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Abstract 1

The capability of single crystal diamonds to maintain their unique electronic properties 2

even at high temperatures is, in particular, relevant for its applications as a radiation 3

detector. In order to explore characteristics of charge transport at high temperatures 4

(up to 450 ◦C), diamond was exposed to MeV energy ions, both, to induce radiation 5

damage and to probe subsequent influence on detector’s properties. Dependence of 6

mobility-lifetime product with temperature has been obtained for electrons and holes. 7

For holes, mu-tau displays a linear degradation with rising temperature, while for 8

electrons, change with temperature is less evident. Furthermore, deep trapping levels 9

induced in the material by radiation damage, were studied through time-resolved charge 10

signals. Detrapping time was extracted from this data. Hole trap level, with the 11

activation energy of 0.53 ± 0.01 eV has been detected in the regions of the diamond 12

detector previously irradiated by 5 MeV damaging proton beam, but not in the pristine 13

regions. This indicates that the trap was formed due to defect induction during 14

radiation damage exposure. Activation of this deep level is important for charge 15

transport performance in diamond detectors operating at high temperatures and high 16

radiation conditions. 17

Keywords: diamond detector, charge transport, radiation damage, high temperature, 18

detrapping 19

1 Introduction 20

Employment of diamond for radiation detection, power electronics and optoelectronics 21

has been increasing steadily in the last two decades. Constant developments in synthesis 22

processes [1] have resulted in high purity synthetic diamond crystals becoming readily 23

available on the market. Larger substrate sizes are also becoming more common [2]. 24

Diamond is an ultra-wide-band-gap semiconductor (5.5 eV) with excellent properties: 25

breakdown voltage >10 MV/cm, high electron and hole mobilities, chemical inertness, 26

radiation hardness, high thermal conductivity [3]. 27

Based on these properties, diamond-based radiation detectors have found increasing 28

use for operation in harsh environments, specifically high radiation and/or high 29

temperature conditions, that can be encountered at nuclear fusion reactors or other 30
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nuclear or particle physics experimental facilities [4–6]. Devices for power and high 31

frequency electronics are also being actively developed [7]. High thermal conductivity is 32

here especially important for heat dissipation, as it was demonstrated for 33

diamond-based JFET [8] that was able to operate at temperatures up to 450 ◦C. 34

However, regarding diamond radiation detector’s performance at elevated 35

temperatures, several authors have reported inconclusive results for the electronic 36

performance of their devices [6,9–13]. Significant leakage current and signal degradation 37

have been observed at temperatures higher than room temperature (RT). In some cases 38

this degradation starts already at 100 ◦C, and renders a device not operational. [13]. 39

Free charge carrier density for an intrinsic diamond at room temperature is extremely 40

low and can be estimated as ni ∼ 10−27 cm−3. It increases with rising temperature to 41

ni ∼ 10−18 cm−3 at 100 ◦C, and further goes ni ∼ 10 cm−3 at 500 ◦C [14]. Altogether, 42

these values still give a negligible number of free carriers in a typical detector device 43

volume . This indicates that those high temperatures for perfect diamond crystals 44

should not impact macroscopic properties (such as leakage current) noticeably. It can 45

be concluded that free carrier density at higher temperatures will be dictated by 46

presence of impurities, which determine the crystal quality. 47

We surmise that the inconsistencies in the reported high-temperature behaviour 48

arise mainly due to sample quality variation, as well as poor thermal resilience of the 49

electronic processing components exposed to elevated temperatures on the detector 50

mount. The latter impairs the possibility to separate the temperature effect occurring 51

in and outside the diamond itself. In a recent work [15] we have investigated 52

spectroscopic properties of a radiation detector, based on a single crystal CVD diamond, 53

specifically prepared for high-temperature operation. The device was able to maintain 54

an almost constant energy response up to 450 ◦C. However, radiation hardness testing 55

showed that Charge Collection Efficiency (CCE) from regions previously exposed to 56

MeV proton beam radiation damage deteriorated with rising temperature. The 57

decreasing trend was stopped at around 380 ◦C, after which saturation and even signal 58

amplitude recovery was observed. 59

This overall decrease of the collected charge could be correlated with degradation of 60

mobility of electrons and holes with rising temperature [7], which leads to increased 61

trapping probability [16]. 62

In this work, we have attempted to further investigate the charge transport 63

performance of diamond radiation detectors, during exposure to high radiation and 64

high-temperature conditions. Ion beam techniques were used to induce charge signal in 65

both radiation-damaged and pristine regions of the device. First, mobility-lifetime 66

product for both electrons and holes was studied as a function of temperature. Next, to 67

monitor thermally activated emission of carriers from trapping centres induced in 68

sample by ion irradiation, charge transient pulses were recorded. Temporal analysis of 69

the acquired data enables the identification of the deep trap activation energy. 70

2 Experimental setup 71

A single-crystal Chemical Vapor Deposition (sc-CVD) high purity diamond ([N] < 5 72

ppb, [B] < 1 ppb), produced by Element Six Ltd. [17], with <100> crystal orientation 73

and 65 um thickness, was used to create a radiation detector with planar geometry. 74

After the deposition of tungsten electrodes, the detector has been mounted on a housing 75

specially designed for the operation at high temperatures. Details about this detector 76

construction were described in our previous work [15]. One side of the detector 77

remained opened for exposure by probing or damaging radiation, which were in this case 78

MeV energy range ions. To characterize the detector, we have employed experimental 79

techniques based on the ion beams. Detector was mounted in the ion microprobe setup 80
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attached to the 1 MV Tandetron accelerator at the Ruđer Bošković Institute [18,19]. 81

The backside of the detector mount was in constant direct contact with a resistive 82

heater, connected to a temperature controller. The front side was exposed to the ion 83

beam, so that ions penetrate the top electrode in the direction of the applied electric 84

field through the detector. Figure 1 displays schematically this geometry and the 85

experimental setup. The microprobe system enables the focusing of the ion beam to a

Figure 1. Schematic representation of the experimental setup in the ion microprobe vacuum
chamber, as well as electronic chains for IBIC and QTS signal processing and collection. Detector
is exposed to focused ion beams from the top electrode. The same electrode is used to supply
bias voltage and to read the signal response from the detector, while the bottom electrode is
grounded. For the QTS technique, timing output (T) from the A250CF preamplifier was acting
as a trigger event at the oscilloscope for saving of charge transients coming through the energy
(E) line.

86

micrometre spot, while two electromagnetic dipoles, computer-controlled by the in-house 87

developed software SPECTOR-v2 [20], provide scanning capability over the selected 88

regions of the sample. In our case, this setup was used for spatial mapping of the signal 89

induced by ions. More specifically, two experimental techniques were used: Ion Beam 90

Induced Charge (IBIC) [21], where the detector’s charge pulses are integrated and pulse 91

height analysis is performed; and Charge Transient Spectroscopy (QTS) [22,23], where 92

the time structure of the charge pulse is preserved and analyzed. Mobility-Lifetime 93

informations were extracted from the IBIC measurements, while QTS data was used to 94

observe thermally induced charge detrapping effects. The schematic representation of 95

the experimental conditions for both techniques is displayed in figure 1. 96

For the QTS characterization, the charge traces were amplified using a charge 97

sensitive preamplifier (CSP), Amptek A250CF CoolFET, connected to a digital 98

oscilloscope, Lecroy WaveMaster 8500A. For the data analysis, signals were stored in 99

the integrated oscilloscope memory drive, and offline analysis and fitting were 100

performed (procedure details are explained in the section 3). During the performance of 101

conventional IBIC characterization, detector response, induced by the ion beam, was 102

amplified through the ORTEC 142A CSP and further shaped with ORTEC 570 103

amplifier, with 0.5 µs shaping time constant. A multichannel analyzer was used for 104

pulse height spectra acquisition. Finally, data were transferred to the personal computer 105
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for online processing and analysis. Electronic chain was calibrated by comparison with 106

silicon surface barrier detector, with estimated 100% CCE, and a pulse generator. 107

Energy for e-h pair creation of 3.62 eV [24] in Silicon and 13 eV in diamond [25] was 108

assumed. 109

To test the influence of radiation damage on the charge transport at high 110

temperatures in diamond, a small section of the detector was previously exposed to the 111

5 MeV damaging proton beam. Radiation damage was introduced at room temperature. 112

5 MeV protons penetrate the full thickness of the detector, and deposit an almost 113

uniform profile of point defects in the crystal lattice. Fluence deposited in the 100× 100 114

µm2 damaged region was 1.5 · 1013 cm−2, with induced vacancy density 4.4 · 1013 cm−3, 115

as calculated with SRIM [26]. 116
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Figure 2. Lower panel: Ionization profile of 3 MeV He+ ions, used as probes for inducing
charge signal in the detector (Probing Ion Beam = PIB), and vacancy profile (together with
linear fit - solid orange line) for 5 MeV H+ ion beam used to for radiation damage introduction
(Damaging Ion Beam = DIB). Upper panel: Schematic depiction of the detector volume exposed
to radiation damage, as seen from the side, between electrodes. After irradiation with the
DIB, traps are formed in the damaged region. Charge created afterwards with the PIB, can be
trapped during drift in the electric field applied through electrodes.

In all further probing cycles for either IBIC or QTS, a 3 MeV He+ beam was used. 117

The typical event rate registered at the detector was around 50 cps during the QTS 118

charge trace acquisition, and 1 kcps during the IBIC collection. In figure 2 (lower panel) 119

we can see the ionization profile of 3 MeV He+ ions probing ion beam, as well as the 120

vacancy profile for 5 MeV protons (damaging ion beam). It is visible that all of the 121

charge induced by the probing ions is in the first 5.8 µm of depth, which is less than 122

10% of the thickness between electrodes. Charge drifting to the opposite electrode will 123

therefore dominantly contribute to the collected signal, and in this way, we can easily 124

distinguish between electron and hole properties. For the signals collected during ion 125

beam impinging in the damaged region, the trapping can occur during the whole charge 126

carrier transit, because all of the path is populated with defects induced by previous 127

irradiation with 5 MeV proton beam. This is also depicted schematically in the upper 128

panel of figure 2. Accumulated ion dose during these probing cycles was insignificant 129

and did not influence device performance in the sense of noticeable radiation damage 130

creation or buildup of local electric field due to polarization effect [27,28]. 131
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3 Results and discussion 132

3.1 Charge Transient Spectroscopy (QTS) 133

Figure 3 displays a typical IBIC map, collected by the 3 MeV He+ ion beam that was 134

scanned over the particular detector area. We used information from the map to locate 135

damaged and pristine regions of the detector. 136

Figure 3. IBIC map collected during beam scanning over the previously irradiated region in
the diamond detector. Color represents CCE. To characterize CCE in the pristine or damaged
region, only data from within black or yellow square area was extracted. Damaged region has a
100 × 100 µm2 size. This map was acquired at room temperature conditions.

For the study of the thermally stimulated detrapping, we acquired charge transients 137

induced by the ion beam, that was positioned either in the central part of the previously 138

irradiated region, or in the pristine area. In this way, we tried to distinguish possible 139

differences between the influences of the radiation-induced defects and defects already 140

present in the crystal lattice. Several hundred charge transients induced by shallow ion 141

injection were recorded for each of the regions. By applying positive or negative bias to 142

the front electrode (± 15 V), direction of the electric field was varied, and either 143

electron or hole drift was generating the signal.The procedure was repeated for various 144

increasing temperatures, from room temperature (23 ◦C) to 450 ◦C. 145

To extract detrapping time constant from the acquired signals, we need to model 146

and quantify the transient behaviour of the induced charge. Since diamond can be 147

considered as an ionization chamber, the electric field has a constant value everywhere 148

between the electrodes. Let us first consider a current signal response in the diamond 149

with trapping centers present in the crystal lattice. Charge trapping would induce an 150

exponential decay of the current signal I ∝ exp(−t/τD), where τD is a detrapping time 151

constant [29]. Without trapping, all of the charge is induced and collected in the 152

carrier’s transit time window. For reference, one can expect a transit time shorter than 153

2 ns for electron drift in a 100 µm diamond thickness, under standard electric fields of 154

≤ 1 V/µm. Detrapping effect will result in a delayed transport of charge, longer than 155

the average transit window. Since charge is only a time integral of current, it can be 156

demonstrated that the charge response of the detector would consist of two components: 157

Q(t) = Qfast +Qslow (1− exp(−t/τD)). The fast component corresponds to the charge 158

collected during the transit time window so that detrapping effect is only present in the 159
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slow component. After enough time all the charge would be detrapped and 160

Q(t� τD) = Qfast +Qslow. Plotting the Q(t� τD)−Q(t) will result in: 161

Q(t� τD)−Q(t) = Qslow exp(−t/τD), (1)

and appropriate exponential fitting will retrieve a detrapping time constant from the 162

transient. This approach to QTS data analysis has been applied successfully in trap 163

relaxation time evaluation using charge transients induced by ions, in several previously 164

published works [29, 30]. Averaged transient waveforms for electrons and holes, recorded

Figure 4. Averaged waveforms recorded at 350 ◦C, induced due to hole or electron drift in
damaged and undamaged detector areas. Charge deficiency is observed in damaged regions
for both types of charge carriers. Hole detrapping is also visible for the signal induced in the
damaged region.

165

at 350 ◦C, are plotted together in figure 4. Amplitudes of the signals in damaged 166

regions are lower than in pristine regions, for both types of charge carriers, revealing an 167

incomplete charge collection. However, only the signal induced by hole drift exhibited a 168

detrapping effect. The slow component in hole transients was observed for all 169

temperatures above 200 ◦C. Trap relaxation was recorded only in the damaged region. 170

Moreover, no detrapping effect was recorded for electron transients, indicating that the 171

trap responsible for this effect only captured and released holes. Regarding electron 172

collection, due to lower CCE in the damaged region, as compared to pristine, it can be 173

concluded that electrons are also being trapped. Higher temperatures are probably 174

needed to thermally induce electron releasing. To extract hole detrapping time, around 175

hundred traces were acquired for each of the eight temperature points in the range from 176

200 ◦C to 450 ◦C (highest covered temperature). Two individual waveforms related to 177

the same dataset, collected at 275 ◦C, are displayed in figure 5. It is visible that the 178

delayed charge transport (slow component) is only present in one of these traces. It has 179

to be noted that fast traces were present in all of the datasets, recorded at different 180

temperatures, however, transients with slow component were dominating. Similarly, the 181

occurrence of both transient types was reported before in the experiment with charge 182

traces acquisition induced by alpha source irradiation of the sc-CVD diamond [30]. The 183

explanation for the signals without the slow component is unclear, but they probably 184

originate from the defect free detector areas. 185

Out of each dataset we have selected only the transients with the characteristic slow 186

component, between 20 and 40 traces, that have been averaged. Fitting was performed 187
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Figure 5. Two transients induced by the hole drift
in the radiation damaged diamond region at 250 ◦C.
In one of the traces (black) there is a characteristic
detrapping effect, while in the other one (blue), there
is no slow component. Similarly, in all datasets (for
different temperatures) both types of transients were
present.

Figure 6. Signals measured from the charge pream-
plifier, normalized to [0, 1] interval. In the inset, one
of the traces is isolated and displayed together with
the fitting function according to equation 2 (red line).
Also, in the inset we have indicated the procedure of
extracting the ∆Q value, as a charge difference in two
time points, t1 and t2.

on the averaged waveforms, according to the equation (1). The evolution of charge 188

traces recorded in the temperature range between 225 ◦C and 455 ◦C are shown in 189

figure 6 while in the inset, one of the traces was isolated and shown together with the 190

fitting result. To estimate at which temperature is detrapping process most active, one 191

can plot the difference between the values of the charge amplitude (∆Q) observed at 192

two different transient times, for example at 1 µs and 10 µs (visually explained in the 193

inset of the figure 6). ∆Q distribution is displayed in figure 7 and demonstrates a 194

maximum of charge detrapping rate at 275 ◦C. 195

Figure 7. Difference of the charge pulse amplitude
measured in a time window of t2 = 10 µs and t1 = 1
µs. This plot is sometimes referred to as QTS spec-
trum. Peak position, or maximum charge amplitude
difference, is observed at 275 ◦C.
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Figure 8. The Arrhenius plot for the detrapping time
constant: logarithm of the 1/τT 2 as a function of the
inverse absolute temperature. Slope of the linear ap-
proximation line yields −Ea/kB .

Based on the Shockley-Read-Hall statistics of the exchange of carriers between the 196

bandgap levels and the band [23,31], we know that the average detrapping time (for 197
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electrons or holes) is related to the trap energy level: 198

τ−1D = σ ΓT 2 exp(−Ea/kBT ), (2)

where σ is trap capture cross-section, emission rate for electrons (holes) 199

Γe(h) = 2
√

3
(
2π/h2

) 3
2 k2B m

∗
e(h) (with m

∗
e(h) being the effective mass of the charge 200

carrier), and Ea is the trap activation energy. Measuring trap relaxation time for 201

different temperatures thus enables extraction of both activation energy and capture 202

cross section of the trap level. 203

From the above data and following the equation (2), trap relaxation times were used 204

to produce an Arrhenius plot, figure 8. Linear fitting to the data yielded following 205

information: the activation energy Ea = 0.53± 0.01 eV (from the slope of the linear fit); 206

and the capture cross-section σ = (2.42± 0.05) · 10−17 cm2 (from the intercept 207

parameter). For the cross-section calculation, it was assumed that the hole conductivity 208

effective mass (needed for the emission rate evaluation) is m∗h = 0.46m0 [25]. Since this 209

is not the only possible value to be considered (see, for example, [32] for more 210

information and recent measurements) the cross-section value should be taken only as 211

the order of magnitude indicator. 212

Deep trap with the similar activation energy as identified in these measurements has 213

been observed before in unintentionally doped HPHT type IIa and Ib diamond [33], in 214

B-doped polycrystalline CVD diamonds [34], as well as in neutron irradiated scCVD 215

diamond [35]. The origin of the defect has not been determined decisively. 5 MeV 216

protons primarily induce point defects, namely vacancies (V) and interstitials (I). Since 217

V become significantly mobile only at temperatures above 600 ◦C in diamond [36], it is 218

likely that this defect is I related center. 219

It must be stressed again that we have not detected detrapping from this level in 220

un-irradiated diamond regions, indicating that the proton beam irradiation induced the 221

formation of the observed capture center Charge release from this center at temperatures 222

above 200 ◦C could be an important finding for diamond-based solid-state devices 223

operating at elevated temperatures. As we have previously reported [15], diamond 224

detector irradiated with MeV protons experienced collection efficiency decrease with 225

elevated temperatures, but this drop was saturated at 380 C, after which recovery of 226

CCE has been observed. Identification of the hole trap relaxation presented in this work 227

corresponds well with the previous findings, as detrapped holes can contribute to the 228

collected charge. This indicates that the diamond-based radiation detectors operating in 229

high-temperature and high-radiation conditions can experience beneficial signal recovery 230

after full settlement of this trapping center (probably not far above 450 ◦C). 231

3.2 Mobility-lifetime measurements 232

To measure mobility-lifetime product, we extracted pulse height spectra from the IBIC 233

scans of the pristine area (black square area in figure 3) collected at different applied 234

electric fields. These data should behave according to the Hecht equation [37]: 235

CCE = Qind/Qtotal = µτ
E

d
·
[
1− exp

(
x− d
µτ E

)]
, (3)

where E is the applied electric field, x is the penetration depth of the e-h pairs 236

inducing short-range particle, d is the distance between electrodes and µτ is the 237

mobility-lifetime product (fitting parameter) of the dominant charge carrier. We have 238

measured this dependency for both electrons and holes, in the temperature range from 239

room temperature to 450 ◦C. Several data sets are displayed in figure 9, together with 240

the fitting functions, while in the table 1 all of the fitting results are listed, together 241

with R2 goodness-of-fit values (see table description for details). 242
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Figure 9. CCE for different electric fields, collected
at two elevated temperatures, 176 ◦C and 395 ◦C, for
both hole and electron drift. Together with the data
are plotted fits (dashed lines) according to the Hecht
equation 3.

Figure 10. Mobility-Lifetime product for electrons
and holes as a function of temperature. µτ was ob-
tained as a fitting parameter of the Hecht equation 3.
Clear decreasing trend is visible for holes, with rate of
change: −2.6 · 10−8 (cm2/V )/◦C. For electrons, trend
is bi-modal, initial decrease is stopped and reversed
above 250 ◦C.

Results demonstrate that the data are indeed reasonably well represented by the 243

Hecht formula, with lowest R2 value being 0.97. It should be repeated that product was 244

here obtained indirectly, as a parameter of the nonlinear approximation, Hecht equation, 245

to the measured charge amplitude data. 246

Table 1. Results of the weighted fitting of the CCE data, acquired for different temperatures, to the Hecht equation. The
mobility-lifetime product for electrons displays a nonlinear behavior with temperature, while for holes there is an overall decrease
in the µτ product with rising temperature. Goodness-of-fit is measured with the R2 value. Value closer to 1 indicates that a
greater proportion of variance is accounted for by the model. Instrumental weighting method was used to incorporate the error of
individual data points.

Temperature (◦C) 22 98 176 250 337 395 450

µτ (electrons) [(cm2/V) ·10−6] 9.3± 0.7 8.7± 0.7 7.6± 0.5 7.2± 0.5 8.9± 0.6 9.0± 0.8 10.1± 0.5

R2 0.973 0.978 0.985 0.973 0.987 0.970 0.989

µτ (electrons) [(cm2/V) ·10−6] 12.9± 1.5 10± 2 7.8± 0.6 6.9± 0.5 4.0± 0.25 2.6± 0.2 1.15± 0.06

R2 0.986 0.992 0.999 0.999 0.986 0.986 0.998

The temperature dependence of the mobility-lifetime product measured for both 247

electrons and holes is presented in figure 10. There is an overall decrease of the µτ value 248

for holes with rising temperature. The rate of decrease is −2.6 · 10−8 (cm2/V )/◦C, 249

obtained from the linear approximation. In absolute values, the µτ product for holes 250

dropped one order of magnitude from room temperature to 450 ◦C. But, for electrons, 251

small initial decrease, from RT to 250 ◦C, is reversed at higher temperatures, and it 252

seems that the mu-tau continues recovering to the higher temperatures up to 450 ◦C, 253

which was the highest temperature covered in this experiment. Decreasing temperature 254

trend of the mu-tau product for both charge carrier types has been observed before in 255

natural diamonds [38]. Continuation of the same trend was observed for high-purity 256

scCVD diamonds in recent measurements for the low temperature region (2K – RT), 257

demonstrating a strong increase in mu-tau with decreasing temperature [39]. However, 258

even though there were other reports of mu-tau performance of high-purity synthetic 259

diamonds at elevated temperatures [13,40], the systematic study is still missing in the 260
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available literature. 261

It is expected that carrier’s mobility scales with temperature as µ ∼ T−a, with 262

a(T ) > 1 due to scattering on acoustical and optical phonons [7]. This was confirmed 263

for CVD diamonds experimentally for both electrons and holes [41,42]. Reversal of 264

decreasing trend for mu-tau product, that was extracted from our data, would indicate 265

an improvement of electrons lifetime for temperatures above 250 ◦C. To try to ratify 266

this theory, we attempted to observe thermally stimulated electron detrapping at these 267

temperatures. More focus was put specially on the sub-microsecond time span, which 268

corresponds to shallow trap level domain (shallow traps are more likely to be present in 269

unintentionally-doped and unirradiated diamond). However, this behavior was not 270

observed, and so we cannot make further conclusions on the possible lifetime increase 271

for electrons. More investigation is needed to confirm these phenomena, preferably by 272

means of direct lifetime measurements in high-purity diamond crystals. 273

4 Conclusions 274

Charge transport properties of high purity sc-CVD diamond detector were studied in 275

the temperature range from 23 ◦C – 450 ◦C. Ion microbeam was used to induce and 276

spatially map the charge signal in the detector. 277

Detector region previously exposed to radiation damage, by 5 MeV proton beam, 278

exhibited thermal charge release effect at temperatures above 200 ◦C. Charge transient 279

spectroscopy was utilized to study the time structure of the output signal transients. 280

Analysis yielded a trap activation energy of 0.53± 0.01 eV. This level was only 281

capturing and releasing holes, and it was not detected in the unirradiated detector 282

regions. This indicates that the formation of the deep level occurred during the 283

damaging ion beam irradiation. Existence of this trap in high purity diamond affects 284

the charge transport properties that are important for the possible employment of 285

diamond-based detectors in high temperature and high radiation conditions. However, 286

it needs to be mentioned that electron trapping was also observed after ion beam 287

irradiation, resulting in decreased charge collection efficiency. Thermally stimulated 288

electron releasing was not achieved in the covered temperature span, suggesting that 289

these carriers were trapped by the even deeper defect. 290

Mobility-lifetime product was also studied separately for holes and electrons in the 291

pristine detector regions. µτ for holes dropped one order of magnitude from room 292

temperature to 450 ◦C. For electrons, µτ performance varied much less. After the initial 293

decrease, recovery was observed for temperatures above 250 ◦C, which could be a 294

promising feature of high purity diamond as a semiconductor material for electronic 295

applications at high temperatures. 296
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