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Abstract: Plate-like calcite crystals with expressed unstable {001} planes are interesting research
model for investigations of interfacial interactions of different additive molecules, but also the
crystal growth mechanisms. The aim of this study is to reproducibly prepare a significant amount
of well-defined plate-like calcite crystals and to investigate the critical experimental parameters.
Thus, in precipitation system c(NaHCO3) = c(CaCl2) = 0.1 mol dm−3, the influence of hydrodynamic
parameters (mode of mixing of the reaction components) and a presence of lithium ions Li+ within a
wide range of concentrations, 0.0 mol dm−3 < c(Li+) < 1.0 mol dm−3, have been studied. In addition,
the kinetics of the solution mediated transformation of the initially formed metastable polymorph,
vaterite, were followed in order to reproducibly describe the formation of stable calcite with expressed
unstable morphology. The results indicate that the plate-like calcite is formed predominantly when
the ultrasound irradiation is applied at c(Li+) ≥ 0.3 mol dm−3. On the other hand, when the magnetic
and mechanical stirring are applied at higher Li+ concentrations, truncated rhombohedral crystals in
a mixture with plate-like crystals are obtained. It was also found that the Li+ addition significantly
prolonged the transformation, mainly by inhibiting the crystal growth of calcite.

Keywords: {001} plane; calcite; lithium ions; kinetic of transformation; stirring effect; calcite formation

1. Introduction

Calcium carbonate crystals, particularly those of calcite, are interesting model systems
for studying the interfacial interactions on crystal planes, namely, for any detailed analysis
of crystal growth kinetics and mechanisms, or investigation of basic molecular interactions
that may happen at the solid-liquid interfaces. To perform this investigation, crystal seed
material uniform in size and with well exposed crystallographic planes is necessary [1–6].
Calcite crystals of different morphologies may be precipitated from aqueous solutions
at different technological or environmental conditions or during the biomineralization
processes. Biologically produced calcium carbonate appears in many different shapes and
morphologies and typically builds exoskeletons of phytoplankton; sponges; echinoderms;
invertebrates (corals, mollusks and crustaceans) or eggshells, but they also occur in the
inner ear as the gravity receptor (otoliths) in mammals and fishes [7]. The morphology and
shape of these highly ordered organic-inorganic composites are controlled by biologically
active macromolecules that interact with specific crystal planes during their nucleation and
crystal growth [8]. These processes have been extensively studied on the molecular level in
order to understand the respective interactions and mechanisms of preparation of highly
functionalized composite materials [9–16].

Regular plate-like calcite crystals are a relatively atypical morphology with expressed
{001} crystallographic faces. They can be found in the brittle stars (echinoderms) in form
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of micro lens arrays in light receptor systems [17,18]. The plate-like calcite crystals can
be produced in vitro as well, by calcium carbonate precipitation in the presence of Li+

ions [1,19–21]. At that, the expression of the {001} faces is enhanced by higher c(Li+)/c(Ca2+)
ratios [19,21–26]. In an additive-free calcite/solution systems, the {001} faces have lower
stability compared to {104} rhombohedral faces, as shown by in silico experiments [27].
The relative stability of the {001} faces is actually a destabilization of the {104} planes by
Li+ [25,27].

The typical experimental parameters considered during the preparation of crystals
of different morphologies are the concentration of additives, pH, temperature or super-
saturation, but different stirring modes (hydrodynamics) can significantly influence the
phase ratio, morphology and crystal size distribution, as demonstrated for different model
systems of slightly soluble ionic salts [2,12,28–35]. However, it was also shown for the
calcium carbonate precipitation systems that ultrasonic irradiation is an important exper-
imental parameter that can influence precipitation by accelerating it and in chemically
simple systems typically leads to formation of the unstable polymorph, vaterite [36–38].

This study aims to investigate the role of different thermodynamic and hydrodynamic
factors on the formation of plate-like calcite crystals with well-developed {001} crystal
faces in the presence of Li+. The working hypothesis is that the Li+ concentration is not
the only parameter that controls the stabilization of {001}. Thus, the concentration of Li+,
(c(Li+)/c(Ca2+), as well as the stirring modes (stirring with a magnetic bar, mechanical
blade and pulse ultrasonic irradiation) are considered as key parameters for inducing
formation of specific morphologies. In addition, the kinetics of transformation of vaterite
to calcite were analyzed and correlated with the experimental parameters.

2. Materials and Methods
2.1. Preparation of Plate-Like Crystal Seed

Calcium carbonate precipitation was initiated by mixing equal volumes (200 cm3)
of solutions containing LiCl and CaCl2 with NaHCO3 solution, all freshly prepared.
Deionized water (conductivity < 0.055 µS cm−1) and analytical grade chemicals LiCl
(Fluka, Buchs, Switzerland), CaCl2 · 2 H2O (Acros organics, Geel, Belgium) and NaHCO3
(Sigma Aldrich, St. Louis, MS, USA) were used for the preparation of the solutions.
The solutions were thermostated at 298 K. The Li+ concentration was varied in the range
0.0 < c(Li+) < 1.0 mol dm−3 while the NaHCO3 and CaCl2 concentrations were
0.1 mol dm−3 in all precipitation systems. The experiments were performed by simul-
taneous and fast mixing of CaCl2/LiCl solutions into the NaHCO3 solution. The model
experiments were carried out in the absence of LiCl. The precipitation systems were
stirred by using either, (a) a Teflon-coated magnetic stirring bar (MAG), (b) mechanical
propeller (MECH) or (c) pulse ultrasonic irradiation* (US). The solutions were initially
stirred for 60 min at a constant rate by the magnetic and mechanic stirrer, while the pulse
sonication process was applied for 10 min. After the stirring period, the systems were
gently shacked for five days in order to avoid unintentional breaking of formed plate-like
crystals. Mechanical stirring was conducted by flat-blade stirrer, positioned just above the
bottom of the glass reactor, with two perpendicular blades rotating at 200 rpm. The lower
blade is 50 mm in diameter, while the upper blade (20 mm diameter) was perpendicular
and separated by 20 mm. The initial magnetic stirring was achieved by 20 mm diameter
stirrer rotating at 400 rpm. The sonication was initiated in the NaHCO3 solution before
addition of CaCl2/LiCl solution, by using Branson Sonifier 250 (20 kHz frequency) [1]. The
applied power output was set at 8 W. The ultrasonic horn (diameter 5 mm) was immersed
in the center of the reaction vessel, 5 cm above the bottom. The precipitate has been
sampled at regular time intervals, starting immediately at the end of the initial stirring
period and during the following 5 days. The suspension (10 cm3) was filtered through
a membrane filter (0.22 µm) and the precipitate was dried at 100 ◦C for one hour. The
composition of dry samples has been determined by FT-IR spectroscopy, X-ray powder
diffraction (XRD) and ion chromatography. IR spectra were recorded on the FT-IR TENSOR
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II (Bruker, Billerica, MA, USA) in the 400–4000 cm−1 region using the KBr pellet technique.
X-ray powder diffractograms have been collected on the Philips X’Celerator diffractome-
ter (Malvern, United Kingdom) in the scan range 20◦ ≤ 2 θ ≤ 70◦ with the step size
2θ = 0.05◦ and measuring the time of 120 s per step. The morphology of crystal samples
was determined by FEG SEM Hitachi 6400 (Tokyo, Japan) and Phenom model G2 scanning
electron microscope (Eindhoven, The Netherlands) operating in low voltage mode, with-
out coating. The Li+ ion content in solution and precipitate was determined by Dionex
ICS—1100 ion chromatograph (Sunnyvale, CA, USA) fitted with SC16 Analytical Column
and using MSA eluent (30 mmol dm−3). The particle size distribution of obtained samples
was determined using Image J software [39], while the reference samples were additionally
analyzed by an electronic particle counting device (Coulter Counter Multisizer II, Coulter,
West Lafayette, IL, USA).

2.2. Precipitation Kinetic (Transformation, Crystal Growth and Dissolution)

The kinetic of calcium carbonate transformation was investigated in the magnetically
stirred systems identical to those used for plate-like calcite preparation: V = 400 cm3,
ci(NaHCO3) = ci(CaCl2) = 0.1 mol dm−3, while the initial LiCl concentrations varied in the
range (0.0 < c(LiCl) < 0.3 mol dm−3). Initially, the spontaneous and fast precipitation of
CaCO3 precursors was observed, and the pH was continuously measured until no changes
could be observed and no vaterite could be detected.

The kinetics of the vaterite dissolution were conducted in magnetically stirred systems,
undersaturated with respect to vaterite and prepared by mixing bicarbonate
and calcium solutions: V = 400 cm3, ci(NaHCO3) = ci(CaCl2) = 0.058 mol dm−3,
c(HCl) = c(NaCl)= 0.042 mol dm−3 and (0.0 < c(LiCl) < 0.3 mol dm−3). The vaterite
crystals used in these experiments were obtained from the US model system, and isolated
after 10 min of sonication and dried at 100 ◦C for one hour. The prepared vaterite crystals
seed (m = 400 mg) were dispersed in saturated CaCO3 solution (500 µL), homogenized and
rapidly introduced into magnetically stirred undersaturated solution in order to start the
dissolution process. The pH was continuously measured until the apparent equilibrium
for vaterite was obtained.

The kinetics of the calcite and vaterite crystal growth were investigated in the magneti-
cally stirred, metastable precipitation systems, supersaturated with respect to
both polymorphs: V = 400 cm3, ci(NaHCO3) = ci(CaCl2) = 0.075 mol dm−3,
c(HCl) = c(NaCl)= 0.025 mol dm−3 and (0.0 < c(LiCl) < 0.3 mol dm−3). The growth
process was initiated by the fast inoculation of supersaturated solutions, with previously
prepared crystal seed (rhombohedral calcite (m = 50 mg) [40] or vaterite (m = 400 mg), each
dispersed in a saturated calcite solution (500 µL). The pH was continuously measured until
the apparent equilibrium for vaterite or calcite was obtained.

2.3. Treatment of Data

The amount of vaterite dissolved during the dissolution process was calculated on
based on the measured pH and initial concentrations of the reactants. At that, the respective
dissolved ionic species, equilibrium constants and mass balance equations were considered,
as described previously [41]. The dissolution rate was determined by subtracting the
calculated dissolved amount and corresponding volume of vaterite (V), from the mass
and corresponding initial volume of vaterite seed added in the solution (Vo), particle
number density and the average initial diameter of vaterite spheres (r0 = 1 µm), as deter-
mined by SEM. The average radius of the vaterite particles at any moment of the process
was calculated:

r = (3Vt/4πN) 1/3 (1)

where N is the particle number density and Vt is the volume of the precipitate calculated
using the mass and density of the precipitate at time t (Vt = Vo − V). Using numerical
differentiation of r as a function of t, the dissolution rate dr/dt was determined and
different dissolution models, in which linear growth rates are function of undersaturation,



Crystals 2021, 11, 250 4 of 16

have been tested. The best fit was obtained by assuming that the diffusion of ions away
from the crystal surface is described by the relation:

dr/dt = D·Vm·(cS − c)/r (2)

In this expression, D is the diffusion coefficient, (cS − c) is the absolute undersaturation,
Vm is the specific molar volume, while cs is calculated solubility of vaterite. In order to
estimate the influence of Li+ on the vaterite dissolution process, the diffusion coefficients
were determined for different Li+ concentrations. Detailed description of calculation
procedure can be found in the literature [41].

The amount of calcite or vaterite precipitated during the seeded crystal growth, was
determined by subtraction of the calculated total dissolved concentration of calcium car-
bonate at time t, from the initial total concentration, as described previously [42]. The rate
of the crystal growth process was determined by the addition of the calculated dissolved
amount of calcite or vaterite to the initial mass of respective crystal seed in the solu-
tion, particle number density and the average initial linear dimension of the seed particle
(r = 1 µm for vaterite and, l = 1 µm for calcite). The length of calcite rhombohedrons at each
moment of the process was calculated:

l = (Vt/N) 1/3 (3)

where Vt is the volume of the precipitate calculated using the mass and density of the
precipitate at time t (Vt = Vo − V) and N is the particle number density. The growth
rate, dl/dt, was determined by numerical differentiation and different crystal growth
mechanisms (growth controlled by bulk diffusion, growth on screw dislocation, surface
nucleation controlled growth) and the mechanisms were tested by correlating the rate with
different expressions of supersaturation:

Diffusion controlled growth: dl/dt = D·Vm·(c − cS)/l (4)

Growth on screw dislocation: dl/dt = kln·((c − cS) − 1)·ln(c/cS) (5)

Surface nucleation growth: dl/dt = ke·(c/cS)7/6·((c/cS) − 1))2/3(ln(c/cS))1/6·
exp(−Ke/ln(c/cS))

(6)

In the above expressions, kx is a respective growth rate coefficient, (c − cs) is absolute
supersaturation, c/cs is relative supersaturations, while cs is a solubility of respective
polymorph. The best linear fit of the experimental data for Equations (4), (5) or (6) indicate
the dominant crystal growth mechanism. A brief derivation of Equations (4)–(6) is provided
in Table S1 [43]. The influence of Li+ concentrations on the growth rate mechanisms and
kinetics were determined as well, by testing the respective kinetics.

3. Results and Discussion

The principal intention of this study was to determine the influence of different
experimental parameters, predominantly the initial concentration of Li+ and mode of
stirring on the preparation of plate-like calcite crystals with dominant {001} faces. The
initial concentration of calcium and carbonate ions was relatively high and consequently
a mixture of polymorphs and amorphous precursor phases were observed at the early
stages of precipitation. Therefore, the kinetics of transformation from vaterite to calcite
were analyzed in detailed and the role of the kinetics was correlated with other parameters
considered relevant for expression of a specific morphology.

3.1. Structural Analysis

The structural analyses of the precipitate formed in the MAG, MECH or US systems
with increasing Li+ concentrations and isolated after five days of aging, as determined
by XRD and FTIR analyses, showed the predominant presence of calcite. However, some
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residues of vaterite were observed only in the US system with the highest Li+ content
(Figures S1–S5 and Tables S2–S4). In all the systems the formation of Li2CO3 was not been
observed, which could be expected due to the solution undersaturation with respect to
lithium carbonate (SLi2CO3 < 0.39). The literature data showed that in similar systems no
precipitation of Li2CO3 could be expected due to the lack of homogeneous distribution
of Li+ during calcium carbonate formation [44]. The results of the distribution of poly-
morphs in the initially formed precipitate, but also the precipitate isolated during the
aging process and at different lithium concentrations are shown in Figure 1. At the begin-
ning of the ageing process (immediately after termination of initial stirring of one h) the
amount of calcite is typically higher in the MECH than in the MAG model systems (no Li+)
(Table S3), which is consistent with some previous results that showed the promotion of the
vaterite formation in the magnetically stirred systems [42]. At that, stirring with a magnetic
bar caused an abrasive action on the glass, thus causing the predominant nucleation of
metastable solid phases, like calcium oxalate trihydrate or vaterite [45]. Similarly, the
ultrasonic irradiation leads to the preferential nucleation of metastable solid phases as
well, as a consequence of a higher energy input in the supersaturated solutions of slightly
soluble calcium salts, like carbonates or oxalates [38,46] (US data shown in Table S3 was
reported previously [1].

In addition to the stirring mode, the presence of Li+ also significantly influenced the
changes of the polymorphic composition of the precipitate at early stages of process. Thus,
the increase of the initial c(Li+) in each system and at specific ageing period, resulted in drastic
decrease of calcite content in a mixture with vaterite, as could be seen in Figure 1. It could also
be observed that the increased c(Li+) caused the retardation of vaterite transformation to stable
calcite, which could be explained either by slower vaterite dissolution or the slower calcite
growth, as indicated previously [1]. Thus, in the MAG system, the complete transformation
of vaterite in the presence of 0.7 or 1.0 mol dm−3 Li+ terminated after approximately four to
five days, while the addition of 0.1 mol dm−3 Li+ stabilized vaterite just for two days. On the
other hand, in the MECH system and c(Li+) = 1.0 mol dm−3, vaterite completely transformed
after two days of aging.

3.2. Particle Size Distribution

The mode of stirring also influenced the crystal size distribution of calcite, which was
determined at the end of transformation process. The average particle size distributions
of typical samples prepared with different initial Li+ concentrations, different stirring
modes and after five days of aging are shown in Figure 2 and Figures S6–S9. It could be
seen that in model systems (absence of lithium ions) and at all stirring modes applied,
unimodal and relatively narrow particle size distributions were obtained. Thus, the lowest
mean crystal size was observed in the US system, about 9 ± 1.7 µm, in comparison to
14 ± 2.4 µm and 18 ± 3.7 µm as observed in the MECH or MAG systems, respectively. The
applied high intensity ultrasonic irradiation promotes the uniform size distribution and
lower mean size, as a result of the formation of vapor-filled cavities and local increase of
temperature caused by their collapsing. Such spots increase the nucleation rate and corre-
sponding increase of the particle number [31,47–49]. On the other hand, in the systems with
c(Li+) = 0.3 mol dm−3, the average size of calcite crystals obtained in the US system was
higher than in the respective MECH and MAG systems (28 µm > 14 µm > 14 µm). However,
at the highest Li+ concentration applied, bimodal and much broader size distributions
were obtained in all systems, which could be a consequence of appearance of additional
morphologies, particle aggregation, or even a presence of non-transformed vaterite parti-
cles. Figure S10 shows the average crystal size as a function of the Li+ concentration, for all
mixing systems.
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tion caused a gradual change of dominant shape of crystals: in the systems with the lowest 
Li+ concentration applied, c(Li+) = 0.1 mol dm−3, prismatic calcite crystals with triangular 
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Figure 1. Amount of calcite in the precipitate during the transformation process in the systems,
ci(CaCl2) = ci(NaHCO3) = 0.1 mol dm−3, different mode of stirring and initial concentration of
lithium ions. The initial concentrations of Li+ are indicated: M correspond to mol dm−3, MAG—
magnetic stirring, MECH—mechanical stirring. The quantification of the relative amounts of calcite
and vaterite was determined by X-ray diffraction analysis.
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Figure 2. Particle size distribution of calcite crystals obtained after 5 days in the systems with different stirring modes
(MECH—mechanical stirring, MAG—magnetic stirring, US—ultrasonic stirring) and initial Li+ concentrations. Distributions
were determined by using ImageJ.

3.3. Morphology

The morphology of the precipitate, predominantly calcite, was obtained after five
days in the systems in which the mode of initial mixing and the concentration of added
Li+ was observed by scanning electron microscopy (Figure 3). Thus, the calcite crystals
obtained in the model system (no lithium ions) for all three stirring modes and after
five days of aging are the rhombohedrons with well-expressed {104} faces: the crystals in
the MECH and MAG systems are more aggregated. However, the increasing Li+ concentra-
tion caused a gradual change of dominant shape of crystals: in the systems with the lowest
Li+ concentration applied, c(Li+) = 0.1 mol dm−3, prismatic calcite crystals with triangular
faces and {001} truncations on the rhombohedral crystals can be observed. Indeed, crystal
truncations and formation of triangular {001} faces at the expense of {104} rhombohedral
face is expected under lower Li+/Ca2+ concentration ratio [19]. The tendency of trunca-
tion of rhombohedrons at moderate lithium concentrations, c(Li+) = 0.3 mol dm−3 and
0.5 mol dm−3, can be observed particularly in the MECH agitation mode, while in the
MAG system they appear in a mixture with hexagonal plate-like crystals. Predominantly
plate-like crystals have been obtained only in the US system. These crystals exhibit
hexagonal morphology characterized by basal {001} face and {104} side faces, which
is caused by predominant Li+ adsorption on growing {104} faces. Consequently, the
basal {001} faces are formed by truncation of all six {104} rhombohedral faces, thus re-
sulting in specific plate-like crystal shape [44]. At the highest Li+ concentrations applied,
c(Li+) = 1.0 mol dm−3, a mixture of plate-like and rhombohedral truncated crystals can
still be observed in MECH systems, while in MAG and US systems only plate-like crystals
predominates. The plate-like crystals obtained at highest Li+ addition, typically show
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macro-steps on the {001} faces, which has not been observed in systems with lower lithium
concentrations.
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The content of Li+ incorporated into the calcite crystals isolated after five days of
aging in systems with different initial LiCl concentrations is shown in Figure 4. It could
be seen that the content of incorporated Li+ almost linearly increases with increasing LiCl
concentration in the solution for the applied mode of stirring. In addition, the amount
of Li+ is systematically the highest in the MECH and the lowest in the US system, which
correlates with the observed morphological differences of precipitated calcite crystals.
Indeed, the content of the rhombohedral and truncated crystals is the highest in the MECH
systems and the lowest in the US, as well as that the thinnest crystals could be observed
in the US systems. All these observations implicate that the growth of hexagonal {001}
faces is inhibited by predominant Li+ adsorption, so the incorporation is predominantly
possible into the growing {104} faces. However, it should be emphasized that the amount
incorporated in the US system aged at the highest LiCl concentration, c = 1.0 mol dm−3,
is disproportionately higher, which is a consequence of the vaterite still present in the
suspension after five days. Microporous vaterite can absorb/adsorb a significant amount
of solution as shown before [50,51].
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3.4. Precipitation Kinetics

The structural and morphological analyses of the precipitate sampled during the aging
process of five days showed that initially a mixture of polymorphs and amorphous phase
appeared. Indeed, the MECH and MAG samples isolated after the initial stirring (one
hour) were typically aggregated vaterite particles, which subsequently transformed into
the stable calcite after five days. Similarly, in the US systems and after 15 min of initial
agitation, well dispersed vaterite particles, which subsequently transformed into the calcite,
were observed (Figure S11).

The course of the precipitation reactions in the magnetically stirred
precipitation systems with equimolar initial concentrations of reactants
(ci(CaCl2) = ci(NaHCO3) = 0.1 mol dm−3) and different lithium addition
(0.0 mol dm−3 < ci(LiCl) < 0.3 mol dm−3) were followed by continuous measuring the pH.
The experiments were conducted under magnetical stirring in which, compared to the
MECH and US system, the highest initial vaterite was obtained. Figure 5 shows the repre-
sentative progress curves, typical for solution-mediated transformation process [34,41,42],
in which pH rapidly drops and reaches approximately constant value. Figure S12 shows
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the respective concentration changes calculated from measured pH, for system with no LiCl
addition. After some time, the additional drop occurs, thus indicating the establishment of
the equilibrium for the stable phase (solubility). Significant prolongation of establishment
of the equilibrium state can be observed in the systems with increasing Li+ concentra-
tion. In the case of 0.3 mol dm−3 Li+, the last step can be observed after approximately
18 h. However, the insert in the Figure 5 and Figure S12 shows that during the initial
period, a step appeared as well. The dashed lines in the graphs correspond, from the top
to bottom, to calculated values of solubility of: precursor, amorphous calcium carbonate
((cs(acc) = 0.0900 mol dm−3) =̂ (pH = 7.03)), metastable vaterite ((cs(vat) = 0.0630 mol dm−3)
=̂ (pH = 5.99)) and stable calcite ((cs(cal) = 0.0575 mol dm−3) =̂ (pH = 5.682)). During
the first stage of the process, which last about 150 s (from 0.1000 mol dm−3 to cs(acc))
nucleation and growth of all phases, as well as aggregation, occur. Indeed, dissolution
of amorphous calcium carbonate occurred below cs(acc), but this process is rather fast
and detectable only as a shoulder on the progress curve. During the second stage which
last from about 150 s to 1500 s, concentration rapidly drop to values of vaterite solubility
((cs(vat) = 0.0630 mol dm−3) =̂ (pH = 5.99) and processes of vaterite and calcite growth are
dominant. The third stage (from about 1500 s to 10,000 s) can be observed as a slow change
of solution pH and concentration (concentration plateau), which is a consequence of two
processes going on simultaneously: vaterite dissolution and calcite growth.
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Figure 5. Progress curves, pH vs time of spontaneous precipitation of calcium carbonate:
ci(CaCl2) = ci(NaHCO3) = 0.1 mol dm−3 and different concentrations of LiCl initially present in the
systems. The insert shows the pH changes during the initial 12 min of the process.

The last period of the transformation process started after complete disappearance of
the vaterite so the calcite growth is an only process in the precipitation system. This period
could be observed as a final step of the progress curve at about 2.5, 4.5 and 11.5 h and
subsequent approach to equilibrium for calcite ((cs(cal) = 0.0630 mol dm−3) =̂ (pH = 5.69)).
In order to understand the influence of Li+ addition on the overall kinetics of vaterite
to calcite transformation and corresponding morphological properties of calcite crystals
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obtained in the presence of LiCl, additional kinetic measurements of the elementary pre-
cipitation process have been performed. Therefore, the crystal growth of vaterite and
calcite seed, as well as dissolution of vaterite seed have been analyzed in the precipitation
systems similar to those in which vaterite to calcite transformation occurred and which
contained a limited range of LiCl concentrations, 0. 0 mol dm−3 < c(LiCl) < 0. 3 mol dm−3.
Figure 6 shows the progress curves, c vs time, for calcite and vaterite growth and for a
range of LiCl concentrations: in both systems the initial concentration was
0.075 mol dm−3, while the mass of calcite seed was 125 mg dm−3 and of vaterite seed was
1000 or 500 mg dm−3. It could be seen that the increasing concentration of LiCl, slow down
the calcite growth, while the growth of vaterite was not significantly affected. It should be
emphasized that the solubility of each polymorphs was virtually identical for the range
of applied LiCl concentrations (cs(cal) = 0.0575 mol dm−3 and cs(vat) = 0.0630 mol dm−3).
Figure 6 also shows the progress curves for vaterite dissolution in the presence of different
concentrations of LiCl and ci = 0.0575 mol dm−3. It is evident that the LiCl addition in the
applied range didn’t significantly influence the dissolution kinetics. The growth rates of
vaterite and calcite have been calculated from known initial mass of respective crystal seed,
the average initial size of particles and measured changes of concentration of dissolved
calcium carbonate. They have been expressed as the changes of linear dimensions of calcite
or vaterite crystals for a given period of time, dl/dt, which is in the case of calcite the length
of crystal edge, or radius of the vaterite particle (Figures S13 and S14). Different crystal
growth or dissolution mechanisms (bulk diffusion, screw dislocation, surface nucleation)
have been tested by correlating the rate with different expressions for supersaturation or
undersaturation (Equations (2) and (4)–(6)). Figure 7 shows that the best linear fits for cal-
cite and vaterite growth have been obtained for the so-called screw dislocation mechanism,
dl/dt = k (S − 1) lnS, where S = (c/cS). The rate constants calculated from the slope, kln,
(Table 1) indicate that Li+ ions do not change the controlling growth mechanisms, as well
as they do not significantly influence the rate of vaterite growth. On the other hand, the
growth of calcite is clearly inhibited. In addition, Figure 7 also shows that the vaterite
dissolution is controlled by the diffusion of constituent ions from the surface into the bulk.
Indeed, the observed predominant growth and dissolution mechanisms are consistent
with some previous results on investigation of precipitation kinetics of calcium carbonate
polymorphs in model systems of much lower initial supersaturations and in the absence of
lithium ions [34,41,42]. The consistency of the measurements has been verified by varying
the initial mass of crystal seed and satisfactory results have been obtained: typically, the
rate constants changed for no more than ±5%. However, if the experimental results of
vaterite transformation in the presence of Li+ (Figure 5 and Figure S12) are compared with
the kinetic data of calcite and vaterite crystal growth and dissolution determined in the
independent set of seeding experiment (Table 1), consistency can be observed. Specifi-
cally, the vaterite growth and dissolution are not significantly affected by the addition and
increase of Li+, as could be observed from the values of respective rate constants.
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Figure 6. Progress curves, solution concentration vs. time of seeded growth of (a) calcite or (b) vaterite:
ci(CaCl2) = ci(NaHCO3) = 0.1 mol dm−3 and different concentrations of LiCl initially present in the systems. (c) Dissolution of
vaterite was initiated in the undersaturated system: ci(CaCl2) = ci(NaHCO3) = 0.0575 mol dm−3. Initial mass concentrations
of calcite and vaterite seed in the growth experiments were, γ(calcite) = 125 mg L−1 and γ(vaterite) = 125 mg L−1 while in
dissolution experiments γ(vaterite) = 500 or 1000 mg L−1.

Table 1. Calculated rate constants of calcite and vaterite grown in the systems, ci(CaCl2) = ci(NaHCO3) = 0.1 mol dm−3 and
vaterite dissolution in the undersaturated system: ci(CaCl2) = ci(NaHCO3) = 0.0575 mol dm−3, and different concentrations
of LiCl initially present in the systems. Predominant mechanisms are growth on dislocation (kln) and diffusion of ions away
from to surface into the bulk of solution (D).

c(Li+)/mol dm−3 Calcite Growth Vaterite Growth Vaterite Dissolution
kln/µm s−1 kln/µm s−1 D/m2 s−1

0.00 20.4 37.9 3.4 × 10−9

0.10 9.0 32.1 3.3 × 10−9

0.30 4.8 32.1 2.9 × 10−9



Crystals 2021, 11, 250 13 of 16

Crystals 2021, 11, x FOR PEER REVIEW 12 of 15 
 

 

However, if the experimental results of vaterite transformation in the presence of Li+ (Fig-
ures 5 and S12) are compared with the kinetic data of calcite and vaterite crystal growth 
and dissolution determined in the independent set of seeding experiment (Table 1), con-
sistency can be observed. Specifically, the vaterite growth and dissolution are not signifi-
cantly affected by the addition and increase of Li+, as could be observed from the values 
of respective rate constants.  

Table 1. Calculated rate constants of calcite and vaterite grown in the systems, ci(CaCl2) = ci(Na-
HCO3) = 0.1 mol dm−3 and vaterite dissolution in the undersaturated system: ci(CaCl2) = ci(Na-
HCO3) = 0.0575 mol dm−3, and different concentrations of LiCl initially present in the systems. Pre-
dominant mechanisms are growth on dislocation (kln) and diffusion of ions away from to surface 
into the bulk of solution (D). 

c(Li+)/mol dm−3 
Calcite 
Growth 

Vaterite 
Growth 

Vaterite 
Dissolution 

kln/μm s−1 kln/μm s−1 D/m2 s−1 
0.00 20.4 37.9 3.4∙10−9 
0.10 9.0 32.1 3.3∙10−9 
0.30 4.8 32.1 2.9 10−9 

Only the calcite growth rate constants decrease from 20.4 µm s−1 at c(LiCl) = 0.0 mol 
dm−3 to 9.0 µm s−1 at c(LiCl) = 0.1 mol dm−3 and 4.8 µm s−1 at c(LiCl) = 0.3 mol dm−3, which 
qualitatively correspond to prolongation of respective transformation process from 2.5 to 
4.5 and 12.5 h. 

 
Figure 7. Plot of growth rates as a function of supersaturation expressed as (S-1) lnS, for (a) 
growth of calcite and (b) vaterite seed and (c) c − cS for the dissolution of vaterite, where cs is solu-
bility of respective polymorph and S = (c/cS). The mass concentrations or calcite and vaterite were, 
γ(calcite) = 125 mg L−1 and γ(vaterite) = 125 mg L−1 respectively. Plots correspond to data shown in 
Figure 6. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.01 0.02 0.03 0.04 0.05

(d
l/

 d
t) 

/ μ
m

 s−1

(S-1) lnS

0 M
0.1 M
0.3 M

Vaterite growth

Vaterite dissolution

b)a)

c)

0

20

40

60

80

100

120

140

160

0.00 1.00 2.00 3.00 4.00 5.00

{[
r (

dr
/ d

t)]
 / 

V m
} 

x 
10

−9
 / m

5
m

ol
 s−1

c - cS / mol m−3

0 M 500 mg
0 M 1000 mg
0.1 M
0.3 M

Calcite growth

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.01 0.02 0.03

(d
l/

 d
t) 

/ μ
m

 s−1

(S-1) lnS

0 M
0.1 M
0.3 M

Figure 7. Plot of growth rates as a function of supersaturation expressed as (S − 1) lnS, for (a) growth of calcite and
(b) vaterite seed and (c) c − cS for the dissolution of vaterite, where cs is solubility of respective polymorph and S = (c/cS).
The mass concentrations or calcite and vaterite were, γ(calcite) = 125 mg L−1 and γ(vaterite) = 125 mg L−1 respectively.
Plots correspond to data shown in Figure 6.

Only the calcite growth rate constants decrease from 20.4 µm s−1 at
c(LiCl) = 0.0 mol dm−3 to 9.0 µm s−1 at c(LiCl) = 0.1 mol dm−3 and 4.8 µm s−1 at
c(LiCl) = 0.3 mol dm−3, which qualitatively correspond to prolongation of respective
transformation process from 2.5 to 4.5 and 12.5 h.

4. Conclusions

This research aimed to investigate the role of different experimental parameters on
the formation of uniform plate-like calcite crystal with the expressed {001} surfaces, in the
systems in which precipitation has been initiated by fast mixing the equimolar CaCl2 and
NaHCO3 solutions (ci = 0.10 mol dm−3). For this purpose, different hydrodynamics (mode
of stirring of the reaction components by magnetic stirring bar (MAG), mechanical paddle
(MECH) or ultrasonic irradiation (US)) and the addition of Li+ in a wide concentration
range, 0.0 mol dm−3 < c(Li+) < 1.0 mol dm−3 have been applied. In addition, the kinetics
of solution mediated transformation of initially formed metastable polymorph, vaterite,
has been followed in order to reproducibly describe the formation of plate-like calcite. The
result showed that after 5 days of aging of the suspension, predominantly plate-like calcite
has precipitated in the US system when the concentration of lithium ions was equal or
higher than 0.3 mol dm−3, while in the MECH and MAG systems concentration has been
as high as 1.0 mol dm−3. When the concentration of Li+ was lower than critical, truncated
rhombohedral calcite crystals in a mixture with plate-like crystals have been obtained in
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all systems. The chemical analysis of calcite obtained after aging period, showed that the
highest Li+ incorporation was obtained in the MECH system, while the lowest was in the
US systems, which correlate with a portion of truncated rhombohedrons in the mixture
with plate-like crystals. The kinetics of vaterite to calcite transformation was found to
extend with increasing Li+ concentration, but also depend on the mode of stirring: in
the MAG and US systems traces of vaterite could be found even after 5 days when the
c(Li+) = 1.0 mol dm−3, while in the MECH system of the same concentration transformation
is completed after two days. The analysis of the kinetics of the elementary precipitation
processes involved in solution-mediated transformation indicates that the crystal growth
and dissolution of vaterite are virtually not influenced by the Li+ addition, while the calcite
growth is significantly inhibited, which prolonged the overall transformation.

Consequently, the optimal experimental protocol for preparation of regular plate-like
calcite crystals with expressed {001} surfaces and from equimolar CaCl2 and NaHCO3
solutions (ci = 0.10 mol dm−3), implicit the initial US agitation and the addition of LiCl,
c = 0.3 mol dm−3. Thus obtained crystals contain no macro-steps and are uniform in size.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
352/11/3/250/s1, Table S1. A brief derivation of Equations (4)–(6); Figure S1: FTIR spectra of
the precipitates obtained in the magnetically stirred (MAG) precipitation systems; Figure S2: FTIR
spectra of the precipitates obtained in the mechanically stirred (MAG) precipitation systems; Fig-
ure S3: FTIR spectra of the precipitates obtained in the ultrasonicated (US) precipitation systems;
Table S2: Assignment of IR bands in FTIR spectra of precipitates obtained after 5 days of aging;
Table S3: Polymorphic composition of CaCO3 samples obtained by different stirring modes;
Figure S4: PXRD diffractograms of the CaCO3 precipitates obtained in the ultrasonicated (US)
precipitation systems; Figure S5: PXRD diffractograms of the CaCO3 precipitates obtained in the
mechanically stirred and magnetically stirred precipitation systems; Table S4: Assignment of peaks
in PXRD patterns of all samples; Figure S6: Particle size distribution of calcium carbonate samples
obtained in the magnetically stirred (MAG) precipitation systems; Figure S7: Particle size distribution
of calcium carbonate samples obtained in the mechanically stirred (MECH) precipitation systems;
Figure S8: Particle size distribution of calcium carbonate samples obtained in the ultrasonicated
(US) precipitation systems; Figure S9: Comparison of particle size distribution of calcium carbonate
samples; Figure S10: The average particle sizes of calcite crystals; Figure S11: Scanning electron
micrographs of calcium carbonate samples; Figure S12 Progress curve, solution concentration vs.
time, of the spontaneous precipitation and transformation of calcium carbonate. Figure S13. Change
of the initial length (lo = 1 µm) of calcite crystal edge (a) and the radius of the vaterite particle (b) vs.
time in the crystal growth experiments; Figure S14. Plot of growth rates (dl/dt) as a function of time
for the calcite (a) and vaterite (b) crystal growth experiments.
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42. Kralj, D.; Brečević, L.; Nielsen, A.E. Vaterite growth and dissolutionin aqueous solution I. Kinetics of crystal growth. J. Cryst.

Growth 1990, 104, 793–800. [CrossRef]
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45. Brečević, L.; Kralj, D.; Garside, J. Factors influencing the distibution of hydrates in calcium oxalate precipitation. J. Cryst. Growth

1989, 97, 460–468. [CrossRef]
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