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Ina Erceg 1, Nadica Maltar-Strmečki 2 , Darija Domazet Jurašin 1, Vida Strasser 1 , Marija Ćurlin 3,
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Abstract: Understanding the effect that specific amino acids (AA) exert on calcium phosphate
(CaPs) formation is proposed as a way of providing deeper insight into CaPs’ biomineralization and
enabling the design of tailored-made additives for the synthesis of functional materials. Despite a
number of investigations, the role of specific AA is still unclear, mostly because markedly different
experimental conditions have been employed in different studies. The aim of this paper was to
compare the influence of different classes of amino acids, charged (aspartic acid, Asp and lysine,
Lys), polar (asparagine, Asn and serine, Ser) and non-polar (phenylalanine, Phe) on CaPs formation
and transformation in conditions similar to physiological conditions. The precipitation process was
followed potentiometrically, while Fourier transform infrared spectroscopy, powder X-ray diffraction,
electron paramagnetic spectroscopy (EPR), scanning and transmission electron microscopy were used
for the characterization of precipitates. Except for Phe, all investigated AAs inhibited amorphous
calcium phosphate (ACP) transformation, with Ser being the most efficient inhibitor. In all systems,
ACP transformed in calcium-deficient hydroxyapatite (CaDHA). However, the size of crystalline
domains was affected, as well as CaDHA morphology. In EPR spectra, the contribution of different
radical species with different proportions in diverse surroundings, depending on the type of AA
present, was observed. The obtained results are of interest for the preparation of functionalized CaPs’,
as well as for the understanding of their formation in vivo.

Keywords: amino acids; calcium phosphates; spontaneous precipitation; transformation

1. Introduction

The biomimetic approach in the development and synthesis of novel materials, es-
pecially hard tissue regeneration biomaterials, is constantly gaining in importance due
to the superior properties of natural biomaterials, which have not been achieved by any
engineered material to date [1–4]. In addition, it enables a more environmentally friendly
approach to advanced material production [5].

The key feature of the biomineralization, the process of hard tissue formation in
organisms, is the strict control that the organic matrix exerts over precipitation of the
inorganic component of the hard tissue in question [6–8]. In vitro investigations of the role
that specific components of the organic matrix and/or their building blocks play in the
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formation of inorganic biominerals have been utilized as a successful tool in the elucidation
of biomineralization and as a promising way of designing tailored additives for different
applications in biomedicine and biotechnology [9–13].

Among the 60 different types of biominerals, the most interesting to humans are
calcium phosphates (CaPs), the main inorganic component of vertebrate skeletons, which
are also prominent in pathological biomineralization [8,14]. Although CaPs are less
common than calcium carbonates (CaCO3) or silicon dioxide (SiO2), their role in ver-
tebrates makes them particularly important in biomedicine and materials science [1].
Fourteen chemically different calcium phosphate compounds are known [14]. The main
inorganic component of vertebrates’ hard tissue is poorly crystallized, nonstoichiomet-
ric hydroxyapatite (HA, Ca10(PO4)6(OH)2) or calcium-deficient hydroxyapatite (CaDHA,
Ca10−x(HPO4)x(PO4)6−x(OH)2−x, 0 < x < 1), substituted with sodium, magnesium or car-
bonate ions, which is often called “biological apatite”. The similarity with the bone mineral
makes other CaPs interesting for potential application as bone regeneration materials [14],
e.g., octacalcium phosphate (OCP, Ca8(HPO4)2(PO4)4·5H2O), calcium hydrogen phosphate
dihydrate (DCPD, CaHPO4·2H2O) and β – tricalcium phosphate (β-TCP, Ca3(PO4)2) [15].

The inclusion of additives, organic molecules, macromolecules and surfactants in the
precipitation system affects the rate and mechanism of CaP formation, as well as the proper-
ties of the formed solid phase(s) [15,16]. In vivo, proteins play a key role in controlling CaP
formation. Although more than 200 proteins can be found in the bone, about 90% of bone
protein content consists of collagen type I [4]. Investigating the influence of amino acids
(AAs), the building blocks of proteins, is considered an important approach to understand-
ing protein’s role in CaP formation in vivo. However, despite numerous investigations, the
role that individual AAs exert on CaPs formation is still not completely clarified [17]. One
of the key reasons for this is the diverse range of experimental conditions, which prevent a
straightforward comparison of the results obtained in different studies [16,18]. In addition,
AAs can modulate the growing crystalline through different types of interaction [18,19].

Constant composition experiments have shown that different classes of AAs, with
polar, hydrophobic, acidic or basic side groups, inhibit the crystal growth of HA by adsorp-
tion at crystal growth sites [20–25]. However, in spontaneous precipitation, inhibition [26]
and promotion [27–29] of, as well as no effect [30] on, the rate of CaP precipitation and/or
transformation were observed. Similarly, contradictory results regarding AAs’ influence
on crystal morphology were obtained [17,31,32].

In order to contribute to the elucidation of effects that specific AAs exert on the for-
mation of CaPs at conditions similar to physiological conditions, the influence of different
classes of AAs, i.e., charged (Asp, Lys) polar (Ser, Asn) and non-polar (Phe) (Figure S1),
on the spontaneous precipitation of CaPs and properties of the formed solid phases was
investigated in this work.

2. Materials and Methods

Analytical grade chemicals, calcium chloride dihydrate (CaCl2·2H2O), sodium hy-
drogenphosphate (Na2HPO4), sodium chloride (NaCl), L−lysine and L−asparagine were
obtained from Sigma Aldrich (Darmstadt, Germany), hydrochloric acid (HCl) was ob-
tained from Kemika (Zagreb, Croatia), while L−serine, L−phenylalanine and L−aspartic
acid were purchased from Alfa Aesar (Tewksbury, MA, USA). Milli-Q water (Millipore,
0.05 µS cm−1) was used in all experiments.

CaCl2·2H2O, Na2HPO4, NaCl and amino acid stock solutions were prepared from the
corresponding chemicals, which were dried overnight in a vacuum desiccator. The pH of
sodium hydrogenphosphate stock solution was adjusted to 7.4 using HCl.

2.1. Preparation of Precipitation Systems

Cationic and anionic reactant solutions were prepared by diluting the respective
CaCl2·2H2O and Na2HPO4 stock solutions to a concentration of c(CaCl2·2H2O) = c(Na2HPO4)
= 0.1 mol dm−3. Both reactant solutions contained 0.15 mol dm−3 NaCl to maintain the
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ionic strength of the precipitation system constant. The pH of the anionic solution was
adjusted to 7.4 using 0.1 mol dm−3 HCl. Amino acids were added to the anionic reactant
solution, and the pH was readjusted if needed.

The precipitation systems were prepared by the fast mixing of equal volumes (20 mL)
of equimolar cationic and anionic reactant solutions. The initial reactant concentrations
in precipitation systems were c(CaCl2·2H2O) = c(Na2HPO4) = 5 mmol dm−3, c(NaCl) =
0.15 mol dm−3, c(AA) = 1, 2.5 and 5 mmol dm−3 at pH = 7.4. The control precipitation
system (CS) contained no amino acids. The scheme of the experimental set-up is shown in
Figure S2, and the initial experimental conditions for precipitation experiments are given
in Table S1.

All experiments were performed at (25 ± 0.1) ◦C in a thermostated double-walled
vessel, with a total volume of 50 mL. The systems were magnetically stirred and the
precipitation process was followed by constantly monitoring pH changes (Metrohm 701
pH/ion meter). Based on pH vs. time curves, induction times for ACP transformation were
determined. The different rates of pH change in the stages in which ACP and crystalline
CaP form enable the determination of the induction time for secondary precipitation (ti),
as the time at the intersection of the tangents drawn on the first two sections of the pH vs.
time curve [33] (Figure S3). Samples for further analysis were taken after 10 and 60 min,
except for the precipitation system containing Ser, for which samples were taken after 60
and 150 min. The chosen periods enabled the characterization of precipitates formed in
different precipitation stages. Precipitates were filtered through a 0.45 µm Millipore filter
paper, washed three times with Milli-Q water and once with ethanol, and dried in a stream
of nitrogen. The samples were kept at 4 ◦C until further analysis.

2.2. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectra of formed precipitates were recorded on an FTIR spectrometer
equipped with an attenuated total reflection module (Tensor II, Brucker, Ettlingen, Ger-
many) in the range from 4000 to 400 cm−1 with a resolution of 4 cm−1. The recorded
spectra are the average of 16 scans.

2.3. Powder X-ray Diffraction (PXRD)

Powder XRD patterns were obtained using a Rigaku Ultima IV diffractometer (Tokyo,
Japan), operating at a voltage and current of 40 kV and 40 mA, respectively, in Bragg-
Bretano geometry using CuKα radiation and 5◦ Soller slits. XRD patterns were scanned
in 0.02◦ steps (2θ) in the 2θ range from 3.25◦ to 60.00◦, with a scan speed of 1◦ (2θ) min−1.
The baselines of powder XRD patterns were corrected and patterns smoothed using a
15-point Savitzky–Golay algorithm. The size of CaDHA crystalline domains along the [002]
direction was calculated using the Scherrer Equation (1) [26,34]

crystallite size =
kλ

FWHM cos(θ)
(1)

where k is the shape factor (k = 0.9), λ is the wavelength of Cu Kα radiation (λ = 0.154056 nm),
FWHM is full width at half maximum of the peak at 2θ 25.9◦ and θ is diffraction angle.

2.4. Scanning Electron Microscopy (SEM)

For SEM analysis, a small amount of dried sample was placed on double-sided carbon
tape. The morphology was observed by FE-SEM (JEOL JSM-7000F microscope, Tokyo,
Japan) and by a tungsten filament electron microscope (SEM; TESCAN VEGA 3 microscope,
Fuveau, France).

2.5. Transmission Electron Microscopy (TEM)

For TEM analysis, a drop of the suspension was placed on a copper grid covered
with a Formvar membrane. The excess solution was removed by filter paper and the
precipitate was washed three times with a drop of Milli-Q Water. After removing the
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excess water, the samples were dried in a stream of nitrogen and kept at 4 ◦C until further
analysis. Transmission electron microscopy images were obtained using a Zeiss TEM 902A
(Oberkochen, Germany), operated at 80 kV. Particle sizes from the TEM micrograph were
determined by means of the image analysis program ImageJ 1.48v (freely available at https:
//imagej.nih.gov/ij/index.html). At least 20 particles were measured for each sample.

2.6. Electron Paramagnetic Resonance Spectroscopy (EPR)

The EPR spectra were collected by a house-modified Varian E-109 spectrometer (Santa
Clara, CA, USA) using a Bruker ER 041 XG microwave bridge working at X-band (i.e., a
microwave frequency of 9.3 GHz) at room temperature (25 ◦C). The temperature in the
EPR cavity was controlled by a Bruker ER 4111 temperature controller (Billerica, MA, USA)
using a nitrogen gas flow with an accuracy of 0.2 ◦C. A Mn2+/MgO standard reference
was used to calibrate the magnetic field of the EPR spectrometer. Radicals induced by
gamma irradiation in the presence of air in all investigated samples, using a 60Co gamma
ray source of the Rud̄er Bošković Institute [35], to a cumulative dose of 25 kGy, have been
used to facilitate detection by EPR spectroscopy. No EPR signal could be detected for the
empty sample tube or non-irradiated samples. The EPR spectra were simulated with a
custom-built program in MATLAB (T he MathWorks Inc., Natick, MA, USA) using the
EasySpin program package [36] to obtain the spectral parameters.

3. Results
3.1. Influence of Amino Acids on the Rate of CaP Transformation

In vitro, at conditions close to physiological (neutral or slightly basic solutions), CaPs
usually precipitate in two steps [15,37–39]. The first step is the formation of amorphous
calcium phosphate (CaxHy(PO4)z·n H2O (3 < n < 4.5), ACP). Depending on experimental
conditions, ACP can be further transformed into OCP, CaDHA or HA [33,38,40]. Re-
cent studies provided evidence that amorphous and metastable CaP phases have similar
precursor roles in hard tissue formation [41,42].

During CaP precipitation, pH changes reflect different stages of the precipitation and
transformation processes. Therefore the reaction progress can be followed by monitoring
the pH changes in the system of interest [33,43–46]. Typically, sigmoidal pH vs. time curves
are obtained, in which [33,43–47]:

− In the initial precipitation stage (stage I), slight or negligible pH changes are observed,
which correspond to the formation of ACP;

− A subsequent rapid decrease in pH (stage II) is associated with secondary precipitation
of crystalline phase upon the formation of ACP;

− A final slight pH change (stage III) corresponds to the solution-mediated crystal
growth and phase transformation of the crystalline phase formed in stage II.

In the pH vs. time curve of the control system (Figure 1) the three stages of the
precipitation process can be clearly distinguished. However, in the presence of AAs, a
difference in the shape of the stage I can be observed. Indeed, the pH changes in these
systems are no longer continuous, as two regions of somewhat different rates of pH
decrease can be observed. The difference from the behavior of the control system becomes
more pronounced with an increase in the AAs concentration. Such behavior is usually
ascribed to the difference in the pathway of ACP to crystalline phase transformation, caused
by the change in the experimental conditions, e.g., the presence of additives [43,48,49].

The stability of ACP is reflected in the length of stage I, i.e., in the time elapsed
from the initiation of the precipitation to the beginning of secondary precipitation, the
so-called induction time. A longer induction time points to the greater stability of ACP, as
its transformation to the crystalline phase is delayed [33]. The induction times obtained in
the control system and in the presence of different AAs concentrations are given in Table 1.
Although no straightforward correlation between induction times and AAs concentration
is observed, it can be concluded that the dominant effect of the investigated AAs on
ACP transformation at the highest concentrations applied is inhibition. Thus, the most

https://imagej.nih.gov/ij/index.html
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pronounced inhibition was observed in the presence of 5 mmol dm−3 Ser. However, the
promotion of ACP transformation was also observed, i.e., in the presence of 1.0 mmol dm−3

Lys, 2.5 mmol dm−3 Asp, and 5 mmol dm−3 Phe and Asn. The most effective promotor
was nonpolar Phe.
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Figure 1. Representative pH vs. time curves obtained in the control system and systems containing
amino acids: (a) aspartic acid (Asp), (b) lysine (Lys), (c) asparagine (Asn), (d) serine (Ser) and
(e) phenylalanine (Phe). c(CaCl2·2H2O) = c(Na2HPO4) = 5 mmol dm−3, c(NaCl) = 0.15 mol dm−3,
pHinitial = 7.4, ϑ = (25.0 ± 0.1) ◦C, magnetic stirring.

Table 1. Average induction times (ti) and corresponding standard deviations obtained from pH
vs. time curves from 3 measurements in the control system (CS) and systems containing amino
acids. c(CaCl2·2H2O) = c(Na2HPO4) = 5 mmol dm−3, c(NaCl) = 0.15 mol dm−3, pHinitial = 7.4,
ϑ = (25.0 ± 0.1) ◦C, magnetic stirring. Asp—aspartic acid, Lys—lysine, Asn—asparagine, Ser—serine,
Phe—phenylalanine.

(ti ± SD)/min

c(AA)/mmol dm−3 Asp Lys Asn Ser Phe

0 (CS) 18.2 ± 0.5
1.0 21.4 ± 1.5 17.4 ± 1.1 21.5 ± 0.7 20.3 ± 1.0 18.8 ± 1.1
2.5 16.4 ± 0.5 19.7 ± 0.3 22.2 ± 0.2 18.8 ± 1.6 20.8 ± 0.5
5.0 23.1 ± 0.2 19.3 ± 0.1 16.7 ± 0.9 113.7 ± 6.3 15.9 ± 0.1
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Despite the generally recognized importance of revealing the specific amino acids’
influence on understanding proteins’ role in precipitation processes, there is still no clear
conclusion regarding their inhibiting or promoting mechanism. AAs can either decrease
the solution supersaturation through the complexation of calcium or phosphate ions or
they can interact with the solid phase by non-specific adsorption at surfaces or at growing
sites [20–25], which both intuitively lead to inhibition [18]. It should be noted that the AAs
affinity towards the solid phases, which appear in biomineralization, is influenced by the
overall charge and the charge of specific AAs segments, their ability to form chemical bonds,
and their stereochemical or geometrical properties [18,20,21,31,50–52]. In addition to the
complexity in the mechanism of action, the reason for contradictory results also lies in the
fact that the employed experimental conditions (reactant concentration, temperature, mode
of mixing) and experimental setup (seeded growth, constant composition, spontaneous
precipitation) vary considerably between different studies. In a pH free-drift experimental
setup, similar to the one employed in this study, Yang et al. [27] have shown that Asp,
glycine (Gly) and Lys at a 1.0 mmol dm−3 concentration additionally reduce the induction
and transformation times, even in the presence of known inhibitors, such as Mg2+ ions.
The most efficient promotor was Lys. Contrary to this, Tavafoghi Jahormi et al. [26] have
determined that positively charged arginine (Arg) more effectively inhibits HA nucleation
than negatively charged glutamic acid (Glu), using a 10 times higher AAs concentration.
The observed effect, determined by the change in turbidity, was attributed to the ability
of Arg to interact more strongly with both calcium and phosphate ions than Glu. On the
other hand, Ser present at low concentrations (up to 0.07 mmol dm−3) did not influence
induction time [30]. In our recent study, we investigated the influence of different classes
of amino acids on CaPs’ seeded growth [52]. In the case of OCP-seeded crystals, Ser was
the most efficient inhibitor, while Phe was the most efficient promotor of CaP formation,
similar to the behavior observed in this study. The effect of Phe could be ascribed to its
molecular structure, i.e., the presence of an aromatic ring in the side group, which can act
as an electron donor [20,21].

3.2. Influence of Amino Acids on the Properties of Formed CaPs

In order to gain additional insight into the observed behaviour of AAs, the precipitates
formed in the presence of the highest AA concentration investigated in this study were
analysed after 10 and 60 min (60 and 150 min in the case of Ser) reaction time.

PXRD patterns of the precipitates formed in the control system and systems containing
5 mmol dm−3 AAs (Figure 2a) contained only broad amorphous diffraction maxima in the
8–18◦ and 20–36◦ 2θ region, thus indicating that, in all systems, in the initial stage of the
precipitation process, ACP was formed [53,54].

FTIR spectra (Figure 2b) confirmed the PXRD results. In the spectrum of the precip-
itate formed in the control system phosphate, the water bands characteristic of calcium
phosphates [55,56] were observed: bands at 1283 cm−1 and 859 cm−1 characteristic of the
HPO2−

4 group, ν3c triply degenerate asymmetric stretching mode of PO3−
4 at 1059 cm−1,

ν4b triply degenerate bending mode of PO3−
4 at 572 cm−1, and a broad band between

3704 and 2797 cm−1 and a band at 1644 cm−1, characteristic of water. The formation of
the ACP was confirmed by the absence of phosphate bands’ splitting, corresponding to
asymmetric stretching and bending mode [53,57]. In the spectra of the precipitates formed
in the presence of AAs, changes in the wavenumbers of ν3c triply degenerate asymmetric
stretching mode of PO3−

4 and the lower wavenumber of the HPO2−
4 group were observed.

In addition, in the case of Lys and Phe, low-intensity broad bands characteristic of COO−

asymmetric stretching [32] were noted at around 1555 cm−1 and 1444 cm−1 (the latter
observed only in the presence of Lysine). Additionally, in the FTIR spectra of the precipitate
formed in the presence of Ser, the intensity of the water band at 1643 cm−1 decreased, while
the band at around 1283 cm−1 was not observed.
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In addition to changes in FTIR spectra, changes in the morphology of ACP par-
ticles were observed by TEM (Figure 3). In the control system, after 10 min reaction
time (Figure 3a), chain-like aggregates of spherical particles typical of ACP were ob-
served [33,40,54]. The average diameter of these particles was 143.5 ± 24.8 nm. A similar
ACP morphology was observed in the presence of Ser (Figure 3e) as, after 60 min, the
precipitation process was still at the beginning of the initial precipitation stage (Figure 1d).
The average size of particles was 64.5 ± 9.9 nm. In the presence of other investigated AAs,
more profound morphological changes were observed. In the presence of Asp, a denser
precipitate with a still-visible, chain-like structure was observed (Figure 3b), while, in the
presence of Lys and Asn, a denser precipitate in which needle-like crystals had begun to
form was observed (Figure 3c,d). In the presence of Phe, a granular gel-like phase was
formed (Figure 3f). The observed difference in the morphology of ACP formed in the
presence of AAs confirms the results of potentiometric measurements, which indicated
a change in transformation mechanism compared to the control system, i.e., the possible
formation of another amorphous phase, ACP2 [48].
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Figure 3. TEM micrographs of the precipitates formed after 10 min reaction time (60 min in case of
Ser) in (a) control system and in the presence of 5 mmol dm−3 (b) aspartic acid (Asp), (c) lysine (Lys),
(d) asparagine (Asn) (e) serine (Ser) and (f) phenylalanine (Phe). c(CaCl2·2H2O) = c(Na2HPO4) =
5 mmol dm−3, c(NaCl) = 0.15 mol dm−3, c(AA) 5 mmol dm−3, pHinitial = 7.4, ϑ = (25.0 ± 0.1) ◦C,
magnetic stirring.

After 60 min (150 min in the case of Ser) reaction time, in all investigated precipitation
systems, ACP transformed to CaDHA, as indicated by PXRD diffractograms and FTIR
spectra (Figure 2c,d). In the diffractogram of the control system (Figure 2c), prominent
reflections at 2θ 25.97◦ and 32.10◦ were observed, as well as low-intensity reflections at 2θ
28.52◦, 39.53◦, 46.62◦, 49.51◦ and 53.25◦, characteristic of CaDHA [32,53,58]. In the FTIR
spectra, in comparison to the spectra of ACP, formed after 10 min, two new bands were
observed: the ν3a triply degenerate asymmetric stretching mode of PO3−

4 at 1119 cm−1

and ν4a triply degenerate bending mode of PO3−
4 at 606 cm−1. In addition, splitting of

the phosphate band at 1034 cm−1, corresponding to the stretching mode of PO3−
4 , and at

606 cm−1, corresponding to the bending mode of PO3−
4 , can be observed, confirming the

formation of CaDHA.
In the presence of AAs, precipitates of lower crystallinity than seen in the CS were

obtained. The most crystalline were the precipitates formed in the presence of Asn and
Phe. Their diffractograms contained all reflections, as in the CS, except for the one at
2θ 39.53◦. The diffractogram of precipitate formed in the presence of Ser contained only
the most prominent reflections at 2θ 25.83◦ and 31.99◦, indicating that poorly crystalline
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CaDHA had formed in this system. In order to additionally investigate the influence of
AAs on the structure of CaDHA, the size of crystalline domains along the [002] direction
was determined (Table 2). Asp was the most effective in reducing the size of the crys-
talline domain. Such a strong Asp effect was observed in previous studies [17,32,59]. The
crystalline domain size was also reduced in the presence of Ser, which is consistent with
some other investigations [17,59]. On the contrary, in the presence of Phe, the size of the
crystalline domain increased, while in the presence of Lys and Asn, it was not significantly
different from that of the control system. The behavior of Asn is in contrast to that observed
in the study of Gonzalez-McQuire et al. [17], where much higher reactant concentrations
were used. Previous studies showed that AAs are able to inhibit HAP particle and crystal
growth, with charged AAs being more effective than non-charged AAs [18].

Table 2. Size of crystalline domains along the [002] direction of CaDHA formed after 60 min
reaction time (150 min in the case of Ser) in the control system (CS) and in the presence of 5 mmol
dm−3 aspartic acid (Asp), asparagine (Asn), serine (Ser), lysine (Lys), and phenylalanine (Phe).
c(CaCl2·2H2O) = c(Na2HPO4) = 5 mmol dm−3, c(NaCl) = 0.15 mol dm−3, c(AAs) 5 mmol dm−3

,

pHinitial = 7.4, ϑ = (25.0 ± 0.1) ◦C, magnetic stirring.

D002/nm

CS 17.40
Asp 14.10
Lys 17.50
Asn 17.50
Ser 16.10
Phe 19.60

In the FTIR spectra of precipitates formed in the presence of AAs after 60 min reaction
time (150 min in the case of Ser, Figure 2d), the changes in wavenumbers of ν3c triply
degenerate asymmetric stretching mode of PO3−

4 and lower wavenumber band of the
HPO2−

4 group observed after 10 min reaction time are still present. A band characteristic
of the ν1 nondegenerate symmetric stretching mode of PO3−

4 at around 960 cm−1 was
detected. In contrast, this band was not present in the spectrum of the CS and the spectra
of the precipitates formed in the presence of AAs after 10 min reaction time. No bands
characteristic of AAs were observed, probably due to the greater amount of formed CaP.

To gain more insight into the influence of AAs on local ordering in the CaDHA,
crystal lattice EPR spectroscopy was performed. No signal was detected in EPR spectra,
before precipitate irradiation, confirming the purity of the applied preparation pathway,
with no traces of metal or other impurities. Thus, radiation-induced radicals were used
to monitor structural changes within different samples. In Figure 4. the experimental
and simulated EPR spectra of irradiated CS and precipitates formed in the presence of
AAs are shown. For irradiated samples, the main stable component can be assigned to
CO−

2 . In previous studies [60–67], it was shown that the EPR spectra of biological, as
well as synthetic carbonated calcium apatites, exhibit a complex EPR signal at around
g = 2, which comprises several powder spectrum contributions arising from different
paramagnetic species (CO−

3 , CO3−
3 , CO−

2 , O−
3 , O−) stabilized in different locations (at

hydroxyl, phosphate or surface sites) or from the same species, recognized by the difference
in g anisotropy. However, as the EPR spectra of apatite are strongly dependent on the
conditions of sample preparation (CO2 flow, drying temperature, annealing procedure,
etc.) [60,63,68], a further analysis was performed.
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Figure 4. Experimental and simulated EPR spectra of the precipitates formed after 60 min reaction
time (150 min in the case of Ser) in (a) control system and in the presence of 5 mmol dm−3 (b) as-
partic acid (Asp), (c) lysine (Lys), (d) asparagine (Asn), (e) serine (Ser) and (f) phenylalanine (Phe).
c(CaCl2·2H2O) = c(Na2HPO4) = 5 mmol dm−3, c(NaCl) = 0.15 mol dm−3, c(AAs) 5 mmol dm−3

,

pHinitial = 7.4, ϑ = (25.0 ± 0.1) ◦C, magnetic stirring.

In our study, the total intensities in terms of the area of EPR absorption normalized
to mass (i.e., proportional to radiation-induced radical concentration) were not different
regarding the range of measurement error in the presence of AAs. However, by using
phenomenological parameters, such as R-value [61,62], line-shape deviations due to the
CO3−

3 centre, caused by the presence of different AAs during precipitation, can be observed,
confirming that AAs indeed influence the local ordering. The definition of the R-value is
given in Figure S4. The differences in obtained R-value are shown in Table 3. It should be
noted that the R-value of the sample obtained in the presence of Asp is 55.03% higher than
the R-value obtained for the CS. A similar increase was obtained for the system containing
Ser, which was 17.85% higher than CS, in line with the decrease in the size of crystalline
domains along [002]. On the contrary, in the presence of Phe, the obtained R-value is
slightly smaller. The observed effect can be ascribed to the two CO3−

3
-radicals present in

different proportions in diverse surroundings, depending on the type of AA present. A
simulation of the experimentally recorded EPR spectra confirms these results, as the weight
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fraction of each spectral component depends on the environmental surroundings, i.e., the
presence of different AA types, as shown in Table 4. The spectra are mainly composed of
a CO−

2 and axial CO3−
3 radical contributions. Furthermore, the EPR spectra of irradiated

samples of Asp, Lys and Ser consist of two axial CO−
2 radical components, while Asn

contains one axial and one isotropic contribution, which indicates that the CO−
2 radical

is located in the crystal lattice in several slightly different environments, depending on
the AA present [60]. At least one of the corresponding radicals is formed in the interior of
the precipitate, while the other is created near the surface. Only Asn can be represented
by two axial CO3−

3 radical contributions. One component can be assigned to CO3−
3 at a

phosphate site, while the other can be assigned to the CO3−
3 on the surface or occupy a

hydroxyl site [63].

Table 3. R-values of the powdered irradiated precipitates formed after 60 min reaction time (150 min
in case of Ser) in control system (CS) and in the presence of 5 mmol dm−3 aspartic acid (Asp),
lysine (Lys), asparagine (Asn), serine (Ser) and phenylalanine (Phe). c(CaCl2·2H2O) = c(Na2HPO4) =
5 mmol dm−3, c(NaCl) = 0.15 mol dm−3, c(AAs) 5 mmol dm−3

, pHinitial = 7.4, ϑ = (25.0 ± 0.1) ◦C,
magnetic stirring.

R-Value

CS 0.5505
Asp 0.8535
Lys 0.5821
Asn 0.5714
Ser 0.6487
Phe 0.5477

Table 4. Radical species identified in the EPR spectra of samples with extracted EPR parameters and
weight based on spectra simulation. Asp—aspartic acid, Lys—lysine, Asn—asparagine, Ser—serine,
Phe—phenylalanine.

Sample CS Asp Lys Asn Ser Phe

Species

orth. CO−
2

gx=2.0022
gy=1.9973
gz=2.0034

53.46% 44.63% 35.11% 13.82% 70.64% 75.51%

orth. CO−
2

gx=2.0034
gy=1.9973
gz=2.0017

– 28.50% 9.79% - 21.40% –

iso. CO−
2

go=2.0008
– – – 2.48% – 11.35%

axial CO3−
3

gx=2.0039
gy=2.0039
gz=2.0014

– – 55.10% 45.52% – –

axial CO3−
3

gx=2.0044
gy=2.0044
gz=2.0020

46.54% 26.87% – 38.18% 7.96% 13.14%

SEM micrographs (Figure 5) show that AAs only slightly influence CaDHA morphol-
ogy. Thus, in CS, after 60 min reaction time, irregular aggregates of large, thin, plate-like
crystals are obtained. A precipitate of similar morphology was obtained in the presence of
Phe. However, in the presence of the other amino acids applied, spherical aggregates of
smaller and less-developed, thin, plate-like crystals were obtained.
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Figure 5. SEM micrographs of the precipitates formed after 60 min reaction time (150 min in the
case of Ser) in (a) control system and in the presence of 5 mmol dm−3 (b) aspartic acid (Asp),
(c) lysine (Lys), (d) asparagine (Asn) (e) serine (Ser) and (f) phenylalanine (Phe). c(CaCl2·2H2O) =
c(Na2HPO4) = 5 mmol dm−3, c(NaCl) = 0.15 mol dm−3, c(AAs) 5 mmol dm−3

, pHinitial = 7.4, ϑ =
(25.0 ± 0.1) ◦C, magnetic stirring.

Several studies have investigated the effect of AAs on HA morphology or transfor-
mation. Matsumoto et al. [59] reported that, in the presence of AAs such as Gly, Ser, Asp
and Glu flake-like particles consisting of nano-sized platelets are formed. The flake-like
morphology was also observed in their control sample. However, the platelets in this
sample were much larger and thicker than those observed in the presence of AAs, which is
consistent with our results. These AAs also reduce the degree of crystallinity in the HA [59].
The flake-like HA morphology was also reported by Eiden -Abmann et al. in the presence
of AAs such as Asp, Glu or Ser [69].

4. Conclusions

The influence of different classes of AAs, namely, charged (Asp, Lys), polar (Asn, Ser)
and non-polar (Phe), was investigated at conditions similar to physiological conditions. In
the range of applied concentrations, AAs influence the ACP transformation mechanism,
stability and morphology. All AAs except Phe inhibited the ACP transformation at higher
concentrations, with Ser and Asp being the most efficient. Nevertheless, except for Ser, the
investigated AAs influenced ACP morphology.
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None of the investigated AAs influenced the composition of the CaDHA, which is
formed in the later precipitation stage. However, the size of crystalline domains along the
[002] direction decreased in the presence of Asp and Ser and increased in the presence
of Phe. The observed changes were corroborated by EPR results, which indicate that the
presence of diverse AAs differently affects the local microstructure of CaDHA. In addition,
spherical aggregates of smaller, less-developed, thin, plate-like crystals, as compared to the
control system, were obtained in the presence of Asp, Lys, Asn and Ser.

The observed differences in the effects that AAs exert on CaP precipitation, as well as
the difference in the behavior of AAs of the same class, indicates that classification based
on charge and polarity is not satisfactory to explain the different effects. Rather, these
relatively simple molecules should be studied as specific entities.

The obtained results point to the likely complex role of AAs in biological mineral-
ization, but also to a rather simple method of controlling CaPs properties, which are of
importance in the preparation of multifunctional bone regeneration materials.
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10.3390/cryst11070792/s1, Figure S1: Schematic representation of the structure of investigated
amino acids: (a) aspartic acid (Asp), (b) lysine (Lys), (c) asparagine (Asn), (d) serine (Ser) and
(e) phenylalanine (Phe), Figure S2: Schematic illustration of precipitation experiments, Figure S3:
Determination of the induction time (ti) as the intercept between two tangents drawn on the first
two parts of the pH vs time curve, Figure S4: Definition of R-value: R=I2/I1, Table S1: Experimental
conditions for precipitation experiments.
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resources, D.K.; data curation, I.E. and M.D.S.; writing—original draft preparation, I.E. and M.D.S.;
writing—review and editing, I.E. and M.D.S.; visualization, I.E. and V.S.; funding acquisition, D.K.
and M.D.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been financially supported by the Croatian Science Foundation under project
IP-2013-11-5055.

Acknowledgments: B.R. gratefully acknowledges financial support from the European Regional
Development Fund for the “Center of Excellence for Advanced Materials and Sensing Devices”
(Grant No. KK.01.1.1.01.0001).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Nudelman, F.; Sommerdijk, N.A.J.M. Biomineralization as an Inspiration for Materials Chemistry. Angew. Chem. Int. Ed. 2012,

51, 6582–6596. [CrossRef] [PubMed]
2. Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. Mollusk Shell Formation: A Source of New Concepts for Understanding

Biomineralization Processes. Chem. A Eur. J. 2006, 12, 980–987. [CrossRef]
3. Dickerson, M.B.; Sandhage, K.H.; Naik, R.R. Protein- and Peptide-Directed Syntheses of Inorganic Materials. Chem. Rev. 2008,

108, 4935–4978. [CrossRef]
4. Weiner, S.; Wagner, H.D. THE MATERIAL BONE: Structure-Mechanical Function Relations. Annu. Rev. Mater. Sci. 1998,

28, 271–298. [CrossRef]
5. Falini, G.; Fermani, S. The Strategic Role of Adsorption Phenomena in Biomineralization. Cryst. Res. Technol. 2013, 48, 864–876.

[CrossRef]
6. Lowenstam, H.A.; Weiner, S. On Biomineralization; Oxford University Press: New York, NY, USA, 1989; ISBN 978-0-19-504977-0.
7. Crichton, R. Biomineralization. In Biological Inorganic Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 517–544.

ISBN 978-0-12-811741-5.
8. Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry; Oxford chemistry masters; Oxford University

Press: New York, NY, USA, 2001; ISBN 978-0-19-850882-3.
9. De, M.; Gosh, P.S.; Rotello, V.M. Applications of Nanoparticles in Biology. Adv. Mater. 2008, 20, 4225–4241. [CrossRef]
10. Gray, J.J. The Interaction of Proteins with Solid Surfaces. Curr. Opin. Struct. Biol. 2004, 14, 110–115. [CrossRef]
11. Hudson, S.P.; Cooney, J.; Magner, E. Proteins in Mesoporous Silicates. Angew. Chem. 2008, 47, 8582–8594. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/cryst11070792/s1
https://www.mdpi.com/article/10.3390/cryst11070792/s1
http://doi.org/10.1002/anie.201106715
http://www.ncbi.nlm.nih.gov/pubmed/22639420
http://doi.org/10.1002/chem.200500980
http://doi.org/10.1021/cr8002328
http://doi.org/10.1146/annurev.matsci.28.1.271
http://doi.org/10.1002/crat.201200711
http://doi.org/10.1002/adma.200703183
http://doi.org/10.1016/j.sbi.2003.12.001
http://doi.org/10.1002/anie.200705238
http://www.ncbi.nlm.nih.gov/pubmed/18833554


Crystals 2021, 11, 792 14 of 16

12. Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous Materials for Drug Delivery. Angew. Chem.-Int. Ed. 2007, 46, 7548–7558. [CrossRef]
[PubMed]

13. Fadeeva, I.V.; Fomin, A.S.; Sinel’nikov, A.A.; Kolyagin, Y.G.; Barinov, S.M. Effect of an Amino Acid on the Formation of Calcium
Phosphate Particles on Chitosan Macromolecules. Inorg. Mater. 2015, 51, 1017–1024. [CrossRef]

14. Dorozhkin, S.V. Calcium Orthophosphates. Application in Nature, Biology and Medicine; Pan Stanford Publishing: Singapore, 2012.
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51. Štajner, L.; Kontrec, J.; Njegić Džakula, B.; Maltar-Strmečki, N.; Plodinec, M.; Lyons, D.M.; Kralj, D. The Effect of Different Amino
Acids on Spontaneous Precipitation of Calcium Carbonate Polymorphs. J. Cryst. Growth 2018, 486, 71–81. [CrossRef]
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Čeh, M.; Gajović, A.; et al. How Similar Are Amorphous Calcium Carbonate and Calcium Phosphate? A Comparative Study of
Amorphous Phase Formation Conditions. CrystEngComm 2018, 20, 35–50. [CrossRef]

55. Koutsopoulos, S. Synthesis and Characterization of Hydroxyapatite Crystals: A Review Study on the Analytical Methods.
J. Biomed. Mater. Res. 2002, 62, 600–612. [CrossRef] [PubMed]

56. Mochales, C.; Wilson, R.M.; Dowker, S.E.P.; Ginebra, M.-P. Dry Mechanosynthesis of Nanocrystalline Calcium Deficient Hydrox-
yapatite: Structural Characterisation. J. Alloy. Compd. 2011, 509, 7389–7394. [CrossRef]

57. Combes, C.; Rey, C. Amorphous Calcium Phosphates: Synthesis, Properties and Uses in Biomaterials. Acta Biomater. 2010,
6, 3362–3378. [CrossRef] [PubMed]

58. Liou, S.-C.; Chen, S.-Y.; Lee, H.-Y.; Bow, J.-S. Structural Characterization of Nano-Sized Calcium Deficient Apatite Powders.
Biomaterials 2004, 25, 189–196. [CrossRef]

59. Matsumoto, T.; Okazaki, M.; Inoue, M.; Hamada, Y.; Taira, M.; Takahashi, J. Crystallinity and Solubility Characteristics of
Hydroxyapatite Adsorbed Amino Acid. Biomaterials 2002, 23, 2241–2247. [CrossRef]

60. Schramm, D.U.; Rossi, A.M. Electron Spin Resonance (ESR) Studies of CO2
− Radicals in Irradiated A and B-Type Carbonate-

Containing Apatites. Appl. Radiat. Isot. 2000, 52, 1085–1091. [CrossRef]
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