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ABSTRACT
We compare various foreground removal techniques that are being utilised to remove bright
foregrounds in various experiments aiming to detect the redshifted 21cm signal of neutral
hydrogen from the Epoch of Reionization. In this work, we test the performance of removal
techniques (FastICA, GMCA, and GPR) on 10 nights of LOFAR data and investigate the
possibility of recovering the latest upper limit on the 21cm signal. Interestingly, we find
that GMCA and FastICA reproduce the most recent 2𝜎 upper limit of Δ221 < (73)

2 mK2 at
𝑘 = 0.075 ℎcMpc−1, which resulted from the application of GPR. We also find that FastICA
and GMCA begin to deviate from the noise-limit at k-scales larger than ∼ 0.1 ℎcMpc−1. We
then replicate the data via simulations to see the source of FastICA and GMCA’s limitations,
by testing them against various instrumental effects. We find that no single instrumental effect,
such as primary beam effects or mode-mixing, can explain the poorer recovery by FastICA
and GMCA at larger k-scales. We then test scale-independence of FastICA and GMCA, and
find that lower k-scales can be modelled by a smaller number of independent components.
For larger scales (𝑘 & 0.1 ℎcMpc−1), more independent components are needed to fit the
foregrounds. We conclude that, the current usage of GPR by the LOFAR collaboration is
the appropriate removal technique. It is both robust and less prone to overfitting, with future
improvements to GPR’s fitting optimisation to yield deeper limits.

Key words: cosmology: theory - dark ages, reionization, first stars; cosmology: observations;
techniques: interferometric; methods: data analysis, statistical

1 INTRODUCTION

The early Universe was predominantly neutral with sources of radi-
ation yet to form and was aptly named the ‘Dark Ages’ (Pritchard
& Loeb 2012). The first sources of ionizing radiation formed 80
million years after the Big Bang, from the inhomogeneities seeded
by inflation - marking the Cosmic Dawn (Bowman et al. 2018).
These sources ionize their neutral surroundings producing ionized

★ E-mail: i.hothi18@imperial.ac.uk

bubbles. As these bubbles grow, and more sources form, they begin
to merge, slowly ionizing the neutral Intergalactic Medium (IGM)
- the onset of the Epoch of Reionization (EoR) (Ciardi & Ferrara
2005; Morales & Wyithe 2010; Furlanetto 2016). The EoR was the
last major phase change in the Universe’s history.

Indirect observations of the EoR have provided constraints.
Quasars strongly emit Lyman-𝛼 photons and, as they travel towards
us, the photons are redshifted. Any photons that are blue-ward of
the Ly-𝛼 photon, at a particular redshift, will be redshifted such that
it corresponds to the Ly-𝛼 photons. If neutral hydrogen is present
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at this redshift, the Ly-𝛼 photon will be absorbed. This leads to the
spectra of quasars having a large region of purely absorption - the
Gunn-Peterson trough (Zaroubi 2013). Looking at the prominence
of this feature, at progressively lower redshifts the trough starts to
become incomplete and there is no longer a sharp rise that marks the
end of the trough. This might suggest that the IGM is largely ionized
and nearing full ionization by z ∼ 6, leaving only a few neutral
islands (Fan et al. 2006). In the spectra of high-redshift quasars,
their Lyman-𝛼 damping absorption have been used to constrain
the EoR, as having not been completed by a redshift of 𝑧 ∼ 7
(Greig et al. 2017, 2019). Reionization leads to an increase of free
electrons in the IGM, and CMB photons will scatter off of these
free electrons. The scattering of these photons by the free electrons
allows us to calculate an associated optical depth to the CMB, 𝜏
(the total integrated optical depth to reionization), which indicates
the amount of scattering that has occurred along the line of sight.
This scattering leads to a scale-independent power suppression at
scales 𝑙 ≥ 10 by a factor of e2𝜏 . Planck Collaboration et al. (2018)
found 𝜏 = 0.054 ± 0.007. Using this, one can model the evolution
of the neutral fraction and infer the bulk of reionization must have
occurred at 𝑧 . 14 (Planck Collaboration et al. 2016). Combining
these indirect observations, we can loosely constrain reionization to
occur between redshifts 14 to 6 (Gorce et al. 2018).

The foremost probe of the EoR is the 21cm hyperfine forbid-
den line transition from neutral hydrogen (Wouthuysen 1952; Field
1958; Shaver et al. 1999). The 21cm signal is a powerful probe,
as reionization can imprint features in the 21cm power spectrum
telling us the topology of reionization which itself is sensitive to
the properties of ionizing sources (Furlanetto et al. 2006; Furlanetto
2016).

Though it has thus far eluded detection, the EoR is likely to be
directly observed for the first time by radio telescopes currently tak-
ing data, e.g. Low Frequency Array (LOFAR)1 (van Haarlem et al.
2013); Giant Metrewave Radio Telescope (GMRT)2 (Paciga et al.
2011, 2013); Murchison Widefield Array (MWA)3 (Tingay et al.
2013); Precision Array to Probe the Epoch of Reionization (PA-
PER)4 (Parsons et al. 2014); the Hydrogen Epoch of Reionization
Array (HERA)5 (DeBoer et al. 2017), and at lower frequencies, the
new extension in Nançay upgrading LOFAR (NeNuFar)6 (Zarka
et al. 2012); the Owens Valley Long Wavelength Array (OVRO-
LWA)7, and Amsterdam-ASTRON Radio Transients Facility and
Analysis Center (AARTFAAC)8 (Prasad et al. 2016; Gehlot 2019).
These are interferometric experiments that aim to measure the sta-
tistical fluctuations of the 21cm signal.

There also exist single antenna experiments that aim to mea-
sure the sky-averaged global 21cm signal. These include, the Global
HydrOgen ReioNization Signal (BIGHORNS)9 (Sokolowski et al.
2015); the Sonda Cosmológica de las Islas para la Detección de-
Hidrógeno Neutro (SCI-HI) (Voytek et al. 2014); the Experiment
to Detect the Global Epoch of Reionization Signature (EDGES)10
(Bowman et al. 2018); Shaped Antenna measurement of the back-

1 http://www.lofar.org/
2 http://gmrt.ncra.tifr.res.in/
3 http://www.mwatelescope.org/
4 http://eor.berkeley.edu
5 http://reionization.org
6 https://nenufar.obs-nancay.fr/en/homepage-en/
7 http://www.tauceti.caltech.edu/LWA/
8 http://aartfaac.org
9 http://www.mwatelescope.org/telescope/external/bighorns
10 https://loco.lab.asu.edu/edges/

ground RAdio Spectrum 2 (SARAS 2)11 (Singh et al. 2018); Large-
aperture Experiment to Detect the Dark Age (LEDA) 12 (Price et al.
2018), and Probing Radio Intensity at High-Z (PRIZM) (Philip et al.
2019). Bowman et al. (2018) has a tentative detection of this global
signal, with the absorption depth and width, currently, unexplained.
Though there have been claims that the results could be explained by
exotic physics (Fialkov et al. 2018), potential unaccounted for sys-
tematics (Singh & Subrahmanyan 2019), foreground polarizations
(Spinelli et al. 2019), or modelling (Hills et al. 2018).

The biggest obstacle preventing the detection of the EoR by
radio interferometers are the foregrounds that swamp the observed
signal. These foregrounds are several orders of magnitude stronger
than the 21cm signal we wish to observe (Shaver et al. 1999; Oh
& Mack 2003; Di Matteo et al. 2004; Jelić et al. 2008). These
foregrounds are modelled to be smooth (in the frequency domain)
and this was exploited by the early foreground removal techniques,
e.g. polynomial fitting (Jelić et al. 2008). This smooth nature of the
foregrounds spectra is likely to deviate when met with instrumental
effects, and so non-parametric techniques, such as blind source
separation (BSS), are often favoured as they do not explicitly state
the form of foregrounds a-priori (Chapman et al. 2012, 2013). More
recently Bayesian techniques, such as Gaussian process regression
(GPR) (Mertens et al. 2018), have been looked at as an optimised
fitting tool with the priors set by the various components of the
observed data, such as the foregrounds and cosmological signal.
Several machine learning methods have shown promising signs for
the role of machine learning in further study of the EoR (Hassan
et al. 2019; Li et al. 2019a; La Plante & Ntampaka 2019; Mangena
et al. 2020).

The aforementioned experiments have already started to pro-
vide upper limits on the 21cm power spectrum. GMRT (Paciga
et al. 2013) provided an early 2𝜎 upper limit, with 40 hours worth
of data, at a redshift of 8.6 with Δ2 ' (248 mK)2 at k = 0.50
hcMpc−1. Here they used Singular Value Decomposition (SVD) on
each baseline, individually, with visibilities represented in a matrix
by time and frequency. SVD isolates the smooth foreground modes
for each baseline, removing these modes - the residual from which
the power spectrum is calculated on.

MWA (Barry et al. 2019), using 21 hours worth of data in
Beardsley et al. (2016)’s MWA observing run to produce a limit
of Δ2 ' (62.4 mK)2 at k = 0.20 hcMpc−1, at a redshift of 7. Li
et al. (2019b), produced a 2𝜎 upper limit of Δ2 ' (49 mK)2 at
k = 0.59 hcMpc−1, at a redshift of 6.5. More recently, Trott et al.
(2020) used 110 hours of data to produce an upper limit of Δ2 '
(43 mK)2 at k = 0.14 hcMpc−1 at a redshift of 6.5. Here they used
a model for the point sources remove within their primary beam,
before weighting their power spectrum estimation, to reduce the
impact of foregrounds.

PAPER (Kolopanis et al. 2019), Fourier transformed each base-
line spectrum into the delay domain and then filtered out foreground
modes in this domain (Cheng et al. 2018). This produced the up-
per limit, between 0.3 < k < 0.6 hcMpc−1, of Δ2 ' (200 mK)2 at
redshift 8.37.

LOFAR’s first set of upper limits, from their high-band an-
tenna (HBA), came in Patil et al. (2017). They produced a 2𝜎 upper
limit of Δ2 ' (79.6 mK)2 at k = 0.053 hcMpc−1 in the redshift
range 9.6 to 10.6. Here they produced an upper limit using Gen-
eralised Morphological Component Analysis (GMCA) (Chapman

11 http://www.rri.res.in/DISTORTION/saras.html
12 http://www.tauceti.caltech.edu/leda/
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et al. 2013), as its primary removal technique. More recently, LO-
FAR have used GPR for upper limits, (Mertens et al. 2018; Gehlot
et al. 2019), the application of which resulted in the recent 2𝜎 upper
limit of Δ2 < (73 mK)2 at k = 0.075 hcMpc−1 at a redshift of 9.1,
using 141 hours worth of LOFAR data (Mertens et al. 2020). This
recent upper limit has already been used to provide constraints on
the intergalactic medium, excess radio background, and the neutral
fraction at a redshift of 9.1 (Ghara et al. 2020; Mondal et al. 2020;
Greig et al. 2020).

The goal of this paper is to assess the foreground removal
techniques’ pros and cons, by applying them to the 10 nights of
LOFAR data as well as simulated data - with both having an injected
simulated 21cm signal. The paper is written as follows. In Section
2, we discuss the foreground removal techniques used in this paper,
before moving on to Section 3, which describes the data. We then
perform a full analysis of the power spectra results of the removal
techniques in Section 4, followed by an investigation into the results.
We summarise our results and conclude the paper with a discussion
in Section 5.

2 FOREGROUND REMOVAL TECHNIQUES

In this section, we will provide an overview of the foreground re-
moval techniques used in this paper, FastICA, GMCA, andGPR.We
will detail how they model the foregrounds and recover the 21cm
signal.

We had also attempted to apply another non-parametric re-
moval technique, Wp smoothing, to our data (Harker et al. 2009).
Whilst it worked on the simulated data without any noise or instru-
mentation effects, it was unable to fit a function to the observed
data. We believe that the chromaticity within the data, along with
the small amount of frequencies study, result in the smoothing al-
gorithms being unable to fit a function.

2.1 FastICA

FastICA is a non-parametric technique that aims to model the fore-
grounds by assuming they are statistically independent in the mixed
signal we observe (Hyvärinen et al. 2001). FastICA has been used in
the medical field for functional magnetic resonance imaging (fMRI)
analysis (Chen et al. 2003; Ge et al. 2016), as well as decompos-
ing spinal cord signals (Tie & Sahin 2005). Early uses of FastICA
for foreground removal, include its application to CMB data. Both
for recovering the spatial pattern and the frequency scalings of
foregrounds, as well as removing foreground to detect the CMB
(Maino et al. 2002, 2003). FastICA has also been used for fore-
ground removal in HI mapping (Wolz et al. 2015). The use of this
non-parametric foreground reduction method on 21cm data, was
outlined by Chapman et al. (2012). The data is modelled as:

x = As + n, (1)

where x is the vector representation of the observed signal, s is a
vector containing independent components, and A is the mixing
matrix we wish to find. The algorithm does not attempt to fit the ad-
ditive Gaussian noise term, n. The number of expected independent
components comprising the foregrounds, is given to the algorithm,
and FastICA attempts to reconstruct this number. To solve for s we
consider the following linear transform:

s = Wx, (2)

with W being a constant weight matrix for FastICA to determine.
It finds W by maximising the non-Gaussianity of equation (2),
quantifying non-Gaussianity by negentropy - this uses the principle
that the greater the number of independent components in the set,
the more Gaussian the distribution of the set will be (Central Limit
Theorem).

Let us consider the example for finding a single component of
s. We define,

𝑦 = w𝑇 x. (3)

Here, w is a row from the inverse-matrix of A. As such, y
represents a single component (row) of s. We first define the entropy
of a variable as,

𝐻 (𝑦) = −
∑︁
𝑖

𝑃(𝑦 = 𝑎𝑖) log P(y = ai), (4)

where 𝑎𝑖 is a possible value of y. Following equation (4), we define
negentropy as,

𝐽 (𝑦) = 𝐻 (𝑦𝑔𝑎𝑢𝑠𝑠) − 𝐻 (𝑦). (5)

With 𝑦𝑔𝑎𝑢𝑠𝑠 being a random Gaussian variable with an iden-
tical covariance matrix as y. From the central limit theorem, by
maximising the negentropy of y, and hence the non-Gaussianity, we
retrieve a single independent component of s.

2.2 GMCA

Generalised Morphological Component Analysis (GMCA) sepa-
rates out the foregrounds from the signal (noise + EoR signal) by
finding the sparsest components in an orthogonal wavelet basis that
the foregrounds can be represented by (Chapman et al. 2013). It
has previously been used by CMB experiments to remove Galactic
foregrounds and point sources from their maps (Bobin et al. 2013b).

More recently, Carucci et al. (2020) have applied GMCA to
21cm maps and have also modelled, previously unaccounted for
’foreground’, polarisation leakage. GMCA also models the data
with equation (1). To solve this problem, we need to estimate A
and s, where the latter represents the foreground signals which
we can decompose (in the wavelet basis) as: s =

∑𝑇
𝑗=0 s 𝑗 . Where,

s 𝑗 =
∑𝑇

𝑘=1 𝛼 𝑗 [𝑘] 𝜙𝑘 , such that 𝜙𝑘 is a wavelet waveform. As we
are looking for the sparsest 𝑠 𝑗 , we define it to be sparse when a
few 𝛼 𝑗 [𝑘] are significantly non-zero. The use of waveforms over
the traditional Fourier basis functions is due to the latter being a
localised basis, whereas waveforms are an infinite set in localised
space. The objective of GMCA is to find amixingmatrix that yields,
in the wavelet domain, the sparsest sources of s. This Lagrangian
optimisation problem is expressed as:

min( 1
2
| |x − A𝛼Φ| |2F + 𝜆

n∑︁
j=0

| |𝛼j | |p). (6)

Once we have extracted both A and s, we can perform matrix
multiplication on the two to find out foreground signal. Deducting
As from x leaves us with the residual - which ideally will be the
noise, EoR signal, and potentially fitting errors.

When comparing parametric to non-parametric techniques,
one will often find the former outperforming the latter, on simu-
lated data without any realistic instrumentation effects. However,

MNRAS 000, 1–15 (2020)
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this is not expected to be true for real data, as non-parametric tech-
niques are able to model/account for the imperfections in real data
as nothing is assumed a-priori about the data.

2.3 GPR

Gaussian process regression (GPR) on LOFAR was first used for
foreground removal by Mertens et al. (2018)13, and has been used
to produce the upper limits within Gehlot et al. (2019) and Mertens
et al. (2020). Within the GPR framework, one models the different
components of observations, such as the astrophysical effects and
instrumentation effects, and the cosmological signal, as a Gaussian
process. Instrument effects can include those from the chromatic
nature of the instrument, resulting in mode mixing (Hazelton et al.
2013). A Gaussian process is the joint distribution of a collection
of normally distributed random variables, and it is described by
its mean and covariance function. This covariance function is that
between pairs of points at different frequencies, and hence smooth-
ness, in frequency, of the function. The class of covariance functions
used in this paper is the Matern class:

𝜅𝑀𝑎𝑡𝑒𝑟𝑛 (𝑟) =
21−𝜈

Γ(𝜈)

(√
2𝜈𝑟
𝑙

)𝜈
𝐾𝜈

(√
2𝜈𝑟
𝑙

)
(7)

𝐾𝜈 is the modified Bessel function of the second kind, and 𝑙
is the hyper-parameter of the kernel - the characteristic coherence-
scale. Using different values of 𝜈, we retrieve special cases of this
matrix. For example, setting 𝜈 to 12 we get the exponential kernel.

We describe the Gaussian processes as parameterised priors in
GPR, and this prior is selected such that it maximises the Bayesian
evidencewith the hyper-parameters of the covariance function being
found via Markov chain Monte Carlo (MCMC) algorithms.

GPR models the observed data d at frequency 𝜈 by a fore-
ground, a 21-cm and a noise signal n:

d = ffg + f21 + n. (8)

As the 21cm signal is expected to be uncorrelated on scales of
the order of a few MHz, we can exploit this to separate from the
foreground signal, which is expected to be correlated (smooth) on
scales of 1 MHz. We can thus separate out the covariance function
of the Gaussian process into a covariance for the foregrounds, Kfg,
and a covariance for the 21cm signal, K21:

K = Kfg + K21. (9)

The foreground covariance can be decomposed into two terms:
The first is the intrinsic foreground Kint, which is the expected
smooth/coherent foreground (over large frequency scales). The sec-
ond component is for the instrumental effects, such asmode-mixing,
and is coherent on a smaller frequency range. As the 21-cm signal
is faint compared to the foregrounds and the noise, the inclusion of
the 21cm signals covariance, K21, with appropriate priors (uniform
or a more informative gamma distribution prior) in the total covari-
ance model K ensures that we don’t fit away the 21-cm signal part
when we optimise the maximum likelihood estimation. Mertens
et al. (2018) found the estimated coherence scale was significantly
less biased, especially for a reference simulation with low signal to
noise for 21-cm signal.

The joint probability distribution for the observed data d and

13 https://gitlab.com/flomertens/ps_eor

function values ffg of the foreground model at a given frequency 𝜈
is then given by,[ d

ffg

]
∼ N

( [0
0

]
,

[
Kfg + K21 + 𝜎2𝑛I Kfg

Kfg Kfg

] )
, (10)

where 𝜎2n is the noise variance and I is the identity matrix. Once
GPR has been performed, the foreground model is retrieved via:

𝐸 (ffg) = Kfg
[
Kfg + K21 + Kn

]−1
d, (11)

cov(ffg) = Kfg + Kfg
[
Kfg + K21 + Kn

]−1
Kfg. (12)

Where the noise covariance, Kn, is the diagonal of 𝜎2n : 𝜎2n I. Here
E(ffg) is the expectation values and cov(ffg) is the covariance of
the foregrounds. The inclusion of the K21 kernel in the definitions
allows one to marginalise over all foreground models obtained by
the Gaussian process - accounting for any degeneracy between the
foregrounds and 21 cm signal, and providing a proper error budget.
Deducting E(ffg) from the original data gives the residual.

3 DATA

In this sectionwewill describe the data used in this paper. The first is
the 10 nights of data from LOFAR that were used for the upper limit
result in Mertens et al. (2020). The second data set is simulated data
that will be used to test the performance of the foreground removal
techniques, and asses their pros and cons.

3.1 LOFAR 10 Nights Data

The LOw-Frequency ARray (LOFAR) is an interferometric array
of radio antennas with stations spread across several countries in
Europe (38 stations within the Netherlands and 14 international
stations). LOFAR is capable of observing the frequency range 10-
240 MHz. It is also capable of reaching an angular resolution of
arcseconds across most of the 30-240 MHz range. Stations are
made up of a mixture of low band antennas - which operate from
10 MHz (just above the ionosphere cut off) to 90 MHz (just below
commercial FM) - as well as high band antennas which operate
between 110 MHz to 240 MHz (van Haarlem et al. 2013). Most of
the LOFAR stations are located in the Netherlands, with the core
stations being located near the town of Exloo; chosen because of
its low population and (relatively) low radio frequency interference
(RFI). The core has 24 dual-stations located in a 2 km radius,
with 6 of these stations being found on the Superterp, a small
island, 320 m in diameter. The stations in the Superterp make up
the shortest baselines in LOFAR’s array. The antennas in the core
station are distributed to give optimal uv coverage. There are 14
stations, outside of the core, that are spaced out logarithmically,
with the outer most station being at a radius of 90 km. These 14
stations are denoted as the ‘remote stations’14 (van Haarlem et al.
2013).

The observation data used here is from the LOFAR EoR
project, concentrated on the North Celestial Pole (NCP) win-
dow (Bernardi et al. 2009; Yatawatta et al. 2013). The data

14 http://old.astron.nl/radio-observatory/astronomers/users/technical-
information/lofar-array-configuration/lofar-array-conf
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Figure 1.A frequency slice at 134MHz (z ∼ 9.6) of the cosmological signal
realisation produced by 21CMFAST, with a neutral fraction xHI = 0.78.

is an accumulation of ∼140 hours of observing time, com-
ing from 10 nights worth of observations (observing nights ID:
L80847, L86762, L90490, L196421, L205861, L246297, L246309,
L253987, L254116, L254865) (Mertens et al. 2020). The data has
undergone both direction-independent and -dependent calibration
as well as RFI flagging (Yatawatta et al. 2008; Kazemi et al. 2011;
Offringa et al. 2010). A more rigorous description of the data pro-
cessing pipeline for this dataset can be found in Patil et al. (2017)
and Mertens et al. (2020). This data set has a total bandwidth Δ𝜈
= 11.52 MHz, with frequency range 134.57 MHz ≤ 𝜈 ≤ 146.09
MHz. The frequency resolution of the data is 195.3 kHz, however
several sub-bands were flagged resulting in the current 37 sub-band
dataset.

3.2 Simulated Data

3.2.1 21cm EoR Signal

The 21cm signal is simulated using 21CMFAST (Mesinger et al.
2011). This is a semi-analytical tool which approximates physical
processes, rather than simulating via hydrodynamic simulations,
making it computationally much less expensive. The results, the
evolving brightness temperature T𝑏 , produced by 21CMFAST agree
with recent hydrodynamical simulations (Hutter 2018). The simula-
tion used 21CMFAST’s default Planck cosmology: (𝜎8,ℎ,Ω𝑚,ΩΛ,n)
= (0.81,0.68,0.31,0.69,0.97). The simulation was initialised at 𝑧 =
25, with a box size of 1000 Mpc, on a 20483 grid with subsequent
evolution of the density and ionization being performed on a lower
resolution 5123 grid - with this grid being the final T𝑏 box size.
We have assumed saturation of the spin temperature T𝑠 : T𝑠 ≫
TCMB, which is valid during the redshifts of the observation; we
have set the UV photons per stellar baryon to be 0.3. The output
of 21CMFAST is the 𝛿𝑇𝑏 field in the redshift range 6≤ 𝑧 ≤25, with
these redshift slices being made into a lightcone computed with an
observing angle of 5◦ - to match that of LOFAR. Fig. 1 shows an ex-
ample slice and the evolution of neutral hydrogen for this realisation
is shown in Fig. 2.

With the known bandwidth of the LOFAR 10 nights data cube,
11.52 MHz, and sub-band width, 195.3 kHz, we simulate the cos-
mological signal via 21CMFAST between 134.57 MHz and 146.09
MHz, and then inject this cosmological signal into the data.

7.510.012.515.017.520.022.525.0
z, redshift

0.0

0.2

0.4

0.6

0.8

1.0

̄x H
Īz

)

60 90 120 150 180
ν [MHz]

Figure 2. The neutral fraction evolution, with redshift, of the cosmological
simulation produced by 21CMFAST. The shaded region highlights the main
frequency region of interest: 134.5 MHz ≤ 𝜈 ≤ 146 MHz.

3.2.2 Foregrounds

The diffuse astrophysical foregrounds were simulated using the
methods described in Jelić et al. (2008). This treats the foreground
emissions, within our FoV at a given frequency, as Gaussian ran-
dom fields (GRF), modelling the foregrounds’ emission as a power
law: 𝑇𝑏 ∝ 𝜈−𝛽 . The foreground contributions are the following:

• Galactic diffuse synchrotron emission (GDSE): Galactic
synchrotron emission is the dominant foreground component that
radio surveys encounter. This emission arises from two sources: The
diffuse component arises from the interaction between relativistic
free electrons from the interstellar medium (ISM) and the Galactic
magnetic field. The second is due to emission from supernovae
remnants (SNRs). Together these make up ∼ 70% of the observed
foreground emission. The brightness temperature spectral index
used to model this was 𝛽 = 2.55 - this value was used as the mean
value for a GRF with a deviation of 0.1.
• Galactic diffuse free-free emission: This foreground is bet-
ter known as bremsstrahlung emission and it only accounts for
1% of the contaminating foregrounds (both Galactic and extra).
Bremsstrahlung emission is due to electrons scattering off of other
ions. The scattering off ions causes them to decelerate and emit
radiation. At the high latitudes observed by radio arrays to detect
the 21cm signal, this emission is from diffused ionized gas which is
optically thin. When simulated, it has a fixed spectral index of 2.15.
• Extragalactic foregrounds: Extragalactic foregrounds account
for 27% of the foregrounds that contaminate our signal. These fall
into two categories: 1) Radio galaxies, observed as point sources
in the sky and the source of their observed radio signal is syn-
chrotron emission. 2) Radio clusters, the largest virialised systems
in the Universe with the emission from clusters coming from their
galaxies and from the intercluster medium (ICM). Radio sources of
galaxy clusters have two classifications: radio halos and radio relics.
Radio halos have a regular morphology with a low surface bright-
ness, typically centred on and permeating the cluster volume. Radio
relics are similar to radio halos, having low surface brightness and
extending over large distances (> 1Mpc). Jelić et al. (2008) clusters
extragalactic foregrounds using a random walk algorithm.
We can see an example slice of the foregrounds in Fig. 3.

The simulated data have a field of view (FoV) of 5◦x 5◦,
with a frequency resolution of 500 kHz and pixel resolution of
35 arcseconds. Henceforth, we will refer to the data, a cube with
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Figure 3. A frequency slice at 134 MHz of the foreground simulation
produced by the lightcone outlined in Jelić et al. (2008).

bandwidth Δ𝜈 with a field of view of deg x deg, interchangeably, as
a data cube or cube.

3.2.3 Simulated observations

The next step from simulating a realisation of reionization is to apply
observational effects onto the simulated lightcone. We do this us-
ing the OSKAR visibility simulation package15. OSKAR produces
simulated visibility data from radio telescopes containing aperture
arrays. It does this by taking an input file that contains antenna
placement and (permitted) beam positions. Taking these, and a sky
model provided, it produces dual-polarisation signals for each an-
tenna provided before using these to beam form and hence simulate
an observation. These observational effects are applied to the data
provided, in our case the simulated data, to produce a measurement
set. Themeasurement set16 output contains visibility data, produced
by OSKAR simulating an observation of our provided data. With
the measurement set in hand, we next move on to producing images
from these visibilities, and using WSClean (Offringa et al. 2014).
We use OSKAR to simulate a 120 hour observation with a data
cube with both the simulated foregrounds and cosmological signal.
To produce an image, WSClean takes the provided visibilities and
grids them onto different 𝑤-layers. WSClean attempts to solve the
complex visibility function,

𝑉 (𝑢, 𝑣, 𝑤) =
∫ ∫

𝐴(𝑙, 𝑚)𝐼 (𝑙, 𝑚)
√
1 − 𝑙2 − 𝑚2

×

exp
{
2𝜋𝑖

[
𝑢𝑙 + 𝑣𝑚 + 𝑤

(√︁
1 − 𝑙2 − 𝑚2 − 1

)] }
𝑑𝑙𝑑𝑚

(13)

where 𝑢, 𝑣, 𝑤 are the baseline coordinates in the coordinate system
of the array, 𝐴(𝑙, 𝑚) is the primary-beam function, 𝐼 (𝑙, 𝑚) is the sky
function and l,m are cosine sky coordinates. WSClean solves this,
to find 𝐼 (𝑙, 𝑚) by discretising 𝑤 such that its integral becomes a
summation. Once WSClean solves this to produce an image, it out-
puts it as a Flexible Image Transport System (FITS) file. We have

15 https://github.com/OxfordSKA/OSKAR
16 More information on measurement sets can be found:
https://casa.nrao.edu/Memos/229.html.

used natural weighting, within WSClean. The visibilities produced
by OSKAR are in Janskys, with WSClean converting the data to
Jansky per beam. We then convert to Kelvin, using the beam size
for each frequency slice of the data cube. As we have used natu-
ral weighting, one must account for the PSF; see section 3.2.1 in
Mertens et al. (2020). We also note that the field of view of this
image cube has been reduced to 4◦x 4◦, such that it is inside the
primary beam.

4 RESULTS

In this section we show the results of applying the foreground re-
moval techniques to the aforementioned data. We attempt to repli-
cate the recent upper limit in Mertens et al. (2020), and then look
at the application of the techniques to simulated data that replicates
the 10 nights of LOFAR data.

The power spectrum, on a wavenumber k, is defined as,

𝑃(𝑘) = Vc |T̃(k) |2, (14)

where 𝑇 (𝑘) is the Fourier transformed brightness temperature and
Vc is the observed comoving cosmological volume, with the pri-
mary beam; spatial tapering function, and frequency tapering func-
tion delimited. We then average equation (14) in spherical shells
and define the spherically averaged dimensionless power spectrum
as,

Δ2 (𝑘) = 𝑘3

2𝜋2
𝑃(𝑘). (15)

When referring to the power spectrum, we are referring to equation
(15).

We can use the Stokes I and Stokes V from the dataset’s ob-
servation to estimate noise. The Noise estimates are made by dif-
ferencing two frequency slices in the image cubes. As these slices
are separated by a small frequency interval, 195.3 kHz, both the
foregrounds and 21cm should be near identical between the two -
leaving only the noise. The LOFAR point spread function changes
by 0.1 percent over 0.2 MHz (Patil et al. 2016). Thus, this dif-
ference should be dominated by thermal noise, more notably after
foreground removal. Once we have removed our foreground model
from the data, we are left with the residual Δ2

𝐼
. We can now subtract

the spherically-averaged noise power spectrum Δ2
𝑁
, also known as

noise bias removal, from the residual:

Δ221 = Δ2𝐼 − Δ2𝑁 . (16)

With the associated error,

Δ221,𝑒𝑟𝑟 =

√︂(
Δ2
𝐼 ,𝑒𝑟𝑟

)2
+
(
Δ2
𝑁 ,𝑒𝑟𝑟

)2
. (17)

Unless stated otherwise, all power spectra have the noise bias
removed.

4.1 LOFAR 10 Nights

We start with the 10 nights of data (141 hours) from the LOFAR
EoR experiment, whose upper limit from this data can be seen in
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Figure 4. Comparison of the noise bias removed residual power spectra
produced by the removal techniques: FastICA, GMCA, and GPR. We have
also included the power spectrum of the injected cosmological signal and
the noise estimates produced by Stokes I and Stokes V. One can see the com-
parison to recent upper limits produced by LOFAR HBA: Patil et al. (2017)
and Mertens et al. (2020). Within figures involving the BSS techniques, we
shall refer to the number of components used to model the foregrounds as
‘nc’.

Mertens et al. (2020). In our analysis we compare FastICA, GMCA,
and GPR . For FastICA and GMCA, we modelled the foregrounds
with a number of different components ranging from 1 to 37; the
maximum number of components is set by the dimensionality of the
dataset - the number of frequency channels. Here, we present only
the result from the best performing number of components, which
we find to be 6. We see signal suppression at component num-
bers higher then this. This is in line with the component number
used in Patil et al. (2017)’s upper limit. For GPR, to model kernels
of the data, we apply the reasoning within Mertens et al. (2020):
The astrophysical foregrounds, dubbed intrinsic foregrounds, are
expected to be smooth, with respect to frequency. Thus their fre-
quency coherence-scale will be long, and in this case we have given
GPR a uniform prior for the coherency range, this is between be-
tween 10-100 MHz, from which to optimise, with a Matern kernel
with 𝜂𝑚𝑖𝑥 = 5/2. The Bayesian optimisation finds the optimised co-
herency length for the intrinsic foregrounds to be 46.23 MHz. The
second ‘foreground’, comes from instrumentation effects. We have
given the frequency coherence-scale, used for a Matern kernel with
𝜂𝑚𝑖𝑥 = 3/2, a range 1-10 MHz. The Bayesian optimisation finds the
optimised coherency length for this instrumental foreground to be
2.64 MHz. For the simulated 21cm signal, we use an exponential
kernel, with a coherency length range between 0.1-1.2 MHz. The
Bayesian optimisation finds the optimised coherency length for the
21cm signal to be 0.73 MHz.

We can see the results of the foreground removal techniques
application on the 10 nights of LOFAR data in Fig. 4, where we
have removed the noise bias from the results of the removal tech-
niques. Tables 1, 2, and 3 show the power spectrum results at a
given 𝑘-bin, as well as the 2𝜎 upper limit (Δ221,2𝜎), for GMCA,
FastICA, and GPR. We see for the smaller 𝑘 bins, 𝑘 < hcMpc−1,
the three removal methods perform similarly. In fact, we recover the
recent upper limit presented in Mertens et al. (2020), with our use
of GPR replicating the upper limit. The BSS techniques of FastICA
and GMCA reproduce the upper limit at the same k-scale, k = 0.075
hcMpc−1, with a 2𝜎 value of Δ221 < (73)

2 mK2. This is interest-
ing, as neither of the two assume anything about the data a-priori,

𝑘 Δ221 Δ221,𝑒𝑟𝑟 Δ221,2𝜎
(hcMpc−1) (mK2) (mK2) (mK2)

0.075 (58.30)2 (31.01)2 (72.95)2
0.085 (100.22)2 (54.93)2 (126.80)2
0.098 (112.64)2 (59.88)2 (140.92)2
0.112 (222.53)2 (89.71)2 (256.16)2
0.130 (262.13)2 (101.36)2 (298.77)2
0.151 (435.36)2 (137.00)2 (476.52)2
0.172 (516.08)2 (150.06)2 (558.01)2
0.199 (769.19)2 (196.27)2 (817.74)2
0.230 (960.30)2 (221.44)2 (1010.07)2
0.263 (1230.90)2 (272.06)2 (1289.63)2
0.303 (1444.84)2 (326.61)2 (1516.87)2
0.351 (1541.69)2 (341.94)2 (1615.75)2
0.406 (1809.92)2 (388.27)2 (1884.69)2
0.466 (2058.63)2 (445.30)2 (2152.80)2

Table 1. Showing the Δ221 upper limit at 2𝜎 (Δ
2
21,2𝜎), and error (Δ

2
21,𝑒𝑟𝑟 ),

at a given 𝑘-bin for GMCA.

𝑘 Δ221 Δ221,𝑒𝑟𝑟 Δ221,2𝜎
(hcMpc−1) (mK2) (mK2) (mK2)

0.075 (58.24)2 (31.10)2 (72.98)2
0.085 (100.32)2 (54.98)2 (126.92)2
0.098 (112.00)2 (59.57)2 (140.14)2
0.112 (224.05)2 (90.30)2 (257.89)2
0.130 (262.41)2 (101.46)2 (299.07)2
0.151 (436.77)2 (137.43)2 (478.06)2
0.172 (516.43)2 (150.16)2 (558.39)2
0.199 (769.99)2 (196.21)2 (817.52)2
0.230 (959.09)2 (221.16)2 (1008.80)2
0.263 (1228.46)2 (271.53)2 (1287.08)2
0.303 (1443.43)2 (326.29)2 (1514.40)2
0.351 (1540.83)2 (341.75)2 (1614.85)2
0.406 (1803.51)2 (388.39)2 (1885.29)2
0.466 (2059.14)2 (445.41)2 (2153.33)2

Table 2. Showing the Δ221 upper limit at 2𝜎 (Δ
2
21,2𝜎), and error (Δ

2
21,𝑒𝑟𝑟 ),

at a given 𝑘-bin for FastICA.

whilst GPR requires additional information about the data it is fit-
ting. As we move to k-scales larger than hcMpc−1, both FastICA
and GMCA begin to deviate away from GPR, which consistently
stays close to the noise limit (shown in grey). In fact, for each ad-
jacent 𝑘-bin, at k-scales larger than hcMpc−1, FastICA and GMCA
produce progressively larger powers. FastICA and GMCA perform
near identically, with their power over the range of 𝑘-scales, shown
in Fig. 4, being near-identical.

4.2 Simulated Observation

From the results in Fig. 4, we see that both FastICA and GMCA
begin to diverge from the result of GPR at k-scales larger than
hcMpc−1. To better understand why, we further explore the perfor-
mance of both GMCA and FastICA, with the performance scales 𝑘
> hcMpc−1 being the motif throughout the analysis.

Within our plots we have a few graphical convention: Any k-
bins where the power of the residuals, before noise bias removal, is
below that of the noise are omitted. This leads to an unphysical neg-
ative power for the residual once the noise bias has been removed;
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𝑘 Δ221 Δ221,𝑒𝑟𝑟 Δ221,2𝜎
(hcMpc−1) (mK2) (mK2) (mK2)

0.075 (58.06)2 (31.20)2 (72.92)2
0.085 (80.61)2 (33.45)2 (93.47)2
0.098 (99.22)2 (35.03)2 (110.90)2
0.112 (110.65)2 (44.04)2 (126.97)2
0.130 (143.23)2 (44.97)2 (156.72)2
0.151 (189.54)2 (55.69)2 (205.24)2
0.172 (240.49)2 (57.87)2 (254.03)2
0.199 (293.08)2 (61.88)2 (305.86)2
0.230 (365.19)2 (65.23)2 (376.66)2
0.263 (421.48)2 (75.85)2 (434.91)2
0.303 (469.14)2 (88.26)2 (485.46)2
0.351 (510.65)2 (99.14)2 (529.55)2
0.406 (568.37)2 (112.48)2 (590.21)2
0.466 (638.14)2 (129.66)2 (663.73)2

Table 3. Showing the Δ221 upper limit at 2𝜎 (Δ
2
21,2𝜎), and error (Δ

2
21,𝑒𝑟𝑟 ),

at a given 𝑘-bin for GPR.
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Figure 5. Comparison of FastICA, GMCA, and GPR residual power spectra
as they recover the cosmological signal injected into simulated foregrounds
(outlined in Jelić et al. (2008)) - recovery performed over a Δ𝜈 = 30 MHz
bandwidth, 120 MHz ≤ 𝜈 ≤ 150 MHz. We model the foregrounds with two
components for FastICA and GMCA, determined by the method outlined in
Section 4.2. Due to their similar performance, the FastICA result has been
overlaid by GMCA.

any error bars extending to below the x axis in log space are shown
with equal-sized arrows to indicate this.

4.2.1 Simulated: Clean

We first start with how the foreground removal techniques perform
on simulated data that has not gone through OSKAR nor had noise
added; this data has both the cosmological signal and foregrounds,
only. We can see the result of the power spectrum recovery in Fig.
5.

To find the best number of components to model the fore-
grounds with the BSS techniques, we applied the following tech-
nique for the goodness of fit: Taking the squared difference between
the residual of our BSS techniques, being the recovered cosmolog-
ical signal, and the cosmological signal we wish to recover. We
sum over each pixel of the data cube’s squared difference, and nor-
malise this difference by the variance of the cosmological signal at
the frequency the pixel lies in. If the residual perfectly matches the

cosmological signal, the returned value is zero. The motivation for
normalising by the variance allows us to see if the squared error in
the residual is below that of signals variance, giving a value below
1, and hence the cosmological signal is still detectable.

We find that modelling the foregrounds, within FastICA and
GMCA, is best with 2 components. For GPR, we use the same
covariance matrix described in Section 4.1 but without the mode-
mixing kernel. All three of the techniques perform near identically,
and do recover the 21cm power spectrum fairly well, with their
aforementioned technique for goodness of fit returning a value below
0.1.

4.2.2 Simulated: Observation Comparison

We now look to see how well FastICA and GMCA perform on
simulated observations via OSKAR. We compare three simulated
observations with noise included:

(i) 120 hour observation.
(ii) 120 hour observation but we have removed the primary beam

from the observation.
(iii) 120 hour observation, but we have used the resolution from

the lowest frequency in the observation’s point source function
(PSF). For the purposes of this paper it is the PSF at 134.5 MHz;
the primary beam is also included.

We see the results of this in Fig. 6. The reasoning for case ii is
to see whether the primary beam effects are the limiting factor for
both FastICA and GMCA (compared to GPR), and case iii is to see
if the chromaticity of the instrument is a limiting factor for FastICA
and GMCA. As mentioned in Section 4.1, GPR takes kernels for the
various components in the data, one of which was Kfg, which is the
kernel for the instrumental effects - namely, mode-mixing. Whilst
GPR accounts for this, FastICA and GMCA, being BSS techniques,
assume nothing of the data a-priori and solely attempt to fit the
data. As it is ignorant to such effects, they may provide a hindrance
to the recovery capabilities of the two techniques. For case iii, we
have removed this mode-mixing covariance from GPR’s modelling
as we no longer have the chromaticity of the instrument.

We only show the ‘best’ (i.e. closest to the noise limit) results.
For the BSS techniques, the number of components used to define
the foregrounds ranged from 1 to 37; with the number of compo-
nents being limited by the dimensionality of the dataset - which,
here, is set by the number of frequency channels. We choose the
number of components to be 3, as this is what we find to be best for
case i. We perform the analysis of cases ii and iiiwith 3 components
to compare how the results change. From Fig. 6, it is clear to see that
case i, which represents a normal observation, has a better result for
FastICA and GMCA than that in Fig. 4. This result is due to a com-
mon downfall of simulations, as they do no reproduce residuals that
arise from a normal LOFAR pipeline, such as direction-dependent
and -independent calibration errors or RFI flagging. Offringa et al.
(2019) showed that RFI flagging can lead to a flagging excess power
- which was found to bemitigated by the use of a Gaussian-weighted
interpolation scheme for the flagged samples along with a unitary
weighting during averaging. They also showed that that GPR is able
to model some of this excess at low k-scales, and so it is a reasonable
question to ask if the effect seen at k-scales larger than hcMpc−1 is
due to this. We tested this by taking an extreme example of ∼ 1

3 of
the channels flagged, which is the equivalent of the gridding step
with flagging. We found that, for the case i for GMCA and FastICA,
there is excess at scales of ∼ 0.2 hcMpc−1 and larger, progressively
taking the residual to the noise limit by the penultimate k-bin. We
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Figure 6. Comparison of FastICA, GMCA, and GPR in recovering a cos-
mological signal injected into simulated foregrounds (outlined in Jelić et al.
(2008)), with OSKAR being used to simulate observations. We then com-
pare three cases: i) Normal 120 hour observation. ii) 120 hour observation
with no primary beam included. iii) 120 hour observation with the PSF of
the lowest frequency (134.5 MHz), with the primary beam included. The
bandwidth of the cube is Δ𝜈 = 11.5 MHz, in the range: 134.5 MHz ≤ 𝜈 ≤
146 MHz.

did not see any change in the GPR result, between the flagged test
and Fig. 6c. Seeing as the data used in Fig. 4 used the steps proposed
by Offringa et al. (2019), we can be sure it is not this effect causing
it. From Figs. 6a and 6b, we see, as expected, FastICA and GMCA
perform near identically. For case ii, one should note that we do not
delimit the primary beam from the power spectrum (equation 22,
Mertens et al. (2020)). We see that the results for case ii are similar
to that of case i. This is not surprising as we reduce our FoV from
5◦x 5◦ to 4◦x 4◦ to be within the primary beam, and so the effects
of the primary beam are less significant. For case iii, the removal
of chromaticity effects allow FastICA and GMCA to perform better
on the lowest k-scales, as mode mixing introduces additional fluc-
tuations into the observed signal - that are no longer present here.
However, at larger k-scales, we see over-fitting and we see more
of the cosmological signal leaked into the foreground model. The
removal of the primary beam and chromaticity effects reduces the
number of independent components at higher k-scales, as such 3
components at higher k may be too many, leading to overfitting.

As seen for FastICA and GMCA, case ii, unsurprisingly, with
no primary beam GPR performs similarly to case i. For case iii, for
which we do not include the mode-mixing kernel, we see that the
results are similar to case i. We conclude that instrumental effects
are not the dominant effect causing the poor recovery of FastICA and
GMCA, at scales 𝑘 > hcMpc−1 in Fig. 4.We see instrumental effects
yield noworsening of performance on scales 𝑘 > 0.1 hcMpc−1.With
instrumental effects not providing any clarity on the performance of
FastICA and GMCA at scales 𝑘 > hcMpc−1, we extend our analysis
to look at the further issues, such as limitations due to bandwidth
of data and noise.

4.2.3 Simulated: Not Enough Data

Currently, the foreground removal techniques have been applied to
an image cube of bandwidth Δ𝜈 = 11.5 MHz. The more data we
give these techniques, the more information they have to fit the
foregrounds and, potentially, recover the cosmological signal. We
compare three cases: The first being the normal Δ𝜈 = 11.5 MHz
we have been using in our analysis thus far; the second case is a
cube of bandwidth Δ𝜈 = 30 MHz, and the final case is a cube of
bandwidth Δ𝜈 = 50 MHz. We see the results of this in Fig. 7, note
that all power spectra are taken in the Δ𝜈 = 11.5 MHz bandwidth,
134.5 MHz ≤ 𝜈 ≤ 146.0 MHz.

From Figs. 7a and 7b, we see there is some improvement with
the larger bandwidth, with no clear improvement as we compare the
Δ𝜈 = 30 MHz and Δ𝜈 = 50 MHz for the image cubes for GMCA
and FastICA. We choose the number of components such that the
cosmological signal is not suppressed, i.e. the cosmological signal
doesn’t leak into the foreground model. For each of the k-bins in
the power spectrum, we see that there is no clear improvement of
the power spectrum, at scales 𝑘 > hcMpc−1, relative to that if the
lower 𝑘-scales, as we increase the bandwidth. For GPR we see
that, overall, the larger bandwidths perform the worse with many
k-bins in the power spectrum being completely suppressed, Fig.
7c. This result with the larger bandwidths is not surprising, as
the frequency coherency of the signal evolves with redshift. Using
a longer bandwidth would average this evolution, and one would
expect a degradation of performance with bandwidth.

One would expect larger bandwidths to do better as there is
more information for GMCA and FastICA to exploit in their de-
composition. As aforementioned, GMCA has had great success in
its application to CMB data. However, most applications of these
BSS techniques have used large bandwidths. In Chapman et al.
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Figure 7. Comparison of FastICA, GMCA, and GPR in recovering a cos-
mological signal injected into simulated foregrounds (outlined in Jelić et al.
(2008)) with OSKAR being used to simulate observations. We compare
three cases: The first being the normal Δ𝜈 = 11.5 MHz we have been using
in out analysis thus far; the second case is a cube of bandwidth Δ𝜈 = 30
MHz, and the final case is a cube of bandwidth Δ𝜈 = 50 MHz.

(2012) and Chapman et al. (2013), FastICA and GMCA were ap-
plied to a dataset of bandwidth Δ𝜈 = 85 MHz. In a most recent
application of GMCA, Carucci et al. (2020), a dataset of bandwidth
Δ𝜈 = 400 MHz was used; they also found that having a greater
number of channels is better to perform sparsity. So it is likely, out
of the realm of the motif of this analysis, that we are not giving the
BSS techniques enough data, as even a bandwidth Δ𝜈 = 50 MHz
seems inadequate. The performance at longer bandwidths will not
be affected by the evolution of the signal, such as that which the
power spectrum suffers from as we perform it over larger band-
widths (Datta et al. 2012, 2014; Ghara et al. 2015). We have seen
this when looking at different bandwidth sizes for simulated data
that hasn’t been applied to OSKAR; as we increased the bandwidth
over which removal is performed, the performance of FastICA and
GMCA improved. With no clear improvement of the power spec-
trum, at scales 𝑘 > hcMpc−1 with an increase of bandwidth, we next
look at the role of instrumental noise.

4.2.4 Simulated: Noise Limited

A key difference between the BSS techniques used and GPR, is that
the BSS techniques are agnostic to the existence of the cosmological
signal in the dataset, whilst GPR not only optimises itself for the
inclusion of the 21cm signal but also uses the Stokes V to estimate
the noise. This could potentially mean that noise limitations on
FastICA and GMCA are greater than GPR, as the former two cast
the cosmological signal in the ‘Gaussian’ noise of their model. We
now look at the case of no noise. In Fig. 8, we show the application
of FastICA and GMCA when applied to simulated data containing
a no noise. We limit the plot to a fiducial value of 3 components.
For FastICA, Fig. 8a, we see that the no noise case does produce
a similar power spectrum to the case with noise. We find that the
case with no noise for GMCA, Fig. 8b, performs the same as the
case with noise. However, without the inclusion of noise, they are
still orders of magnitude above the injected cosmological signal.
Whilst noise is often a limiting factor for recovery, it is not the
dominant reason here as to why we see an under-performance on
larger k-scales, 𝑘 > hcMpc−1.

An important assumption of the blind source separation tech-
nique, as previously implemented on EoR data, is perfect noise
avoidance. This is the assumption that we model the noise perfectly,
and it does not leak into our foregroundmodel. However, we see that
above 4 components noise does begin to leak into the foreground
model. This poses a problem, as we can see from Fig. 8, 3 com-
ponents is not sufficient to model the foregrounds well enough by
the residual - for Fig. 4, 6 components was found to be the optimal
number for FastICA and GMCA.

4.3 Blind Source Separation Techniques: Scale Independence

Thus far, we have only looked at the performance of the BSS tech-
niques with respect to the data - both its constituents and the amount
of data. In Fig. 4, we see that FastICA and GMCA under-perform,
with respect to GPR, as we increase the k-scale; with each adja-
cent k-bin producing a higher power than the bin that proceeded
it. In Fig. 9, we show the foreground removal residuals produced
by FastICA and GPR in the 2D cylindrical power spectrum form.
As seen throughout this work, FastICA and GMCA perform near-
identically; this similar performance was also seen by Cunnington
et al. (2020). As such, for brevity, we only compare FastICA and
GPR. The cylindrical power spectrum is the cylindrically averaged
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Figure 8. Comparing FastICA and GMCA by considering the case where
there’s no noise. The data has still gone through OSKAR to simulated
10 nights of observation. We show the results using a fiducial value of 3
components to model the foregrounds.

power spectrum and is defined as a function of angular (𝑘⊥) versus
line-of-sight (𝑘 ‖) scales as,

𝑃(𝑘⊥, 𝑘 ‖) = 〈𝑃(k)𝑘⊥ ,𝑘‖ 〉 (18)

In Fig. 9c, we see that confined to the lower 𝑘 ‖ modes, Fas-
tICA gives a comparable removal residual to GPR. However, as we
increase 𝑘 ‖ and 𝑘⊥ we see that FastICA produces a larger power
for these modes - in line with what is seen in Fig. 4. At 𝑘 ‖ ≥ 0.8
hcMpc−1, we have artefacts introduced by the frequency Fourier
transform, which arise from the discontinuities in the frequency
sampling (from RFI flagging) causing spectral leakage. Interest-
ingly, at these higher 𝑘 ‖ , we see more of the spectral leakage in the
FastICA residual compared to that of GPR.

BSS techniques are not scale-dependent, they apply the same
mixing matrix model to all scales. On smaller k-scales (larger scales
in real space), there are a smaller number of independent compo-
nents and so modelling the foregrounds with 6 components is suffi-
cient. As we go to larger k-scales (smaller scales in real space), the
number of independent components increase, and so modelling the
foregrounds with 6 components is no longer sufficient. As the BSS

(a) The 2D cylindrical power spectrum of the FastICA foreground removal
residual produced using the LOFAR 10 Nights data, using 6 components to
model the foregrounds.

(b) The 2D cylindrical power spectrum of the GPR foreground removal
residual produced using the LOFAR 10 Nights data.

(c) Looking at the 2D cylindrical power spectrum for ratio between FastICA’s
and GPR’s foreground removal residual of the LOFAR 10 Nights Data.

Figure 9.We compare the dimensionless cylindrical power spectrum of the
foreground fitting residuals produced by the application of FastICA, using 6
components to model the foregrounds, and GPR on the 10 nights of LOFAR
data.

techniques do not account for this scale-dependence, one sees an
increasing under-performance of the techniques with k. In Fig. 10,
we apply FastICA to only our simulated foregrounds from Section
3.2.2. From Fig. 10, we see as we increase the number of compo-
nents, with which wemodel the foregrounds, the better convergence
the recovered power spectrum has with the power spectrum of the
foreground we wish to model. We see that FastICA reaches con-
vergence on lower scales, below hcMpc−1, with just 3 components.
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Figure 10. A comparison of FastICA’s foreground model power spectra,
over bandwidth Δ𝜈 = 11.5 MHz. Using different numbers of components,
ranging from 1 to 10.

10−1 2×10−1

k [hcMpc−1]

10−2

10−1

100

101

102

Δ2
Δk

) [
m

K2
]

21cm Model, nc = 1
21cm Model, nc = 2
21cm Model, nc = 3
21cm Model, nc = 4
21cm Model, nc = 5
21cm Model, nc = 6
21cm Model, nc = 7
21cm Model, nc = 8
21cm Model, nc = 9
21cm Model, nc = 10
Ac ual CS

Figure 11. Comparison of power spectra of FastICA’s recovered simulated
cosmological signal, over bandwidth Δ𝜈 = 11.5 MHz. Using different num-
bers of components, ranging from 1 to 10.

This turn over of performance at hcMpc−1, is what we also observe
in Fig. 4. As for larger scales in Fig. 10, as we increase the num-
ber of components, we see a progressively better fit at these scales.
One can easily argue, from Fig. 10, that using a higher number
of components is better as we would get a better fit to the fore-
grounds. However, in Fig. 11, we look at FastICA’s recovery of
the simulated cosmological signal. As we increase the number of
components, we see that more of the simulated cosmological signal
is modelled in the foreground model - As in equation (1). With
the smaller k-scales being penalised more for the increase in com-
ponents, than the larger k-scales. We can also potentially see this
over-subtraction/signal suppression at the lower k-scales in Fig. 9c’s
first k‖ bin. Such suppression by these techniques on these lower
k-scales is also seen by Cunnington et al. (2020).

From Figs. 10 and 11, we can infer that, though a higher
number of components will be able to model larger k-scales, it
will cause over-fitting of the signal at smaller k-scales and results
in the cosmological signal, on these smaller k-scales, leaking into
the foreground model. Therein lies the problematic nature of the
scale-independence of these BSS techniques. If one were able to fit
different scales with the components best suited for it, rather than
having a signal number of components across all scales, we are

more likely to get a better fit. In future work, we will explore tech-
niques that are scale-dependent and compare their performance to
GPR. The version of GMCA used here, is the default version used
in Patil et al. (2017). There have been significant improvements and
advancements of this BSS17. For example, Local-Generalised Mor-
phological Component Analysis (LGMCA)18 (Bobin et al. 2013a).
LGMCA, allows the mixing matrix to vary across the pixels in an
image.

5 DISCUSSION AND CONCLUSION

With the recent 2𝜎 upper limit of Δ221 < (73)
2 mK2 at k = 0.075

hcMpc−1 by Mertens et al. (2020) from 141 hours of data, and with
LOFAR currently processing over 2000 hours of data from their
observing run of the NCP, we aimed to compare removal techniques
to assess how well they perform under different conditions and their
limitations. In this paper, we attempt to replicate the analysis from
Mertens et al. (2020), applying FastICA, GMCA, and GPR to the
data used in Mertens et al. (2020), to see which performs better.
We then replicate the data via simulation to pin down the reasoning
as to why certain removal techniques perform worse than others.
In Section 4.1, we can see we perfectly recover the upper limit
found in Mertens et al. (2020) in our use of GPR. As we know
more about the signals we wish to observe, plus what constitutes it
(e.g. foregrounds and mode mixing), we can have more control over
the characteristics and properties of the signal we wish to model/fit.
This is where GPR becomes powerful, taking the properties of these
constituents (e.g. coherency length) to better fit these foregrounds
and recover the cosmological signal. Interestingly, we have found
that FastICA and GMCA also reproduce this 2𝜎 upper limit. This is
a powerful result as both GMCA and FastICA are blind to the data,
i.e. knowing nothing a-priori about the data.

From our results in Fig. 4, we see that on scales larger than
hcMpc−1 FastICA and GMCA, performing identically, begin to de-
viate away from the spectrum produced by GPR. We began looking
at possible reasons for FastICA’s and GMCA’s under-performance
at these scales by looking at instrumental effects. We simulate fore-
grounds and the cosmological signal at the same redshift and fre-
quency range as the observed data. We use OSKAR to apply obser-
vational effects in three case, with noise included:

(i) 120 hour observation.
(ii) 120 hour observation, butwe have removed the primary beam

from the observation.
(iii) 120 hour observation, but we have used the resolution from

the lowest frequency in the observation’s point source function
(PSF). For the purposes of this paper it is the PSF at 134.5 MHz;
the primary beam is also included.

From Figs. 6a and 6b, we find that the two cases i and ii give
similar power spectra. As we cut our FoV to be within the primary
beam in the hope of mitigating most of the effects, this result is to be
expected. As for case iii, we see that though it gives a deeper power
spectrum, there are clear signs of overfitting. We use the same num-
ber of components in all three cases to give a true comparison. It is
clear here that the removal of chromaticity effects removes indepen-
dent components from the data, especially at higher k-scales. From

17 http://www.cosmostat.org/software/gmcalab
18 https://www.cosmostat.org/software/lgmca
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this, we see it appears that no single instrumental effect is the domi-
nant effect causing the under-performance at larger k-scales - as we
see no adverse effects on scales larger than hcMpc−1 for both Fas-
tICA and GMCA. We then perform further checks that relate to the
data itself. It is important to note how powerful the BSS techniques
truly are. As we have said, they do not assume anything a-priori
about the data. Yet, on simulated data, without OSKAR applied,
they can recover the cosmological signal embedded in foregrounds.

We started our further analysis off with the amount of data we
give our removal techniques. The original comparison performed in
Fig. 6, was done using a Δ𝜈 = 11.5 MHz data cube, between 134.5
MHz and 146 MHz, to match that of the Mertens et al. (2020) data.
We then looked at two additional cube frequency bandwidths: Δ𝜈
= 30 MHz and Δ𝜈 = 50 MHz. We see in Fig. 7, that there is an
improvement in the results from FastICA and GMCA, with the Δ𝜈
= 30 MHz and Δ𝜈 = 50 MHz bandwidths performing better than
the Δ𝜈 = 11.5 MHz case. However, there doesn’t appear to be any
significant improvement between Δ𝜈 = 30 MHz and Δ𝜈 = 50 MHz.
Though we note for most applications of these BSS techniques, the
bandwidth that is used is at least double of the highest we’ve given,
Δ𝜈 = 50. For scales larger than hcMpc−1, there is no answer to
the under-performance - as we are seeing an improvement across
all scales for the larger bandwidths. In the case of GPR, increasing
the bandwidth worsens its performance. Larger bandwidths will
average the frequency coherence of the data, and so one would
expect GPR’s performance to degrade with bandwidth. We have
said that typically these BSS techniques require larger bandwidths,
if GPR can perform well on relatively smaller bandwidths, it could
prove advantageous.

With no clear signs of degradation with the amount of data
we use, we move on to see if noise was the limiting factor. We
do not include noise in our OSKAR output and attempt to recover
the cosmological signal. In our analysis, we limited the results to a
fiducial value of 3 components, and did not see an improvement in
the no noise case. This is interesting as the perfect noise avoidance
of BSS techniques breaks down, as some noise must be in the
foreground term. We see no improvement on scales larger than
hcMpc−1, and hence noise is not the limiting factor here.

We next looked at the scale-independence of the BSS tech-
niques. When applying FastICA or GMCA to data using a given
number of components to model the data, it tries to model every
scale of the data with that number of components. However, at
smaller k-scales there are a smaller number of independent com-
ponents, and so modelling these scales with a small number of
components is sufficient. As we move to larger k-scales, the number
of independent components also increases. Hence, the number of
components that were sufficient to model the smaller k-scales, is no
longer sufficient at these larger k-scales. We see this turning point
at hcMpc−1, in both Figs. 4 and 10. On scales below hcMpc−1,
using a handful of components to model the foregrounds is suffi-
cient, but they are not sufficient to fully capture all the independent
components at larger k-scales. A simple approach would be to apply
the larger number of independent components to model the fore-
grounds. However, all scales will be modelled with this number and
we find that the 21cm signal loss is significant on smaller scales,
when using this approach. When comparing Fig. 4 to the results
seen in Section 4.2, one can see that the number of components
required to model the foregrounds is far greater, even on the smaller
k-scales, for the real data compared to the simulations. This is due
to the short comings of simulations not being able to match excess
power of higher k-scales caused by, for example, RFI flagging or
calibration errors. This then reduces the number of independent

components seen at higher k-scales, as such the scale-independence
issue is not as significant and hence we see a deeper power spectrum
at larger k-scales for the simulated case versus the observed data.
We also see the need of having a scale-dependent approach when
looking to increase the bandwidth to improve the performance of
BSS techniques. As aforementioned, applications of the BSS tech-
niques have used larger bandwidths than that used in this paper as
well as Patil et al. (2017) and Gehlot et al. (2019). The applications
to simulated data have been to that without instrumental effects,
as such there is a linear improvement with bandwidth. Whereas
for simulated case with observational effects, we do see some im-
provements but it is likely that the scale-independence issue is more
prominent and so the improvement isn’t as clear. With real data, this
is likely further exacerbated by the greater number of instrumental
effects causing more independent components at high k-scales.

If one were able to perform BSS on a scale-dependent ap-
proach, with a mixing matrix for different scales being modelled
with different number of components, we believe we would likely
see a better fit to the data and remove the divergence seen in Fig. 4.
There is also no way to determine the best number of components
to recover the signal, for each of these scales. One could, in future,
aim to make these techniques less blind. As we have a grasp on the
properties of the data, one could add a Bayesian back-end to these
BSS techniques to optimise the number of components, on each
scale, on which sparsity is performed.

Comparatively, GPR only takes into account the variance and
optimises its fit with the knowledge of the constituents of the ob-
served signal: that there is a weaker signal present, as it has a kernel
modelling the signal, in the foregrounds andmode-mixing effects. It
is less likely to overfit and remove power for the recovered signal, as
it is accounted for, and is also able to model the mode mixing effect
in the foregrounds as we optimise for its inclusion. GPR can also
output the optimised covariance matrix, so one can see how it chose
the fit - something neither FastICA or GMCA can do. We also see
clear improvements in the performance of GPR as we increase the
bandwidth over which we apply GPR, likely showing its accounting
of mode-mixing makes instrumental effects less detrimental.

GPR also has scope for improvement. GPR, currently, fits
visibility by visibility, equivalent to one line-of-sight at a time,
and so can be further improved by utilising all of the lines of
sight together, to include spatial correlations, to better improve the
fitting. As mentioned in Section 2.3, the covariance parameters for
mode-mixing were based on treating mode-mixing as a Gaussian
process rather than simulating the effect (Mertens et al. 2018;
Gehlot et al. 2019). If it were to be updated and tested on a more
realistic mode-mixing, the covariance Kfg is more accurately
tested and parameters refined, it will likely fit the data even better
improving the recovery. GPR is also not scale-dependent, as
the same covariance model for all visibilities. Improving this,
is likely to yield a better recovery of the cosmological signal as well.

With LOFAR still processing the observed data from its ob-
serving run of the NCP, we conclude that the foreground removal
technique that is best suited, out of the three tested methods, to
recover the 21cm power spectrum by LOFAR is GPR, as used in
Mertens et al. (2020). Through the testingwe have done in this paper
that GPR has shown to be the most rigorous and still has scope to be
improved on. Its application on the Mertens et al. (2020) data, looks
to be close to noise-limited and as the full observational data of
the NCP it processed, will likely detect the signal in this low-noise
regime.

There is also need for further exploration of these BSS
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techniques in the production of upper limits. On k-scales below
hcMpc−1, we have seen on these scales, on actual LOFAR data,
they perform as well as GPR. As aforementioned, BSS techniques
are very powerful as they do not assume anything about the data
a-priori, and there have been many further iterations of GMCA. Ap-
plication of a scale-dependent approach is something to be looked at
in futureworks.Machine learning is likely going to play a prominent
role in foreground mitigation in the near future, with a framework
being set up for LOFAR-EoR. Sooknunan et al., in prep, are devel-
oping a machine learning framework for LOFAR-EoR foreground
mitigation techniques.

We have also seen that Mertens et al. (2020) compared to Patil
et al. (2017), as well as using a different foreground removal tech-
nique, has improved the direction-dependent calibration of the data.
Once LOFAR has fully processed the data from its observing run of
the NCP, it is likely to have significantly improved its calibration, as
well as improving the current sky model and the inclusion of phase
errors introduced by the ionosphere. This will yield deeper power
spectra limits as well as increasing the likelihood of detecting the
cosmological signal with the fully processed data.
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