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ABSTRACT

In molecular dynamics or molecular statics (MD/MS) multi-body potentials empirically capture the energetic interactions in atomistic systems
enabling the computation of the corresponding atomistic forces as energetic conjugates to the atomistic positions. We distinguish here between
spatial and material atomistic positions and consequently between the corresponding spatial and material atomistic forces. In quasi-statics, i.e.
MS, the former, also denoted as deformational atomistic forces, contribute to the classical deformational mechanics (i.e., equilibrium) problem
that seeks to minimise the total potential energy of an atomistic system with respect to the atomistic positions relative to the ambient space. The
latter, also denoted as configurational atomistic forces, contribute to the configurational mechanics (i.e., non-equilibrium) problem that determines
the release of total potential energy of an atomistic system upon variation of the atomistic positions relative to the ambient material, i.e., due
to perturbations of the material (initial) atomistic configuration. The importance of material atomistic forces is that they drive energetically
favourable re-organisations of the material atomistic configuration, thereby characterising the tendency of generic atomistic defects to propagate.
In this contribution we focus on two-, three-, and four-body potentials, whereby we distinguish between novel stretch- and classical angle-based
potentials for the two latter cases. Taken together, as the main contribution, we derive expressions for the corresponding spatial and, for the
first time, material atomistic forces and highlight their striking formal similarity. The derivations are detailed but the final expression compact
and well-suited for numerical implementation.

1. Introduction

When modelling the energetic interactions in atomistic systems by molecular dynamics or molecular statics (MD/MS), multi-body
potentials are a valid option to empirically approximate the complex energy landscape that is dictated by the underlying quantum
mechanics. Most prominent of the numerous options for two-body potentials are the Buckingham and Lennard-Jones (1938) and the
Lennard-Jones (1924a,b, 1925) potentials, which only account for the distance between atomistic pairs. Well-known among higher-
order models is the Stillinger—-Weber potential (Stillinger and Weber, 1985) which combines two- and three-body terms. A further
typical example of a three-body potential is due to Tersoff (1988), which is a prominent member of the class of bond-order potentials
that are motivated by the tight-binding approximation, see Albe et al. (2002). The Tersoff potential parameterises the atomistic
energy by the distance between atomistic pairs and, in addition, includes atomistic triplets through the coefficients of a two-body
term. Another common choice of a multi-body potential is the Embedded Atom potential (Daw and Baskes, 1984), which besides the
distance between atomistic pairs accounts also for the embedding electron charge density of neighbouring atoms. Many approaches
that rely on simple harmonic potentials to describe atomistic interactions are complemented by three-body terms parameterising the
energetics of fluctuations around an average angle between atomistic triplets, typically based on a simple harmonic approximation.
Furthermore, force fields, see e.g., Brooks et al. (1983) and Cornell et al. (1995) are complemented by four-body terms incorporating
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dihedral angle fluctuations, i.e. the torsional rotation of atomistic tetrads about a central bond. However, while the corresponding
parametrisation typically involves the cosine map of the dihedral angle, the specific format of the potentials is very much model
dependent, see for example the incomplete list of models (Hess et al., 2008; Plimpton, 1995; Mayo et al., 1990; Allinger et al., 1989,
2003; Bureekaew et al., 2013; Rappe et al., 1992; Jorgensen and Tirado-Rives, 2005; Wang et al., 2004; Yildirim et al., 2010).

Conceptually, two-, three- and four-body potentials capture the energetic interactions between any potentially possible com-
bination of corresponding atomistic pairs, triplets and tetrads within an atomistic system. In practise, the plethora of potentially
possible combinations is restricted by interaction cut-offs. It is important to note that we shall not consider cut-offs here for the sake
of presentation.

Whereas objectivity (invariance under superposed rigid body motions) and parity symmetry (invariance under inversion of space)
restricts the parametrisation of two-body (pair) potentials to the (scalar-valued) length of an atomistic pair, see Tadmor and Miller
(2011), three- and four-body (triplet and tetrad, respectively) potentials allow for two different types of parametrisation. Motivated
in part by the intuitive concept of rotational springs, three- and four-body potentials are commonly parameterised in terms of
angles between adjacent atomistic pairs and dihedral angles between adjacent atomistic triplets. However, inspired by continuum
kinematics that involves the maps of line, area and volume elements as local measures of deformation, an alternative parametrisation
in terms of triplet areas and tetrad volumes is another valid option.

Similarly inspired by continuum kinematics and following our earlier work on pair potentials (Steinmann et al., 2011; Birang O.
and Steinmann, 2021), we introduce pair, triplet and tetrad stretches rather than pair lengths, triplet areas and tetrad volumes.
Thereby, we use the terminology pair, triplet and tetrad stretch to denote the ratio of either the pair lengths, triplet areas or tetrad
volumes in the deformed and undeformed state, respectively, of an atomistic system. In analogy to the continuum setting, we denote
these states of an atomistic system as the spatial and material atomistic configurations, respectively. In the same vein, we introduce
the ratio of the triplet and tetrad angles in the spatial and material atomistic configurations as the triplet and tetrad twist, respectively,
whereby we use, for convenience, the re-parametrisation of angles in terms of the cosine map (avoiding singularities for almost all
practical cases, i.e. only excluding extremely unlikely right angles).

Parameterising two-, three- and four-body potentials either in terms of pair, triplet and tetrad stretches or in terms of pair stretch
as well as triplet and tetrad twists proves particularly beneficial when elaborating and contrasting the corresponding spatial and
material atomistic forces deriving from the various options for multi-body potentials. In the quasi-static MS setting considered here,
spatial atomistic forces contribute to the classical deformational (equilibrium) problem that seeks to minimise the total potential
energy of an atomistic system when varying the spatial atomistic positions. By contrast, material atomistic forces contribute to the
configurational (non-equilibrium) problem that determines the release of total potential energy of an atomistic system when varying
the material (initial) atomistic positions. Thereby, material atomistic forces characterise the tendency of generic atomistic defects
to propagate, i.e., they drive energetically favourable re-organisations of the material atomistic configuration.

As our main contribution, we demonstrate, based on a systematic and unifying approach to the kinematics (and energetics) of
atomistic pairs, triplets and tetrads, the striking formal similarity of the resulting spatial and material atomistic forces. Notably,
this format also compares well to the energy-momentum structure of the so-called Eshelby stress in the continuum setting of
configurational mechanics, see Eshelby (1975). Views on the continuum setting of configurational mechanics are expressed for
example in Maugin (1993, 1995, 2011), Gurtin (1995, 2000), Cermelli and Fried (1997) and Fried and Gurtin (2003). Our own
contributions to configurational mechanics are documented, for example, in Steinmann (2000, 2002b,a,c, 2008), Steinmann et al.
(2009) and Steinmann et al. (2011).

Moreover, attempts towards the transition from discrete to continuous descriptions of matter, as for example Findeisen et al.
(2020), Turco et al. (2016), Davydov and Steinmann (2014a,b, 2015) (among others), will clearly benefit from our systematic and
unifying approach when taking into account multi-body interactions at the discrete level.

Finally, the advocated multi-body formulation for the MS of atomistic systems not only highlights the fundamental duality
between a stretch-based and a twist-based approach, but it also reveals an underlying conceptual similarity between the stretch-
based atomistic formulation and the peridynamics formulation recently proposed by the authors Javili et al. (2019, 2020, 2021¢,a,b).
Furthermore, the current manuscript suggests that a parallel twist-based framework for peridynamics can also be established.

The remainder of the manuscript is organised as follows. Section 2 comprehensively details the kinematics of atomistic systems
pertinent to atomistic pairs, triplets and tetrads, carefully distinguishing between the stretch-based and twist-based approach in
the two latter cases. Section 3 addresses first the equilibrium of spatial atomistic forces within MS as a consequence of total
energy minimisation within the atomistic setting of deformational mechanics. The focus thereafter is on the non-equilibrium
of material atomistic forces driving energy release within the atomistic setting of configurational mechanics. Section 4 derives
concise and explicit representations for the spatial atomistic forces and contrasts their format for the stretch-based and twist-based
parameterisations of the internal potential energy. In passing, it also touches on special cases with atomistic positions constrained
to two- and one-dimensional manifolds (as relevant for 2d and 1d materials). Furthermore, it elaborates on the corresponding
material atomistic forces and compares their format to that of the spatial atomistic forces. Section 5 closes the manuscript with
conclusions and an outlook. The appendix assembles necessary, however lengthy and tedious, intermediate manipulations of
atomistic expressions.

For the notation, we use blackboard font to symbolically denote vector- and tensor-valued atomistic quantities, meagre font to
denote scalar-valued atomistic quantities and bold font to denote other vector- and tensor-valued quantities. Greek indices indicate
the atomistic numbering, whereby we do not apply the summation convention on repeated Greek indices throughout the manuscript.
Full skew-symmetrisation and symmetrisation (as detailed in the main text) of Greek index pairs, triplets and tetrads are denoted as
[apl, [afy], laPyd] and (af), (afy), (afyd), respectively. The sum of even permutations of Greek index triplets is denoted as (afiy).



P. Steinmann et al

Table 1
Summary of atomistic kinematics.
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Atomistic pairs

Atomistic triplets

Atomistic tetrads

Pair length vector

Triplet area vector

Tetrad signed volume

Mg 1= Xy — X,
D

L= Xy XX,
1= X X X,

Xapy

X

afy

Kapys 1= [gp X300 1+ %5
Xapps -= [Kap X Xy - X5

Pair length Triplet area Tetrad volume
Xap 1= gyl Xapy = D%y Xaprs = |Xapysl
Xop 1= 1%yl Koy 1= [Xap, | Kaprs 1= Kapys|

Pair direction

Triplet direction

Tetrad direction

Noj 1= g/ Xap
Nnﬂ = Xaﬂ/Xﬂﬂ

Bag, *= Hap, /Xap,
Nlrllr = xaﬂr/eri?r

Nagys *= Xapps/ Xapys
Nopys 2= Xapps / Xapys

Spatial atomistic sensitivities

Pair-wise sensitivities

Triplet-wise sensitivities

Tetrad-wise sensitivities

0,5 /0%y = Ny
Oy /0%y = [pjﬂ

00Xy, [0%yp, = My,
Mg, [0%,p, = pj,ﬁy

{bcaﬂﬂs/z)xuﬁﬂi = Napys
1
Magys [ Paprs = Pypys

Fully symmetric orthogonal projection tensors

Py = i = ngy @ mysl/x,,

T s
Pogy == [i—my ® “aﬂyl/"aﬁr

L.
Papys “= 11 = Moy Nagys 1/ X g5

Pair stretch

Triplet stretch

Tetrad stretch

Aap = Xap/ Xap
Ay = n[l/xrzﬂ

Aapy 1= Xapy [ Xapy
Anrﬂ? = Xﬂﬂy/xaﬂr

Aapys = xaﬂrJ/Xaﬂvé
Agpys 1= Xaﬂ‘y5/xaﬂré

Triplet angle

Tetrad dihedral angle

Papy 1= Dy Ny

Dapys = Mgy - Vags

@,y = Mgy Ny, Pupys 1= Map, - Nags

Triplet twist Tetrad dihedral twist

Dapys = Papys/ PCapys
Lops = ®aﬂy6/¢uﬂ76

Wygy 1= ugy [Py
‘Qa/lr = (Dﬂﬂr /¢nﬂr

2. Kinematics

The pertinent relations regarding the atomistic kinematics elaborated upon in this section are assembled for the sake of overview
in Table 1.

2.1. Atomistic positions

An atomistic system consists of a large but finite number of atoms, labelled by «, that occupy the spatial and material atomistic
positions x, and X, respectively, in a bounded domain of ambient space E>. These are related by a discrete, i.e., atom-wise motion
with a time-like variable s € R, that here merely orders the quasi-static loading, see Fig. 1, as

Xg = Xg(8) with X, 1= x,(0). 1)
In passing we remark that the spatial and material atomistic position-wise sensitivities render
ox,/ox, =1 and aX, /0%, =1,

with i and [ denoting the second-order spatial and material identity tensors, respectively.

2.2. Atomistic pairs

2.2.1. Pair lengths
We introduce the spatial and material pair length vectors pointing from atom « to atom f, see Fig. 2, as

Xgp ‘= Xp =X, and X, =3 =3, (2)

Note the skew-symmetry in the indices of x,; = x5 and X,; = X[,5)-
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Fig. 1. Atomistic motion from material position at s = 0 to spatial position at s. The material atomistic positions are the positions the atoms take a time zero,
i.e. before any external loading is applied. The spatial atomistic positions are then a result of the external loading.

Xap = TapDapg

v

Tap

Fig. 2. Atomistic pair length vector and pair length.

In accordance with the requirement of invariance,' it is convenient to introduce the corresponding scalar-valued spatial and
material pair lengths as

Xap 1= gl and X5 1=l (3)

Note the symmetry in the indices of x,; = x(,5 and X,; = X ., reflecting that the spatial and material pair lengths associated
with each atom belonging to a specific atomistic pair are the same. Consequently, the vector-valued spatial and material pair
directions (pair normals?®) follow as

Map '= Xgpf/Xqp and Ny =3,/ X 4. 4

Note the skew-symmetry in the indices of n,; = nj,z and N,; = N

In the following, corollaries will be used to assemble helpful intermediate results. For the sake of conciseness, these are explicitly
outlined only for spatial quantities but hold likewise for material quantities with obvious adaption of the notation to upper case
letters.

Corollary 2.2 (i). Spatial atomistic position-wise sensitivities

Iy f0x, = —1 and  dx,,/dx; =i.

Corollary 2.2 (ii). Spatial atomistic pair reciprocity

1 The superposition of a spatial rigid body motion with a time-dependent rotation R(f) € SO(3) and translation ¢(f) renders the spatial atomistic position and
thus the resulting pair length vector as

x;(l) = R(1)-x,+¢c(t) and xt‘j(l) = R(1)- X5+ c(t) = x;ﬁ(l) = R(1) - Xop-

Obviously, [, (O] = %41 remains invariant under superposed rigid body motions and is thus objective. Extending the group SO(3) to O(3) (i.e. including
reflections) does not change the result, thus |x] (1| = |x,,| remains likewise invariant under inversion of space and is thus also parity symmetric.

2 Regarding terminology, we understand a vector as a directed distance that is characterised by its length and its direction, whereby the latter possesses an
orientation and a sense of direction.
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Xapy = Tapylapy

Fig. 3. Atomistic triplet area vector and triplet area.

The above sketch depicts the sign (sense of direction) of the pair length vector x5, whereby indices refer to vertices of an atomistic pair.
Swapping the indices of x,; changes its sign, thus it is skew-symmetric in af, i.e. x,; = x5 Following the arrow for the sequence af results
in a positive sign, reversing the sequence to fa renders a negative sign.

Xop = —Xpg == Mg = =N, With x5 = x4,

Corollary 2.2 (iii). Spatial atomistic pair-wise sensitivities
O0xXop/0%qp = Nyp.
Spatial atomistic pair-wise sensitivity: fully symmetric pair-wise orthogonal projection tensor
Oy [0%,p = [ =My @ mypl/x,y = [prfﬁ_
2.2.2. Pair stretches
Inspired by continuum kinematics, we also introduce spatial and material pair stretches as
Aap = Xopl/ Xgg and  Ayp 1= Xop5/X,p. (5)

Note the symmetry in the indices of 4,; = 4,5 and A,; = A, reflecting that the spatial and material pair stretches associated
with each atom belonging to a specific atomistic pair are the same.

It is trivially established from the preceding discussion on invariance that the pair stretches are objective and parity symmetric.

Corollary 2.2 (iv). Spatial atomistic pair-wise and position-wise sensitivities

Ohap/ 0%, =g/ Xop and  0A,5/0x, =~y /X .
2.3. Atomistic triplets
2.3.1. Triplet areas

Next, we introduce the spatial and material triplet area vectors pointing perpendicular to the plane spanned by the atomistic pairs
aff — ay, see Fig. 3, as

Kapy *= Kap X Xgy i: Xap “ Xay ©)
= Xap * Xay
and
Xapy 1= Xap XXay = Rop - Xoy
= Xop * Xay

Here, {?} denotes the skew-symmetric (spin) tensor homoeomorphic to the (axial) vector {«}. Note the minor skew-symmetry in
the second pair of indices of x,;, and X,,, that results immediately from the skew-symmetric properties of the vector product.
Moreover, due to the invariance of the vector-valued area of the enclosed triplet, x,,, and X,,, allow for cyclic permutations of
afy. Taken together, x,5, = X5, and X, = X5, are fully skew-symmetric in afiy (cf. the skew-symmetries of the third-order
Levi-Civita symbol).
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In line with the requirement of invariance,® it is convenient to introduce the corresponding scalar-valued spatial and material

triplet areas as
Xapy = igp, | and  Xgp, 1= X4 |- %)

Note the full symmetry in the indices of x,5, = X(,p5,) and X,z = X(,p,), reflecting that the spatial and material triplet areas
associated with each atom belonging to a specific atomistic triplet are the same. Consequently, the vector-valued spatial and material
triplet directions (triplet normals) follow as

Rapy ‘= Xapy/Xap, AN Nog, 1= Xop, [ Xopy- 8

Note the full skew-symmetry in the indices of n,g, = n,g,; and Nz, = N,z
Corollary 2.3 (i). Spatial atomistic pair-wise sensitivities
O%gp, /0%,y = =Ry, and  Ox,5, [0x,, = Ky
Spatial atomistic position-wise sensitivities

O%op, [0%y = Ky — Ry =Rp, and sy, foxp = —X,, and  Ix,p, /0%, = X4y

Corollary 2.3 (ii). Spatial atomistic triplet reciprocity

(O—
The above sketch depicts the sign (sence of direction) of the triplet area vector x,,,, whereby indices refer to vertices of an atomistic

triplet. Swapping any two indices of x,,, changes its sign, thus it is fully skew-symmetric in afly, i.e. x,5, = X(45,|. Following the arrows for
the sequence afly results in a positive sign, changing the orientation for the circuit in the afy renders a negative sign.

Xapy = Xppa = Xpap = Xpay = Xayp = Nppa =
Mgy = Ngyg = Mygp = Mgy = —Nyyg = —Nyp,  With
Xapy = Xpya = Xyap = Ypy = Xapp = Xypa

Corollary 2.3 (iii). Spatial atomistic triplet-wise sensitivities

Xy, (0% 45, = Nyp, -

Spatial atomistic triplet-wise sensitivity: fully symmetric triplet-wise orthogonal projection tensor
. .
Mgy [y = (8= Ngp, @ Ngp 1/ Xap, = P, -

2.3.2. Triplet stretches
Again inspired by continuum kinematics, we introduce, as a novel concept, spatial and material triplet stretches as
and A

= x

Aapy *

afir/ Xapy apy = Xapy/Xapy- ©)

Note the full symmetry in the indices of 4,5, = A,p,) and A, = A, reflecting that the spatial and material triplet stretches
associated with each atom belonging to a specific atomistic triplet are the same.
It is trivially established from the preceding discussion on invariance that the triplet stretches are objective and parity symmetric.

Corollary 2.3 (iv). Spatial atomistic triplet-wise and position-wise sensitivities

Oy [ 0%apy = Napy/ Xop, and 0,5, /0%, = —xp, XNyp [ X g,

3 The superposition of a spatial rigid body motion with a time-dependent rotation R(r) € SO(3) (and a translation ¢(1)) renders the spatial pair length vectors
and thus the resulting triplet area vector as

x;ﬂ(z) = R() -x,; and x;y(() =R(1)-x, = x

15 ()= det RO R() - %5,

Obviously, |x:, ()| = |x,, | remains invariant under superposed rigid body motions and is thus objective. Extending the group SO(3) to O(3) does not change
the result, thus [x” 5y O = e, | remains likewise invariant under inversion of space and is thus also parity symmetric.
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Fig. 4. Atomistic triplet angle.

2.3.3. Triplet angles

Classically, the intuitive concept of rotational springs in terms of angles between adjacent atomistic pairs motivates the
introduction of spatial and material triplet angles, see Fig. 4. However, here, for convenience, we uniquely re-assign triplet angles
from the interval [0, z] to the interval [+1,—1] by the cosine map (still denoting the result, admittedly somewhat sloppily, as triplet
angles), thus

¢aﬁy = Map - My (10)
= Mgy cfgg =D Puyy
and
@up, = NNy,
= Ny -Ngg =t @y

Note the minor symmetry in the right pair of indices of ¢4, = Py,) and @5, = @, reflecting the commutativity of the scalar
product. Yet, notably, the spatial and material triplet angles associated with each atom belonging to a specific atomistic triplet are
in general distinct.

It is trivially established from the preceding discussion on invariance that the triplet angles are objective and parity symmetric.
Corollary 2.3 (v). Spatial atomistic pair-wise sensitivities
il 1
b, [0%p = Py~ Ny ANd  Odbop, [0Xq, = Py, - My
Spatial atomistic position-wise sensitivities

Ibagy [0%, = —[Py; - My + P,

vy Map] and Ay, /x5 = piﬂ ‘N, and Ay, [dx%, = pjr M-

2.3.4. Triplet twists
In analogy to the triplet stretches, we also introduce, again as a novel concept, spatial and material triplet twists as

Oapy = Papy [ Papy and Qupy = Pugy/ Pupy- (11

Note the minor symmetry in the right pair of indices of @, 5, = w,,;,, and Q,, = Q... reflecting the commutativity of the scalar

product. Importantly, the spatial and material triplet twists associated with each atom belonging to a specific atomistic triplet are
in general distinet.

It is trivially established from the preceding discussion on invariance that the triplet twists are objective and parity symmetric.

Corollary 2.3 (vi). Spatial atomistic pair-wise sensitivities
L 1
5maﬁ},/axaﬁ =Py nw/dlaﬂy and 6maﬁ7/6xar =P, mnr,ﬂ/cbaw
Spatial atomistic position-wise sensitivities

awaﬁylaxa = _[[piﬁ s Mgy + [paL'r . waﬂJ/(Daﬁr

Ay, [0, = pi'ﬂ Mgy [Py, and  dwy,, [0x, = pjr My Popy-



P. Steinmann et al. Journal of the Mechanics and Physics of Solids 154 (2021) 104507

Xafys = TapysNafys

Fig. 5. Atomistic tetrad signed volume and tetrad volume.

2.4. Atomistic tetrads

2.4.1. Tetrad volumes
Finally, we introduce the spatial and material tetrad signed volumes contained within the atomistic pairs aff — ay — aé, see Fig. 5,
as

Xapys = [xaﬁ X Xa}'J “Xas T Xapy " Xgs X:Ij?yﬁ = [Xaﬂ X xay] : Xa& = Xaﬂy : Xa&
= Xasp Xy and = X Xy (12)
= Xgys " Xap = xay& . Xaﬁ

Note the full skew-symmetry in the last triplet of indices of x,4,; and X,;,; that results immediately from the skew-symmetric
properties of the scalar triple product. Moreover, x,;,; and X,;,; are, due to the skew-symmetry properties of x,,;, and X,;,, also
fully skew-symmetric in the first triplet of indices. Consequently, X,,5 = X[4p,5) A0d Xy5,5 = X{op,5) are fully skew-symmetric in afys.

In line with the requirement of invariance,* it is convenient to introduce the corresponding scalar-valued spatial and material
tetrad volumes as

xa[)‘y& = ‘Xuﬂyyi‘ and X:Ij?yﬁ = |Xaﬂy5|- (]3)

Note the full symmetry in the indices of x,5,; = X(4p,5, and X 5,5 = X (4,5, reflecting that the spatial and material tetrad volumes
associated with each atom belonging to a specific atomistic tetrad are the same. Consequently, the scalar-valued spatial and material
tetrad “directions” (tetrad normals=signs) follow as

naﬁyﬁ = Xaﬁy(‘i/xaﬁyﬁ and Naﬁyﬁ = Xaﬁy&/Xuﬂrﬁ' (14)

Note the full skew-symmetry in the indices of n,;,5 = nj,p,s and Nyg,5 = Njggs)-

Corollary 2.4 (i). Spatial atomistic triplet-wise sensitivities
OXypy5/Mapy = %gs A 0%y 5 /0%, 50 =3, and  0X,p.5/0%,,5 = X4y
Spatial atomistic pair-wise sensitivities
apysl O%as = Xqp, ANd  OXyp5/0%,, = Xu55  aNd X5/ 0Xap = Xgy5-
Spatial atomistic position-wise sensitivities

axaﬂw/é‘xg = Xupy and axﬂﬂyﬁ/ax}, = g5 and 6xaﬂy5/&xﬁ = X0

axam/axa = —Xgp ~ Xasp — Xays = Xpsy-

4 The superposition of a spatial rigid body motion with a time-dependent rotation R(r) € SO(3) (and a translation c(1)) renders the spatial pair length vectors
and thus the resulting tetrad signed volume as
x;ﬂ(z) = R(1) - %, and x;y(r) = R(1) - %, and xzé(t) =R(1)-x,; = x;m&(z) = det R(1) X,
Obviously, |x, (/)] = [,s,;| remains invariant under superposed rigid body motions and is thus objective. Extending the group SO(3) to O(3) does not change

the result, thus |x] s = Xagysl remains likewise invariant under inversion of space and is thus also parity symmetric.
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Corollary 2.4 (ii). Spatial atomistic tetrad reciprocity

° +  adpy afysd aydp Pasdy foya )
- afléy adyp ayfio - féay Payd Byda

2 2
()

+

yBée yoap yaps

yofa yfad yaof

+ Sy fa ofay sayf

- sfya Syap oafy

The above sketch depicts the sign of the tetrad signed volumes x,,,;, whereby indices refer to vertices of an atomistic tetrad. Swapping
any two indices of x,;,; changes its sign, thus it is fully skew-symmetric in aflys, i.e. X,5,5 = X|ap,5- Following the arrows for the sequence

afiyé results in a positive sign, changing the orientation for the outer circuit in the fyé renders a negative sign.

Xaspy = Xapys = Xaysp =~ Xapsy = Xasyp = ~Xapps =
Xpasy = Xpsya = Xppas = — Xpsay = Xpays = ~Xpysa =
Xypoa = Xysap = Xyaps = ~ Xyspa = Xypas = " Xpasp =
X5y pa = X5pay = Xsayp = — X5pya = ~Xsyap = — Xsapy =
Naspy = Napys = Naysp = Napsy = Nasyp = Nayps =
Npasy = Vpsya = Vpyas = ~Vpsay = ~Mpays = —Npyoa =
Nypsa = Nysap = Myaps = ~Nyopa = "MNypas = "Myasp =
Noype = Nopay = Noayp = ~Nopya = ~Noyap = ~Ngap, ~ With
Xaspy =Xapys = Xaysp = Xapsy = Xasyp = Xapps =
xﬂaéy Ex{:‘éru = xﬂyu6 = Xﬂﬁa’r = xﬂay6 = xﬁréa =
xyﬁ&a Exyéaﬂ = xyaBS = Xyﬁﬂcx = xyﬂaé = chu?ﬂ =

xﬁr{)‘a Ex(iﬂar = x&cryﬂ Xri[)'ycx = x&ruﬂ = ‘xéaﬂy
Corollary 2.4 (iii). Spatial atomistic tetrad-wise sensitivities
axﬂﬂyﬁ/axaﬂy5 = nﬂﬁ‘yﬁ'
Spatial atomistic tetrad-wise sensitivity: fully symmetric tetrad-wise orthogonal projection tensor
1
a"aﬂré/axaﬁyﬁ =[1- Napys naﬂyﬁjlxaﬂyE = paﬁyﬁ =0.
2.4.2. Tetrad stretches
Again inspired by continuum kinematics, we also introduce, for the first time, spatial and material tetrad stretches as
)“aﬂré = xaﬁyé/Xaﬁyri and Aaﬂy& = Xaﬁy&/xaﬂyﬂ' (15)

Note the full symmetry in the indices of 4,5,5 = Ap,5 and A,g,5 = Agp,s), reflecting that the spatial and material tetrad stretches
associated with each atom belonging to a specific atomistic tetrad are the same.

It is trivially established from the preceding discussion on invariance that the tetrad stretches are objective and parity symmetric.
Corollary 2.4 (iv). Spatial atomistic tetrad-wise and position-wise sensitivities

g5/ apys = Napys ) Xapys and O pys [ 0%g = —Xpys Napys/ Xapys-
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M3

Nass //’

Fig. 6. Atomistic tetrad angle.

2.4.3. Tetrad dihedral angles

Traditionally, the intuitive concept of rotational springs in terms of dihedral angles between planes spanned by adjacent atomistic
triplets motivates the introduction of spatial and material tetrad dihedral angles, see Fig. 6. However, here, for convenience, we
uniquely re-assign tetrad dihedral angles from the interval [0, z] to the interval [+1, —1] by the cosine map (still denoting the result
as tetrad dihedral angles), thus

Dapys = Napy - Mgps (16)
= Naps - Napy = d’aﬂéy
and
(paﬁyﬁ = Nal}y . Nal}&
= Na[}ﬁ - Naﬂy =: d’aﬁﬁy-

Note the minor symmetry in the left and right pair of indices of ¢,5,5 = bupys = Papiys) a0 Popys = Plapyys = Popiys)» reflecting
the properties of the triplet directions and the commutativity of the scalar product. Despite this, the spatial and material tetrad
dihedral angles associated with each atom belonging to a specific atomistic tetrad are in general distinct.

It is trivially established from the preceding discussion on invariance that the tetrad dihedral angles are objective and parity
symmetric.

Corollary 2.4 (v). Spatial atomistic triplet-wise sensitivities

1 1
a(baﬂyé/axaﬁy = [pﬂﬁy “Meps and ad’aﬁy& /axaﬁﬁ = [pcrﬁ‘ﬁ Mg py-

Spatial atomistic position-wise sensitivities

a(nbaﬂyﬁ/axa = _Ixﬂy X [Ipi'g, Mgl + %45 X lpi_ga : naﬂy”
Obagys/ 0% = + %0y X Dy, - Daps] + X5 X [Pys - Napy ]
b5/ 0%, = —=[ap X [Prp, - Naps] |
Oyp,s/0%s = _l Xqp X [pjﬂﬁ : nﬂﬁy”

2.4.4. Tetrad dihedral twists
Finally, in analogy to the tetrad stretches, we also introduce spatial and material tetrad dihedral twists as

waﬂyri = d)aﬁyﬁ/(paﬂr& and Quﬂyﬁ = (paﬁyﬁ/(baﬂyé- (]7)

Note the minor symmetry in the left and right pair of indices of @,z,5 = @46 = @apiys) AN 2op,5 = Lgpys = Lapiys)» reflecting
the properties of the triplet directions and the commutativity of the scalar product. Despite possessing only minor symmetries, the
spatial and material tetrad dihedral twists associated with each atom belonging to a specific atomistic tetrad are in general distinct.

It is trivially established from the preceding discussion on invariance that the tetrad dihedral twists are objective and parity
symmetric.

Corollary 2.4 (vi). Spatial atomistic triplet-wise sensitivities
0Wgp,5/0%yp, = Ipalpy Naps/Pops and  dwyp,5/0%,55 = [Di,;,; Mgy [Popys-

10
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Table 2
Summary of atomistic deformational and configurational mechanics.

Total potential energy

E := Eim 4 et
Eint .= ppar 4 preiplel | pletrad s Eext o= Za Ve(x,)

Equilibrium of spatial atomistic forces

D;E=0 V [D;x}

inl xl - : i . PR triplet tetrad ext ._ ext

Kb ket =0 with KM= KP4 kT 4k and kS i= -0V fox,

Atomistic pairs Atomistic triplets Atomistic tetrads

WP = BT g, WU _gEPe gy kletrad = g ptetrad fgn

Non-equilibrium of material atomistic forces

d;E =R, <0 ¥(d;X,)
KM=k with  KPCG=KPT KT 4K and Ry = ¥, KM-dgX,

Atomistic pairs Atomistic triplets Atomistic tetrads
KE = —0EPT /0X, Ky P = —g B fax, Kl o= —gEmd 93,
N
~
Cd

Fig. 7. Energy landscape E(x.X) of a one-dof atomistic system depending on spatial and material positions.

Spatial atomistic position-wise sensitivities

Vg5 /0%y = =[xp, X [Pgg,  Daps) + Xps X [Paps - Napy )|/ Popys
005/ 0%p = +[x0y X [Py, - Maps) + X5 X (B - Mgy )|/ Pupys
0wy p,5/0%, = —[Xaﬂ X [Piﬁ}, “Myps] l/‘baﬂy.s
0gpys/ %5 = —| Xap X Pgs  Dapy )| /Papys

3. Deformational versus configurational mechanics

The pertinent relations regarding atomistic deformational versus configurational mechanics as referred to in this section are
assembled for the sake of overview in Table 2.

3.1. Total potential energy

The total potential energy E of an atomistic system depends on the sets of spatial and material positions {x.} and {3X_},
respectively, of all atoms, see the simplified single degree of freedom (dof) example in Fig. 7. For the deformational problem,
{x.} denote the unknown variables, whereas {X_} serve as a given parametrisation. For the configurational problem these roles are
reversed, i.e. {X_} denote the variables, whereas {x.} serve as parametrisation. The total potential energy E consists of an internal
and an external contribution:

E := E™ + E*. (18)

The external potential energy captures the interaction of the finite atomistic system with the (infinite) external world. It depends,
through the atom-wise external potential energy V*, merely on the spatial atomistic positions {x,} of all atoms e. That is,

E =Y Vo(x,). (19)

11
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|
. >
X = fixed X

Fig. 8. Spatial variations in an energy landscape E(x, X) of a one-dof atomistic system.

After condensing out the electronic degrees of freedom, the internal potential energy depends in general on the sets of spatial
and material positions {x.} and {3_.} of all atoms in the atomistic system and captures the interaction internal to the atomistic
system. We shall here consider the special (however, often valid) assumption that an additive expansion into pair, triplet and tetrad
potentials is sufficiently accurate to approximate the complex energetic landscape dictated by the underlying quantum mechanics,
thus

Eim c= EPAT Elriplel + Elalrad. (20)

We will highlight the consequences of and various options for this expansion in the subsequent subsections.
3.2. Equilibrium of spatial atomistic forces

We shall here consider quasi-statics. Thus the equilibrium condition for spatial atomistic forces follows from minimising the total
potential energy E of an atomistic system considered as a function of the spatial atomistic positions in {x,} and parameterised in
{X,.}. We denote spatial variations of the spatial atomistic positions {x,} at fixed material atomistic positions {X_} as {D;x_}, see
Fig. 8. Thus, the minimum condition for the total potential energy E under spatial variations reads

D;E=0 V {Dsx,]. (21)
Consequently, the minimum condition for the total potential energy E of an atomistic system is given by

D;E == 3 [k + k- Dyx, i=— 3 KB +ky P + k™ + k'] Dyx, =0V [Dyx, ). (22)
a a

In the above, kI, ki and k!*™¢ denote the contributions to the (net or rather resultant) internal spatial force acting on atom

« that follow straightforwardly from the pair, triplet and tetrad potentials as

. pair . triplet § tetrad
e R e (23)
a a @
Likewise, the external spatial force acting on atom « is given explicitly by
achl
k& = ———. (24)
« 0%,

Since admissible spatial variations {D;x_} of the spatial atomistic positions in {x,} are arbitrary, the equilibrium condition for
spatial forces acting on atom « results eventually as

KM+ k=0 with K™ = KB 4 kP 4 R (25)

Clearly, the above atomistic equilibrium condition is that the sum of all (resultant) internal spatial forces ki™ := kI + Ik,l,!nplel +
k'“r*d and external spatial forces k™ acting on atom a is zero.

3.3. Non-equilibrium of material atomistic forces

Here, we consider a re-parametrisation of the total potential energy E of an atomistic system as a function of the set of material
atomistic positions {X_}, i.e. with {X_} as the variables and {x,} as the parametrisation. We denote material variations of the material

12
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T A

T =fixed @= == = =

Fig. 9. Material variations in an energy landscape E(x,X) of a one-dof atomistic system.

atomistic positions {X,} at fixed spatial atomistic positions {x.} as {dsX,}, see Fig. 9. Then the material variation of the total
potential energy E equates with the virtual energy release R; that satisfies an inequality constraint in accordance with the second
law, that is

d; E=: Ry; <0V {dsX_}. (26)
Thereby, the material variation of the total potential energy E (note that d; E®' = 0) is given by

dﬁE - _ 2 K;m ) d5X” P Z[Kgair + IK:'riplsl + K;etradJ ) CL;X,, v [d5XE ) 27)
@ a
In the above, KM, KU and K'rid denote the contributions to the (resultant) internal material force acting on atom e that
follow from the pair, triplet and tetrad potentials, respectively, as
_QEPE triplet JE!riPet

Kp«':lir - . K P and Klelrﬂd =
“ 9%, “ X @

aElclrud

ax (28)

a a

Note that material variation of the total potential energy E does not in general render a stationary point (this would correspond
to the rare case of configurational equilibrium) but defines a variation of total potential energy d;E # 0. A key question that follows
from this observation is what are the energetic implications of a variation of the material configuration if we apply a deformation
resulting in the same spatial configuration? According to the second law of thermodynamics, spontaneous configurational changes
are only allowed if potential energy is released, thus dz;E < 0. The corresponding virtual energy release R; < 0 is then dissipated by
other physical processes such as the propagation of cracks and/or defects. In accordance with analytical mechanics that associates
energy variations with forces working on variations of kinematic quantities, we define the energy release R; as being due to material
atomistic forces, that is

Ry=: Y KM d,X, V{d;X,]. (29)
@
According to the sign convention adopted, material variations d;X have to oppose material atomistic forces K™ in order to
result in a negative virtual energy release. Finally, since admissible material variations {d;X_} of the material atomistic positions
in {X_} are arbitrary, the non-equilibrium condition for the material forces acting on atom a can be stated as

KM = K™ with KM= KB P 4 R, (30)

Taken together, the above atomistic non-equilibrium condition defines the negative sum of all (resultant) internal material forces
Kt = KE“ + Kﬁ,’“"ﬂ + K acting on atom « as the material force K™ energetically conjugate to material variations d;X, of the
material position of atom a.

The above approach to deformational and configurational mechanics is elaborated in Fig. 10 for the simple paradigm of a spring
with harmonic interaction potential.

4. Stretch-based energies

The pertinent relations regarding spatial and material stretch-based atomistic energies and interaction forces resulting therefrom
that are referred to in this section are assembled for the sake of overview in Tables 3 and 4.

13
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k) W
T
45X
-
©) W/\/\)

a) W
Kﬂlﬁ(« Ili
I - VN N N N

Fig. 10. Spring supported at the left end point and loaded by a given (spatial) force at the right end point: (@) material configuration with length X, (b)
spatial configuration with length x, (¢) material variation d;X, (d) spatial variation D,x, (e) applied spatial force k' := ke and resulting material force

K™t := K™‘e (with e the horizontal base vector). For unit spring stiffness, the total potential energy reads E = [x — X]°/2 — k' x, its spatial variation
D;E =[x — X —k™'|D;x =0 VDx results in the equilibrium of spatial forces k' = x — X, its material variation d;E = —[x — X]d; X = K™ d,X <0 Vd;X
determines the material force as K™ = —k*, je. here as the reaction force at the support. If we imagine the support as a frictional slider, configurational

changes, i.e. changes in the position of the support, occur once the material force reaches a given threshold |[K™| = K,. In a convex analysis setting the temporal
evolution d, X o —sign K™ follows here in the e direction.

4.1. Spatial stretch-based parametrisation

We consider expansions of the atomistic pair, triplet and tetrad contributions — EPair| Etrirlet gapd Etetrad _ to the internal potential

energy E™ in terms of their densities — I'V(;r £ W[," 7 and H/(;I P78 _ per unit material pair length X, triplet area X 5, and tetrad volume

afy

X, 4,5, respectively. We parameterise these energy densities in terms of spatial pair, triplet and tetrad stretches 4,5, 4,5, and 4,45,
respectively. Thus
" 1
EME = o 2 W Chap) X i,
Caf
triplet . __ 1 «fr
ETPE 1= 3 Z Wy Gapy) Xapy N
Cafy
w1 s
Elclr.{d = E Z ”/()aﬁy ('i'aﬂyﬁ)Xaﬁyﬁ' (33)
Tafyb

Observe that, in contrast to the common approach adopted when defining atomistic pair potentials, we parameterise the pair
potential (density) in terms of the spatial pair stretch rather than the spatial pair length.® The parametrisation of the triplet and
tetrad potential densities in terms of the triplet and tetrad stretches follows the same philosophy. Recall that the spatial pair, triplet
and tetrad stretches 1,;, 4,5, and 4,5, respectively, are the same for all atoms belonging to a specific atomistic pair, triplet and
tetrad, respectively. As a result their contribution is included only once in each summand of the above expansions.

5 Traditionally, the Lennard-Jones two-body potential ¢ expands in terms of the spatial pair length (distance between atomistic pairs) x,y and two material
parameters, the potential depth ¢ and the spatial pair length & for which ¢* =0, as

12 6
‘Paﬁ(xap)=4e |:[ i ] - [i] ] .
Xop X

Reformulated as energy density WI;”’ := ¢ /X, per unit material pair length X, and re-parameterised in terms of the spatial pair stretch i, the Lennard-Jones
potential expands alternatively as

7 Oy 1z oy ¢
W, (A,,) = de — - .
o Cap) =460 [Aaﬂ'] [Auﬂ]

Here, we consider the re-defined material parameters ¢, := ¢/X,; and ¢, := ¢/X,, as given and constant.

14
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Table 3
Summary of spatial stretch-based atomistic energies and interaction forces.

Atomistic pairs Atomistic triplets Atomistic tetrads

Spatial internal energy densities

per unit material pair length per unit material triplet area per unit material tetrad volume
id

Wi (g W apy) W i)
Spatial internal energy contributions
[Epair Etriplet Etetrad

ap 1 1 um
71 E (Fap 31 2 W ) Xog, a 2 W ) Xapys

afy Tafyé

Stretch-based spatial interaction forces

i 1 ’ 1 e eir 1
pair _ 1 pair triplet _ 1 triplet tetrad _ 1 tetrad
Ikn - 1! Eknﬂ lkﬂr 21 Zlkuﬂr lkcr 3! Z lkaﬂré
TP S By = Brs
) aw aw ™ y aw
e o e e .- 2 . o
ox, " p ox, af ox,

Stretch-based spatial interaction force generators

aw aw e ir aw e
pair, _ 0 triplet, _ 0y tetrad. _ 0 X
N atr T o Bupys = Dy
pair _ _pair triplet _ triplet tetrad (etrad
ky = Dop knﬁr =Xg XG0, kaﬂyo Xpys guﬂ/6

Signed magnitudes of stretch-based spatial interaction force generators

) aw ) aw P oW e
pair . _ 0 triplet . _ 0 letrad . _ 0

aff ” ,uaﬂ afy T 'Maﬂ, apys

04p,s

Dimensional reduction to a membrane (in-plane stiffness only)
with the atomistic positions constrained to a two-dimensional manifold,
the tetrad potential is simply neglected by setting E*'s = ()

For a dimensional reduction to a bar (in-line stiffness only)
with the atomistic positions constrained to a one-dimensional manifold,
the triplet and tetrad potentials are simply neglected by setting E'F'< = E'“iiad =

Remark. For a dimensional reduction to a membrane (in-plane stiffness only) with the atomistic positions constrained to a
two-dimensional manifold, see Fig. 11, the tetrad potential is simply neglected by setting E''™¢ = 0. [

Remark. For a dimensional reduction to a bar (in-line stiffness only) with the atomistic positions constrained to a one-dimensional
manifold, see Fig. 12, the triplet and tetrad potentials are neglected by setting E'"'Plt = letrad =, ]

4.2. Spatial stretch-based interaction forces

Due to the stretch-based parametrisation of the pair, triplet and tetrad potentials, the corresponding (resultant) spatial atomistic
forces expand as sums of corresponding spatial interaction forces as

ai 1 triplet 1 triplet 2 1 ’
pair _ pair plet _ 1 pl tetrad _ 1 tetrad
K= DR kT = 5 Dk and kit = 5 D ke, (34)
B By B.y.é
whereby the stretch-based spatial pair, triplet and tetrad interaction forces follow obviously as
af afy afyé
kpair — 5“’;) X klriplel — aH/() X and [k[g[r,m — de X (35)
aff axa af> afy axu afy afys dXﬂ. afys-

After some straightforward manipulations, these interaction forces can be stated in terms of the stretch-based spatial pair, triplet

. . ]
and tetrad interaction force generators g]p';;r, g"P and gletrad ag

afy afiyd
pair ___pair triplet __ triplet tetrad tetrad
kg =9gp - kg =Xp XG0 and kS = x5 g0 (36)

In the above, we defined the stretch-based spatial pair, triplet and tetrad interaction force generators as the pair-, triplet- and
tetrad-wise sensitivities of the stretch-based pair, triplet and tetrad potentials, respectively. Thus

aff afly aflyé
g]pair i a"/l) b'e triplet aM/(l X glelrad . apV(,‘| b'e
= —_ = _— = _— 5
af dxa[} afi ’ afy ?xr{ﬂly afy and afyd axaﬂdr& aflys (37)
_ pair _ riplel — Letrac
- kaﬂ Map - kaﬂy afly - kaﬂyrﬁ Napys
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Fig. 11. Atomistic membrane with in-plane stiffness only.

Fig. 12. Atomistic bar with in-line stiffness only.

Therein, we also introduced the signed magnitudes of the stretch-based spatial pair, triplet and tetrad interaction force generators,
respectively, as®

ow aw, " aw e
pair ,__ 0 triplet ,_ 0 tetrad . _ 0
Koy = Y Kep = and k7 = -1 (38)
afp afly afys

Since their signed magnitudes are fully symmetric, the stretch-based spatial pair, triplet and tetrad interaction force generators
display the full skew-symmetries

pair ___pair triplet triplet

Bap = Gjapr Bapy = Diapy)

tetrad — _tetrad
and .55 = Blupya)- (39)

moreover, even permutations of index triplets render

triplet triplet d

- tetrad — Jtetrad
oty = Yapy) = (40

38aprs = Bapray

Remark. The stretch-based spatial pair interaction force H«Z;i' is the force exerted on atom « due to its interaction with atom f. It

is oriented along the line connecting the pair «, f. The stretch-based spatial triplet interaction force [k:}';lﬂ is the force exerted on

atom « due to its interaction with atoms # and y. It lies in the plane spanned by the triplet a, f, ¥ and is oriented perpendicular to
the line connecting the pair f,y. The stretch-based spatial tetrad interaction force Ik;“‘;;'j;‘ is the force exerted on atom « due to its
interaction with atoms f, y and é. It is oriented perpendicular to the plane spanned by the triplet g.y.5. []

Remark. It is interesting to note that due to the equality of the spatial pair, triplet and tetrad stretches associated with all the
respective atoms of a particular atomistic pair, triplet and tetrad, the corresponding interaction forces satisfy, respectively, pair-,
triplet- and tetrad-wise actio est reactio conditions, see Fig. 13. Thereby, the pair-wise actio est reactio condition expands as
pair —
Ik(aﬁ) = Mgy t+mg, =0 41)

Likewise, the triplet-wise actio est reactio condition reads concisely as

triplet

(apy) Xpy %,y + x5 =0, (42)

© Observe the striking formal similarity of k?";', kﬂ:'“ and k:;;;‘:‘f with the definition of the Piola stress P := d, W, in continuum hyperelasticity, whereby W,
denotes the energy storage density per unit volume in the material configuration.
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Fig. 13. Actio est reactio in atomistic pairs, triplets and tetrads.

Recall that x;, +x,, +x,,; = 0 reflects the line theorem equating the integral of the vector-valued line element along a closed
circuit to zero.
Finally, the tetrad-wise actio est reactio condition follows compactly as

tetrad tetrad tetrad tetrad
kaioray T %piras) T Ryisapy t Katarpy T Xprs T Xyas T Xoap + Xayp = 0. (43)

Recall that xg,; + X, 45 + Xap + X,y 5 = 0 reflects the area theorem equating the integral of the vector-valued area element over a
closed surface to zero. []

Remark. As an alternative route to derive the stretch-based spatial atomistic forces and the corresponding equilibrium condition,
the principle of spatial atomistic virtual work equates the spatial internal and external atomistic virtual work for all admissible spatial
virtual atomistic displacements as

Pﬁ“‘l =P ¥V Dgx, with PJ = Zlkz’“ - Dsxg. (44)
a
The spatial internal atomistic virtual work decomposes into pair, triplet and tetrad contributions as follows
R R e (45)

The pair-, triplet- and tetrad-wise contributions to the spatial internal atomistic virtual work expand in terms of the stretch-based
spatial pair, triplet and tetrad interaction force generators g, triplet and gletrad ag

ap * Vapy afys
i 1 "
pair . pair
CalEE D o
b
triplet | 1 triplel
P5 = ; Z gy Dp&aﬁy
Tafy
a1 ,
Pl = g 2 g DiXame:
Cafyé

Tedious but straightforward manipulations (detailed in Appendix A.1) that correspond to partial integration’ (and the application
of the Gauss theorem) in the continuum setting yield

PP = Zu«"‘“' - Dyx, = —1" Z KPS - Dy, (47)
tnplst _ lrlplel o _l lnplt:l
- Z ke i¥Xg = 21 Z kﬂﬂr
; . 1
tetrad _ tetrad . tetrad
P,se rad _ _ Z k: Tad | Dﬁxa = _i ﬂzék:ﬂ;‘g D(ixa'
a a,p.y .

Thus, the principle of spatial atomistic virtual work is equivalent to the spatial atomistic equilibrium condition ki™ + k&t = @
with k™ := KPUT 4 kP 4 tetrad | whereby the stretch-based spatial pair, triplet and tetrad interaction forces follow in the already
established fashion from the corresponding interaction force generators. For a related discussion regarding the classical mechanics
of particle systems see Fried (2010). [

Remark. For a dimensional reduction to a membrane (in-plane stiffness only) with the atomistic positions constrained to a
two-dimensional manifold, the stretch-based spatial tetrad interaction forces are simply neglected by setting kf’;}f,‘g‘] =0. O
7 P :VyD;y=-D;y-DivP +Div(D,y - P).
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Remark. For a dimensional reduction to a bar (in-line stiffness only) with the atomistic positions constrai_ned to a one-dimensional
manifold, the stretch-based spatial triplet and tetrad interaction forces are simply neglected by setting [k:ﬂl';]el = Ik;el;;":s“ =0. O

4.3. Material stretch-based parametrisation

For the material setting we alternatively consider the atomistic pair, triplet and tetrad contributions — EP4r, E'TiPlet gnd fpretrad
— to the internal potential energy E™ in terms of their densities — I/V,”ﬁ s PV;”E" and I/V,“ﬂ ¥% _ per unit spatial pair length Xqp triplet
area x,;, and tetrad volume x,;,;, Tespectively. We parameterise these energy densities in terms of material pair, triplet and tetrad

afiy
stretches A5, A5, and A, ;, respectively. This yields
ai 1
BN = 2 N W A g (48)
L&
1 1 a,
Elriplet . ; Z I'V, ﬂy(Arrﬁy)xaﬁy (49)
Cafy
’ 1
plevad . u Z W (Ay5) Xapys- (50)
Tafrs

Observe that the spatial and material potential energy densities are related as

wP=a_ w

. a Wi, LVlﬂfﬂr =Aa'ﬂ W«ﬂr and H/Iarﬁyri —A szﬂra, (51)

r o afiys "7

whereby the material pair, triplet and tetrad stretches A,;, A
spatial densities.

apy @0d A,p 5, respectively, serve to transform material densities into

4.4. Material stretch-based interaction forces

The (resultant) material atomistic forces corresponding to the stretch-based pair, triplet and tetrad potentials can also be
expanded as sums of corresponding material interaction forces:

d 1 2 triplet 1 triplet 4 1 3
pair _ I pair plet _ 1 p tetrad _ 1 tetrad
Ko™ = 1 ZKuﬂ ’ Ka T ZKaﬂr and K, = 3! Z Kaprs (52)
P T By T Pro
with the stretch-based material pair, triplet and tetrad interaction forces given by
ow, " : ow, " oW
pair | t triplet | __ i tetrad . __ ]
Koy = . Xap K, = o Xapr and K = o Xaprs (53)

In analogy to the spatial interaction forces, the material interaction forces can be expressed in terms of stretch-based material
pair, triplet and tetrad interaction force generators GZ;", G and Gletrad ag

afy afiys
K]:u:lir _ Gpair |Klriplel - X, X Gtriplcl and Kw[md - X Gu:[rad (54)
aff — Taf apy — br afy afys — OBy Sapys -

Likewise, in analogy to the spatial interaction force generators, the stretch-based material pair, triplet and tetrad interaction force
generators follow as the pair-, triplet- and tetrad-wise sensitivities of the stretch-based pair, triplet and tetrad potentials, respectively.
That is

aff afiy Pra
G‘pair — aI’V; < Glriplel — a“/; x Glclrad _ d]fV;” ! <
af " ‘)X_aﬂ af afy : a_xn]zﬂy afy and afys X s afys (55)
. pair _ triplet _ tetrad
=: K”ﬁ Nyp =: chﬂr N gy =: Ka,ﬁya Nepys

Here, the signed magnitudes of the stretch-based material pair, triplet and tetrad interaction force generators follow as

aff apy apyé
K o= v K = M and Klotrad w (56)
Ay A gy A g5

It is worth noticing that these force generators can be expanded in terms of their spatial counterparts as

pair _ af pair triplet __ afy triplet tetrad __ afyd tetrad
Ka[)' - I)I/l] - }”ﬂﬂ kaﬁ' ’ Ka[iy - VVO - Aaﬁ)’ kaﬂy and Kaﬂy5 - "/0 - ;{'Iﬂ)’ﬁ kaﬂy& : (57)

Thus, the classical energy-momentum format of the Eshelby stress® established in the continuum setting is recovered in the
expressions of the signed magnitudes of the stretch-based material pair, triplet and tetrad interaction force generators. We consider
this formal similarity striking!

8 X:=W,I-F-P.
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Table 4
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Summary of material stretch-based atomistic energies and interaction forces.

Atomistic pairs

Atomistic triplets

Atomistic tetrads

Material internal energy densities

per unit spatial pair length

per unit spatial triplet area

per unit spatial tetrad volume

3 — 5 Z — Z Pré fré
W (Auy) = Agg W W (Augy) = Aggy W™ W (A ) = Agps W
Material internal energy contributions
Epair Elriplet Eretrad

1 afy 1 afiys
21 E Wi (Agp) Xap 3 Z W (g Xapy ) Z W (A apys) Xaprs
Caf T apy T apyd
Stretch-based material interaction forces
it _ pair triplet _ 1 triplet letrad _ 1 Letrad
Ke" = I ZK K, Y] Z[Kaﬂy K, = 3 Z[K‘aﬂya
S By Tt Pyd
af aff af
e W o o oW
a T gx, ¥ o T gx, a T gx,
Stretch-based material interaction force generators
af afy afiys
pair, _ oW, N triplet, _ W, x tetrad. _ _(]LVJ x
o 9Xap o o X, ol afra” X apys b
pair _ ~pair triplet _ triplet tetrad _ (etrad
Ky =G Kagr = %or X Gy, Kaprs = %ars oy
Signed magnitudes of stretch-based material interaction force generators
af afy aflys
KR aw; iRkt L W, tetrad . __ W]
@ T Ay, W A, LCCI Y W
Relationship between signed magnitudes of spatial and material interaction force generators
pair _ pair triplet __ r afy triplet tetrad _ 7207 Letrad
Ky = W — Aap Kop Kigy =Wy —Aap ko, Kagrs =Wo = Aaprs Kagys

5. Twist-based energies

5.1. Spatial twist-based parametrisation

Here, we consider an alternative expansion of the atomistic triplet and tetrad contributions — E'"P'® and E'*'®d _ to the internal

potential energy E™ in terms of their densities —

Elnplel = Z [ waﬂ)’ (maﬁr )d,uﬁy +w
D afy
ad . adfy
prerad . Z [ w (maéﬂ}')(ba&ﬂy + w
Capy.d
+ w (mﬂﬂé},)d{ﬁaﬁy + w

rﬂ
+ wy (myﬂ&,)d)yﬁaa + wo

oy fa éfay
+uw, (W30 pa) Py pa + w,

Recall that the spatial triplet and tetrad twists o

aﬂr afiys

and wy

(mﬁya VP +

Byd aysff
(@apys) Papys + W,

(mﬁ‘ﬁra) (Dﬂam + w

(myaaﬁ) (Dréaﬁ + w(’

afy

- per unit material angle &
We parameterise these energy densities in terms of spatial trlplet and tetrad twists o,

dayf
(@3pay) Pspay + w(’"y

afy
afy

afl
I["";() (mrﬂﬁ )él’aﬂ ]

(mayéﬂ)(pctyéﬂ

" (@pya5) Ppyas
(mytzﬁb‘)@yﬂﬂﬁ

(@sayp) Payp |-

and dihedral angle @, 5, respectively.
and ,g,;, respectively, thus®

(58)

and ®,;,;, respectively, are in general distinct for all atoms belonging to a

specific atomistic triplet and tetrad, respectively. As a result their contribution is included in each summand of the above expansions.

Remark. For a dimensional reduction to a shell (bending stiffness only) with the atomistic positions constrained to a two-dimensional

manifold, see Fig. 14, the tetrad potential E'®! is reduced by setting w, " =w

opay _
0 Wy

Poya

y,'i&a _

frad
0

=w

oy fa __

0

yoap _
w, = 0.

O

9 Exploiting the left and right minor symmetries of the tetrad twists @55 = Dppy,s allows a reduction in the number of terms from 12 to 6. We prefer,
however, to retain all 12 permutations of «, §,r, § in the derivations for the sake of generality, a choice that eventually reflects in the pre-factor 2 when expressing

the corresponding interaction forces.
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Fig. 14. Atomistic shell with bending stiffness only.

9

Fig. 15. Atomistic beam with bending stiffness only.

Fig. 16. Atomistic shaft with torsion stiffness only.

Remark. For a dimensional reduction to a beam (bending stiffness only) with the atomistic positions constrained to a one-
dimensional manifold, see Fig. 15, the triplet potential E''P*! is reduced by setting wﬁm = wi’.ﬂﬂ = 0, while the tetrad potential
is simply neglected by setting E'*"d = (. ]

Remark. For a dimensional reduction to a shaft (torsion stiffness only) with the atomistic positions constrained to a one-dimensional
manifold, see Fig. 16, the tetrad potential E*™ is reduced by retaining only w/’™ = w/"* £ 0, while the triplet potential is simply

. 0 0
neglected by setting E"Plt = 0. ]

5.2. Spatial twist-based interaction forces

Due to the twist-based parametrisation of the triplet and tetrad potentials, the corresponding (resultant) spatial atomistic forces
expand, as before, as sums of corresponding spatial interaction forces. Thus

triplet __ L triplet tetrad _ l tetrad
ke = g ﬂz Kopy and k=5 1,25 Waprs * (69
.y Y
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where the twist-based spatial triplet and tetrad interaction forces are given by

kTP —dwgﬁr @,y - 24 Bpyu — oy @ (60)
wpr T ox, M ox, ax,
adfiy affyd ayofl
tetrad < _dwn > _ oaw, o _ dw, ®
afys T (?Xa adfiy axa afiyo axa ayoff
duwl™ ow!re ow!7e?

0 0
D - ] - [4)]
d%, pasy dx, poya ax, Pras

dw:;ﬁ da dw{)’saﬁ awg“ﬂ s
- D, pse — D s5ap — D, oss
O, vhia %, rox ax, e
o’’’ aw’ P w7’

0 0
— D - P -—— @ .
axa Sy pa axa spay axa sayf

After straightforward but lengthy and tedious manipulations (see Appendix B.1), these read in terms of twist-based spatial triplet

and tetrad interaction force generators g]:j;pm and g:jg‘;ad in compact format as
triplet | triplet triplet
Kupy = 2|8 + By |- (61)
tetrad . __ tetrad tetrad tetrad
Ky = 2[xp, X LG50 + gais + gy
tetrad tetrad tetrad
5 X (81015 + Disaty + ysia |

tetrad tetrad tetrad
+x35 X (95555 + Sais + Hisia |-

Note that g]H;;’]]el, qi;‘gﬁ:‘, g]i;";l‘:;l and g]i?}fl‘;;‘ (i.e. no index a) do not contribute to the triplet- and tetrad-wise spatial interaction
forces k'"P'" and k'eirad,
v
In the above, we defined the twist-based spatial triplet and tetrad interaction force generators as pair- and triplet-wise sensitivities

of the twist-based triplet and tetrad potentials. We list the complete sets in Appendix B.2, the following are but two examples

afy afyd
triplet | — aw() @D g]“’l“‘d — aw() >
ap ?x”l‘ﬂ[ afiy and afy " axaﬁy laf?rr‘i . (62)
riple 1 . tetra .
kaﬁ’y ap ~ Mar = kaﬁyrs Popy * Maps

Here we introduced the signed “magnitudes” of the twist-based spatial triplet and tetrad interaction force generators. We list the
complete set in Appendix B.2, and only provide the following two examples

. dw™” dw?re
klr;plel = 0 and k}]e;;r;d - 0 . (63)
arr amaﬁy ! amaﬂ75

Since their signed magnitudes display left and right minor symmetries, the twist-based spatial tetrad interaction force generators
display left skew-symmetries, for example

tetrad — _tetrad (64)

Dy = Bapy -

triplet . . . . -
"P* is the force exerted on atom « due to its interaction with atoms f

triplet triplet

and y. It lies in the plane spanned by the triplet a, , y with Diapi and D)
a, f and a,y, respectively. The twist-based spatial tetrad interaction force k;“"*g’ is the force exerted on atom « due to its interaction
with atoms f, y and é. It is assembled from contributions oriented perpendicular to the three planes spanned by the triplets a. f, ¥

and a,y,5 as well as a. 8, # (since, for example, Xgy and @23‘5;‘;1 lie in the plane spanned by the triplet a, 8, y, etc.). [

Remark. The twist-based spatial triplet interaction force k ;

oriented perpendicular to the lines connecting the pairs

Remark. Observe that the spatial twist-based triplet and tetrad interaction forces also satisfy, respectively, triplet- and tetrad-wise
actio est reactio conditions. Thereby, the triplet-wise actio est reactio condition reads as

triplet triplet triplet triplet triplet triplet triplet _
Ky ™ Ottt tHg1 T Opm FHya Ty =0 (65)

Likewise, the tetrad-wise actio est reactio condition (see Appendix B.3) follows as

tetrad tetrad tetrad tetrad tetrad
Katoray T K pirany  ¥yioap) T Kaiarny = Doy T Xpa F Xapl X 95,5 (66)
tetrad

Hx,p + X0 + X5, 1 X Py

tetrad
(oafi)

tetrad —

+[Xay +X,5+ xﬁa] X gl(arﬂ) =0.

+[3x5, +Xgp + XMJ X g

Recall that, e.g., x5, + x,5 + X553 = 0 reflects the line theorem equating the integral of the vector-valued line element along a
closed circuit to zero. []
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Remark. The triplet-wise contribution to the spatial internal atomistic virtual work expands in terms of the twist-based spatial
triplet

trlplet interaction force generators g o as
t let triplet triplet
”P“ = Z [[ TP Dt + gt - Dy, | (67)
lrlph:l triplet

+[ - Dyxg, + 45, - Dyl

+[glr|phﬂ D +gllnplel Daxygl]-

Likewise, the tetrad-wise contribution to the spatial internal atomistic virtual work expands in terms of the twist-based spatial
tetrad interaction force generators g]‘“'“d as the rather lengthy expression

prd = % 2 (1955 Daxasy + 9l - Dyxis, | (68)
Cafrs
+[Q]:§;;ad - Dyxgep, + Ql:;;?d - Dgyps)
+[g]::;gﬁd - Dgxyys + g]:;l';“] - Dy gl
+[ :;;gad_ ]:)5)&’?“!(i + g‘:’ie;;ad' Dﬁxﬂayj
+[Q]:;,;;ad - Dyxegs, + Q]:;(;;"d - Dsxpsel
Hg]:;;;ad " Dsxgya + gl,l'ic;:sdd - Dsxpysl
+Hay - Daxyps + @i - Dsxy ]
+Gy50" * DaXysa + Gy - DiXyap)
HE - Dy + 65 Dy
+ ?;Bad * DoXsyp + g]?;;ad - Dsxsal
Hg]i;;;ad - DyXgpe + Qli;;)r,dd - Dsxgp, ]
[g]?a:;dd D5¥gay + 9]:;6,;:;“] : Déxﬁuﬁ”-

Then, extensive manipulations (detailed in Appendix B.4) demonstrate that the principle of spatial atomistic virtual work proves
equivalent to the spatial atomistic equilibrium condition k™ + k' = 0 with kiM := KP4 glripet k'“rad whereby the twist-
based spatial triplet and tetrad interaction forces follow in the already established fashion from the corresponding interaction force
generators. []

Remark. For a dimensional reduction to a shell (bending stiffness only) with the atomistic positions constrained to a two-dimensional
manifold, the twist-based spatial tetrad interaction forces degenerate to

tetrad _ lClI’dd lclrdd tetrad tetrad tetrad tetrad
ipys = 2[xay X 9550 + 9501+ %y X GG + @501+ X L9555 + gjgeis]]- O

Remark. For a dimensional reduction to a beam (bending stiffness only) with the atomistic positions constrained to a one-
dimensional manifold, the twist-based spatial triplet interaction forces degenerate to

triplet __ _triplet triplet s tetrad —
kepy =8ap +9o  With kG =0 []

Remark. For a dimensional reduction to a shaft (torsion stiffness only) with the atomistic positions constrained to a one-dimensional
manifold, the twist-based spatial tetrad interaction forces degenerate to

tetrad tetrad s triplet _
Kops = 2%p, X950 with Ikaﬁy =0. O

5.3. Material twist-based parametrisation

For the material setting, we consider the atomistic triplet and tetrad contributions — EiPlet and E'¢trad _ to the internal potential
energy E™ expanded in terms of their densities — w " and w“ﬁy - per unit spatial angle ¢, and dihedral angle ¢, ;, respectively.
We parameterise these energy densities in terms of material trlplet and tetrad twists £2,,, and Q,, ;, respectively, thus

B i = 3 [ 0 @ugy )by + 0 @ b + 0] @) by | (69)
Cafy
ad .1 ab aflys ayd
preesd = a1 20 | W Rusp) buspy + 10" Qupys) bapys + 10 Qysg) baysp
Capy.d

+ 0] () By + 0 () By + 0 (p05) By
V5
+ 10" (2 50) Dypsa + 0] R y50p) Bysap + 10" (Ryaps) byaps
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8y f af oayfl
+ w; ’ a(‘Qﬁrﬁa) d’&yﬂa + w; i (‘Qﬁﬁay} qbéﬂay + u_]’ﬂ}’ (‘Qﬁarﬂ) d)&arﬂ l

Observe that the spatial and material potential energy densities relate, for example, as

afy _ abfy
w" = Qp, wy™ and

whereby the material triplet and tetrad twists £,

w!aﬁr

5.4. Material twist-based interaction forces

) a,
= Qopys W0y

afy

Pré

and 2, ;, respectively, serve to transform material into spatial densities.

Journal of the Mechanics and Physics of Solids 154 (2021) 104507

(70)

The (resultant) material atomistic forces corresponding to the twist-based triplet and tetrad potentials expand, as before, as sums
of the corresponding material interaction forces:

triplet _ 1 triplet tetrad _ 1 tetrad
Ka T Z Kﬂﬁy and K, EY] Z Kﬂﬂyﬁ ’ (71)
By By.é
with the twist-based material triplet and tetrad interaction forces given by
p A p
KU']pltl e _aw? ! ) _ du"t " o _ au,}’g ) (72)
afly - axa afly axa Fra axg rap >
AP dw™Pré dw™°P
Klelrad [ ! ¢ spy — i ¢ s — i d’ 38
@fys ax, ax, W X, ¥
awﬂaﬁy awﬂﬁya awﬂya§
t i i
——— bpusy Dpsre = —— Bpyas
ax, P oax, Pt ax, P
awyﬂﬁa awyﬁrzﬂ awyaﬂé

1 i i

X ¢yﬂ6a - X ¢y5aﬂ - X ¢yafﬂ5

awf)’ﬂﬂ awfﬂﬂy awéﬂ}’ﬁ

i
o Persa = g Porer — 5 Poars-

Manipulations analogous to those for the spatial interaction forces provided in Appendix B.1 lead to concise expressions in terms
of twist-based material triplet and tetrad interaction force generators G:J,;,pm and G5 as

K;r;;lﬂ - Z[G:rﬂi;]lel +G:;€‘;EI], (73)
tetrad .__ tetrad tetrad tetrad
Kaps = 2[Xp, % Gy + Gy + G|
tetrad tetrad tetrad
%5 X Gigy15 + Gigaly + Opysa |
tetrad tetrad tetrad
+Xgp X [Gop! + G + Gied ]|

Likewise in analogy to the spatial interaction force generators, the twist-based material triplet and tetrad interaction force
generators follow as the pair- and triplet-wise sensitivities of the twist-based triplet and tetrad potentials. The complete sets of
these would read in analogy to their spatial counterparts provided in Appendix B.2; the following are but two examples

afly aflys
Glriplel — dl‘”x & Gletrad au” ¢
ap : 9%, afiy and apy = 3xaﬁy afys . (74)
. triplet 1 . tetrad 1l .
= K Py Nay = Kps  Pugy - Nags

Therein, we also introduced the signed “magnitudes” of the twist-based material triplet and tetrad interaction force generators.
The complete set would read in analogy to its spatial counterpart provided in Appendix B.2; the following are but two examples

' ot e
K;:;lilel - t and K‘;e;;gd = i . (75)
agaﬁr BQaﬂ;«s
It is interesting to observe that these expand in terms of their spatial counterparts for example as
triplet _ afy _ triplet tetrad _  afyé _ tetrad
K =g Wap, ko and K" = w] Dapys Kiggrs - (76)

Thus, the features of the classical energy-momentum format of the Eshelby stress established in the continuum setting are
apparent in the expressions of the signed “magnitudes” of the twist-based material triplet and tetrad interaction force generators.
The noteworthy difference, however, is that in the twist-based atomistic setting energy densities are expressed per unit angle rather
than per unit length, area or volume (or per unit volume as in the continuum setting), respectively.

6. Conclusion

Within molecular dynamics or molecular statics two-, three- and four body potentials describe empirically the complex energetic
landscape of atomistic systems by considering the energetic interactions between potentially all possible combinations of atomistic
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Fig. 17. Crack in an atomistic FCC lattice under vertical Mode I loading. Aluminium is modelled by the Lennard-Jones potential with parameters ¢ = 2.925,
€ = 0.17432 and lattice constant 4.51 A. Initially, a short pre-crack extending horizontally over only a few lattice spacings is introduced by switching off the
interaction between neighbouring atoms. Based on the material-force-based bond deletion criterion from Birang O. and Steinmann (2021), we subsequently evolve
the crack by prescribing an increasing displacement to the top and bottom surfaces of the specimen. Atomistic (resultant) material forces showcased by (blue)
arrows drive energetically favourable re-organisations of the material atomistic configuration. They also reflect the non-symmetric arrangement of atoms in the
FCC lattice relative to the geometry of the finite computational domain.

pairs, triplets and tetrads. Pair potentials are commonly parameterised in terms of atomistic pair lengths, whereas triplet and tetrad
potentials are traditionally parameterised in terms of atomistic triplet angles and tetrad dihedral angles, respectively.

This well-established classical approach has been extended here in three ways. First, inspired by continuum kinematics, we
proposed triplet areas and tetrad volumes as kinematic measures of three- and four body interactions as an alternative to the well-
accepted triplet angles and tetrad dihedral angles. Second, we expressed the atomistic pair, triplet and tetrad contributions to the
internal potential energy either in terms of stretches, i.e. the ratios of spatial and material pair lengths, triplet areas and tetrad
volumes, or in terms of twists, i.e. the ratios of spatial and material triplet angles and tetrad dihedral angles. Third, we expanded
the internal potential energy contributions in terms of pair, triplet and tetrad densities, either per unit pair length, triplet area and
tetrad volume, respectively, or per unit triplet angle and tetrad dihedral angle, respectively.

These novel parameterisations prove attractive for four reasons. First, the corresponding spatial atomistic forces can be expressed
in a compact format in terms of interaction forces. Their generators and signed magnitudes reduce naturally to dimensionally
constrained situations as required for 2d and 1d materials. Second, the corresponding material atomistic forces that drive
energetically favourable re-organisations of the material atomistic configuration follow in a straightforward manner, again in terms
of interaction forces, their generators and signed magnitudes. Third, in terms of interaction force generators and their signed
magnitudes, the material interaction forces display a format structurally identical to their spatial counterparts. Fourth, the signed
magnitudes of the spatial and material interaction forces display an energy—-momentum, Eshelby-type format as celebrated in the
continuum setting of configurational mechanics.

Taken together, we have provided the appropriate framework to consider material or rather configurational atomistic forces in
(discrete) atomistic systems characterised by different parameterisations of two-, three- and four body potentials with a focus on
studying the tendency of generic atomistic defects to propagate. Fig. 17 highlights a typical computational example of atomistic
fracture mechanics based on the prototypical Lennard-Jones two-body potential (see Footnote 5).

Our future work will focus on computational studies of atomistic defect propagation based on concrete selections of atomistic
potentials, as for example for silicon or graphene, thereby including the consideration of cut-offs. Moreover, we will elaborate a
corresponding twist-based approach to peridynamics.
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