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Comprehensive machine learning 
based study of the chemical space 
of herbicides
Davor Oršolić 1, Vesna Pehar 2, Tomislav Šmuc 1 & Višnja Stepanić 1*

Widespread use of herbicides results in the global increase in weed resistance. The rotational use of 
herbicides according to their modes of action (MoAs) and discovery of novel phytotoxic molecules 
are the two strategies used against the weed resistance. Herein, Random Forest modeling was 
used to build predictive models and establish comprehensive characterization of structure–activity 
relationships underlying herbicide classifications according to their MoAs and weed selectivity. 
By combining the predictive models with herbicide-likeness rules defined by selected molecular 
features (numbers of H-bond acceptors and donors, logP, topological and relative polar surface area, 
and net charge), the virtual stepwise screening platform is proposed for characterization of small 
weight molecules for their phytotoxic properties. The screening cascade was applied on the data set 
of phytotoxic natural products. The obtained results may be valuable for refinement of herbicide 
rotational program as well as for discovery of novel herbicides primarily among natural products as 
a source for molecules of novel structures and novel modes of action and translocation profiles as 
compared with the synthetic compounds.

Herbicides are compounds of small molecular weight used for selective destruction of weeds. Because of their 
extensive use, the two global issues have appeared in the last two decades, an increase in weed resistance and 
health  issues1. In order to circumvent development of weed resistance, herbicides with different modes of action 
(MoAs) are applied rotationally. Herbicides are classified according to the MoAs in ~ 25 classes within the two 
similar classification systems—HRAC and WSSA, set up by Herbicide Resistance Action Committee of Aus-
tralia and Weed Science Society of America,  respectively2–5. The MoAs denote the biochemical processes in 
weeds which herbicides modify (Table 1). Given the common name of a herbicide, the classification schemes 
in addition to MoA also provide the chemical family a herbicide belongs to. Sub-classification to the chemical 
families according to possessing common fragment(s) was made in order to refine herbicide rotation scheme and 
increase its efficiency against the weed resistance. The chemical sub-classification of the herbicides is, however, 
not unequivocal. Different number of chemical sub-groups have been defined in the HRAC and WSSA systems 
and recently by  Forouzesh6.

Among the MoAs, ten of them are identified with the inhibition of specific enzymes and are associated by 
around half of the used herbicides (Table 1). However, the precise mechanisms of action of herbicides resulting 
in their phytotoxic effects are rarely known 7. For example, herbicides from the most populated and used class B 
are all inhibitors of the enzyme acetolactate synthase (ALS), known also as acetohydroxyacid synthase (AHAS), 
which catalyzes the first step in the synthesis of the branched-chain amino acids valine, leucine, and isoleucine. 
However, their phenotypic inhibitory effects can be different what may be due to different binding modes onto 
ALS/AHAS and/or their different translocation properties through  weeds7,8. Herbicides of different MoAs have 
also different propensities to induce weed resistance because of not only different prevalence of their usage, but 
also different sites of action (SoAs) and translocation properties.

The MoA classification schemes for herbicides are examples of the application of the structure–activity rela-
tionship (SAR) analysis. The general SAR assumption is that structurally similar compounds share SoA. The 
sub-partition of MoA classes into chemical families is in the line with this assumption. However, such an assump-
tion does not imply that compounds which are structurally dissimilar may not have the same SoA/MoA what 
may afflict the usage of the classification schemes in the rotational anti-resistance strategy. Indeed, it has been 
demonstrated by scaffold hopping methods in design of novel biologically active compounds that dissimilar 
structures can have the same  MoA9. Furthermore, there is an open question how much compounds belonging 
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to different MoA classes are mutually structurally similar and may hence act in similar way what can also impair 
the rotational strategy.

The other approach to circumvent weed resistance is through discovery of novel molecules with different 
MoA. The valuable source of such molecules is natural products (NPs)10. The first of the two main objectives 
of our computational study was to provide a formal rationale for the underlying SAR assumption of the MoA 
classification schemes used in confrontation with the worldwide increase in the weed resistance and to point out 
potential limitations of MoA labelling with using only structural similarity. In an attempt to improve herbicide 
characterization and thus rotational strategy, categorizations of herbicides according to their application stage 
and weed selectivity were also modelled for the first time as far as we are aware. By combining machine learning 
(ML) models with a set of herbicide-likeness rules, virtual screening platform is proposed. Another objective 
was to enrich the phytotoxic chemical space with molecules having novel MoA. For this purpose, the screening 
cascade was applied on the set of phytotoxic NPs.

Methods
Data sets. The calculations were done with the data set HRAC2020 of 346 mainly synthetic organic herbi-
cides downloaded from the original HRAC list and its extended version of 509 herbicides with relative molecular 
weight within the range 84–6495. The extended data set contains additional 163 mostly obsolete herbicides col-
lected from the literature and open-source online databases: Compendium of Pesticide Common Names (http:// 
www. alanw ood. net/ pesti cides/), PPDB: Pesticide Properties Database, PubChem and PTID: Pesticide Target 
Interaction  Database6,11–13. The MoAs were assigned for 411 compounds according to the legacy HRAC system 
(314 herbicides from the HRAC2020 set) and on the basis of belonging to chemical families (97 herbicides 
forming the subset HRAC_REST) (Table 1)5,6,14. The remaining 98 herbicides herein referred as the Z class, were 
unclassified (Supplementary Table S1). The data on application stage and weed selectivity were collected for 

Table 1.  HRAC classification and division of herbicides from the HRAC2020 and extended data sets across 
the MoA  classesa. a In the HRAC2020 classification there are additional classes Q (3), R (31), S (32) and T (33), 
all with up to 2 members 5. b Majority of herbicides from the class N are fused in the K3 (15) class. The treating 
23 herbicides of the legacy N class separately, does not affect the results since this subgroup is structurally 
diverse from the other K3 herbicides.

Legacy hrac code hrac2020&wssa code
Number of compounds in hrac2020/
extended set

General mode of action–targeted 
biological process

Mode of action–targeted molecular 
functions

A 1 21/29 Fatty acid biosynthesis Inhibition of acetyl-CoA carboxylase 
(ACCase)

B 2 58/61 Amino acid synthesis (Leu, Ile, Val) Inhibition of acetohydroxyacid synthase/
acetolactate synthase (AHAS/ALS)

C1 5 43/53 Photosynthesis (electron transfer) Inhibition of photosystem (PS) II protein 
D1 (C1/C2 Ser264; C3 His215)

C2 5 30/37

C3 6 5/9

D 22 4/5 Photosynthesis (electron transfer) Inhibition of diversion of the electrons 
transferred by the PS I ferredoxin

E 14 29/43 Photosynthesis (heme synthesis for 
chlorophyll)

Inhibition of protoporphyrinogen oxidase 
(PPO)

F1 12 7/9 Photosynthesis (carotenoid synthesis) Inhibition of phytoene desaturase (PDS)

F2 27 14/16 Inhibition of 4-hydroxyphenylpyruvate 
dioxygenase (4-HPPD)

F3 34 1/2 Inhibition of lycopene cyclase

F4 13 2/1 Inhibition of 1-deoxy-d-xylulose-5-phos-
phate (DOXP) synthase

G 9 1/2 Amino acid synthesis (Phe, Trp, Tyr) Inhibition of 5-enolpyruvylshikimate-
3-phosphate (EPSP) synthase

H 10 2/4 Amino acid synthesis (Gln) Inhibition of glutamine synthase

I 18 1/3 Tetrahydrofolate synthesis Inhibition of dihydropteroate (DHP) 
synthase

K1 3 18/25 Microtubule polymerization Inhibition of microtubule assembly

K2 23 6/9 Inhibition of microtubule organisation

K3 15 43/39a Fatty acid synthesis Inhibition of VLCFAs

L 29b 6/6 Cell wall synthesis Inhibition of cellulose synthase

M 24 6/8 ATP synthesis Uncoupling of oxidative phosphorylation

N NAb NAb/23 Fatty acid synthesis Inhibition of fatty acid elongase

O 4 25/37 Regulation of auxin-responsive genes
Synthetic auxin mimics -Stimulation of 
transport inhibitor response protein 1 
(TIR1)

P 19 2/3 Long-range hormone signaling Auxin transport inhibitors

http://www.alanwood.net/pesticides/
http://www.alanwood.net/pesticides/
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subsets of 221 and 332 herbicides,  respectively14. The data set of 131 phytotoxic NPs was collected from literature 
(Table S2) 15–24.

Molecular descriptors. The cleaned SMILES were used as inputs for the calculations of 1D and 2D molecu-
lar descriptors by the R package rcdk25 and the programs  DataWarrior26 and ADMET Predictor 9.5 (Simulations 
Plus, Inc., USA)27. The rcdk descriptors were structural fingerprints (fp) (11 different types including extended 
and 166-bit MACCS fps), constitutional (17 of them), electronic (6) as well as hybrid BCUT (6) descriptors. 
The 141 MACCS keys which were present in more than five herbicides were used as descriptors. Physicochemi-
cal and simple structural properties which govern uptake and translocation properties of herbicides through 
 plants28–34 were calculated by DataWarrior (27) and ADMET Predictor 9.5 (139). The net ionization state of 
molecules was roughly estimated as a difference of numbers of basic nitrogen (pKa above 7.0) and acidic oxygen 
atoms (pKa below 7.0) calculated by DataWarrior. Prior to modelling, descriptors (except fp) were scaled as 
(x − mean(x))/sd(x).

Hierarchical clustering. Hierarchical clustering was performed with wardD.2 minimum variance agglom-
eration method and Tanimoto coefficient (TC) as a similarity index by the stratified sampling function hclust. 
The Dunn (the ratio: the cluster minimum separation/the maximum cluster diameter) and Dunn2 (the mini-
mum average dissimilarity between two clusters/the maximum average dissimilarity within cluster) indices as 
well as average Silhouette (Si) width (compares the average distance to elements in the same cluster with the 
average distance to elements in other clusters) were used for internal clustering validation. The adjusted Rand 
index (ARI) was applied in order to assess the similarity of the predicted grouping with the legacy HRAC labels. 
The three internal validation scores are higher and better when clusters are dense and well separated. Consider-
ing external validation, more similar groupings has a positive ARI closer to 1. The clustering validation indices 
were calculated by the R package fpc.

Modelling. The multi-classification modeling in terms of subsets of various kinds of descriptors was per-
formed by Random Forest (RF) method (’rf ’) available in the R package caret with one tunable parameter (mtry, 
a number of variables randomly sampled at each split) and using tenfold cross-validation (CV). The HRAC 
classes with less than 3 members (Table 1) were excluded from modelling and these compounds were added to 
the Z class. The remaining 314/419 compounds from the HRAC2020/extended set were divided into training 
and test sets in the 80:20 ratio, except in the case of the classes with 3–5 members, for which 50:50 ratio was 
applied. The splitting was done using stratified random sampling. Thus, in the case of original/ extended herbi-
cide set, there were 257/341 training and 57/78 test compounds arranged in 16/19 classes. Analogous dividing 
procedure was applied for the subsets of 221/332 compounds with assigned application stage/weed selectivity.

Further, in order to optimize performance of MoA and weed selectivity models in terms of selected descrip-
tors, the hyperparameter tuning of RF and three additional classifiers eXtreme Gradient Boosting (XGBoost), 
support vector machines (SVM, RBF kernel) and naive Bayes (NB) as a baseline model, all available in caret, were 
carried out by using grid search and 10 runs of tenfold CV as well as by keeping all resamples for performance 
comparison (Figures S1−S4). For RF and NB classifiers, parameter tuning was done by utilization of the packages 
randomForest and klaR, respectively. The final models were built with optimal values of tuning parameters on the 
entire training HRAC2020 set. The classifiers were compared mutually by analyzing resampling distributions and 
using Bayesian analysis (Python library baycomp)35 as well as by their performance on the test test.

The model predictive capacity was assessed by counting the numbers of true positives (TP), true negatives 
(TN), false positives (FP), and false negatives (FN) for each class and usage of following performance metrics: 
sensitivity (Sensitivity or Recall = TP/(TP + FN)), precision ( Precision = TP/(TP + FP)), specificity (Specific-
ity = TN/(TN + FP)), overall predictive accuracy (Accuracy = (TP + TN)/(TP + FP + FN + TN)), F1 score (F1 
Score = 2*(Recall * Precision)/(Recall + Precision)) and Cohen’s unweighted kappa (Cohen’s kappa = (Po − Pe)/
(1 − Pe), where observed probability is Po = (TP + TN)/(TP + TN + FP + FN), and probability by chance is 
Pe = ((TP + FN) * (TP + FP) + (FP + TN) * (FN + TN))/(TP + TN + FP + FN)^2).

Applicability domain (AD). ADs were defined in terms of similarity with training compounds and the 
class probability outputs from the RF  models36. Structural similarity between two molecules was estimated by 
using 141 MACCS keys and the coefficient TC as a similarity measure. Similarity in physicochemical space is 
assessed by applying the Euclidian distance.

Violin and PCA plots. The violin plots with relevant statistical details for comparison subgroups of herbi-
cides in molecular properties were made by using the ggstatsplot. The principal component analysis (PCA) was 
done with princomp.

The R computing was done within RStudio (R version 3.6.3)  environment37.

Results and discussion
HRAC classification—descriptor and model selection. The multi- classification of herbicides accord-
ing to MoAs in terms of subsets of various kinds of molecular descriptors was performed by RF modelling. The 
results obtained for the HRAC2020 and extended data sets were consistent. The best classification performance 
for the extended test set was obtained by using MACCS keys as molecular descriptors (Table S3). With other 
kinds of descriptors, the models somewhat deteriorated most probably because they do not contain informa-
tion on specific structural arrangements of atoms within molecules. The constitutional descriptors (e.g. MW, 
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numbers of atoms in the longest aliphatic chain, the largest pi system or of aromatic atoms), lipophilicity param-
eter and electronic descriptors (e.g. topological polar surface area (TPSA), numbers of hydrogen bond accep-
tor (HBA) or donor (HBD) atoms, molecular atomic and bond polarizabilities) are more general and global 
molecular characteristics whose values do not correlate with structural arrangement. The hybrid BCUT descrip-
tors were also not efficient as MACCS fp in differentiation of herbicides with different MoAs although they are 
known for their usefulness in description of chemical  diversity38. The MACCS structural keys better represent 
the scaffolds characterizing the chemical series of herbicides than other explored fp types.

The performance of the RF model was optimized by hyperparameter tuning along with 10 times tenfold 
CV resampling. The three additional ML classifiers XGBoost, SVM and NB were also explored and tuned in 
analogous way using the same seed to secure that folds between models contain the same set of compounds 
(Figure S1, Table S4). The Bayesian analysis for comparing performances of multiple classifier showed that RF 
and SVM(RBF) exhibit similar performance on the HRAC problem, dominating XGBoost while NB was clearly 
outperformed by the rest (Fig. 1a–c). The outputs of the RF and SVM (Table 2, Table S1) as well as MACCS 
keys determined as important (Table S5) for 16-class MoA categorization by both ML approaches are largely 
equivalent. They differ in predictions for 5 test and 12 HRAC_REST case compounds, which were all predicted 
with the RF class probabilities less than the cut-off value (see further).

Although SVM slightly overperformed the RF model (Table 2), we decided to perform further analysis with 
the RF outputs. The primary reason was possibility to use direct RF output class probabilities for definition of 
the model’s AD. Using SVM in the context of AD definition would require additional calibration of the SVM 
scores, to turn them into  probabilities39.

HRAC classification and structural similarity—Chemical space analysis. The classification of her-
bicides into the HRAC/WSSA classes (Table 1) facilitate the rotational use of herbicides of different MoA as a 
strategy against the weed  resistance5. To the best of our knowledge, the sub-classification into chemical families 
has been done by visual  inspection6. Herein by applying ML approaches it is shown in an objective, formal way 
that dividing herbicides into chemical families and also MoA classes is based on their structural similarity.

Regardless of used descriptors (Table S3) and ML algorithm (Table 2), the MoA models were generally char-
acterized with the higher specificity than sensitivity averaged across the classes. Such a performance points to a 
degree of similarity between the herbicides designated to different classes what is also supported by the clustering 
analysis. The herbicides were clustered primarily according to common scaffolds.

This resulted in only moderate value of ARI index signifying relatively weak agreement between the generated 
clusters and the HRAC classes (Fig. 2). The inter-cluster distances were also described by relatively low values 

Figure 1.  Comparing performance of the four ML classifiers for MoA predictions. (a, d) Density accuracy 
plot. (b, e) Box plots of distributions of resampled accuracies and kappa values. (c, f) Probability density plot 
for accuracy differences between the RF and SVM classifiers. The plots (a)–(c) described MoA classifiers 
(Table 2) and those (d)–(f) present comparison of weed selectivity models built with nine descriptors including 
log P (Table 3). The RF and SVM MoA classifiers are largely equivalent since 75.7% of posterior probability 
distribution is inside the region of practical equivalence (rope, the differences of accuracy are less than 1%).
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of internal evaluation Dunn, Dunn2 and average Silhouette indices pointing to similarity between herbicides 
from different clusters in MACCS (as well other fps, results not shown) representation (Fig. 3). The unclassified 
Z compounds (placed in the upper right corner of the heat map in Fig. 3a) are the most structurally diverse 
molecules. They are structurally different mutually as well as from the rest of herbicides and thus they are unclas-
sified. The most numerous class B (Table 1) is divided into the two relatively homogenous clusters: the 5th cluster 
of 49 sulfurones and sulames and the 6th cluster with 12 remaining ALS inhibitors possessing imidazoline or 
pyrimidinyl(thio)benzoate fragments (Fig. 1). Several herbicides with sulphonamide fragment from the other 
classes E, F2 and K3 are merged with the 5th cluster. The other two chemically homogenous clusters 1st and 2nd 
correspond to the well-known sub-groups of the ACC inhibitors of the A class—those with cyclohexanedione 
ring (DIMs) and those with aryloxyphenoxy-isopropionate fragment (FOPs), respectively. The five of ACC 
inhibitors are grouped in the  3rd cluster with the subgroup of synthetic auxins O (plant hormones), on the basis 
of possessing common halogenated phenoxyl fragment. In difference, the PPG oxidase (chlorophyll synthesis) 
inhibitors of the class E are dominant in the two heterogenous clusters (cl4 and cl13/ cl4 and cl10 in Fig. 2a/b). 
In the cluster cl4, they are grouped with some A, C1, C3, F1, F2, K1 and K3 herbicides, while in another cluster 
they are put together with all ATP synthesis inhibitors from the class M.

The obtained results illustrate that herbicides from different HRAC classes share structural fragments which 
may direct them to the same biological activity. Such results may point to the caution in the application of the 
rotational anti-resistance strategy using only MoA classification systems.

In order to apply the RF model to unclassified compounds such as Z compounds and phytotoxic NPs, the AD 
was defined. The AD presents the region in chemical space where the model’s individual predictions are reliable. 
The AD boundaries were defined by the two parameters: (1) structural similarity with the training compounds 
and (2) the predicted RF class probability (Fig. 3c). The RF class probability has already been shown to be effi-
cient for differentiating between reliable and unreliable  predictions36. An RF class probability is estimated as a 
fraction of total number of trees which for a given compound votes for this class. It corresponds to one minus 

Table 2.  Comparison of classification performance on the test and HRAC_REST case sets of the four 
optimized 16- class MoA ML models built in terms of 141 MACCS fp  keysa. a Optimal values of classifiers’ 
hyperparameters are listed in Table S4. b The overall accuracy and kappa values are averaged over 
10 × 10-fold CV resamplings.

MoA Overallb Averaged across classes

Classifier Accuracy Kappa Sensitivity Specificity Precision F1 Balanced Accuracy

TEST SET

RF 0.895 0.883 0.821 0.993 0.896 0.900 0.907

XGBoost 0.895 0.883 0.821 0.993 0.899 0.899 0.907

SVM 0.912 0.902 0.838 0.994 0.935 0.936 0.916

NB 0.561 0.500 0.332 0.969 0.663 0.604 0.651

HRAC_REST SET

RF 0.674 0.646 0.641 0.979 0.728 0.796 0.814

XGBoost 0.663 0.633 0.594 0.978 0.670 0.771 0.790

SVM 0.696 0.667 0.631 0.980 0.673 0.797 0.809

NB 0.413 0.362 0.310 0.961 0.509 0.605 0.638

Figure 2.  Heat map presentations and evaluation metrics for distributions of (a) HRAC2020 + HRAC_REST 
(411) and (b) HRAC2020 (314) herbicides in terms of fractions (%) of MoA classes in clusters generated by the 
agglomerative algorithm and MACCS fp.
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the error probability and thus provides a confidence level on the class prediction and can be used for ranking. 
For all training herbicides, the MoA labels were accurately predicted with the class probabilities greater than 
0.6 and hence this value was taken as an AD boundary (max_rf_prob > 0.6, Fig. 3c, Table S1). For structural 
dissimilarity the threshold in the Jaccard index (1-TC) of 0.4 was chosen, that is an external compound should 
be similar to at least one of the training herbicides with a minimal TC greater than 0.6 (min_Jaccard_dist < 0.4).

The MoA class for 75.4% of the test compounds was predicted with max_rf_prob > 0.6 and for all of them 
the MoA was correctly predicted. In the case of the HRAC2020 set, the independent external set contains 92 
herbicides (compounds assigned to the classes G, H and I were dismissed) from the HRAC_REST subset which 
were classified a priori on the basis of their chemical families available in the literature and online sources 
(Fig. 3a)6,11–13. Among 60 HRAC_REST compounds which lay within the AD, only ethoxyfen was predicted as 
A instead of E class inhibitor (Table S1) 5. Most of these correctly predicted but obsolete herbicides are inhibitors 
of photosynthesis (C1, C2, E) or fatty acid synthesis (A, K3) as well as plant growth regulators (O). Although 
for the majority (29) of the rest of 32 compounds the minimal TC was greater than 0.6, their class probabilities 
were less than the cutoff 0.6 and they were hence left unclassified. Considering Z compounds, although 55 of 
them are structurally similar to the training compounds with TC > 0.6, only 12 of them lye within the AD and 
MoA might be assigned. This illustrates that structural similarity estimated on the presence of the common 
structural fragment(s) in MACCS representation is not sufficient condition for conclusion upon sharing the 

Figure 3.  Heat maps for structural dissimilarity quantified by Jaccard coefficient(1-TC) calculated for all pairs 
of 509 synthetic herbicides (a) arranged into MoA classes and (b) divided into the subsets HRAC2020, HRAC_
REST and the Z compounds with addition of the set of NPs originated from bacteria, fungi and plants. The 
extended, HRAC2020 and HRAC_REST compounds are ordered according to the classes A-P. More blue/red 
values correspond to more structurally similar/diverse compounds. (c) Definition of AD for the RF MoA model 
(Table 2): given a compound, the model’s prediction is considered reliable if it is similar to at least one training 
herbicide with TC greater than 0.6 and the estimated class probability is greater than 0.6.
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common MoA. The more complex representation is necessary for similarity based AD definition than provided 
by MACCS(-like) fingerprint—one that is inherently captured by more complex models such as those provided 
by RF or SVM algorithms.

Weed selectivity and application stage—descriptor and model selection. Adding descriptors 
which are known to describe uptake and distribution of compounds through plants, reduced the sensitivity of 
the MoA classification models (Table S3)28–34. The increase in number of FNs indicated that there are common 
molecular characteristics between members of different MoA classes. Herbicides are also classified according 
to their application stage and selectivity toward different types of weeds. The phytotoxic effectiveness greatly 
depends upon herbicide application timing and environmental conditions. Correct application timing maxi-
mizes weed control and limits crop injury. There are pre-emergent (here denoted as PRE) herbicides that control 
seedling growth of weeds and post-emergence (POST) ones which control actively growing tissue of young 
weeds in a way to be applied directly onto weeds and away from a crop. There are also compounds which can be 
applied in both regimes (BOTH). The analyzed subset of synthetic herbicides included 221 herbicides of which 
49/90/82 are applied in PRE/POST/BOTH regime (Table S1)14. The 3-class models for the complex application 
stage variable built by using MACCS keys, physicochemical and/or simple molecular features of compounds 
without considering environmental variables, had, in general, lower predictive power (test set: accuracy ~ 0.62, 
kappa ~ 0.40) than the predictive models for MOAs (Table 2) and weed selectivity (Table 3). Hence, we did not 
pursue further model analysis and interpretation.

Herbicides may be divided into the three classes with regard to weed selectivity: herbicides which act selec-
tively against broadleaf (BL) or grass (G) weeds and those which are non-selective (NS) and act on broad 
spectrum of  weeds40. The BL or G herbicides clear away only certain weeds by acting on processes that are more 
important for those types of weeds, while the NS herbicides act on processes that are important in all plants. 
Although the weed resistance is observed for herbicides regardless of their weed selectivity class, the rotational 
change of herbicides with different selectivity may reduce weed resistance caused by change in herbicide trans-
location profile 8. In the data subset of 332 herbicides, 181 BL selective herbicides are from MoA classes C1, C2 
and E associated with the photosynthesis inhibition and the class O of growth regulators. The 118 G selective 
herbicides are from the classes A, K1, K3 and N and are mostly inhibitors of fatty acid synthesis. The most of 33 
collected NS herbicides are mainly from the classes B, D and P. The most prone to weed resistance are inhibitors 
from the classes B, C1-C3, A and  G5.

The 3-class RF models were built by dividing 332-data set into 267 training and 65 test compounds repre-
sented by MACCS keys and more than 160 other molecular properties. By employing the later set of descriptors, 
the nine conceptually clear and whole molecular features were identified among most important and efficient 
for herbicide differentiation according to weed selectivity (Table 3). Adding or using other descriptors did not 
change predictive power of models significantly. These are partition (logP) or distribution (logD at pH 7.4) 
coefficient, native solubility Sw in pure water at 25 °C (transformed to log(Sw/mol  L-1)), diffusion coefficient in 
water (Hayduk-Laudie formula, log(Diff ×  10–5/  (cm2/s)), TPSA as well as numbers HBA and HBD all calculated 
by ADMET  Predictor27, as well as ShapeIndex (spherical < 0.5 < linear) and numbers of  sp3-hybridized (sp3At) 
and all carbon (Cat) atoms within molecule calculated by  DataWarrior26.

Among explored ML classifiers the most competitive were RF and SVM models (Fig. 1e, Table 3, Table S6). 
The RF and SVM predictions differ mutually for one/three test compounds and 36/24 case compounds described 
in terms of MACCS fp /nine whole molecular features including logP without taking AD criteria into regard. 
Although classification of synthetic herbicides into BL, G and NS classes was somewhat better in terms of 
MACCS fp (Table 3), we decided to promote the set of whole molecular descriptors. The later descriptors provide 
simple and meaningful interpretation to the potential end users including chemists interested in discovery and 
development of not only novel herbicides but also molecular probes for investigation of biological processes in 

Table 3.  Comparison of performance metrics on the test set of 3-class RF and SVM models built for 
prediction of BL, G or NS weed selectivity of herbicides in terms of subset of nine simple molecular and 
physicochemical descriptors including lipophilicity coefficient logP or 141 MACCS  keysa. a The nine 
descriptors are logDiff, logSw, Shapeindex, Cat, sp3At, TPSA, HBA, HBD plus logP. b The RF and SVM models 
with 9 descriptors including log P/141 MACCS keys correspond to the models 1 and 7/3 and 9, respectively, in 
Table S6. The models were trained and applied with using tuned hyperparameters’ values (Figures S2–S4).

RF /SVMb Per classes

9 descriptors with 
logP Sensitivity Specificity Precision F1 Balanced Accuracy

Class: BL 0.944/0.917 0.690/0.690 0.791/0.786 0.861/0.846 0.817/0.803

Class: G 0.739/0.696 0.952/0.929 0.895/0.842 0.810/0.762 0.846/0.812

Class: NS 0.500/0.667 1.000/1.000 1.000/1.000 0.667/0.800 0.750/0.883

141 MACCS

Class: BL 1.000/1.000 0.793/0.828 0.857/0.878 0.923/0.935 0.897/0.914

Class: G 0.783/0.826 1.000/1.000 1.000/1.000 0.878/0.905 0.891/0.913

Class: NS 0.833/0.833 1.000/1.000 1.000/1.000 0.909/0.909 0.917/0.917
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plants. Additionally, in comparison with the models built in terms of MACCS fp keys, the models built in terms 
of physicochemical and whole molecular descriptors are more general and may not be limited to structurally 
similar compounds as it is demonstrated by comparison of the ADs in Fig. 3c vs Fig. 4a. The use of either logP 
or logD did not impact predictive power of the RF models considerably (Table S6). Since logP coefficients are 
more readily calculated, the further analysis is focused on the RF model with logP.

Weed selectivity—physicochemical space analysis. The AD for the RF model (1 in Tables 3 and S6) 
is defined by the use of its class probability outputs and Euclidean similarity with the training compounds in the 
physicochemical space spanned by the nine descriptors (Fig. 4a). All training compounds were predicted with 
the class probability above 0.6. The RF model predicts correctly weed selectivity for more than 3/4 of 65 test syn-
thetic herbicides using the thresholds of 0.6 for class probability and 2.0 for Euclidian distance (Fig. 4a). The half 
of the rest of the test compounds was either left unclassified (class probability < 0.6) or were wrongly assigned in 
spite of their similarity with the training compounds in the physicochemical space.

Considering 177 external case compounds, 135 were within the AD and for them weed selectivity was 
assigned using the probability cutoff of 0.6 (Table S1, Fig. 4a). Most of these synthetic herbicides were predicted 
to be BL by all classifiers (Table S1).

The nine physicochemical and simple molecular properties are, in general, associated with uptake and trans-
location of compounds through  plants41,42. However, this observed dependence of the weed type selectivity 
may also be related to the specific sub- cellular/plastid location of target proteins (pathways) and/or to different 
characteristics of binding sites of herbicides on targets. As compared with the BL and G selective compounds, 
the NS herbicides are more polar molecules possessing larger polar surfaces TPSA and more HBA (> 5) and 
HBD (mostly 2) heteroatoms and hence they are more hydrophilic (smaller logP/logD values and more soluble 
in water) (Figs. 4b and S5). In opposite, the G selective herbicides are molecules with the smallest number of 
HBD atoms and the smallest relative polar surface. Majority of BL herbicides have one HBD atom. While most 
of the broad-spectrum NS herbicides have logP lower than 2, most of selective herbicides particularly of the G 
type has logP greater than 3.0. The BL selective herbicides have the smallest number of sp3 hybridized atoms, 

Figure 4.  (a) The AD for the RF weed selectivity model (1 in Tables 3 and S6). Given a compound, the 
prediction can be considered credible for the class probability above 0.6 and the Euclidian distance less than 
2.0. (b) The most distinguishing molecular features of the broad-leaved or grass selective and non-selective 
herbicides.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11479  | https://doi.org/10.1038/s41598-021-90690-w

www.nature.com/scientificreports/

molecular weight and molecular volume what may be reflected in their distinguishing diffusion and distribution 
properties in comparison with herbicides from the other two selectivity  classes43.

Assessing the potential of phytotoxic natural products. Natural products are a treasured source 
for novel biologically active compounds, including those with phytotoxic  effect15,18. So far NPs have had a rela-
tively small impact on the discovery and development of novel herbicides as compared with insecticides and 
fungicides. Less than 10% of active ingredients registrations for weed management have been of natural  origin16. 
However, in ten of the HRAC classes either a NP, a semisynthetic derivative or synthetic herbicide inspired by 
a natural scaffold are  present18. Importantly, most of NPs have different modes of phytotoxic activity than syn-
thetic organic  herbicides16,19,21.

The data set of 131 phytotoxic NPs, with MW less than 650, was collected from the  literature15,16,19. They are 
mainly of bacterial (39.6%), fungal (35.1%) or plant (17.9%) origin (Table S2). Although coming from differ-
ent sources, these natural compounds are structurally more similar mutually than to the synthetic herbicides 
(Fig. 3b). Since phytotoxic NPs are structurally different, they fall outside the ADs of the models based on the 
MACCS structural keys of the synthetic herbicides (Fig. 3c). In comparison, more than half of NPs are similar 
to the training compounds within space defined by the nine descriptors, having Euclidian distance less than 2.0 
(Fig. 4a, Table S2). However, only 1/3 of the whole NP set fall within the AD RF model. This analysis indicated 
that NPs may differ from synthetic herbicides not only in structural space and MoAs, but also in space of the 
physicochemical and simple molecular features which are often associated with uptake and translocation prop-
erties (Fig. 5a and Figure S6)28–34.

Herbicide-like properties. For synthetic herbicides distributions of physicochemical and simple molecu-
lar properties have already been  reported28–34. These simple molecular properties and physicochemical features 
largely influence the mass distribution of herbicides across plants and plant cell compartments and hence may 
be applied for characterizing herbicide-likeness of  compounds41,42. The phytotoxic effect of a herbicide largely 
depends upon its translocation through plants to its site of action analogously as pharmacological effects of 
drugs are considerably influenced by their absorption and distribution throughout the human  body44. Drug-
likeness filters are commonly used in early drug discovery process to eliminate compounds out of the sets aimed 
for biological activity screening. In analogous way, herbicide-likeness features may be used as a first-pass filter 
for eliminating compounds from the analyzed compound data sets and libraries which are less probable to show 
biological activity in weeds. The proposed herbicide-like features obtained by analyzing the extended set of 509 
synthetic organic herbicides with MW less than 650 Da, are listed in Table 4. They were applied on the data set 
of NPs.

Phytotoxic molecules produced by plants are found to be the most similar to the synthetic herbicides both 
in structural and physicochemical spaces (Fig. 5a). In difference, fungal and particularly bacterial NPs vary in 
the physicochemical space from the rest of studied compounds (Figures S6 and S7). They are richer in H-bond 
interacting atoms similarly as many other types of  NPs45. The bacterial phytotoxic compounds are relatively more 
polar, hydrophilic and charged molecular species. The fungal products have more sp3-hybridized atoms and are 
also more spherical compounds what may imply their different translocation capacity and features. The most of 
bacterial and fungal phytotoxic compounds were estimated to have lower permeation rates (Peff (cm/s x  104) in 
Fig. 5a) across lipophilic membranes as compared with the plant NPs and synthetic organic herbicides. The lower 
membrane permeability is generally associated with compounds having lower lipophilicity and larger number of 
H-bond interacting atoms, particularly larger number of HBD atoms and may also be caused by the membrane 
 retention42,45. However, the uptake and translocation of a small dissolved phytotoxic NPs can be determined not 
only by their passive permeation across membranes, but also by the active translocation by transport  proteins8. 
The translocation propensity of bacterial and some fungal compounds can also be affected by the presence of 
ionized carboxyl group(s)46.

In silico screening platform. The comprehensive modelling carried out on the set of synthetic herbicides 
and application of the models and herbicide-likeness filter on phytotoxic NPs encouraged us to propose the in 
silico screening platform which can be applied on any set /library of compounds for characterization of their 
herbicide-likeness and possibly phytotoxic ways of action (Fig. 5b). Considering the data set of 131 NPs, 81 
molecules satisfy 4 or more herbicide-likeness criteria (Table 4), and 35 of them lay within the AD of the RF 
weed selectivity model (Fig. 4a), while all are outside the AD of the MoA and other models built in terms of spe-
cific structural fp keys. This result suggests further experimental studies that might reveal new MoAs for these 
compounds, which in turn may lead to new herbicides, potentially also adding more robustness to the current 
rotational strategies for minimizing weed resistance, based on available classes of herbicides.

Conclusions
There are two main ways to minimize weed resistance, the application of herbicides according to the rotation 
strategy which is well-accepted by the end users and to discover and develop novel phytotoxic compounds. The 
developed predictive classifiers to a large extent confirm MoAs assignation for the HRAC herbicides based on 
structural similarity and additionally enables MoA assignment for herbicides, mainly obsolete due to their side 
effects and thus lying outside the HRAC list. However, the performed modelling points out limitations of using 
only structural similarity for MoA classification and further for selection of herbicides for rotation strategy. 
The conducted ML modelling of weed selectivity reveals that it is largely determined by simple molecular and 
physicochemical features which also influence uptake and distribution of small molecules through plants. Since 
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similarity in uptake and translocation properties of herbicides may lead to the similar mechanisms of induction 
of weed resistance, the weed selectivity categorization is suggested as an additional rotational criterion.

The additional output of the study is the proposal of in silico stepwise screening platform for detecting 
herbicide-like molecules with selectivity for weed types and possibly with pre-specified mode of action, from any 
chemical library or database (Fig. 5b). Application of the platform to the data set of pyhtotoxic natural products 
reveals that they lie outside the space of synthetic herbicides considering not only molecular structure, but also 

Figure 5.  (a) The comparison of six subgroups of phytotoxic molecules according to selected molecular 
properties. Herbicide-like boundaries (Table 4) are denoted by red dash lines. (b) Virtual screening platform 
proposed for preselecting phytotoxic compounds. Its proof-of-concept should be carried out by in vivo testing.
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physicochemical properties guiding weed selectivity. Therefore, natural products might represent worthy source 
of novel phytotoxic scaffolds with new/different modes of action, thus contributing to more effective and weed-
resistance robust use of herbicides.

The proposed herbicide-likeness and screening cascade can be used for prioritization of the in vivo 
experiments.

Data availability
The R scripts and data sets for model performance are available at GitHub (https:// github. com/ mlkr- rbi/ Herbi 
cide- Class ifica tion. git). Data sets analyzed and/or generated during the current study are available in Supple-
mentary information.
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