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Abstract: A 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DHBI-TPB) ion-pair im-
plemented in DHBI-TPB surfactant sensor was used for the potentiometric quantification of anionic
surfactants in detergents and commercial household care products. The DHBI-TPB ion-pair was
characterized by FTIR spectroscopy and computational analysis which revealed a crucial contribution
of the C–H···π contacts for the optimal complex formation. The DHBI-TPB sensor potentiometric
response showed excellent analytical properties and Nernstian slope for SDS (60.1 mV/decade) with
LOD 3.2 × 10−7 M; and DBS (58.4 mV/decade) with LOD 6.1 × 10−7 M was obtained. The sensor
possesses exceptional resistance to different organic and inorganic interferences in broad pH (2–10)
range. DMIC used as a titrant demonstrated superior analytical performances for potentiometric titra-
tions of SDS, compared to other tested cationic surfactants (DMIC > CTAB > CPC > Hyamine 1622).
The combination of DHBI-TPB sensor and DMIC was successfully employed to perform titrations
of the highly soluble alkane sulfonate homologues. Nonionic surfactants (increased concentration
and number of EO groups) had a negative impact on anionic surfactant titration curves and a signal
change. The DHBI-TPB sensor was effectively employed for the determination of technical grade
anionic surfactants presenting the recoveries from 99.5 to 101.3%. The sensor was applied on twelve
powered samples as well as liquid-gel and handwashing home care detergents containing anionic
surfactants. The obtained results showed good agreement compared to the outcomes measured by
ISE surfactant sensor and a two-phase titration method. The developed DHBI-TPB surfactant sensor
could be used for quality control in industry and has great potential in environmental monitoring.

Keywords: anionic surfactants; sensor; potentiometry; detergents; nonionic surfactants; household
detergents; molecular dynamics simulations

1. Introduction

Tensides or surfactants are surface active agents. There are four main types of surfac-
tants: anionic, cationic, nonionic and amphoteric. They are used for washing, cleaning and
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disinfection in broad varieties of industries [1]. Rapid industrialization, population growth
and increased standard of living have caused constant growth of surfactant demands. In
2019, the global surfactant market was estimated to be USD 39,901 million with a predicted
CAGR of 4.5% between 2020 and 2025 [2]. Anionic surfactants form the biggest part of the
global production (about 70%) with a forecasted CAGR of 4.2% for the period from 2020 to
2027 [2]. The growing demand for anionic surfactants is the result of the increased need
for home care, personal care applications and recently, for electric vehicles [2]. Nonionic
surfactants are amphipathic molecules. They consist of a lipophilic part (long alkyl chain or
fatty acid) and a hydrophilic part (ethylene oxide) of varying length. Nonionic surfactants
do not ionize in water.

In household applications, anionic surfactants are used in detergents or emulsifiers
for a variety of home products for washing and cleaning. They are utilized regularly
in combination with nonionic surfactants to enhance cleaning properties. They are also
employed as wetting agents in oil-in-water systems in beauty products to achieve stable
emulsions with the pigments and fillers dissolved in the water phase [3].

Because of the reduction of the water tension, prevention of the gas exchange on
the water surface and eutrophication, anionic surfactants have a negative influence on
the environment. They also induce the disintegration of cell membranes. Thus, the
development of new, simple, reliable and robust methods to control the levels of anionic
surfactants in a variety of products during their production and quality control as well as
in the environment is paramount and essential.

The classical method for the determination of low concentrations of anionic surfactants
is based on methylene blue active substances (MBAS) [4], whereas high concentrations can
be obtained by two-phase titration [5]. Both methods are widely used but they have many
drawbacks including their time-consuming character employment of the toxic chemicals
and requirement of a well-trained and experienced analyst. In contrast, ion selective
surfactant sensors could overcome the mentioned drawbacks, as they are simple, low-cost,
reliable and fast.

Except for the solid state surfactant sensors [6–8], they are usually based on the PVC
liquid-type sensor membrane incorporated in the electrode body or coated on a wire [9].
Sensor membrane usually consists of a high molecular weight PVC and a plasticizer in
a weight ratio 1:2 and an ionophore. The plasticizer softens the rigid PVC and allows
the ionophore to be dissolved in a high lipophilic medium. The ionophore is an ion-pair
synthesized by the reaction of high molecular weight anionic and cationic ions and/or
surfactants [10,11]. In order to prevent leaching in water and to decrease the lifetime,
the ionophore should have very low solubility in water and high lipophilicity, whereas
to increase the sensitivity and the lifetime, high stability is needed [12], leading to the
positive influence on the sensor properties such as higher sensitivity and broader effective
concentration range.

The development of the new ionophores is of crucial importance for the advancement
of novel surfactant sensors with better properties. Recently, our group [12,13] and oth-
ers [14] showed that the increase of the active surface and electrotransfer may be achieved
by the employment of the nanomaterials as ionophores that also provide higher signal
stability and lifetime. As nonionic surfactants have a negative influence on potentiometric
titrations and the end-point detection [15], it is important to investigate the influence of
nonionic surfactants on potentiometric curve shape, size and especially, the detection of
the end-point.

Recently we synthesized 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenyl-
borate (DHBI-TPB) and used it as a new long-chain quaternary ammonium cation with
high amphipathic character to detect cationic surfactants in personal care products and
disinfectants [16]. The aim of this communication is to investigate the performances of
developed DHBI-TPB surfactant sensor for the detection and quantification of the anionic
surfactants. The studies of the influence of nonionic surfactants on the device performances
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were also performed. Finally, newly developed DHBI-TPB electrode was employed for the
quantification of anionic surfactants in detergents and household care products.

2. Results
2.1. Computational Analysis

Computational analysis was performed to provide an insight into the dynamics and
behavior of the DHBI+ cation in the aqueous solution, and to identify intermolecular
interactions responsible for its complex formation with TPB−, particularly focused on
characterizing the DHBI-TPB complex through electronic, geometric and energetic features.

Despite having a rigid benzimidazole skeleton, DHBI+ is a very flexible molecule,
attributed to its two unconstrained lipophilic C-16 chains, whose flexibility over the anionic
TPB− counterpart is clearly evident in the calculated RMSD display (Figure S2). As the
following discussion will show, it is precisely this feature of DHBI+ that we identified as
crucial for its efficient recognition of TPB−.

DHBI-TPB complexation is a favorable event, yet the adduct formation and its dis-
sociation into components exchange over the simulation time. As an illustration, the
relevant B(TPB)···N(DHBI) distances stretch well beyond 40 Å, while assuming values
below 7 Å in around 22% of the obtained structures (Figure S3). Still, the MM-PBSA
binding free energy between DHBI+ and TPB− is exergonic at ∆GBIND = −5.0 kcal mol−1,
thus confirming the feasibility of the process. To put this number in a proper context and
given the highly favorable analytical features of the DHBI-TPB sensor, the calculated value
appears optimal as it needs to assure the stability of the ion-pair, but also the reversibility
of the salt formation and the potential exchange with other anionic analytes for sensing
purposes. The representative structure of the complex (Figure 1) reveals two types of favor-
able interactions, namely (i) the π–π stacking contacts between benzimidazole in DHBI+

and one of the phenyl rings in TPB−, and (ii) a range of C–H···π interactions that both
C-16 chains are forming with other phenyl rings in TPB−. Moreover, the corresponding
B(TPB−)···N(DHBI+) distances assume 4.8 and 5.1 Å, being in good agreement with the rel-
evant overall RDF graph that predicts the largest number of these interactions occurring at
5.4 Å (Figure S4), thus confirming the validity of the presented structure as representative.
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hydrogen atoms omitted due to clarity.
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Given the opposing charges on both constituents, one could assume that electrostatic
charge–charge attraction is governing the binding. Yet, this does not appear to be the
case following from the atomic charge analysis (Figure S5). It turns out that, prior to
binding, the benzimidazole unit within DHBI+ accumulates only a third of the excess
positive charge (0.33 |e|), while the rest is deposited within the C-16 chains—a situation
which is not changed even in the formed complex. In fact, upon the DHBI-TPB adduct
formation, only 2% of the charge is transferred among components, as the total atomic
charges on DHBI+ and TPB− are +1.02 and −0.98 |e|, which clearly excludes electrostatic
charge–charge attraction as predominant for the complex stability. Along these lines, by
analyzing structures during simulations and extracting those where the centers of mass
among benzimidazole in DHBI+ and either of the phenyls in TPB− are found below 4 Å, it
was revealed that only in 6.3% of structures did there occur notable π–π stacking contacts,
which renders this type of interaction as moderately important as well.

In contrast, what appears to be crucial for the DHBI-TPB complex formation are
C–H···π interactions between both C-16 chains in DHBI+ and phenyls in TPB− (Figure 1).
To confirm that, we have repeated MD simulations with two modified DHBI+ systems, in
which, firstly, one C-16 chain is replaced by the methyl group, and, secondly, both C-16
chains are substituted by methyls. In those cases, the matching binding free energy was
reduced by 0.7 kcal mol−1 to ∆GBIND = −4.3 kcal mol−1, for the system with one C-16
chain, and further, by as much as 3.3 kcal mol−1 down to ∆GBIND = −1.0 kcal mol−1, for the
system without C-16 chains. The latter strongly underlines the crucial importance of the
lipophilic chains for the design of useful analytical devices through allowing the formation
of efficient ion-pair sensors.

2.2. Sensor Characterization
2.2.1. Sensor Response to Anionic Surfactants

A Nernst Equation (1) describes the sensor potential response (E) on anionic surfac-
tants concentration (aA− ):

E = Eo − S × logaA− (1)

where

E= electromotive force of the system
Eo= constant potential term
S= sensor slope
aA−= anionic surfactant sensor activity

Response characteristics of a DHBI–TPB surfactant sensor were observed against
the SDS and DBS anionic surfactants in deionized water and 0.01 M Na2SO4 solution.
The Na2SO4 solutions were used to observe the response in high ionic strength solution.
Detailed data on the response characteristics and statistics are presented in Table 1. No-
tably, the high ionic strength did not lead to the strong effect on the surfactant sensor
characteristics, as the slope values, in mV per decade of activity, are near-Nernstian for SDS
(60.1 ± 0.5 and 59.7 ± 0.4 mV/decade) and DBS (58.4 ± 0.6 and 58.7 ± 0.5 mV/decade),
both in water and Na2SO4 solution. The correlation coefficients (R2) were in the range
from 0.9993 to 0.9995, meaning the signal was stable, with broad linear trend. Useful linear
concentration range for SDS in water was 4.6 × 10−7 to 5.1 × 10−3 M (LOD 3.2 × 10−7 M)
and 6.8 × 10−7 to 5.1 × 10−3 (LOD 4.2 × 10−7 M) in Na2SO4 solution, respectively. Useful
linear concentration ranges for DBS in water and Na2SO4 were 8.9 × 10−7 to 4.1 × 10−3 M,
with LOD 6.1 × 10−7 M.
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Table 1. Calculated response characteristics of DHBI-TPB surfactant sensor to anionic surfactants SDS and DBS measured in
H2O and Na2SO4 aq., at wide concentration range, with mean values at ±95% confidence limits.

Parameters

Anionic Surfactant

SDS DBS

In H2O In SO42− In H2O In SO42−

Slope (mV/decade) 60.1 ± 0.5 59.7 ± 0.4 58.4 ± 0.6 58.7 ± 0.5
Correlation coefficient (R2) 0.9993 0.9994 0.9995 0.9995
Limit of detection (M) 3.2 × 10−7 4.2 × 10−7 6.1 × 10−7 6.1 × 10−7

Useful linear
concentration range (M) 4.6 × 10−7 to 5.1 × 10−3 6.8 × 10−7 to 5.1 × 10−3 8.9 × 10−7 to 4.1 × 10−3 8.9 × 10−7 to 4.1 × 10−3

2.2.2. pH Influence and Interference Study

The pH influence on the response characteristics of the DHBI-TPB surfactant sensor
was measured in a broad pH range from 2 to 12. The signal change was stable and was
not affected by the pH change. Small changes in the signal were observed for pH 10 and
higher. The latter observations indicate that the DHBI-TPB sensor could also be used in
determination of anionic surfactants in commercial formulations.

Interference study was performed by incremental addition of SDS in 0.01 M interfering
ion solution. A fixed interference method [17] to calculate the logarithm of the selectivity
coefficient (log Kpot

An−
i.

) for all selected interfering anions commonly employed in the com-

mercial products formulations was used (Table 2). As presented, the concentration of SDS
was in the range from 4 × 10−6 to 4 × 10−3 M. The DHBI-TPB surfactant sensor showed
great selectivity for anionic surfactant SDS for all investigated inorganic and organic anions.

Table 2. Calculated logarithm of selectivity coefficient for different inorganic and organic anions
(0.01 M) mostly used in product formulations, measured with the DHBI-TPB surfactant sensor
for SDS.

Interfering Anions log Kpot
An−

i.

Chloride −3.92
Carbonate −4.03
Nitrate −3.93
Acetate −3.27
Sulfate −4.69
Borate −4.13
EDTA −4.57
Dihydrogenphosphate −3.75
Hydrogen carbonate −3.30
Benzoate −3.46
NaDBS −0.10
Xylensulfonate −3.48
Fluoride −4.12
Bromide −3.98
Hydrogen sulfate −3.82

2.3. Potentiometric Titrations
2.3.1. Titrant Selection

In order to select the best performing titrant, four analytical grade cationic surfactants—
Hyamine 1622, CPC, CTAB and DMIC (all 4 × 10−3 M), were used for the titrations of
SDS (4 × 10−3 M). The titration curves and their first derivatives (∆E/∆V) are presented
in Figure 2. First derivatives for all titration curves showed high potential change in
equivalence point. Although DMIC had superior properties as the highest signal change
(potential jump in equivalence point) and the highest first derivative signal change was
observed, the titration curves for Hyamine 1622, CPC and CTAB showed useful analytical
performances as well. In general, falling properties of cationic titrants were DMIC > CTAB
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> CPC > Hyamine 1622. Since DMIC was proven to be the superior titrant, not only for
high anionic surfactant concentrations, but also for very low concentrations, the latter was
used for further studies. The studied concentrations of anionic surfactants were in the
range usually found in commercial product formulations.
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(4 × 10−3 M) used as a titrant: Hyamine 1622 (black line), CPC (green line), CTAB (blue line) and DMIC (yellow line). Cor-
responding first derivatives are presented in red lines below titration curves. The titration curves and their first derivatives
are rearranged for the sake of clarity.

2.3.2. Titrations of Alkane Sulfonate Homologues

Alkane sulfonate homologues with short chain-lengths are exceptionally soluble in
water and therefore, are often difficult to analyze by potentiometric titrations as well as by
two-phase titrations. DMIC (4 × 10−4 M) showed excellent analytical properties (Figure 2)
and was tested as titrant in potentiometric titration of alkane sulfonate homologues with
chain-lengths from 7 to 11 having concentration 4 × 10−4 M. As shown in Figure 3, the titra-
tion curves had defined and sharp inflexion points with high potential signal change and
well-defined first derivative signal change, except for the shortest chain heptanesulfonate.
However, the titration curve for heptanesulfonate still possesses a visible inflexion point
and useful potential signal change, with moderately defined first derivative signal change.
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2.3.3. The Influence of Nonionic Surfactant on Titrations

Commercial formulations often contain a mixture of anionic surfactants and nonionic
surfactants, such as ethoxylated nonionic surfactants (EONSs). Nonionic surfactants are
usually used to enhance washing properties of commercial products. Thus, we also
examined the influence of EONSs on the potentiometric titrations of anionic surfactants.
We considered the different molar ratio of SDS and EONS having 10 EO groups as well
as S; the influence of the EONS’ number of EO groups on the potentiometric titrations
was studied.

Selected EONS having 10 EO groups employing cationic surfactant DMIC (4 × 10−3 M)
as a titrant and a DHBI–TPB surfactant sensor as an end-point indicator are presented in
Figure 4. Potentiometric titration curves for titration of mixtures with different molar ratio
of anionic surfactant SDS (4 × 10−3 M) are presented in Figure 5. Selected SDS to EONS
molar ratios were 1:0, 1:1, 1:2, 1:3 and 1:6. Increased molar ratio of EONS had a significant
negative influence on the shape, inflexion and the size of potentiometric titration curves.
With increased EONS molar ratio, the titration curve appeared more flattened. This might
negatively influence the direct potentiometric determination of the anionic surfactants in
the samples.
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Potentiometric titration curves for titration of the mixtures of anionic SDS (4 × 10−3 M)
and nonionic surfactant EONS with different number of EO groups (0, 6, 10 and 20 EO) at
fixed DS to EONS molar ratio (1:2), with cationic surfactant DMIC (4 × 10−3 M) as a titrant
and a DHBI–TPB surfactant sensor as an end-point indicator, are presented in Figure 5.
Increased number of EO groups had a significant negative influence on the shape, inflexion
and the size of potentiometric titration curves. As presented, the growing number of EO
groups induces a more flattened titration curve and for this reason it is harder to find the
end-point and it is more difficult to quantify the anionic surfactants in commercial samples.

2.3.4. Titration of Technical Grade Surfactants

Potentiometric titrations of four technical grade anionic surfactants (4 × 10−3 M)
with DMIC (4 × 10−3 M) as a titrant and the DHBI-TPB surfactant sensor as an end-point
indicator are shown in Figure 6. The titration curves exhibit sharp inflexion points and
high signal change with high first derivative signal change. Based on the titrations, the
falling properties of selected technical grade anionic surfactants could be described as DBS
> SDS > LES > SAS.

Molecules 2021, 26, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 6. Potentiometric titration curves of technical grade anionic surfactants (4 × 10−3 M) with 
DMIC (4 × 10−3 M) as a titrant and the DHBI-TPB surfactant sensor as an end-point indicator. Cor-
responding first derivatives are presented in red lines below titration curves. The titration curves 
and their first derivatives are rearranged for the sake of clarity in the following order: SAS (blue 
line), LES (green line), SDS (yellow line), DBS (black line). 

The accuracy of technical grade anionic surfactants determinations was estimated by 
the standard addition method, where an exact amount (30 µmol) of technical grade ani-
onic surfactants was added to the sample titrated with DMIC (4 × 10−3 M) as a titrant and 
with the DHBI-TPB surfactant sensor as an end-point indicator (Table 3). As shown, ex-
perimentally found and added amounts for all four anionic surfactants, i.e., dodecyl sul-
fate, dodecyl benzenesulfonate, lauryl ether sulfate and secondary alkane sulfonate, were 
in good agreement and the recoveries varied from 99.5 to 101.3%. Proposed DHBI-TPB 
surfactant sensor was successfully employed for technical grade surfactant titrations. 

Table 3. Potentiometric titration results of some technical grade anionic surfactants with DMIC (4 × 10−3 M) as a titrant and 
with the DHBI-TPB surfactant sensor as an end-point indicator, with mean values at ±95% confidence limits. 

Technical Grade Anionic Sur-
factant 

w (Surfactant) */% n (Added)/µmol n (Found) **/µmol Recovery/% RSD/% 

Dodecyl sulfate 92.51 ± 0.54 30 30.12 ± 0.07 100.4 0.22 
Dodecyl benzenesulfonate 47.73 ± 0.21 30 30.22 ± 0.05 101.0 0.31 
Lauryl ether sulfate 27.12 ± 0.09 30 29.85 ± 0.11 99.5 0.54 
Secondary alkane sulfonate 67.41 ± 0.48 30 30.38 ± 0.11 101,3 0.76 

* average on 5 determinations; ** average on 3 determinations. 

2.3.5. Titrations of Commercial Samples 
Twelve commercial samples of detergents for household care, containing anionic sur-

factants, were used to quantify anionic surfactant content by DHBI-TPB surfactant sensor 
(Table 4). The developed DHBI-TPB surfactant sensor method was compared to ISE sur-
factant sensor and with a two-phase titration method. Three groups of detergents were 

Figure 6. Potentiometric titration curves of technical grade anionic surfactants (4 × 10−3 M) with DMIC (4 × 10−3 M) as
a titrant and the DHBI-TPB surfactant sensor as an end-point indicator. Corresponding first derivatives are presented in
red lines below titration curves. The titration curves and their first derivatives are rearranged for the sake of clarity in the
following order: SAS (blue line), LES (green line), SDS (yellow line), DBS (black line).

The accuracy of technical grade anionic surfactants determinations was estimated
by the standard addition method, where an exact amount (30 µmol) of technical grade
anionic surfactants was added to the sample titrated with DMIC (4 × 10−3 M) as a titrant
and with the DHBI-TPB surfactant sensor as an end-point indicator (Table 3). As shown,
experimentally found and added amounts for all four anionic surfactants, i.e., dodecyl
sulfate, dodecyl benzenesulfonate, lauryl ether sulfate and secondary alkane sulfonate,
were in good agreement and the recoveries varied from 99.5 to 101.3%. Proposed DHBI-TPB
surfactant sensor was successfully employed for technical grade surfactant titrations.
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Table 3. Potentiometric titration results of some technical grade anionic surfactants with DMIC (4 × 10−3 M) as a titrant
and with the DHBI-TPB surfactant sensor as an end-point indicator, with mean values at ±95% confidence limits.

Technical Grade Anionic
Surfactant w (Surfactant) */% n (Added)/µmol n (Found) **/µmol Recovery/% RSD/%

Dodecyl sulfate 92.51 ± 0.54 30 30.12 ± 0.07 100.4 0.22
Dodecyl benzenesulfonate 47.73 ± 0.21 30 30.22 ± 0.05 101.0 0.31
Lauryl ether sulfate 27.12 ± 0.09 30 29.85 ± 0.11 99.5 0.54
Secondary alkane sulfonate 67.41 ± 0.48 30 30.38 ± 0.11 101,3 0.76

* average on 5 determinations; ** average on 3 determinations.

2.3.5. Titrations of Commercial Samples

Twelve commercial samples of detergents for household care, containing anionic
surfactants, were used to quantify anionic surfactant content by DHBI-TPB surfactant
sensor (Table 4). The developed DHBI-TPB surfactant sensor method was compared to ISE
surfactant sensor and with a two-phase titration method. Three groups of detergents were
analyzed: powdered (four samples), liquid-gel (four samples) and handwashing detergents
(four samples). The pH was adjusted to 3 to avoid the interfering effect of amphoteric
surfactants sometimes present in the product formulations.

Table 4. Results for potentiometric titration of commercial products containing anionic surfac-
tants by the DHBI-TPB surfactant sensor compared with ISE surfactant sensor and a two-phase
titration method.

Commercial Detergents
% Anionic Surfactant

DHBI-TPB ISE Surfactant
Sensor *

Two-Phase
Titration **

Powdered

sample 1 6.14 ± 0.09 6.03 6.38
sample 2 6.76 ± 0.15 6.88 6.86
sample 3 5.78 ± 0.06 5.68 5.45
sample 4 6.03 ± 0.07 6.11 6.08

Liquid-gel

sample 5 2.56 ± 0.07 2.49 2.66
sample 6 2.33 ± 0.06 2.31 2.19
sample 7 2.13 ± 0.11 2.09 2.01
sample 8 2.01 ± 0.04 2.12 2.22

Handwashing

sample 9 15.89 ± 0.19 15.76 15.64
sample 10 14.11 ± 0.11 14.14 14.31
sample 11 13.98 ± 0.07 13.88 13.72
sample 12 14.35 ± 0.21 14.41 14.48

* surfactant sensor presented in [15]; ** [5].

The results for five independent repetitions were in good agreement and within
expected errors for all the tested detergent formulations. Analyzed samples containing
handwashing detergent formulations showed the highest anionic surfactant content from
13.98 to 15.89%, powdered detergent samples anionic surfactant content was from 5.75 to
6.88% and liquid gel detergents had 2.01 to 2.56% of anionic surfactants, respectively.
Student’s t-test (at 95% confidence level) was applied to compare the difference between
the results of the two-phase titration or ISE surfactant sensor and those obtained with the
DHBI-TPB surfactant sensor. No significant difference was found between data sets.

3. Materials and Methods
3.1. Reagents and Materials

For direct potentiometric response measurements, anionic surfactant analytical grade
dodecylsulfate (SDS) and technical grade dodecylbenzenesulfonate (DBS) (all from Fluka,
Buchs, Switzerland), all sodium salts, were used. Analytical grade cationic surfactants used
for titrations were benzethonium chloride (Hyamine 1622), cetylpyridinium chloride (CPC),
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hexadecyltrimethylammonium bromide (CTAB) and 1,3-didecyl-2-methylimidazolium
chloride (DMIC) (all acquired from Merck, Munich, Germany).

Other technical grade anionic surfactants used for titrations were secondary alkane
sulfonate (SAS, Hostapur SAS 60, Hoechst, Germany), dodecyl sulfate (Texapon LS 35,
Cognis, Germany) and lauryl ether sulfate (LES, Texapon N 70, Cognis, Germany), all
sodium salts.

Analytical grade alkane sulfonate homologues were sodium heptanesulfonate, sodium
nonansulfonate and sodium undecanesulfonate (all acquired from Merck,
Munich, Germany).

Nonionic surfactants were Genapol O 060, Genapol O 100 and Genapol O 200 (all
from Clariant, Muttenz, Switzerland) with declared purity higher than 99%.

All salt solutions were prepared using analytical grade chemicals.
Twelve commercial detergents for household care (powdered, liquid-gel and hand-

washing) were purchased from the local stores.

3.2. Ionophore Characterization by FTIR

The DHBI–TPB ion-pair presented in Figure 7 was prepared by the procedure de-
scribed earlier [16]. ATR-FT-IR spectrometer Spectrum Two (Perkin Elmer, Waltham, MA,
USA) was used to characterize the DHBI–TPB ion-pair and to compare it with pure DHBI
and TPB (Figure S1).
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Figure 7. 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium tetraphenylborate (DHBI–TPB ion-pair).

3.3. Computational Details of Ionophore Characterization

DHBI+ cation was parameterized through RESP charges at the HF/6–31G(d) level
to be consistent with the employed GAFF force field, while TPB− anion was considered
according to literature recommendations [18]. The aforementioned ions were solvated in
a 15 Å rectangular box of water, which allowed for 7.528 solvent molecules, calculated
to match experimental solvent densities, and submitted to the geometry optimization in
the AMBER 16 program [19] by employing periodic boundary conditions in all directions.
Optimized systems were gradually heated from 0 to 300 K and equilibrated during 30 ps
using NVT conditions, followed by productive and unconstrained MD simulations of
300 ns, employing a time step of 2 fs at a constant pressure (1 atm) and temperature (300 K),
the latter held constant using a Langevin thermostat with a collision frequency of 1 ps−1.
The nonbonded interactions were truncated at 11.0 Å. The binding free energies among
components, ∆GBIND, were calculated using the established MM-PBSA protocol [19,20], all
in line with our earlier reports on similar systems [21–23]. For that purpose, every second
snapshot, 75.000 in total, collected from the entire MD trajectory, were utilized.

3.4. Preparation of Surfactant Sensor

The sensor membrane was prepared by the previously described procedure [16]. The
high molecular weight PVC (33%) was mixed with a plasticizer (66%) and the DHBI-TPB
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ionophore (1%). After drying, the sensing membrane was inserted in the electrode body
with 3 M NaCl inner electrolyte and used for further research.

3.5. Apparatus

Metrohm 794 Basic Titrino paired with Metrohm 781 pH/mV meter was used to
measure response characteristics, pH influence and interferences. Metrohm 808 Titrando
was employed for potentiometric titrations, nonionic surfactant influence study and real
sample titrations. A Metrohm pH electrode was used to check the pH and a Metrohm
silver/silver (I) chloride was used as a referent electrode for all investigations.

3.6. Procedure
3.6.1. Potentiometric Sensor Characterization

To fully characterize the DHBI-TPB surfactant sensor on anionic surfactants, response
measurements were performed. SDS and DBS anionic surfactants were incrementally
added to deionized water and 0.01 M Na2SO4 solution (for high ionic strength study).
Anionic surfactant concentrations of 4 × 10−3 M and 4 × 10−4 M were used to reach the
logarithmic activity range from approximately −2 to −8.

Interference study was performed by incremental addition of SDS in 0.01 M interfering
ion solution. A fixed interference method [17] to calculate the selectivity coefficient for all
selected interfering anions was employed.

The pH influence on DHBI-TPB surfactant sensor properties was observed in the pH
range 2–12. Corresponding amounts of 0.5 M HCl and 0.5 M NaOH were added to reach
certain pH values.

After each measurement, surfactant sensor was washed with deionized water.

3.6.2. Potentiometric Titrations

Potentiometric titrations were performed in dynamic equivalent point titration (DET)
mode with signal drift 5 mV/min. Waiting time between increments was 15 to 30 s.

An aliquot of 5 mL anionic surfactant was added to 20 mL deionized water and used
for titrations.

For titrations of SDS (4 × 10−3 M) four analytical grade cationic surfactants
(4 × 10−3 M) were used: Hyamine 1622, CPC, CTAB and DMIC. Four analytical grade
alkane sulfonate homologues (4 × 10−3 M) with different chain length—heptanesulfonate
(7C), nonansulfonate (9C) and undecanesulfonate (11C), were used for titrations with
DMIC (4 × 10−3 M).

The influence of nonionic surfactants on titrations of SDS (4 × 10−3 M) with DMIC
(4 × 10−3 M) was investigated by the addition of nonionic surfactants with 6 EO, 10 EO
and 20 EO groups and by varying 10 EO group nonionic surfactants in different molar
ratios with SDS.

Four technical grade anionic surfactants (4 × 10−3 M)—SAS, LES, SDS and DBS, were
used for titrations with DMIC (4 × 10−3 M). Twelve commercial detergents containing
anionic surfactants were used for titrations with DMIC.

After each measurement, surfactant sensor was washed with deionized water.

4. Conclusions

The 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DHBI-TPB)-based
surfactant sensor was successfully applied for the quantification of anionic surfactants
in commercial household detergent products. The DHBI-TPB surfactant sensor showed
excellent resistance to interferences produced by the different organic and inorganic anions
usually used in product formulations. The developed device could also be used in the
broad pH range from pH 2–10. The DHBI-TPB ionophore was successfully characterized by
ATR FT-IR. Computational analysis confirmed the formation of the DHBI-TPB ionophore
in the aqueous solution with optimal exergonicity to allow for the beneficial analytical
responses. In addition, it underlined C–H···π interactions as crucial for the recognition of
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the components, surpassing electrostatic charge–charge attractions and π–π stacking inter-
actions, both with moderate significance. DMIC was selected as the most reliable titrant
for the use in potentiometric titrations with DHBI-TPB surfactant sensor as an end-point
indicator. High solubility alkane sulfonate homologues with chain-lengths from 7 to 11
were successfully titrated with DMIC and DHBI-TPB surfactant sensor as an end-point
indicator. Nonionic surfactants had a negative impact on titration curves, shape, inflexion
and signal change of anionic surfactants when the EO concentration or the number of
EO groups was increased. The titration curves appeared more flattened; in addition, the
inflexion points were harder to detect from the first derivation curve. The DHBI-TPB sensor
was successfully tested to measure technical grade anionic surfactants concentrations with
recoveries from 99.5 to 101.3%. DHBI-TPB surfactant sensor was effectively employed
for quantification of anionic surfactants in twelve samples of powered, liquid-gel and
handwashing home care detergents. The results were compared with ISE surfactant sensor
and a two-phase titration method and showed good agreement.

Thus, the DHBI-TPB surfactant sensor has advantages not only in terms of analytical
properties, but also in terms of price, simplicity, speed and lack of need for the use of
organic solvents or other additives, compared to the usually employed two-phase titration
method. The DHBI-TPB surfactant sensor could be considered as a new and reliable
analytical tool and has a promising perspective for its implementation in industry for
quality control or in environmental monitoring.

Supplementary Materials: The following are available online, Figure S1: ATR-FT-IR spectra of
cationic surfactant 1,3-dihexadecyl−1H-benzo[d]imidazol−3-ium bromide (DHBI-Br), sodium ter-
aphenyl borate (Na-TPB) and ionophore 1,3-dihexadecyl−1H-benzo[d]imidazol−3-ium tetraphenylb-
orate (DHBI–TPB), Figure S2: RMSD graphs during the molecular dynamics simulation of the DHBI+
cation (in black) and TPB– anion (in red) in the aqueous solution, revealing a much higher flexi-
bility of the former, Figure S3: Time dependence of the distance between the boron atom in TPB–
and the nitrogen atoms in DHBI+ during the molecular dynamics simulation, indicating complex
formation in the equilibrium with dissociated components, Figure S4: RDF graph considering B(TPB–
)···N(DHBI+) distances during 300 ns of the molecular dynamics simulation 64with the maximum
value located at around 5.4 Å, Figure S5: Charge distribution within the DHBI+ cation and the TPB–
anion, either isolated or within the DHBI–TPB complex, as obtained through the NBO procedure at
the (SMD)/M06–2X/6–31+G(d) level of theory. Particular set of atoms considered for the analysis is
denoted with a color and includes the attached hydrogen atoms as well.
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