xGEHRD). The eigenpairs are computed directly from
the obtained condensed forms using the routines xSTEDC
and xSTEVR to compute all or selected eigenpairs of
the symmetric tridiagonal matrix. The eigenvectors of
the dense initial matrix can be obtained by applying
the routine xGEMM (matrix-matrix multiplication) (back
transformation).

One of the major drawbacks of LAPACK is its lack of
support for modern computer architectures equipped with
GPU accelerators. The MAGMA library [10]–[12] over-
comes some of these shortcomings by redesigning and re-
implementing most LAPACK routines for heterogeneous
computer systems equipped with multi-core CPUs and one
or more GPUs. The main idea is to offload and balance the
computational load between CPUs and GPUs by selecting
the best algorithms for each processing unit. MAGMA also
targets only shared memory systems, but provides support
for a wide range of different computer architectures and
parallel models (CUDA, OpenCL, OpenMP). The library
implements solvers for non-symmetric, symmetric (prefix
SY) and Hermitian (prefix HE ) standard and generalized
symmetric/Hermitian eigenproblems. The routines (suffix
with x) compute only selected eigenpairs and three differ-
ent algorithms can be used to compute eigenpairs. For the
standard symmetric/Hermitian eigenvalue problems, divide
and conquer (routines xSY,HEEVDX), QR (xHEEVX)
or MRRR (xHEEVR) can be used, and the counterparts
for the generalized eigenvalue problem xSY/HEGVDX,
xSY/HEGVX and xSY/HEGVR respectively. All routines
internally reduce the input matrices into condensed forms
(one-stage and two-stage variants) and then compute the
eigenvalues of the obtained condensed matrices.

The input matrices can be stored in main memory
before calling an eigenvalue solver, or in GPU memory.
In the former case, the routines internally manage the
data movement into GPU memory. The latter allows for
easier integration into existing codes, especially if the
input matrices are already in GPU memory, reducing the
costly data movement from GPU to main memory.

cuSolver [13] is a vendor–specific library developed
by NVIDIA and is tailored specifically for NVIDIA’s

GPUs. The package provides a set of the most commonly
used numerical linear algebra routines from LAPACK.
Both sparse and dense eigenproblems can be addressed on
the multi-GPU machine (shared-memory system). Using
the cuSolver both generalized and standard symmetric
eigenvalue problems can be solved, however, the input
matrices have to be in the GPU memory before a call of
the routines cuSolverDn<t>SYEVDX (standard) and cu-
Solver<t>SYGVDX (generalized eigenproblem). Optional
letter X at the end of the routine name says that the routine
computes a selection of the eigenvalues and optionally
eigenvectors. By the time of writing this paper, only
symmetric eigenproblems can be solved using multi-GPU
support, and a 1-D column block-cyclic data layout is used
for that purpose.

Compared to the other linear algebra packages,
Eigen [14] is a C++ template library that defines ma-
trices and numerical solvers as class objects. Therefore,
the library allows for easy programming that is closer
to standard mathematical terminology, rather than call-
ing a function (e.g., to compute general matrix-matrix
calculations) and worrying about input/output arguments,
sizes of the matrix, etc. The library provides routines for
computing dense generalized/standard eigenproblems of
general and symmetric/Hermitian matrices. The routines
for standard eigenproblems first reduce the input matrix to
Schur form and then compute the eigenpairs. In the case
of the generalized eigenvalue problem, the QZ algorithm
(for the general matrix) or the Cholesky decomposition (in
the case of the symmetric/Hermitian matrix B) is applied
to reduce the generalized problem to a standard eigenvalue
problem.

B. Distributed memory solutions

The most popular linear algebra package and industry
standard for distributed memory systems ScaLAPACK [2]
(Scalable Linear Algebra PACKage) is an extension of
the LAPACK library. ScaLAPACK does not support
offloading of computations to GPU accelerators. The
package provides routines for solving standard symmet-
ric/Hermitian and generalized symmetric-definite eigen-
problems when all eigenvalues and (optionally) the eigen-
vectors or a certain subset of the eigenspectrum (rou-
tine with the suffix x) are required. Routines PxSYEV
(QR algorithm) and PxSYEVD ( Divide-and-Conquer al-
gorithm) compute all eigenvalues (and eigenvectors) of
the dense symmetric or Hermitian eigenproblems, and
routine PxSYGVX computes the eigenpairs of the dense
generalized eigenproblems. In addition, ScaLAPACK im-
plements a number of computational routines for a one-
stage approach, including reduction to tridiagonal form
(PxSYTRD), application of the implicitly stored orthog-
onal matrix Q (PxORMTR), and computation of the
eigenvalues and eigenvectors of the symmetric tridiago-
nal matrix using look-ahead QR (xSTEQR2), bisection
(PxSTEBZ), and inverse iteration (PxSTEIN). Internally,
the ScaLAPACK routines assume that the input matrices



are distributed among the processes in the two-dimensional
block-cyclic data distribution1.

ELPA [15] [16] is a specialized library for computing
the eigenvalues and eigenvectors of large dense symmetric
matrices commonly encountered in quantum chemistry,
computational materials science, biological network the-
ory, and other fields. The goal of ELPA is to efficiently
solve extremely large eigenvalue problems, too large to
fit in the main memory of a single machine, on parallel
distributed-memory systems.

The library contains two direct eigenvalue solvers to
compute all or a subset of the eigenvalues and eigenvec-
tors. The standard one-stage solver (ELPA1) first reduces
the symmetric/Hermitian input matrix to tridiagonal form
by Householder transformations, and then computes the
eigenvalue pairs of the obtained tridiagonal system using
the divide-and-conquer algorithm. When the eigenvectors
are required, a back transformation of the eigenvectors is
performed. As discussed in Section I), a direct reduction
from dense to tridiagonal form quickly becomes a bottle-
neck for large matrices. Therefore, the second approach
(referred to as ELPA2) is used, which reduces the dense
input matrix to the tridiagonal form via an intermediate
band matrix form. ELPA2 provides high performance on
large eigenproblems and shows very good scaling on a
large number of computational cores [16]. The current
version of the ELPA library efficiently solves standard
and generalized symmetric/Hermitian eigenvalue problems
in double and double-complexity precission. The latest
version of the ELPA library implements a distributed
GPU-based two-stage eigensolver (ELPA2) [17] based on
the cuBLAS library and special CUDA kernels to speed
up the back transformation of eigenvectors.

In the one-stage approach, the major computational
bottleneck is the reduction from dense symmetric to
tridiagonal form. To overcome this bottleneck, a two-
stage approach is used that reduces the computational cost
by first reducing to the band matrix form. However, in
this approach, the bottleneck is shifted from the reduc-
tion phase to the back-transformation phase. The library
EigenEXA [18] overcomes this bottleneck by introducing
a novel one-step approach in which the eigenpairs are
computed directly from the band matrix, eliminating the
need to back-transform the eigenvectors of the tridiag-
onal eigenproblem into those of the band matrix. The
parallelism is based on highly tuned LAPACK and BLAS
libraries for shared memory systems and ScaLAPACK for
distributed memory systems.

FEAST package [19] is a high-performance library
for distributed memory systems, ideal for large sparse
eigenproblems when a subset of (interior) eigenpairs is
needed. FEAST provides solvers for standard and gener-
alized symmetric/Hermitian and non-Hermitian eigenvalue
problems with interfaces for dense, banded, and sparse ma-
trices. The core of the library is the FEAST algorithm [20],
which is based on contour integration and density-matrix
representation. Moreover, the solvers support the reverse

1https://www.netlib.org/scalapack/slug/node75.html

communication interface [21] and can therefore be linked
to any (external) MPI-based linear systems solver that uses
a customized data distribution pattern. The only FEAST
requirement is the availability of highly optimized BLAS
and LAPACK packages. The library does not provide
support for hybrid or GPU execution.

Intel MKL [22] is another vendor-specific library that
implements a large number of mathematical routines,
including BLAS, LAPACK, Fast Fourier Transformations,
vectorized mathematical functions, and random number
generators. MKL is a widely used and very popular
math library because it provides very good performance
on all Intel-based processors. It implements most of the
ScaLAPACK routines for distributed memory systems and
provides the same interface (see the ScaLAPACK section
for more details). Currently, Intel MKL supports only
Intel GPU accelerators, but some third-party efforts have
been made to support GPUs from other vendors as well.
MKL provides driver routines for matrices stored in 3
different storage types: Full, Packed and Band and can
be stored in column or row major memory format for
better compatibility with other programming models (e.g.
Fortran). The library provides routines for generalized
and standard, symmetric/Hermitian and non-symmetric
eigenvalue problems. MKL implements routines from the
ScaLAPACK package for solving symmetric and non-
symmetric eigenvalue problems on distributed memory
architectures.

Elemental [23] is a C++ library first announced in
2013 for dense and sparse linear algebra computations on
distributed memory systems. Unfortunately, it has not been
maintained since 2016, but an extension was developed by
Lawrence Livermore National Lab, called Hydrogen [24].
Hydrogen added support for GPU execution (based on
the CUDA architecture). The library provides several one-
step routines for solving real symmetric or Hermitian
eigenvalue problems. The input matrix is reduced to tridi-
agonal form (HermitianTridiag) and then a parallel MRRR
(PMRRR) [25]) is applied to find all eigenpairs of the
tridiagonal system.

The Software for Linear Algebra Targeting Exascale
( SLATE ) [26] project aims to provide modern basic
linear algebra capabilities for HPC and future exascale
systems. The software library, similar to LAPACK, pro-
vides the basic operations for dense matrices, including
linear system solvers, least square solvers, and singular
value and eigenvalue solvers. The plans for SLATE are
very ambitious, as it aims to replace the very popular
ScaLAPACK library, whose main drawback is the lack
of support for modern hardware accelerators. The pack-
age implements the communication-avoiding solvers for
symmetric eigenproblems. The solvers are based on the
two-stage reduction to the tridiagonal and bidiagonal form.

(P_)ARPACK [27] [28] is a computational library that
computes a subset of the eigenpairs of sparse or structured
non-symmetric, symmetric (Hermitian) and generalized
eigenproblems. The package is best suited for computing a
smaller subset of eigenpairs of large sparse matrices, since



the algorithm is based on the matrix-vector product and
reverse communication. However, it is shown [29] that the
ARPACK library can also be very competitive when only a
few eigenpairs of the dense generalized eigenproblem are
needed. The distributed version (P_ARPACK) is based on
BLACS and MPI message-passing interfaces.

LIS [30] [31] is a software library of iterative
solvers for linear systems and eigenvalue problems. The
library was originally developed to provide a scalable and
efficient numerical solver for computing partial differential
equations. It provides basic linear algebra operations for
both dense and sparse matrices and iterative solvers for
dense eigenvalue problems. However, due to the lack of
documentation, it is not known which iterative eigen-
value solvers are implemented and which types of eigen-
value problems can be solved. The library supports inter-
node parallelization (MPI) and intra-node parallelization
(OpenMP), but does not support GPUs.

Table I summarizes the high performance libraries de-
scribed above. The matrix structures dense, sparse, and
band in the column Sparsity are denoted by d, s, and
b, respectively. The Eigenproblem column lists the
types of eigenproblems that the libraries can solve. std
and gen denote standard and generalized eigenproblems,
respectively, and nsym and sym stand for non-symmetric
and symmetric/Hermitian eigenproblems, respectively.

IV. PERFORMANCE OVERVIEW

The analysis and performance results presented in this
section were not conducted by this study. The information
comes from previously published work and is discussed
here. The goal is to provide initial insight into the perfor-
mance and scalability of the distributed eigensolvers.

Analysis of the currently available computational pack-
ages for solving dense eigenvalue problems shows that
of the 13 parallel eigenvalue solvers analyzed, 9 sup-
port execution on distributed memory architectures. Of
the distributed memory libraries, 4 packages implement
eigenvalue solvers that can use modern GPU accelera-
tors, 3 of which support distributed execution on GPUs
(ELPA, Hydrogen - a derivative of the Elemental library
and SLATE). The last GPU-based distributed memory
eigensolver, provided by the Intel MKL library, supports
execution on Intel GPUs only for BLAS routines and a
subset of the available LAPACK functions.

From the performance analysis point of view, it is
almost impossible to collect the performance and scala-
bility results of the target eigensolvers, although numer-
ous research works (for example, on the performance of
ScaLAPACK [32] from 2004) have been done to analyze
the performance of distributed memory systems. Most of
the papers that analyzed the performance of eigensolvers
are more than 5 years old and the benchmarks were
performed on now obsolete computer systems. As far as
the author is aware, only a few performance analyzes have
been performed recently and on state-of-the-art comput-
ers. One of the most recent researches benchmarked the
ScaLAPACK, ELPA and EigenEXA [33] packages on the

Oakforest- PACS 2 supercomputer in Japan. The authors
showed that ScaLAPACK-only eigensolvers are inferior to
those of a more modern ELPA library when solving large
eigenproblems (matrix size up to 90, 000) on state-of-the-
art machines. This finding is somewhat surprising since
ScaLAPACK is still widely used, but understandable since
ScaLAPACK was designed and constructed in the 1990s
and tailored to the machines of the time, and no major
redesigns have been made since then. The benchmark
kernels are available on GitHub3.

Another recent study from 2020 [34] reports the per-
formance of SLATE library solvers for the SVD and
generalized dense Hermitian eigenvalue problems on the
Summit supercomputer4. The eigenvalue solver used was
a two-stage algorithm using the QR algorithm to compute
eigenvalue pairs of the tridiagonal system. The authors
reported a 3× speedup of the SLATE SVD solver without
using accelerators and a nearly 4× speedup when using
NVIDIA GPUs, on 1 node, compared to ScaLAPACK.
However, the performance converting the generalized to
the standard Hermitian eigenproblem on 18 Summit nodes
(without accelerators) is closely matching the ScaLA-
PACK, and achieves only a modest speedup (about 20%)
with accelerators. Since the conversion can be fully casted
in terms of compute-bound BLAS -3 operations, the
performance gain from using the accelerators should be
much higher. So much more research needs to be done on
the SLATE library.

The performance and scalability of the latest GPU
implementation of the ELPA library has been demon-
strated at Summit (Oak Ridge Computing Facility, USA)
and Talos5 (Max Planck Computing and Data Facility,
Garching, Germany) supercomputers. Performance anal-
ysis on eigenproblems ranging from 40, 000 to 100, 000
and on 64 compute nodes shows that two-stage approaches
outperform their single-stage counterparts on both CPU
and GPU. Unfortunately, the authors did not compare the
performance of the ELPA solvers with other eigensolvers
from other libraries.

V. CONCLUSIONS

Today, many eigenvalue solvers can use distributed
memory systems, but only a few of them can exploit the
full potential of modern computing architectures equipped
with GPU accelerators. However, many of them are still
under development, require additional performance tuning
(such as SLATE), or cover only a limited number of
eigenvalue problems, so their full performance is yet to
be achieved in the coming years.

From the user’s point of view, the lack of a more de-
tailed performance analysis and side-by-side comparison
of the available state-of-the-art eigenvalue solvers is a
major drawback that could lead to an incomplete overview
of the overall performance of the observed libraries. Often

2https://www.cc.u-tokyo.ac.jp/en/supercomputer/ofp/system.php
3https://github.com/eigenkernel/eigenkernel
4https://www.olcf.ornl.gov/summit/
5https://www.mpcdf.mpg.de/services/computing/linux/TALOS



TABLE I
HIGH-PERFORMANCE LIBRARIES FOR SOLVING EIGENPROBLEMS

Library Distributed GPU Hybrid Parallel model Sparsity Eigenproblem
LAPACK × × × OpenMP/pthreads d/b std/gen nsym/sym
MAGMA × yes (multi-GPU) yes OpenMP/pthreads/CUDA d/s/b std/gen nsym/sym
cuSolver × yes (multi-GPU) × CUDA d/s std/gen sym
EIGEN × × × OpenMP d std/gen nsym/sym
ScaLAPACK yes × × MPI/BLASC d
ELPA yes yes (GPU) × MPI/OpenMP/CUDA d std/gen sym
EigenEXA yes × × MPI/OpenMP d std sym
FEAST yes × × MPI d/s/b std/gen nsym/sym
Intel MKL yes yes (Intel GPU) × MPI/OpenMP/pthreads d/b/s std/gen nsym/sym
Elemental/Hydrogen yes yes (Hydrogen) yes (Hydrogen) MPI/OpenMP/(CUDA) d std sym
SLATE yes yes yes MPI/OpenMP/CUDA d std sym
P_ARPACK yes × × MPI/BLACS s std/gen nysm/sym
LIS yes × × MPI/OpenMP d/s

the performance of new libraries is compared with the
ScaLAPACK library or different variants of the solvers
from the same package are observed, but rarely compared
with other modern libraries.

Future work will focus on performing a detailed per-
formance analysis of distributed memory eigensolvers on
modern computer architectures. The goal of future work
will be to determine how well existing eigensolvers can
handle scalability and performance challenges on current
systems and to predict their behavior on future computing
systems, which will most likely be very heterogeneous.
Moreover, we believe that a fair performance comparison
of different eigensolvers with the same input eigenprob-
lems on a dedicated distributed-memory system would
give a huge boost to the application of eigensolvers in
solving concrete real-world problems, but would also show
developers how to further improve eigensolver packages.
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