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1 Introduction

The world average of the inclusive |Vub| determinations following the BNLP approach [1–5]
and the GGOU approach [6, 7] as determined by the HFLAV collaboration reads [8]:

103 × |Vub|BLNP = 4.44 +0.13
−0.14|exp.

+0.21
−0.22|theory ' 4.44+0.25

−0.26 ,

103 × |Vub|GGOU = 4.32 ± 0.12|exp.
+0.12
−0.13|theory ' 4.32+0.17

−0.18 .
(1.1)

These results deviate significantly from |Vub| determinations that use the exclusive decays
B̄0 → π+`−ν̄`, where ` = e, µ. The present world average thereof reads [8]:

103 × |Vub|B̄ → π
LQCD+LCSR = 3.67± 0.09|exp. ± 0.12|theory ' 3.67± 0.15 . (1.2)

Assuming the inclusive and exclusive results to be uncorrelated and normally distributed
with the stated overall uncertainties, these results are mutually incompatible. One finds
a deviation of ≈ 2.7σ, depending on which of the inclusive determinations is considered.
This long-standing situation is commonly referred to as the “exclusive vs inclusive” puzzle,
which continues to be a topic of active research [9].
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The most recent inclusive determination by the Belle collaboration [10] finds the ten-
sion reduced, with the central value dropping closer to the exclusive one, while simultane-
ously increasing the uncertainty. The average of the values extracted using four different
theoretical frameworks is reported as:

103 × |Vub| = 4.10± 0.09± 0.22± 0.15 . (1.3)

where the uncertainties are of statistical, systematical, and theoretical origin, respec-
tively. Compared to the relative uncertainty of ≈ 4% in the determination from exclusive
B̄ → π`−ν̄` decays, the inclusive determination has a much larger relative uncertainty of
≈ 7%. The latter is partially dominated by the subtraction of a large B → Xc`

−ν̄` back-
ground, which is one focus of the recent Belle analysis [10]. The smallness of the (theory)
uncertainties in the exclusive determination therefore warrant heightened scrutiny.

The description of exclusive semileptonic decays requires knowledge of the hadronic
form factors. The set of form factors includes f+ and f0, which are relevant to the SM
predictions for charged-current semileptonic B̄ → π`−ν̄` decays. Another form factor fT
is needed for SM predictions of rare semileptonic B̄ → π`+`− decays and also arises in
Beyond the Standard Model (BSM) analyses of the charged-current decay. All three form
factors are scalar-valued coefficients that emerge in the Lorentz decomposition of the two
hadronic matrix elements

〈π(k)|ūγµb|B(p)〉 = f+(q2)
[
(p+ k)µ − m2

B −m2
π

q2 qµ
]

+ f0(q2) m
2
B −m2

π

q2 qµ ,

〈π(k)|ūσµνqνb|B(p)〉 = i fT (q2)
mB +mπ

[
q2(p+ k)µ −

(
m2
B −m2

π

)
qµ
]
.

(1.4)

These three form factors are all functions of the momentum transfer q2 ≡ (p− k)2.
Presently, the determination of |Vub| from the exclusive B̄ → π`−ν̄` decays is the most

competetive. Other determinations either lack precision on the theoretical side (such as
B̄c → D`−ν̄`) or the experimental side (such as B̄ → `−ν̄` or Λb → pµ−ν̄µ), with improve-
ments to the precision expected in the future. A more detailed discussion is available in
ref. [8]. The increase in precision of the theoretical predictions for and the experimental
measurements of B̄ → π`−ν̄` has also made this decay a prime candidate for searches
of BSM effects in charged currents. These searches are well motivated in light of recent
tensions in b→ c`−ν̄` processes.

The purpose of this work is three-fold:

1. to revisit light-cone sum rule predictions for the full set of local B̄ → π form factors,
with focus on the systematic uncertainties that affect this method;

2. to carry out a combined fit with the precise lattice QCD (LQCD) results for the form
factors, in order to provide the most up-to-date exclusive determination of |Vub|;

3. to provide up-to-date predictions for B̄ → π`−ν̄` observables that probe lepton-
flavour universality and non-standard weak effective couplings.
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2 The B̄ → π form factors from light-cone sum rules

Hadronic transition form factors, such as in B̄ → π transitions, are genuinely non-
perturbative objects. They cannot be computed with perturbative methods in the phase
space region in which they are needed to describe the semileptonic decays. Light-Cone Sum
Rules (LCSRs) are a long-established technique to determine hadronic form factors [11–13].
Within a LCSR, the hadronic transition form factor of interest is determined from a cal-
culation of a suitable correlation function. One can find a kinematic regime in which
this correlation function factorizes into a pertubative (hard) scattering kernel and uni-
versal nonperturbative matrix elements, the so-called light-cone distribution amplitudes
(LCDAs). Using dispersion relations and the assumption of semi-global quark hadron du-
ality, the sum rule then gives the form factor of interest. A pedagogical introduction of
LCSRs in particular and a modern perspective on QCD sum rules in general can be found
in ref. [14]. In this work we revisit the LCSRs for full set of local B̄ → π form factors
associated with dimension-three b → u or b → d currents. The LCSRs are constructed
with an on-shell pion and an interpolated B meson, and by the use of pion distribution
amplitudes. Our definition of the form factors is shown in eq. (1.4).

The analytical expressions for the two-point correlation functions that give rise to
the sum rules are known to high accuracy. The expansion in light-cone operators uses
the twist of an operator — the difference between mass dimension and canonical spin of
the operator — as an expansion parameter. Operators of higher twist are supressed by
power of Λhad/mb. The leading contributions at the twist-two level are known at next-to-
leading order (NLO) in αs [15, 16]. Next-to-next-to-leading order (NNLO) [17] are partially
computed in the large β0 approximation. In B̄ → π transitions, the next-to-leading twist
contributions are known to by enhanced by the factor

µπ
mb

= m2
π

mb(mu +md)
, (2.1)

which is formally power-suppressed but numerically large. Due to this enhancement, the
twist-three terms contribute approximately 50% to the correlation function, e.g. [16]. Due
to the chiral enhancement it is important to include the twist-three terms also at NLO [16].
Beyond this level, contributions up to twist-six follow the expected pattern of power sup-
pression [18].

In this work, we provide predictions for the three hadronic form factors based on the
analytic expressions in refs. [16, 19, 20]. These LCSRs use π-meson distribution amplitudes.
They include expressions up to twist-four accuracy at leading order in αs and expressions
up to twist-three accuracy at next-to-leading order in αs. Expressions beyond twist-four
accuracy are numerically negligible [18]. In the preparation of this work we have identified
two typos in the analytic expressions in the literature.1 These two typos do not significantly

1First, in eq. (4.12) of ref. [16] the factor 1/2 in front of the d2φ4π/du2 term should be replaced by a
factor 1/4. Second, in the fourth line of eq. (B.35) the plus prescription should extend to the entire term
rather than only to the ρ/(1 − ρ) factor. The first typo is corrected in subsequent publications, while the
second typo is not.
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impact the form factor values, but have a non-negligible effect on the computation of the
B-meson mass predictor, which we use below to determine the duality thresholds.

Our numerical results for the form factors as presented below differ from previous
LCSR studies in the following aspects:

1. We use updated input parameters for quark masses, strong coupling and — most im-
portantly — for the two-particle twist-two π LCDA. The full set of input parameters
is discussed in section 2.1.

2. We determine the duality thresholds for all three form factors from three daughter
sum rules. The latter are obtained from the derivative of the initial sum rules with
respects to the Borel parameter. In this way a predictor for the mass squared of the
B meson can be included in a statistical analysis. The method is discussed for the f+
form factor in ref. [21], and for LCSRs with B-meson LCDAs in ref. [22]. Details of
this procedure and practical considerations for this step are discussed in section 2.2.

3. Within the threshold-setting procedure, we investigate the dependence of the duality
thresholds on the momentum transfer q2. We compare two models of these thresholds,
and use their difference to assign a systematic uncertainty to our final results.

2.1 Input parameters

Our setup follow the usual approach to calculate both the B-meson decay constant fB in
two-point QCD sum rules and the B̄ → π form factors in LCSR within a simultaneous
analysis [16, 21, 30]. The rationale for this approach is that perturbative corrections to
the correlation functions in both sum rules partially cancel. As a consequence, our input
parameters involve the full set of all, the two-point sum rule and the light-cone sum rule
parameters. We classify these parameters as follows:

Strong coupling and quark masses. These parameters include the strong coupling at
µ = MZ , the bottom quark mass in the MS scheme at the scale mb, and the sum of
the up and down quark masses in the MS scheme at the scale 2GeV.

Hadron masses. These parameters include the masses of the initial-state B meson mB

and the final-state pion mπ.

Vacuum condensate densities. These parameters include the quark condensate evalu-
ated using the GMOR relation at 2 GeV and the gluon condensate, while the mixed
quark-gluon condensate is implemented through m2

0, its ratio with the quark con-
densate. Lastly, rvac parametrizes factorization in the four-quark condensate density.
These parameters are needed exclusively in the two-point sum rule.

Parameters of the π LCDAs. These parameters include the pion decay constant fπ to
which the leading-twist LCDA is normalised. The shape of the leading-twist DA is
described by an expansion in Gegenbauer polynomials, which are eigenfunction of
the RGE kernel to leading-logarithmic accuracy. Isospin symmetry implies that only
even Gegenbauer polynomials contribute, and we retain the first two non-vanishing
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Gegenbauer coefficients a2π and a4π. Following ref. [28], we normalise the twist-3
two-particle LCDAs to the chiral parameter µπ(2GeV) and twist-three three-particle
LCDAs to the decays constants f3π. The shape of the three-particle LCDAs addi-
tional involves the parameter ω3π. The twist-four LCDAs are parametrized in terms
of δ2

π and ω4π. If not specified otherwise, all parameter of this class are renormalised
at a scale of 1 GeV.

Sum rule parameters and scales. These parameters include the Borel parameter M2

and the values and slopes of the duality threshold parameters sF0 and s′F0 , where
F denotes one of the form factors {f+, f0, fT }. We discuss the parametrisation of
the thresholds in detail below. The perturbative LCSR kernels are evaluated at a
renormalisation scale µ. Further parameters are the Borel parameter M̄2 and duality
threshold s̄B0 of the auxilliary two-point sum rule.

All the input parameters are listed and their prior probability density functions (PDFs)
are summarized in table 1.

We briefly discuss the differences between the inputs used in this work and the inputs
used in refs. [21, 30]:

1. While the input parameters for the light quark masses mu and md change only
slightly, this change has a large numerical effect on µ2

π, which normalises the twist-
three two-particle contributions to the sum rules. It also affected the value of q̄q
condensate density.

2. A recent lattice QCD analysis [26] of the shape of the leading-twist pion LCDA has
provided for the first time a determination of the leading Gegenbauer moment a2
from first principles. We use this result as a Gaussian prior in our analysis. Note
that we use the RGE to LL to translate the lattice results to our default input scale of
1 GeV. We also adjust the uniform prior PDFs for the parameters a4 and δ2

π to match
the lattice QCD results for these parameters within their uncertainty intervals.

3. We slightly increase the Borel window for the LCSR to the interval 12GeV2 ≤M2 ≤
20GeV2 in which we vary the Borel parameter uniformly rather than with a gaussian
prior. This increases the uncertainty due to the Borel parameter in the final numerical
results and also fully includes the peaking structure in the posterior PDF.

2.2 Setting the duality thresholds and Borel parameters

Each of the duality thresholds sF0 corresponds to a point at which to artificially split
the dispersive integral for its form factor F into two contributions: one corresponding to
the B̄ → π form factor, and one corresponding to hadronic transition matrix elements
for excited B-mesons and the continuum of b-flavoured states. To obtain the threshold
parameters, one commonly uses daughter sum rules obtained by taking a derivative of the
form factors’ correlation function with respect to −1/M2 and by subsequently normalizing
to the correlation function. By using the same input parameters as in the original sum
rule, one thereby constrains the duality thresholds parameters. This new daughter sum

– 5 –



J
H
E
P
0
7
(
2
0
2
1
)
0
3
6

Parameter value/interval unit prior comments/source
quark-gluon coupling and quark masses

αs(mZ) 0.1179 ± 0.0010 — gaussian [23]
mb(mb) 4.18 ± 0.03 GeV gaussian [23]

[mu +md](2GeV) 6.9 ± 1.1 MeV gaussian [23]
hadron masses

mB 5279.58 MeV — [23]
mπ 139.57 MeV — [23]

vacuum condensate densities
〈q̄q(2GeV)〉 −(288+17

−14)3 MeV3 — m2
πf

2
π/2(mu +md)

〈αs

π G
2〉 [0.000, 0.018] GeV4 uniform [24]

m2
0 [0.6, 1.0] GeV2 uniform [24]

rvac [0.1, 1.0] — uniform [24]
parameters of the pion DAs

fπ 130.2 ± 0.8 MeV gaussian [25]
a2π(1GeV) 0.157 ± 0.027 — gaussian [26]
a4π(1GeV) [−0.04, 0.16] — uniform [27]
µπ(2GeV) 2.8+0.6

−0.4 GeV — m2
π/(mu +md)

f3π(1GeV) [0.003, 0.006] GeV2 uniform [28]
ω3π(1GeV) [−2.2,−0.8] — uniform [28]
δ2
π(1GeV) [0.11, 0.33] GeV2 uniform (50% sys. unc.) [26]

ω4π(1GeV) [0.1, 0.3] — uniform [28]
sum rule parameters and scales

µ 3.0 GeV — [27, 29]
M2 [12.0, 20.0] GeV2 uniform [27]
s
f+
0 [30.0, 42.0] GeV2 uniform

s
′ f+
0 [−1.0,+1.0] — uniform
sf0

0 [30.0, 42.0] — uniform
s′ f0

0 [−1.0,+1.0] — uniform
sfT

0 [30.0, 42.0] GeV2 uniform
s′ fT

0 [−1.0,+1.2] — uniform
M

2 5.5± 1.0 GeV2 gaussian [29]
sB0 [29.0, 44.0] GeV2 uniform

Table 1. Input parameters used in the numerical analysis of the two-point sum rules for the fB
decay constant and LCSRs for B̄ → π form factors. The full prior distribution is a product of
uncorrelated individual priors, which are either uniform or Gaussian distributed. Gaussian priors
cover the intervals at 68% probability, and their central value corresponds to the mode. For practical
purpose, variates of the gaussian priors are only sampled inside their respective 99% intervals. The
prior intervals of the duality threshold parameters are chosen such that the peaking posterior
distribution is fully contained.
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rule can be cast into a pseudo observable that serves as a predictor of the mass square for
the interpolated state, i.e. here the B meson; see e.g. ref. [21]. Schematically,

[m2
B(q2;F )]LCSR =

∫ s0
0 ds s ρF (s, q2) e−s/M2∫ s0
0 ds ρF (s, q2) e−s/M2 . (2.2)

Here F denotes any of the three form factor under consideration, and ρF is the OPE result
for the form factor’s spectral density.

To determine the duality thresholds we follow the procedure used in ref. [21] for the
f+ form factor. We construct a theoretical Gaussian likelihood centered around the ex-
perimental results for the B-meson mass. We further assign a theoretical uncertainty of
1% to the LCSR prediction of the B-meson mass. For each form factor the likelihood
challenges the LCSR predictions for the mass in five different q2 points equally spaced be-
tween −8GeV2 to +8GeV2. We then fit the parameters listed in table 1 to this likelihood,
using two different models for the duality thresholds, see below. The posteriors for most
parameters are in good agreement with the priors, with the exception of the posteriors
for the duality threshold parameters and the LCSR Borel parameter, which change from
uniform to peaking distributions. This change clearly indicates that we successfully infer
the duality thresholds and the Borel parameter from the daughter sum rules.

The procedure carried out in this work is similar but not identical to the one presented
in [21]. It differs in the following points:

1. We determine all three transition form factors simultaneously, while in ref. [21] the
analysis is constrained to f+ only. Our procedure restricts the possible parameters
space more strongly, since all form factors share the same input parameter set except
for their respective threshold parameters. The effect is mostly visible in the posterior
of the Borel parameter and discussed in detail below.

2. We do not determine the q2 derivatives of the form factors as suggested in ref. [21].
Our decision is based on the following observation. If the predictor for a form factor
and for its q2 derivative share the same threshold parameter, then the mass predic-
tor for the derivative cannot in general be expected to produce a value close to the
B meson mass squared. We would therefore need to introduce new and indepen-
dent duality threshold parameters for each derivative. This reduces the usefulness of
the derivatives as we can extract a similar amount of information by increasing the
number of q2 points, which is computationally easier.

In a first fit we assume the duality thresholds to be constant with respect to q2. In a
second fit, we allow for a linear q2 dependence of the thresholds, i.e.,

sF0 (q2) ≡ sF0 + q2 s′F0 . (2.3)

As already disussed in ref. [21], we find evidence for a mild q2 dependence of the duality
thresholds. Here, we find a reduction of the global χ2 by ∼ 0.5 when allowing for a linear q2

dependence in all three thresholds. This has to be compared to a decrease of three degrees

– 7 –



J
H
E
P
0
7
(
2
0
2
1
)
0
3
6

..

−10.0

.

−7.5

.

−5.0

.

−2.5

.

0.0

.

2.5

.

5.0

.

7.5

.

10.0

.
q2 [GeV2]

.

5.20

.

5.22

.

5.24

.

5.26

.

5.28

.

5.30

.

5.32

.

5.34

.

m
B
(q

2
)

fro
m
f +

su
m

ru
le

.

EOS v0.3.2

.

const. threshold

.

q2-dep. threshold

..

−10.0

.

−7.5

.

−5.0

.

−2.5

.

0.0

.

2.5

.

5.0

.

7.5

.

10.0

.
q2 [GeV2]

.

5.20

.

5.22

.

5.24

.

5.26

.

5.28

.

5.30

.

5.32

.

5.34

.

m
B
(q

2
)

fro
m
f 0

su
m

ru
le

.

EOS v0.3.2

.

const. threshold

.

q2-dep. threshold

..

−10.0

.

−7.5

.

−5.0

.

−2.5

.

0.0

.

2.5

.

5.0

.

7.5

.

10.0

.
q2 [GeV2]

.

5.20

.

5.22

.

5.24

.

5.26

.

5.28

.

5.30

.

5.32

.

5.34

.

m
B
(q

2
)

fro
m
f T

su
m

ru
le

.

EOS v0.3.2

.

const. threshold

.

q2-dep. threshold

Figure 1. The dependence of the B-meson mass predictor [m2
B(q2;F )]LCSR for each of the three

form factors F = {f+, f0, fT } on the momentum transfer q2. We show the posterior-prediction for
a q2-invariant threshold (in orange) and a threshold with linear q2 dependence as in eq. (2.3) (in
blue). The shaded areas correspond to the respective 68% probability envelopes.

of freedom. While this result does in no way require to impose a q2 dependence of the
thresholds, we consider it grounds enough to further investigate the q2 dependence of the B-
meson mass predictors. To this end, we compute the median curve and its 68% probability
envelope for each mass predictor and for both fit models. Our findings are illustrated in
figure 1. As can be expected due to the three additional parameters, the 68% envelopes of
the fit model with q2-dependent thresholds (blue bands) have a larger uncertainty than the
envelopes of the fit model with constant thresholds (orange bands). However, we also find
that the former model reproduces the physical B-meson mass on average better than the
fit model with constant thresholds in the q2 interval considered here. We further find that
the maximal deviation of the B-meson mass predictors from the physical mass is reduced
for all three form factors. We therefore chose the q2-dependent ansatz for the duality
thresholds for the central values of our form factor predictions. The difference between the
constant and the q2-dependent threshold parametrizations is used to estimate systematic
uncertainties due to the determination of the duality threshold parameters.
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Figure 2. The dependence of the form factors f+ (in blue), f0 (in orange), and fT (in green) on
the Borel parameter M2. We exemplify this dependence for two different choices of q2: 0GeV2

(solid lines), and 5GeV2 (dashed lines). The form factor f0 coincides with f+ at q2 = 0, and is
therefore not depicted at this value.

We account for the dependence on the Borel parameter M2 by varying this parameter
in our prefered window 12GeV2 ≤M2 ≤ 20GeV2. In this way, we account for the residual
M2 dependence of the form factor predictions. This procedure was carried out in ref. [21],
where a Gaussian prior was used. Here, we apply this procedure instead with a uniform
prior. Despite the mild dependence of each form factor on the Borel parameter value,
we find that its posterior differs strongly from its prior, with a peak at around 15GeV2.
This can be understood, since each form factor and each q2 point entering the theoretical
likelihood differs slightly in its dependence on the Borel parameter. Only when investigating
all form factors and q2 simultaneously, we find that the posterior of the Borel parameter
exhibits a clearly peaking structure. The overall form factors dependence on the Borel
parameter is very weak and is shown in figure 2.

2.3 Numerical results for the form factors

We proceed to predict the form factors at five equally-distanced q2 points in the interval
−10GeV2 ≤ q2 ≤ +10GeV2. Our choice of points simultaneously maximizes the number
of pseudo data points while keeping correlations of neighbouring points below 80% in
the combined parametric and systematic uncertainty. Two systematic uncertainties are
estimated by the following procedures:

1. For each form factor prediction the renormalization scale is varied by dividing and
multiplying it with a factor of 1.25, corresponding to the interval [2.40GeV, 3.75GeV].
We find that the maximal one-sided variation of all our predictions can be found when
lowering the renormalization scale. Across all form factors and all q2 points, this
variation evaluates consistently to ∼ 4%. For a conservative estimate of this effects,
we add an uncorrelated 4% systematic uncertainty to all form factor predictions.
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q2 −10GeV2 −5GeV2 0GeV2 +5GeV2 +10GeV2

f+(q2) 0.170± 0.022 0.224± 0.022 0.297± 0.030 0.404± 0.044 0.574± 0.062
f0(q2) 0.211± 0.029 0.251± 0.024 — 0.356± 0.040 0.441± 0.052
fT (q2) 0.170± 0.021 0.222± 0.020 0.293± 0.028 0.396± 0.039 0.560± 0.053

Table 2. The LCSR predictions for the form factors in five q2 points. The value of f0(q2 = 0) is
not independent, since f+(q2 = 0) = f0(q2 = 0) by construction.

2. For each form factor we compute the difference between the predictions with constant
duality thresholds and q2-dependent duality thresholds. We find that the largest
difference occurs for f0(q2 = 10 GeV2), corresponding to roughly ∼ 6% of the central
value. We add the differences in quadrature to the variances.

The joint posterior predictive distribution for all of the form factors is to excellent approx-
imation a multivariate Gaussian distribution. We provide the mean values and standard
deviations in table 2. The correlation matrix is provided in appendix A. For convenience the
mean values and the covariance matrix are provided in the form of supplementary material
together with this manuscript as an ancillary machine-readable file. One can immediately
notice the very close numerical values of f+ and fT form factors, which is expected as a
consequence of the heavy-quark expansion and the large-energy symmetry limit [31]. The
f0(q2 = 0) pseudo data point is not included, since it coincides with f+(q2 = 0) by def-
inition. We consistently find uncertainties ∼ 10% across all q2 points. The parametric
covariance matrix for our results exhibit a large degree of correlation. The determinant of
ρ, the linear correlation matrix reads

det ρ
∣∣∣∣
parametric

= 4.0× 10−31 . (2.4)

Accounting for the systematic uncertainties as discussed above increases the determinant to

det ρ
∣∣∣∣
total

= 3.7× 10−5 , (2.5)

thereby reducing the degree of correlation. The largest correlation of 81% occurs amongst
f0(−5 GeV2) and f+(−5 GeV2). These findings give confidence that the 14 data points can
be treated as 14 independent observations in the following studies.

3 Extrapolation of the LCSR results to large q2

A central elements to the LCSR calculation of the form factors is the expansion of a suit-
able two-point correlation function in terms of bilocal operators with light-like separation.
This expansion is called a light-cone operator product expanion (LCOPE). The light-cone
dominance of the OPE crucially depends on the kinematic variables. It has been shown
that the light-cone dominance holds for a four-momentum transfer [16]

q2 < m2
b − 2mbΛ̄ ∼ 15GeV2 . (3.1)
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For phenomenological applications — such as theory predictions for the total B̄ → π`−ν̄

branching fraction and the comparison to lattice QCD results of the form factors — we need
to extrapolate our LCSR results to q2 values for which light-cone dominance does not hold.
The standard approach to extrapolate the form factors is a fit of a parametrization of the
form factors to LCSR pseudo data points. There are several competing parametrizations,
and there is no clear and an objectively preferred choice. For the extrapolation of our LCSR
results to large q2 we choose the BCL parametrization [32] as it is commonly applied in
the literature [33–35].

The BCL parametrization is based on an expansion of the form factor in the variable

z(q2; t+, t0) =
√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

, (3.2)

where t+ ≡ (mB +mπ)2 represents the Bπ pair-production threshold, and t0 < t+ is a free
parameter. The semileptonic phase space 0 ≤ q2 ≤ t− ≡ (mB −mπ)2 is mapped onto the
real z axis. The magnitude of z(q2) for q2 within the semileptonic phase space is minimized
by choosing

t0 = t0,opt = (mB +mπ)(
√
mB −

√
mπ)2 , (3.3)

which we also adopt here. As a consequence, |z| < 0.284 for semileptonic B̄ → π decays.
The B̄ → π vector and tensor form factors feature a single subthreshold pole, each due
to the B∗ bound state, which is located outside the semileptonic phase space. The scalar
form factor f0 has no subthreshold pole.

The BCL parametrization simultaneously encodes the correct asymptotic behaviour
of the vector form factor f+ in the limit q2 → ∞ and accounts for its subthreshold pole
through a factor (1−q2/M2

B∗)−1. The remainder of the form factor is then Taylor expanded
in the variable z to some order K, with expansion coefficients an. Accounting for the known
subthreshold pole accelerates the convergence of the series.

In addition, the BCL parametrization of f+ uses the known behaviour of its discontinu-
ity Disc f+ just above the pair-production threshold (mB +mπ)2, where one unit of orbital
angular momentum imposes a power-law Disc f+ ∝ p3/2 with p the breakup momentum.
The absence of a p1/2 term is then used to eliminate the expansion coefficient b+K in lieu of
the coefficients b+n with n < K.

There is some ambiguity as to how the scalar form factor f0 should be parametrized,
which is not discussed in ref. [32]. Commonly [33, 35] f0 is parametrized without the use
of a pole, due to the absence of a subthreshold bound state. In addition, the behaviour of
Disc f0 ∼ p1/2 just above the pair production threshold cannot be used to eliminate one of
the expansion coefficients. It is therefore ambiguous if f0 should be expanded to order K
or K − 1 to ensure consistency when simultaneously fitting f+. In this section, we expand
f0 to order zK−1 to make it compatible with the literature [33, 35].

For the tensor form factor fTm most of the same considerations as for f+ apply.
There is a single subthreshold pole, which corresponds to the B∗ bound state. The factor
(1 − q2/M2

B∗)−1 accounts simultaneously for the asymptotic behaviours for q2 → ∞ and
the bound state. As for the vector form factor we expand to order zK . Above the pair
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production threshold, two units of orbital angular momentum impose that Disc f+ ∝ p5/2.
Hence, the absence of a p1/2 term can again be used to eliminate the expansion coefficient
bTK in lieu of the coefficients bTn with n < K.

Based on the above considerations, the common BCL parametrization then reads:

f+(q2) = f+(q2 = 0)
1− q2/m2

B∗

[
1 +

K−1∑
n=1

b+n

(
z̄n − (−1)n−K n

K
z̄K

)]
,

f0(q2) = f+(q2 = 0)
[
1 +

K−1∑
n=1

b0nz̄n

]
,

fT (q2) = fT (q2 = 0)
1− q2/m2

B∗

[
1 +

K−1∑
n=1

bTn

(
z̄n − (−1)n−K n

K
z̄K

)]
,

(3.4)

with z̄n ≡ zn − zn0 , z ≡ z(q2; t+, t0), and z0 = z(0; t+, t0). Here we manifestly fulfill the
kinematical constraint f+(0) = f0(0), which reduces the overall number of free parame-
ters by one.
We proceed to fit the common BCL parametrization eq. (3.4) to the 14 LCSR pseudo data
points and their correlated uncertainties provided in section 2. As discussed in that section,
the correlated pseudo data points can be counted as 14 independent observations. Adding
further data points is unlikely to increase the amount of information, due to the already
large degree of correlation among the data points. In the fit to the LCSR prediction, the
number of fit parameters is therefore limited to be smaller than 14, corresponding to a
maximal order K = 4 in the z expansion, which has eleven independent parameters.

We carry out two fits: one with K = 3, and one with K = 4. Already for K = 3 we
obtain a good fit with χ2/d.o.f. ∼ 0.017/6 and a p value in excess of 99%. The goodness
of fit therefore gives no indication that higher orders of z are required in our fit model.
Nevertheless, we carry out a fit with K = 4 to obtain a handle on the systematic extrap-
olation error inherent to the form factor parametrization. We show medians and central
68% probability intervals of the marginalized one-dimensional posterior distributions for
each of the BCL parameters for the K = 3 fit in table (3). Our corresponding results in
the K = 4 fit are compatible with the results of the K = 3 fit at the 1σ level. This is not
surprising, since the uncertainty intervals for the shape parameters in the K = 4 fit are an
order of magnitude larger than those in the K = 3 fit, while the goodness of fit cannot be
improved further. We therefore use the K = 3 fit as our default for numerical values and
illustrations in this section. Note that we do not use the unitarity bounds that have been
formulated for exclusive b→ u transitions form factors [32, 36].

We show our fit results in relation to the LCSR pseudo data points in figure 3. This fig-
ure also indicates that our extrapolation to large q2 has sizable uncertainties. Within these
uncertainties, our results are compatible with the available lattice QCD results [33–35] for
the B̄ → π form factors. The latter are not part of the analyses in this section and are
merely shown for an illustrative purpose. In both the K = 3 and the K = 4 fit we observe
that the bands of posterior-predictions at 68% probability do not correspond to the 68%
uncertainty regions of the data points. We find empirically that this effect is caused by the
large correlations among q2-neighbouring data points and between the predictions for f+
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BCL parameters (K = 3)

f+(0) 0.283+
−

0.027
0.027

b+1 −1.0+
−

4.3
4.5

b+2 −2.9+
−

6.2
5.8

b01 −6.8+
−

6.3
6.9

b02 4+
−

12
12

fT (0) 0.282+
−

0.026
0.026

bT1 −0.7+
−

4.3
4.6

bT2 −3.0+
−

6.3
5.9

Table 3. The median values and central 68% probability intervals obtained from the
one-dimensional marginalized posterior distributions for the parameters of the common BCL
parametrization eq. (3.4) for the K = 3 fit when fitted to the LCSR pseudo data points. The
total χ2 is 0.017 for 6 degrees of freedom, corresponding to a p value in excess of 99% at the best-
fit point.

and f0. The effect causes the BCL fit’s uncertainty bands to trail slightly below the form
factor pseudo data points.

In the literature it is common to provide the q2-integrated branching ratio in units of
|Vub|2, based on LCSR results for the form factors. The integrated branching ratio can
then be used to extract |Vub| from the experimental results, if the same integration range
is used. We do not use this quantity in the phenomenological parts of our analysis, since
we consider it less flexible than a full fit to the form factor parameters and |Vub|, which can
also tell us about compatibility of the form factor shape between theory and experiment.
Stll, it can be useful for comparison with other works. We obtain:

1
|Vub|2

∫ 12GeV2

0
dq2dB(B̄0 → π+e−ν̄e)

dq2 = 7.6+1.6
−1.4 . (3.5)

The above value is compatible within uncertainties with the estimates given in the litera-
ture [21, 27, 30].

We can challenge our extrapolations of the LCSR results in several ways.
First, a dispersive representation of f+(q2) implies that:

Resq2→m2
B∗
f+(q2) = 1

2fB
∗mB∗gB∗Bπ = 14.6± 1.3GeV2 , (3.6)

for which we use fB = 190±1.3MeV from a lattice calculation, f∗B/fB = 0.958±0.022 [37]
and gB∗Bπ = 30.1+2.6

−2.4 from a recent QCD light-cone sum rule calculation [38]. Since the
common BCL parametrization for f+ includes a pole for the B∗, we can obtain an analytical
formula for the residue. From our fit, we obtain

Resq2→m2
B∗
f+(q2) = 12± 29GeV2 , (3.7)
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Figure 3. Posterior-predictions for the form factors f+ (top), f0 (center), and fT (bottom) obtained
from our fits of the common BCL parametrization (3.4) to only the LCSR pseudo data points
discussed in section 2. Lattice QCD points are merely shown for illustrative purpose. The bands
correspond to the envelope at 68% probability.
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which is in agreement with eq. (3.6) within its sizable uncertainties. The uncertainties
presented are of parametric origin only. Systematic uncertainties due to higher orders in
the z expansion are not taken into account, and could be sizable due to the magnitude of
z(q2 = m2

B∗). The residue is therefore not immediately useful to check the validity of our
extrapolation to large q2.

Second, the soft-pion theorem relates the form factor f0 to the B-meson and pion decay
constants [39–43] as

f0(t−) + f0(t+) = 2fB
fπ

[
1− mu +md

md +mb

]
= 2.914± 0.092 . (3.8)

The relation holds even at next-to-leading order in 1/mb, and including short-distance
corrections [44]. Here we use the same numerical inputs as above and additionally
fπ = 130.2± 0.8MeV [23]. Our fit of the form factors gives us

f0(t−) + f0(t+)
∣∣∣∣
LCSR only

= 5.1± 6.3 . (3.9)

Although our results are consistent with the expectation in eq. (3.8), the uncertainties are
so large that we cannot use the above relations to carry out a meaningful test of the validity
of our extrapolation.

Third, in the large-energy symmetry limit the form factors f+ and f0 are related
via [31]:

f0(q2) = m2
B +m2

π − q2

m2
B

f+(q2) +O
(Λhad
Eπ

,
Λhad
mB

)
. (3.10)

Here Eπ is the energy of the π in the B rest frame. A useful measure of compatibility can
therefore be obtained through the ratio

R0+(q2) = m2
B

m2
B +m2

π − q2
f0(q2)
f+(q2) . (3.11)

We show this ratio in figure 4 based on an extrapolation of our LCSR form factors. We find
that the LCSR results are consistent with the large-energy limit within ∼ 10% uncertainty
up to ' 13GeV2, i.e. within the whole region of applicability of the LCSRs.

In the next section we proceed with form factor extractions in a combined fit to LCSR
and lattice QCD inputs. This procedure further constrains the form factors at high q2 and
reduces the uncertainties appreciably.

4 Interpolation between LCSR and lattice QCD results

In this section we proceed to challenge the LCSR results obtained in section 2 and their
extrapolation to large q2 in section 3 with precise results for the B̄ → π form factors
obtained from lattice QCD simulations. These lattice QCD results exhibit very small
uncertainties for 19GeV2 . q2 . 25GeV2, outside the reach of the light-cone sum rules.
In this work we use two independent sets of lattice QCD results. The first set is provided
by the FNAL/MILC collaboration [33, 34] based on Nf = 2 + 1 gauge ensembles and a
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Figure 4. The ratio of form factors R0+(q2) as defined in the text. We extrapolate based on the
fit to LCSR pseudo data and compare with the symmetry limit (3.10), which is valid for large π
energy in the B-meson rest frame or equivalently at small q2.

staggered-quark action. The second set is provided by the RBC/UKQCD collaboration [35]
based on Nf = 2 + 1 gauge ensembles with domain wall fermions.

We refrain from using information from an older analysis by the HPQCD collabora-
tion [45] for two reasons: first, it shares some of the Nf = 2 + 1 ensembles with the results
published by FNAL/MILC [33]; second, it does not provide correlations between the f+
and f0 results. We also refrain from using a more recent HPQCD analysis [46] providing a
single, very precise value for f0 at zero-recoil. Again, some of the Nf = 2+1 ensembles are
shared with the FNAL/MILC analysis, and we cannot account for the correlations between
the HPQCD and the FNAL/MILC results.

The usage of RBC/UKCQCD data is straightforward, since ref. [35] provides both the
f+ and the f0 form factor in three different q2 points including their correlations. We
therefore include these data in our likelihood as a multivariate gaussian constraint.

The usage of the FNAL/MILC data is more involved, since refs. [33, 34] do not provide
data points for any of the form factors. Instead, these references provide the outcome of
a BCL fit to the data points. As discussed below, we see the need to modify the BCL
parametrization, making it impossible to use the BCL results of FNAL/MILC collaboration
as is. Instead, we are forced to use the BCL results to produce pseudo data points of the
form factors. We produce three such points for f+ and four points both for f0 and for
fT . The points are chosen in the range 19GeV2 ≤ q2 ≤ 25GeV2. Based on information
provided in refs. [33, 34], we have chosen this range of q2 to minimize the total uncertainty.
The smaller number of points for f+ is due to a peculiarity in the BCL fit results. We find
that the covariance matrix provided in ref. [33] is singular. This can be understood, since
in that work the identity f+(0) = f0(0) is not manifestly fulfilled by the parametrization.
Based on the authors’ suggestions [47], we replace the coefficient b+3 (in their notation) by
a linear combination of the remaining coefficients, such that the identity f+(0) = f0(0)
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form factor # of points q2 values (in GeV2) type source

f+

5 −10.0, −5.0, 0.0, 5.0, 10.0 LCSR this work
3 21.0, 23.0, 25.0 LQCD FNAL/MILC [33]
3 19.0, 22.6, 25.1 LQCD RBC/UKQCD [35]

f0

4 −10.0, −5.0, 5.0, 10.0 LCSR this work
4 19.0, 21.0, 23.0, 25.0 LQCD FNAL/MILC [33]
3 19.0, 22.6, 25.1 LQCD RBC/UKQCD [35]

fT
5 −10.0, −5.0, 0.0, 5.0, 10.0 LCSR this work
4 19.0, 21.0, 23.0, 25.0 LQCD FNAL/MILC [34]

Table 4. A complete list of the data points for the 3 transition form factors used in the combined fit.

is manifestly fulfilled. This replacements requires the removal of the row and column
associated with b+3 from the correlation matrix, reducing the number of free parameters to
three. Hence, the maximal number of independent pseudo data points from FNAL/MILC
is now also limited to three.

An overview of the data points used is provided in table 4.
With the likelihood for the lattice QCD results at hand, we carry out a simultaneous

fit of the common BCL parametrization in eq. (3.4) to both the LCSR pseudo data points
and the lattice QCD data points. We find that for K = 3 the fit yields a minimal χ2 ' 154.
Given 23 degrees of freedom in the fit, this corresponds to a p value considerably smaller
than our a-priori threshold of 3%. We therefore have to reject this fit. Investigating the
BCL paramatrization with K = 4, we find better agreement with a minimal χ2 = 27.5
for 20 degrees of freedom. The corresponding p value of 12% is acceptable. For both
cases, a visual comparison of the extrapolation of the LCSR results for f+ and fT with the
lattice data as shown in figure 3 does not give any reason to expect a bad fit. However,
the same figure illustrates that the extrapolation of f0 is not easily compatible with the
lattice points. We therefore conclude that the goodness of fit of the overall analysis hinges
crucially on the correlations between f0 and the other form factors.

The surprising result for the fit with the common BCL parametrization leads us to
investigate alternative fit models. We modify the parametrization of the f0 form factor
by including a pole above the Bπ pair production threshold, corresponding to a scalar Bπ
resonance. No such resonance has been observed yet. Hence, we have to rely on models for a
prediction of its massmB0 . In the literature a wide range of values from different models for
mB0 can be found: mB0 ∈ [5.526, 5.756] GeV [48]. Here, we use mB0 = 5.54GeV, which is
compatible with other form factor parametrisations involving a scalar resonance within the
EOS software, ensuring their interoperability with ours. However, we emphasize that the
position of pole above the Bπ threshold suffices to improve the fit quality dramatically. We
have explicitly checked that varying the mass does not influence our results qualitatively:
varying the value ofmB0 in the aforementioned range is always compensated by minor shifts
to the central values of the remaining parameters. The modified BCL parametrization then
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reads:

f0(q2) = f+(z0)
1− q(z)2/m2

B0

[
1 +

K∑
n=1

b0nz̄n

]
,

f+(q2), fT (q2) : unchanged with respect to eq. (3.4) ,

(4.1)

where we also increase the maximal order of the z expansion for the f0 form factor. In
this way we now use the same number of shape parameters for each form factor. (Note
that for f+ and fT one shape parameter is fixed as discussed in section 3. We further note
that our modification does not allow to apply the unitarity bounds for the f0 form factor
as is. However, alternative parametrizations such as the BGL parametrization can account
for above-threshold poles in the formulation of the unitarity bounds [49], which we do not
consider here. We repeat the fits with the modified BCL parametrization in eq. (4.1) with
K = 3 and K = 4. In both cases we obtain acceptable to good fits, with p values of 52%
and 54% respectively.2 Effectively, the pole modifies the shape parameters and implicitly
allows for more flexibility of the fit. Explicitly expanding the B∗ pole factor in z around
q2 = 0 yields:

1
1− q(z)2/m2

B∗
≈ 1

1− t0
m2
B∗

+ 4m
2
B∗(t0 − t+)

(m2
B∗ − t0)2 z +O

(
z2
)
. (4.2)

This illustrates that additional powers of z are now available to relieve the apparent tension
between the LCSR and LQCD data of f0.

The median values and central 68% probability intervals for each marginalized one-
dimension posteriors are provided in table 5. The covariance matrix is provided in the form
of supplementary material together with this manuscript. We find that the fit parameter
values for K = 4 are consistent with the ones for K = 3 within uncertainties. We also
investigate the K = 5 case for which the p value increases insignificantly compared to the
K = 4 case. Although the K = 3 fit is also acceptable, we consider the K = 4 fit to be our
main result. The reason is that at K = 4 the fit can account for an additional systematic
uncertainty due higher orders in the z expansion.

Plots of the posterior predictions for each form factor are provided in figure 5. A
cursory glance at the f+(0) plot suggest a ∼ 1.4σ deviation between the fit to the LCSR
results only and the fit to the combined LCSR+LQCD likelihood. We remind the reader
that, in addition to the normalization f+(q2 = 0), the fits also need to bring LCSR and
LQCD predictions for the slope into mutual agreement. Hence, we emphasize that a naive
interpretation is not useful, due to strong correlation between the normalization and the
shape parameters. As a consequence, we cannot accurately compute the compatibility of
only the normalization f+(q2 = 0), and the overall goodness-of-fit diagnostics of our fits,
such as the p value, must suffice.

We emphasize that also the fits to LCSR data only shown in this section are carried out
with the modified BCL parametrization as given in eq. (4.1) and therefore differ slightly
to those obtained in section 2.

2The inclusion of the scalar resonance makes up for the majority of the p value improvement. Keeping
only the pole and fixing the additional shape parameter to zero yields p values of 7% and 60%, respectively.
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Figure 5. Posterior-predictions for the form factors f+ (top), f0 (center), and fT (bottom) obtained
from our fits of the modified BCL parametrization (4.1) to the LCSR pseudo data points only (blue
bands), and both the LCSR and lattice QCD inputs (orange bands). The bands correspond to the
envelope at 68% probability.
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param.
scenario LCSR+LQCD LCSR

K = 3 K = 4 K = 3

f+(0) 0.237+
−

0.017
0.017 0.235+

−
0.019
0.019 0.283+

−
0.027
0.027

b+1 −2.38+
−

0.33
0.38 −2.45+

−
0.49
0.54 −1.0+

−
3.5
3.6

b+2 −0.82+
−

0.76
0.81 −0.2+

−
1.1
1.2 −2.8+

−
4.9
4.7

b+3 — −0.9+
−

4.2
4.0 —

b01 0.48+
−

0.07
0.07 0.40+

−
0.18
0.20 −5+

−
52
51

b02 0.14+
−

0.39
0.44 0.1+

−
1.1
1.2 22+

−
200
200

b03 2.79+
−

0.71
0.77 3.7+

−
1.6
1.6 −32+

−
240
240

b04 — 1+
−

14
13 —

fT (0) 0.240+
−

0.016
0.016 0.235+

−
0.017
0.017 0.281+

−
0.025
0.025

bT1 −2.05+
−

0.32
0.36 −2.45+

−
0.45
0.50 −0.6+

−
4.2
4.4

bT2 −1.45+
−

0.63
0.66 −1.08+

−
0.68
0.71 −3.2+

−
5.9
5.8

bT3 — 2.6+
−

2.1
2.0 —

p value ∼ 52% ∼ 54% ∼ 100%

χ2/d.o.f ∼ 21.01/22 ∼ 17.75/19 ∼ 0.0278/5

Table 5. The median values and central 68% probability intervals for the parameters of the modified
BCL parametrisation from eq. (4.1) when fitted to the LQCD and LCSR pseudo data.

We can see that the precision of the extrapolation of the form factors significantly
improves by combining the LCSR and LQCD inputs, especially in the large q2 region, as
expected. We are now in a position to revisit eq. (3.6) to extract the strong coupling
constant from the combined fit. We obtain:

gB∗Bπ = 39.8± 1.1 , (4.3)

where the uncertainties are of parametric origin only. Systematic uncertainties due to
higher orders in the z expansion are not taken into account, and could be sizable due to the
magnitude of z(q2 = m2

B∗). Our result eq. (4.3) agrees well with the lattice determination
gB∗Bπ = 45.3 ± 6.0 by the RBC/UKQCD collaboration [50], but it shows a tension with
respect to the recent direct LCSR determination gB∗Bπ = 30.1+2.6

−2.4 [38] at the level of 3.4σ.3

However, we observe that our extrapolation becomes unstable for q2 ≥ t−, i.e., outside
the semileptonic phase space: the 68% probability region for the f0 form factor starts to
cover both positive and negative values, and the central value turns negative just below
q2 = t+. This finding of negative form factors is inconsistent with a dispersive represen-
tation of the form factor. We suspect the behaviour to be an artifact of the fit model.

3Note that it was already observed in [38] that a significantly larger result arises when using eq. (3.6)
than when calculating this quantity directly.
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Figure 6. The form factor ratio R0+(q2) interpolated between LCSR and LQCD data and com-
pared to the large-energy symmetry limit in the low q2 region.

Hence, we see no meaningful way to compare our results to the expectation from the
Callan-Treiman type relation in eq. (3.9).

In figure 6 we provide a plot of R0+(q2) for the form factors interpolating the LCSR and
LQCD data. We find our results to be consistent with the large-energy limit from eq. (3.10).
Compared to the LCSR-only result, the range in which the large-energy symmetry limit
holds has expanded up to ' 15 GeV2.

A comparison of our results and those in the literature is compiled in table 6.

5 Determination of |Vub| and further phenomenological applications

5.1 Exclusive |Vub| determination from B̄ → π semileptonic decays

Following the determination of the form factors from LCSRs and lattice QCD input, we
are now in position to extract the magnitude of the CKM matrix element |Vub| from mea-
surements of the B̄ → π`−ν̄` branching ratio.

To this end, we use the world average of the branching ratio as provided by the HFLAV
collaboration [8]. This average is based on individual measurements by the BaBar [52, 53]
and Belle [54, 55] collaborations. The world average is provided in terms of 13 bins of
the squared momentum transfer q2, with identical bin sizes. Within the averaging process,
HFLAV accounts for shared systematic correlations among the individual measurements.

A visual representation of this data, which we provide in figure 7, shows that the highest
relative experimental precision is achieved in for intermediate q2, i.e., in a region that is
not reliably accessible with LCSRs and not yet accessible with lattice QCD simulations.
Consequently, our efforts to obtain high-precision determinations of the form factors at
intermediate q2 through interpolation of the respective theory results is of high importance
to the |Vub| determination. This is nicely illustrated in figure 3 of ref. [56].
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Source f+(0) = f0(0) fT (0)
Lattice QCD

Fermilab/MILC [33, 34] 0.2± 0.2 0.2± 0.2
RBC/UKQCD [35] 0.24± 0.08 —

combination w/ Pade approx. [51] 0.265± 0.010± 0.002 —
Light-cone sum rules

Duplancic et al. [16] 0.26+0.04
−0.03 0.255± 0.035

Imsong et al. [21] 0.31± 0.02 —
Bharucha [17] 0.261+0.020

−0.023 —
Khodjamirian/Rusov [30] 0.301± 0.023 0.273± 0.021

Gubernari et al. (B LCDA) [22] 0.21± 0.07 0.19± 0.06
this work 0.283± 0.027 0.282± 0.026
Light-cone sum rules + Lattice QCD combination
this work 0.235± 0.019 0.235± 0.017

Table 6. Comparison of our results for the form factor normalizations with other QCD-based
results in the literature. The result of ref. [22] is included for completeness, although the authors
caution that the threshold setting procedure employed in that work fails for the B̄ → π form factors.

Our analysis is set up in the same way as in section 4. We stress that this means that
we exclusively fit using the modified BCL parametrization. As the only modification with
respect to section 4 we include the HFLAV average as part of the likelihood. The theory
prediction for the B̄ → π`−ν̄` branching ratio does not depend on the form factor fT in
the SM, which we assume for our fit. For ` = e, µ the branching ratio is only very weakly
dependent on the form factor f0, which contributes measurably only for q2 . 1GeV2.
Additionally, the predictions for f0 are affected by interaction between the experimental
constraint on f+ and the theoretical correlations between f+ and f0. As a consequence,
we present our results as one-dimensional marginalized posterior distributions only for
|Vub| and the parameters describing the f+ form factor. We carry out fits to the LCSR
pseudo data only in the K = 3 fit model as well as combined fits to the LCSR + lattice
QCD inputs in the K = 3 and K = 4 models. In all cases we find a good fit, with p

values in excess of 55%. While the K = 4 fit model to LCSR + lattice QCD inputs does
not provide a significantly improved goodness of fit, we still adopt it as our nominal fit
model. Our reasoning is that this model can account for additional systematic uncertainties
inherent to the extrapolation process, which slightly increases the uncertainty of the |Vub|
extraction. The smallness of the difference in the K = 3 and K = 4 uncertainties seems
to indicate that systematic uncertainties are under reasonable control. Summaries of the
one-dimension marginalized posteriors in terms of their median values and central 68%
probability intervals are provided in table 7.
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param.
method LCSR+LQCD LCSR only

K = 3 K = 4 K = 3

10−3 × |Vub| 3.80+
−

0.14
0.14 3.77+

−
0.15
0.15 3.28+

−
0.33
0.28

f+(0) 0.248+
−

0.009
0.009 0.246+

−
0.009
0.009 0.284+

−
0.025
0.025

b+1 −2.13+
−

0.19
0.19 −2.10+

−
0.22
0.21 −1.91+

−
0.31
0.30

b+2 −0.82+
−

0.54
0.55 0.23+

−
0.87
0.87 −1.42+

−
0.85
0.89

b+3 — −3.0+
−

2.8
2.8 —

χ2/d.o.f ∼ 32.33/34 ∼ 29.30/31 ∼ 10.72/17

p value ∼ 55% ∼ 55% ∼ 87%

Table 7. Results from the three fits to combinations of fit models and data sets as described in the
text. We provide the median values and central intervals at 68% probability for the one-dimensional
marginalized posterior distributions.

We find that the LCSR-only fit yields a |Vub| result that is slightly smaller than the
LCSR + lattice LQCD results by approximately more than one sigma. The latter results
for K = 3 and K = 4 are in mutual agreement. This is not surprising, given the shift in
f+(0) between these two scenarios, which is already discussed in section 4. The results for
K = 3 and K = 4 for fit to LCSR + lattice LQCD results are perfectly compatible with
each other. Our nominal result is obtained from the fit to LCSR + lattice QCD input with
K = 4, and reads

|Vub|B̄→πLCSR+LQCD = (3.77± 0.15) · 10−3. (5.1)
The apparent slight tension between f+(0) obtained from the fit to LCSR data only

and the fit to LCSR+LQCD data, as previously discussed in section 4, persists here as
well. It translates to a reasonable agreement between the determinations of |Vub| at the
1.4σ level. We find a very good fit using the combined LCSR and LQCD data, with
χ2/d.o.f. ∼ 1, and a p value of ∼ 55% at the best-fit point. Adding information on the
form factor shape through the HFLAV average of the experimental data does not affect
our results for the BCL parameters compared to results of the theory-only fit in section 4.
This result exhibits a slight tension with the BLNP and GGOU determinations, in both
cases at the ≈ 2σ level. However, it is in very good agreement with the recent method-
averaged result by the Belle collaboration as given in eq. (1.3). Here the tension reduces
to ≈ 1σ only.

We compare our results for |Vub| with other methods in table 8 and in figure 8 give our
Standard Model prediction for the differential decay rate of B̄ → π`−ν` divided by |Vub|
for the electron and tau lepton final states.

The normalized branching ratios obtained with the use of the theory-only form factors
from section 4 yield

B(B̄ → πµ−ν̄µ) =
(
9.6+1.0
−1.0

)
× |Vub|2 ,

B(B̄ → πτ−ν̄τ ) =
(
6.7+0.6
−0.5

)
× |Vub|2 .

(5.2)
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Source 10−3 × |Vub|
LQCD

Fermilab/MILC [33, 34] 3.72± 0.16
RBC/UKQCD [35] 3.61± 0.32

combination w/ Pade approx. [51] 3.53± 0.08stat ± 0.06syst

HFLAV [8] 3.70± 0.10stat ± 0.12syst

LCSR
Duplancic et al. [16] 3.5± 0.4± 0.2± 0.1
Imsong et al. [21] 3.32+0.26

−0.22

this work 3.28+0.33
−0.28

LCSR + LQCD
HFLAV [8] 3.67± 0.09stat ± 0.12syst

this work 3.77± 0.15

Table 8. Comparison of the |Vub| CKM matrix element determinations from the B̄ → π`−ν̄`
decays, using QCD-based form factor predictions.
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mod. BCL K = 4 (LCSR + LQCD + HFLAV)

HFLAV

Figure 7. Differential branching ratio for B̄0 → π+`−ν̄` decay as obtained from the combined fit
to LCSR and lattice QCD inputs and experimental data, compared to the HFLAV average of the
experimental data.
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5.2 Lepton-flavour universality ratio

Next, we make predictions for Standard Model observables for the B̄ → π`−ν̄` decay results
as obtained in section 4.

In light of hints for LFU violating effects in B̄ → D(∗)`−ν̄` decays [8, 57], we investigate
the LFU-probing observable for B̄ → π`−ν̄` decays:

Rπ = Γ(B̄ → πτ−ν̄τ )
Γ(B̄ → π`−ν̄`)

=
∫ q2

max
m2
τ

dΓ(B̄ → πτ−ν̄τ )/dq2∫ q2
max

m2
`

dΓ(B̄ → π`−ν̄`)/dq2
, (` = e, µ) . (5.3)

In the Standard model, predictions for Rπ involve only two out of three form factors, f+
and f0. Using our results from the form factor fit with K = 4 as obtained in section 4
we find:

Rπ
∣∣
LCSR+LQCD = 0.699+0.022

−0.020 . (5.4)

The central values for Rπ as predicted from the K = 3 and K = 5 fits fall entirely within
the above uncertainties. We also show the differential branching ratios for the tauonic and
light-lepton modes individually in figure 8.

It is important to stress that for a precise determination of Rπ knowledge of the scalar
form factor f0(q2) is key. To demonstrate this, we disentangle the contributions to the
tauonic decay width stemming from each of the form factors:

Rπ ≡ R+
π +R0

π , (5.5)

corresponding to the |f+|2 and |f0|2 contributions, respectively. We find

R+
π

∣∣
LCSR+LQCD = 0.476+0.014

−0.013 , R0
π

∣∣
LCSR+LQCD = 0.224+0.014

−0.013 . (5.6)

Although the f0 contribution is half the size of the f+ contribution, its relative uncertainty
is about two times as large as the one of the f+ term. This illustrates the importance of
accurately predicting both of the form factors for this LFU probe.

In table 9 we provide a comparison of our results with the available determinations of
Rπ in the literature. We find that our prediction is in very good agreement at or below the
1σ level with the previous determinations provided in refs. [35, 58]. A minor exception is
the prediction of ref. [59], which is in agreement with our result at the 2σ level.

Although the LFU ratio Rπ is |Vub|-independent, it could, on the other hand, be
sensitive to potential new physics effects in B̄ → πτ−ν̄τ decay due to the presence of new
scalar currents and/or electroweak symmetry breaking effects associated with the large
mass of the τ lepton. Hence, Rπ is a very interesting candidate for future measurements.
To date, there is a single experimental result by the Belle collaboration [60]. It is obtained
from an upper limit on the branching ratio of B̄ → πτ−ν̄τ , which has not yet been observed.
This result reads:

Rπ
∣∣
Belle = 1.05± 0.51 , (5.7)

which is in agreement with our prediction.
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Figure 8. Our Standard Model prediction of the differential decay rate of B̄ → π`−ν̄` divided by
|Vub| for the electron and tau final states. The form factors are obtained from a fit to both LCSR
and LQCD inputs using modified BCL parametrization in the K = 4 fit model.

Th. only
source RBC/UKQCD [35] Bečirević et al. [58] this work

Rπ 0.69±0.19 0.78±0.10 0.699±0.022

Th. + Exp.
source Bernlochner [59] Bečirević et al. [58] this work

Rπ 0.641±0.016 0.66±0.02 0.688±0.014

Table 9. Comparison of theory results for the LFU ratio Rπ in the literature.

5.3 Angular observables and polarizations in B̄ → π`−ν̄`

We can now use our results for the form factors to predict the two angular observables
in the two-fold differential decay rate of B̄ → π`−ν̄` as well as the lepton polarization in
these decays.

We begin with the discussion of the forward-backward asymmetry in the Standard
model. The integrated normalized forward-backward asymmetry is defined as

A`FB = 1
Γ(B̄ → π`−ν̄`)

∫ q2
max

m2
`

dq2
[∫ 0

−1
−
∫ −1

0

]
d cos θ`

dΓ2(B̄ → π`−ν̄`)
dq2d cos θ`

. (5.8)

The forward-backward asymmetry arises from interference of the timelike polarization with
the longitudinal polarization of the dilepton final state. The asymmetry is proportional to
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the mass of the charged lepton. Hence, AFB is small for the ` = e, µ, which makes it very
sensitive to BSM effects that could lift the helicity suppression. With our results for the
form factors from section 4 we obtain in the SM

AµFB = −0.0048± 0.0003 ,
AτFB = −0.259± 0.004 .

(5.9)

We do not provide the SM prediction for the electron mode, since it is indistinguishable
from zero. Our results are in reasonable agreement with the RBC/UKQCD results [35],
but are more precise.4

The flat term FH [61, 62] is another observables that arises in the normalized angular
distribution. In the SM it is proportional to the lepton mass and therefore small. This
makes it an appropriate candidate for a BSM probe, too. It can be defined as

F `H = 1 + 2
3

1
Γ(B̄ → π`−ν̄`)

d2

d(cos θ)2

[
dΓ(B̄ → π`−ν̄`)

d cos θ

]
= 1 + 2

3C
`
F , (5.10)

and is therefore related to the convexity parameter C`F . With our results for the form
factors from section 4 we obtain in the SM

FµH = 0.0024± 0.0001; F τH = 0.134± 0.003 . (5.11)

We do not provide the SM prediction for the electron mode, since it is indistinguishable
from zero.

As a final BSM probe we investigate the integrated normalized τ polarization asym-
metry, which can be expressed as

P τ =
Γ(B̄ → πτ−↑ ν̄τ )− Γ(B̄ → πτ−↓ ν̄τ )

Γ(B̄ → πτ−ν̄τ )
, (5.12)

where τ↑,↓ denotes the tau helicities λτ = ±1/2. With our results for the form factors from
section 4 we obtain

P τ = −0.21± 0.02. (5.13)

6 Conclusions

We study the B̄ → π form factors and use their numerical results from QCD-based methods
to update the exclusive determination of |Vub| from B̄ → π semileptonic decays and the
SM predictions of a number of phenomenologically interesting observables.

We begin by revisiting the determination of the form factors using light-cone sum
rules with π distribution amplitudes. Our analysis includes the full set of local B̄ → π

form factors of dimension-three currents. For the first time, we apply a threshold setting
procedure based on Bayesian inference to the full set of these form factors. Beside the

4Note that the convention for lepton helicity angle in ref. [35] differs from our by a sign, which is also
affecting the overall sign of AFB.
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thresholds, we are also able to infer a value for the (unphysical) Borel parameter that is
mutually compatible among all three form factors.

Our results for the form factors, obtained at small momentum transfer q2, are then
extrapolated to large q2 by applying a standard BCL parametrization. We show that this
extrapolation agrees well with precise lattice QCD results for the form factor f+ and fT .
However, in order to ensure good agreement also for the form factor f0, we find that its
parametrization needs to be modified. We stress that for precise and consistent predictions
the correct treatment of the correlations in the pseudo data points is crucial, especially
between f+ and f0; this is sometimes overlooked in the literature. We provide correlated
results for the normalization and shape parameters of all form factors, including their
correlations through ancillary machine-readable data files.

Our predictions for the form factors agree very well with measurements of the q2

spectrum of the semileptonic decay B̄0 → π+`−ν̄`. Using its current world average we
determine |Vub| = (3.77 ± 0.15) · 10−3. Our result is in good agreement with the most
recent inclusive determination by Belle at the 1σ level, which removes the long-standing
tension between inclusive and exclusive |Vub| determinations.

The form factors at hand, we also compute SM predictions for a number of phe-
nomenologically interesting observables, such as the lepton-flavour universality ratio Rπ,
the leptonic forward-backward asymmetry AFB, the flat term FH and the τ polarization
Pτ . Based on our precise and correlated results for the form factors we obtain very pre-
cise predictions of the aforementioned observables. Their relative uncertainties range from
≈ 10% for the branching ratios to about 4% for some of the normalized observables. We are
looking forward to precision measurements of these observables by the Belle experiment,
which will further constrain the form factors and probe the SM at a precision level.
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A Supplementary information

In table 10 we provide the correlation matrix of the form factor pseudo data set obtained
from LCSRs.

F f+(−10) f+(−5) f+(0) f+(5) f+(10) f0(−10) f0(−5) f0(5) f0(10) fT (−10) fT (−5) fT (0) fT (5) fT (10)

f+(−10) 1.00 0.70 0.46 0.32 0.28 0.78 0.71 0.33 0.31 0.33 0.43 0.41 0.39 0.40

f+(−5) 0.70 1.00 0.68 0.58 0.55 0.68 0.81 0.58 0.56 0.45 0.62 0.59 0.56 0.57

f+(0) 0.46 0.68 1.00 0.63 0.62 0.42 0.67 0.63 0.60 0.43 0.60 0.58 0.55 0.56

f+(5) 0.32 0.58 0.63 1.00 0.63 0.28 0.56 0.62 0.60 0.40 0.56 0.55 0.52 0.54

f+(10) 0.28 0.55 0.62 0.63 1.00 0.24 0.53 0.62 0.62 0.40 0.56 0.55 0.54 0.56

f0(−10) 0.78 0.68 0.42 0.28 0.24 1.00 0.69 0.29 0.28 0.30 0.40 0.38 0.36 0.37

f0(−5) 0.71 0.81 0.67 0.56 0.53 0.69 1.00 0.57 0.54 0.44 0.61 0.58 0.55 0.56

f0(5) 0.33 0.58 0.63 0.62 0.62 0.29 0.57 1.00 0.61 0.40 0.56 0.55 0.53 0.54

f0(10) 0.31 0.56 0.60 0.60 0.62 0.28 0.54 0.61 1.00 0.40 0.56 0.55 0.53 0.55

fT (−10) 0.33 0.45 0.43 0.40 0.40 0.30 0.44 0.40 0.40 1.00 0.69 0.46 0.34 0.32

fT (−5) 0.43 0.62 0.60 0.56 0.56 0.40 0.61 0.56 0.56 0.69 1.00 0.66 0.58 0.57

fT (0) 0.41 0.59 0.58 0.55 0.55 0.38 0.58 0.55 0.55 0.46 0.66 1.00 0.62 0.62

fT (5) 0.39 0.56 0.55 0.52 0.54 0.36 0.55 0.53 0.53 0.34 0.58 0.62 1.00 0.64

fT (10) 0.40 0.57 0.56 0.54 0.56 0.37 0.56 0.54 0.55 0.32 0.57 0.62 0.64 1.00

Table 10. The correlation matrix between the LCSR form factors pseudo data points. The
momentum transfer is given as the argument in units of GeV2.

In figure 9 we provide contours of the two-dimensional marginalised posterior distri-
butions that involve |Vub| in the K = 3 and K = 4 scenarios of the fits to theory inputs
and experimental data.
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Figure 9. Contours of the two-dimensional marginalised posterior distributions of the K = 3
and K = 4 fits to both theory inputs and experimental data at 68% and 99% probability. For
a description of the fits, see section 5. The most recent Belle result [10] for the inclusive |Vub|
determination is shown as a gray line (central value) and band (uncertainty).
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