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* Correspondence: imitar@pmfst.hr; Tel.: +385-21-691-279

Abstract: The advantages of microwave technology over conventionally conducted experiments are
numerous. Some of them are reduction in reaction time, a higher degree of process control, repeatabil-
ity, and work safety. Microwave synthesis routes require a complete description of the experimental
details, instrumentation, and design program of a microwave oven used in the experiments. In
this work, microwave-assisted hydrothermal synthesis of hematite (α-Fe2O3) particles from 0.1 M
FeCl3 solution in highly alkaline media with heating in a microwave oven at continuous microwave
emission of 800 W at 150 ◦C, 200 ◦C, and 250 ◦C for 20 min are presented. Also, the influence of the
percentage of the addition of a cationic surfactant, cetyltrimethylammonium bromide (CTAB) on
the composition, size, and shape of the final product was investigated. The samples precipitated at
150 ◦C formed a final product consisting of goethite (α-FeOOH) and hematite particles in contrast
to the those precipitated at 200 ◦C and 250 ◦C where pure hematite phase was obtained. In these
synthesis routes, the CTAB caused to slow down the rate of the goethite-to-hematite transformation
process at temperatures at 200 ◦C but did not affect the transformation at 250 ◦C.

Keywords: microwave-assisted synthesis; hematite; α-Fe2O3 particles; goethite; α-FeOOH particles;
cetyltrimethylammonium bromide; FT-IR spectroscopy; powder X-ray diffraction; FE-SEM

1. Introduction

During the last decades, microwaves have been studied as a source of energy for
chemical reactions and processes, mainly for organic synthesis pathways rather than
inorganic ones. Although the number of papers dealing with the microwave-assisted
synthesis of inorganic nanomaterials has been extensive since the 1990s in all classes of
functional materials such as metals, oxides, sulfides, phosphates, and halides, microwave
synthesis is not yet where it belongs in science [1]. Advantages of microwave technology
over conventionally performed experiments are numerous and well known. Some of them
are reducing reaction times and energy costs, suppression of side reactions and, hence,
improvement in product yield, purity, better material properties, a higher degree of process
control, repeatability, and safety [1,2]. All advantages of microwave technology can be
attributed to the efficient internal heating (in-core volumetric heating) by direct coupling of
microwave energy with the molecules (solvents, reagents, catalysts) so that the temperature
rise is uniform throughout the sample [3].

In many publications, the microwave systems used are usually insufficiently described
and details regarding the experimental conditions are relatively scarce. Essential reaction
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parameters, such as the power used in the experiments or the temperatures reached, are not
given, which is mainly due to the use of domestic microwave ovens. Namely, a domestic
microwave oven cannot provide the required information because the irradiation power is
controlled by on–off cycles of the magnetron. Therefore, it is not possible to reliably monitor
the reaction temperature. Many published papers describe only “full power” or 2.45-GHz
power specifications, and very few published synthesis routes can be repeated. There are
no literature data on the repeatability of synthesis products prepared using microwave
techniques. Reactions carried out in this way cannot be compared with literature data, so
such procedures cannot be recommended for scientific purposes, nor can they guarantee
the safety of the work. Schütz et al. discussed the difficulty of direct comparison of
conditions performed by microwave-assisted synthesis methods [4]. Microwave synthesis
routes require a detailed description of the experimental procedure, such as the apparatus,
reaction protocol, instrumentation, and design program of a microwave oven used in
experiments. The only disadvantage of microwave technology is the high capital cost of
professional chemical microwave systems. Modern professional microwave reactors allow
autoclave process conditions of 300 ◦C and 100 bar under carefully controlled and safe
operating conditions, with the continuous rotation of samples within the cavity and the
possibility of mixing samples within a reaction vessel [2]. These systems allow temperature
measurements directly in the microwave field by IR sensors or in the reaction mixture
using fiber optic sensors and software that enable temperature control by regulating the
microwave power with faster temperature rise and cooling [5].

Iron oxyhydroxides and oxides are widely spread in our environment, while synthetic
iron oxides are heavily used in advanced technologies. For this reason, the synthesis of iron
oxides is a well-investigated scientific topic. Hematite (α-Fe2O3) and goethite (α-FeOOH)
are the most studied materials due to their diverse applications in many scientific and
industrial fields, e.g., as inorganic pigments [6,7]; adsorbents for wastewater treatment [8,9];
abrasives [10]; gas sensors; catalysts [11]; electrochemical sensors [12,13]; and precursors
in the manufacture of electronic, magnetic, or optical devices and medical diagnosis or
therapy [10,14–17]. The chemical composition, purity, morphology, and size of iron oxide
particles are the key features for their application. Each potential application requires
different properties of the particles, for example, a stable, switchable, magnetic state of iron
oxide particles is necessary for data storage applications, while the stability in the water at
pH 7 is crucial for the versatile biomedical applications [16]. The properties of iron oxide
particles mainly depend on the preparation method and experimental conditions of the
synthesis route. Due to the use of iron oxides in advanced technologies and because they are
non-toxic, biocompatible, and cheap to produce, scientists and engineers have investigated
various methods for the synthesis of precisely defined iron oxide nano/microstructures.
However, designing the iron oxide particles of defined size and morphology for targeted
applications is still a major research challenge. In their book, Yue et al. highlighted the
great challenge of how to efficiently synthesize iron oxides with controlled morphology,
size, and functionality and how to fundamentally understand the formation, growth
mechanisms, and structure of iron oxide particles [18]. Machala et al., in their review paper,
described parameters affecting polymorphous transformations of iron oxides, which is a
great challenge in the study of polymorphism of solid compounds [19].

Among the many available and widely studied methods for the synthesis of hematite
and goethite particles (e.g., sol-gel, microemulsion method, thermal decomposition, sono-
chemical techniques), hydrothermal techniques were the fastest, easiest, and most widely
used pathways for the preparation of these oxides. The hydrothermal routes under different
experimental conditions of pressure, temperature, pH medium, reaction time, precursor
type, and concentration are well investigated and reported in the literature [6,10,11,14,20–46].

As mentioned earlier, microwave-assisted hydrothermal techniques are still not well
investigated because of the high capital cost of professional chemical microwave systems.
There are many published papers in the literature describing the microwave-assisted
hydrothermal synthesis of iron oxide particles prepared using a domestic microwave oven,
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without specifying microwave instrumentation and experimental conditions [12,47–53] or
using microwave digestion systems, where the temperature reached is calculated by the
temperature/pressure ratio based on the steam tables [47,51–60]. Few published papers
described program details of a professional microwave oven, thus providing specific and
well-established experimental conditions that could ensure reproducibility [50,56,61–64].

In recent years, the influence of added polysaccharides [65,66], surface-active sub-
stances [42,67–73], soluble polymers, and biopolymers [18,20,44,72,74–76] was intensively
studied under the influence of various experimental factors in the abovementioned synthe-
sis for iron oxide nano/microstructures. The role of various additives in the synthesis of
iron oxide fascinates scientists because of the impact on the morphology of particles: both
on the internal properties of particles and the external parameters (e.g., particle morphol-
ogy, degree of particle aggregation, the size distribution of particles) and polymorphous
transformation pathways. Commonly, the additives are used in synthesis as a coating
material for particles to design their specific properties for targeted applications [45]. Cole
et al. showed the application and advantages of coated iron nanoparticles for magnetic
tumor targeting [77]. Kumagai et al. [78] described a simple route for the synthesis of
polyethylene glycol (PEG)-coated iron oxide nanoparticles featuring excellent solubility
and stability in an aqueous solution.

Microwave-assisted hydrothermal synthesis ensures rapid research of the influence
of various additives and their added amount in the synthesis mixture. In 2007, Zhu and
co-workers reported the microwave synthesis of Fe3O4 nanoparticles and ellipsoidal Fe2O3
nanoparticles with a nonionic surfactant, PEG [47]. Yang et al. published the microwave
synthesis of spherical nanoporous Fe3O4 nanoparticles, also with PEG [79]. Unfortunately,
none of the mentioned papers provided microwave instrument-specific experimental
conditions that can be easily replicated. Finding a microwave synthesis route that is fast
and repeatable could ensure that future studies change only one variable in the synthesis
route and examine its effects on the final product.

In this work, the microwave-assisted hydrothermal synthesis of the α-Fe2O3 and α-
FeOOH was carried out in a highly alkaline medium using FeCl3 precursor. The influence
of the added amount of cationic surfactant, cetyltrimethylammonium bromide (CTAB), was
investigated. Iron oxide particles synthesized under the specified experimental conditions
were in excellent agreement with the literature data. It was found that the control of the
experimental conditions can be performed effortlessly and rapidly using a professional
microwave oven.

2. Materials and Methods
2.1. Materials

All the required solutions were prepared by dissolving a certain amount of chemicals
in ultrapure water. Ultrapure water (declared conductivity of 0.04 µS cm−1) was prepared
using the ultrapure water purification system Millipore Simplicity 185, Burlington, MA,
USA; resistivity at 25 ◦C was 18.2 MΩ cm−1.

The following chemicals were used: FeCl3·6H2O in reagent grade, NaOH (Kemika,
Croatia), and cetyltrimethylammonium bromide, CTAB (Alfa Aesar, Ward Hill, MA, USA).
Absolute alcohol, pro analysis pure, and 25% ammonium supplied by Gram-mol, Za-
greb, Croatia.

2.2. Synthesis

Precipitation experiments were performed at room temperature (RT) in alkali-resistant
plastic bottles to avoid contamination by dissolved silicon from glassware. All mixtures
were prepared by adding 4 mL of 1 M FeCl3 solution, 32 mL of water, and 4 mL of 8M
NaOH solution. For the samples that contained the addition of CTAB, different masses of
CTAB were added. After vigorous shaking of each precipitation mixture, the suspension
was transferred to a Milestone Teflon-lined, non-stirred pressure vessel. The samples were
heated for 20 min in a microwave oven (Milestone, FlexiWave SK15, Sorisole (Bergamo),
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Italy, direct temperature control monitor via microwave-transparent fiber optic sensor up
to 300 ◦C, magnetron frequency 2450 MHz, magnetron output 2 × 950 Watt, power supply
230 V, 50–60 Hz) at the prevailing temperature according to a microwave oven program
with rotor twist on and continuous microwave emission at 800 W.

Immediately after the reaction time was completed, the autoclaves were cooled utiliz-
ing a cooling program of the microwave oven and left inside until the final temperature
in the vessels was 25 ◦C. The mother liquor was separated from the precipitate using the
ultrafast centrifuge (Beckman Avanti J-25, Indianapolis, IN, USA). The pH of the mother
liquor was measured using a pH meter Mettler Toledo, MP220, Columbus, OH, USA. The
precipitates were additionally washed with ultrapure water and ethanol to remove the
“neutral” electrolyte and dried in a vacuum oven, Thermo Scientific, 3608–1CE, Waltham,
MA, USA at 60 ◦C overnight.

2.3. FT-IR Spectroscopy

A Shimadzu IR Prestige-21, FTIR-8400S spectrophotometer, Kyoto, Japan, was used to
collect the FT-IR spectra. Prior to the analysis, the samples were mixed with spectroscopi-
cally pure KBr (Alfa Aesar, Ward Hill, MA, USA) and pressed into pellets. All spectra were
processed by the Origin program [80].

2.4. Powder X-ray Diffraction

Powder X-ray diffraction (PXRD) patterns were collected using a Malvern Panalytical
Aeris XRD diffractometer with CuKα (λ = 1.5406 Å) radiation, Ni filter, and solid-state
PIXcel3D-Medipix3 detector. The data were collected in the 2θ range from 15◦ to 90◦ with a
step size of 0.022◦, scan rate 39.53 s/◦, 1

4 -inch divergence slit, and 13-mm beam mask. The
detector energy discrimination levels were adjusted to suppress the sample fluorescence.
The estimated mass fractions of the identified phases [81] were calculated by the Rietveld
algorithm [82] using the X’Pert HighScore Plus program [83]. A pseudo-Voigt profile
function and a polynomial background model were applied in the structure refinements,
whereas the isotropic vibration modes were assumed for all atoms. The crystallite sizes in
samples were calculated using the phase fit method (i.e., simultaneously with the Rietveld
refinements) based on the change of the profile widths, compared to a standard sample.

2.5. Field-Emission Scanning Electron Microscopy

The morphology of samples was studied using a thermal field-emission scanning
electron microscope (FE-SEM) JEOL JSM-7000F, Tokyo, Japan.

3. Results

The experimental conditions for the preparation of the reference samples and samples
prepared in the presence of the surfactant CTAB are shown in Table 1. The samples were
prepared at different temperatures with the same aging time, 20 min.

Table 1. Experimental conditions for iron oxide particles’ preparation.

Sample 1 M FeCl3
/mL

H2O
/mL

8M NaOH
/mL

CTAB *
/g

CTAB *
/% T/◦C t/min pH

RS1 4 32 4 150 20 13.39
RS2 4 32 4 200 20 13.51
RS3 4 32 4 250 20 13.35
S1 4 32 4 0.4 1 150 20 13.39
S4 4 32 4 0.1 0.25 200 20 13.16
S5 4 32 4 0.2 0.5 200 20 13.11
S2 4 32 4 0.4 1 200 20 13.46
S6 4 32 4 1.0 2.5 200 20 13.35
S3 4 32 4 0.4 1 250 20 13.38
S7 4 32 4 1.0 2.5 250 20 13.28

* CTAB (cetyltrimethylammonium bromide).
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3.1. Fourier-Transform Infrared Spectroscopy Features and Structural Characterization

The FT-IR spectra of selected reference samples and samples with the addition of 1%
CTAB in the precipitation mixture are shown in Figure 1.
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Figure 1. FT-IR spectra of reference samples and samples with 1% CTAB.

The reference sample RS1 and sample S1 with 1% CTAB, prepared at 150 ◦C, showed
the same IR bands typical of goethite and hematite. The in-plane bending band (δOH),
positioned at 893 cm−1, and out-of-plane band (γOH), positioned at 795 cm−1, are typically
IR bands characteristic for α-FeOOH. The IR band recorded at 644 cm−1 presented the
low-wave lattice mode of FeO6 and its position was influenced by the particle shape [84] or
could be related to the interaction of Fe-OH groups with Cl- ions [34]. On the other hand,
the IR bands at 536 and 461 cm−1 indicated an α-Fe2O3 phase. As the IR active vibrations
of hematite are dependent on optical parameters and geometric shape [85], the shift of the
IR band at ~536 cm−1 might have been due to the different geometric shapes of hematite
particles in these samples.

The results of the semi-quantitative phase analysis based on Hill and Howard formal-
ism [86] along with the refined unit cell parameters are compiled in Table 2.
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Table 2. Results of semi-quantitative phase analysis as obtained from Rietveld refinement against
PXRD data at RT (λ = 1.5406 Å). Rwp is the discrepancy factor that characterizes the quality of the
fit [87]. Standard deviations are given in parentheses.

Sample

Unit Cell Metrics
Phase

Fraction
(wt.%)

Rwp
(%)

α-Fe2O3 (s.g. R-3c) α-FeOOH (s.g. Pbnm)

a (Å) c (Å) a (Å) b (Å) c (Å)

RS1
5.034 (2) 13.748 (1) 40.8

8.939.954 (6) 3.020 (4) 4.606 (5) 59.2

S1
5.0321 (3) 13.741 (1) 20.6

7.479.950 (1) 3.020 (4) 4.6049 (6) 79.4

RS2 5.025 (1) 13.725 (9) 100 8.97

S2
5.031 (2) 13.7397 (5) 41.1

7.359.949 (9) 3.0193 (2) 4.6016 (3) 58.9

S4
5.031 (1) 13.7397 (5) 89.7

8.269.956 (6) 3.018 (1) 4.598 (1) 10.3

S5
5.031 (3) 13.7388 (9) 52.2

7.249.950 (2) 3.0182 (5) 4.5994 (6) 47.8

S6
5.0325 (1) 13.749 (5) 39.5

6.899.957 (1) 3.0204 (3) 4.6040 (4) 60.5

S7 5.0416 (1) 13.766 (5) 100 9.33

RS3 5.0355 (1) 13.754 (4) 100 6.72

S3 5.0367 (4) 13.757 (1) 100 6.69

PXRD patterns of the samples RS1 and S1 indicated a presence of orthorhombic,
goethite assembly (space group Pbnm) and rhombohedral, hematite phase (space group
R-3c) (Figure 2). However, the sample S2, with 1% CTAB addition, differed from sample
RS2 prepared at the same temperature, 200 ◦C. Namely, the FT-IR spectra of sample RS2
(Figure 1) and PXRD patterns (Figure 3) indicated the formation of solely hematite phase.
As opposed to that, the FT-IR spectra of sample S2 (Figure 1) showed IR bands that can be
assigned to both goethite phase (IR bands at 893 and 795 cm−1) and hematite phase (IR
bands at 546 and 471 cm−1). The mixture of both Fe phases in sample S2 was evidenced by
the collected PXRD patterns (Figure 3). Reference sample RS3 and sample S3 prepared at
250 ◦C did not show IR bands at 893 cm−1 or 795 cm−1, but very intense hematite bands
were observed at 546 and 471 cm−1 (Figure 1). From the IR spectra and the PXRD pattern
(Figure 4), the presence of hematite as a single phase was evident in the reference sample
RS3 and sample with 1% CTAB addition, S3. The samples RS1 and S1, synthesized at
150 ◦C, differed in their composition ratio. Namely, the reference sample RS1 contained
~40 wt.% α-Fe2O3 and ~60 wt.% α-FeOOH, while sample S1, with 1% CTAB, contained
~20 wt.% α-Fe2O3 and ~80 wt.% α-FeOOH. Sample RS2, prepared at 200 ◦C, contained
solely α-Fe2O3 and sample S2, made at the same experimental conditions as RS2 but with
1% of CTAB addition, contained ~40 wt.% of α-Fe2O3 and ~60 wt.% of α-FeOOH phase
(Figure 3). Reference sample RS3 and sample S3, prepared at 250 ◦C, contained only the
hematite phase (Figure 4). A similar trend was observed in sample S7, with 2.5% of CTAB.
No impurities were detected in those samples. The values of crystallite sizes obtained from
the line-broadening analysis during the crystal structure refinements were in the range
between 24.6(1) and 81.0(1) for the α-Fe2O3 phase and 21.2(1) and 36.7(1) for the α-FeOOH
(Table 3).
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Table 3. Results of crystallite size calculation as obtained from the phase refinements to PXRD data.

Sample
Crystallite Size (nm)

Phase Fraction
(wt.%)α-Fe2O3 (s.g. R-3c) α-FeOOH (s.g.

Pbnm)

RS1
66.2 (1) 40.8

29.7 (1) 59.2

S1
63.7 (1) 20.6

21.2 (1) 79.4

RS2 39.5 (1) 100

S2
65.7 (1) 41.1

36.7 (1) 58.9

S4
42.3 (1) 89.7

35.5 (1) 10.3

S5
38.7 (1) 52.2

26.4 (1) 47.8

S6
38.8 (1) 39.5

27.7 (1) 60.5

S7 24.6 (1) 100

RS3 81.0 (1) 100

S3 29.8 (1) 100

Figure 5 shows samples precipitated at 200 ◦C for 20 min, but with different additions
of CTAB in the precipitation system: reference sample, RS2, without CTAB addition; sample
S4 with 0.25% of CTAB addition; sample S6 with 2.5% of CTAB added in precipitation
mixture. In these experimental conditions, without the CTAB addition, the final product
comprised pure hematite phase, as evidenced from the IR spectra of reference sample
RS2. Samples with the addition of CTAB (>0.5%) showed no difference according to FT-IR
analysis and had the same IR bands positioned at 893 cm−1, 795 cm−1, 644 cm−1, 546 cm−1,
471 cm−1, and 411 cm−1 of similar intensity, characteristic for the mixture of hematite and
goethite phases. Sample S4, with the smallest amount of CTAB (0.25%), showed the same
IR bands but reduced in intensity. Sample S4 contained the largest proportion of hematite,
~90 wt.%, of the final product. On the contrary, the sample S6, with the highest content
of CTAB, comprised the smallest fraction of hematite, only 39.5 wt.%, of the final product
(Table 2). Figure 6 shows a comparison of IR and the PXRD data of the reference sample
RS3, synthesized at 250 ◦C, and the sample with 2.5% CTAB added to the precipitation
mixture, S7, indicating the formation of pure hematite phases.

3.2. Surface Morphology Imaging

FE-SEM image of reference sample RS1 (Figure 7a) shows the presence of nanorods
typical of goethite and irregular particles typical of hematite formed at high pH [22]. In the
presence of CTAB (sample S1, Figure 7b), an increased fraction of goethite nanorods and
smaller hematite irregular particles were visible. FE-SEM image of reference sample RS2
(Figure 7c) shows only the presence of irregular hematite particles, while in the FE-SEM
image of sample S2 (Figure 7d) goethite nanorods are also visible.
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FE-SEM images of reference sample RS3 (Figure 8a) and samples S3 and S7 (Figure 8b–d)
show the presence of similar irregular hematite particles of about several tens of nm to
1 µm in size. These images indicate an insignificant influence of the presence of CTAB
during high-temperature (250 ◦C) synthesis on the size and shape of hematite particles.
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4. Discussion

The formation of α-Fe2O3 particles obtained by the precipitation from FeCl3 solution
by forced hydrolysis at elevated temperatures dissolved α-FeOOH particles and recrys-
tallizes α-Fe2O3 particles, as reported in the literature [22,25,34]. The syntheses reported
in these papers represent conventional hydrothermal routes in a gravity furnace under
extended reaction time, hours or days. Foreign species in precipitation mixtures for iron
oxide synthesis (i.e., anions, cations, or neutral molecules) can have two different effects:
They can change either the composition ratio of the final product (goethite/hematite) or
they can modify the properties of the final product [6]. The effect of the surfactant CTAB on
particle morphology has been studied in previous work using conventional hydrothermal
routes under extended reaction time [70].

In this work, we investigated a microwave-assisted hydrothermal accelerated synthe-
sis of α-Fe2O3 and α-FeOOH particles from FeCl3 solution in a highly alkaline medium
at 150 ◦C, 200 ◦C, and 250 ◦C and 20-min reaction time. The effect of the percentage of a
cationic surfactant, CTAB, on the composition, size, and shape of the final product was
elaborated in detail.

Reference samples RS1–RS3 and samples S1–S3 were prepared as precipitated mixtures
of 0.1 M FeCl3 solution at pH values ~13 and heated at 150 ◦C, 200 ◦C, and 250 ◦C for
20 min in a microwave oven. Samples S1–S3 in the precipitated mixtures contained 1%
CTAB. Reference sample RS1 and sample S1 prepared at 150 ◦C showed the same IR
bands, assigned to the formation of goethite and hematite phases. The PXRD patterns in
Figure 2 showed the mixture of α-Fe2O3 and α-FeOOH in both the reference sample RS1
and sample S1. According to the results of structure refinements, the reference sample RS1
and sample S1 differed in their composition ratio: The sample RS1 contained ~40 wt.%
α-Fe2O3 and ~60 wt.% α-FeOOH, whereas the sample S1 comprised 20 wt.% α-Fe2O3 and
80 wt.% α-FeOOH. Therefore, it can be concluded that CTAB in sample S1 slowed down
the rate of the goethite-to-hematite transformation process. A complete transformation
of goethite to hematite phase was possible only at higher temperatures. In particular,
under hydrothermal conditions, above 150 ◦C, the formation of the hematite phase was
very fast [6]. The FT-IR spectra of the reference sample RS2 in Figure 1 and the PXRD
patterns in Figure 3 showed the formation of single-phase α-Fe2O3 after 20 min at 200 ◦C.
On the contrary, the sample S2, prepared with the same aging time and temperature as
the reference sample RS2 but with 1% CTAB addition, comprised the mixture of both
α-Fe2O3 and α-FeOOH phases. The mixture consisted of ~40 wt.% α-Fe2O3 and ~60 wt.%
α-FeOOH. Indeed, slowing down the rate of the phase transformation from goethite to
hematite induced by the CTAB addition followed a similar fashion as for the sample
S1. Furthermore, the synthesis of samples RS3, S7, and S3 showed that the addition of
CTAB did not affect the goethite-to-hematite transformation (see Figures 4 and 6). In these
samples, single-phase α-Fe2O3 precipitated in the nanometer range, as unraveled from the
PXRD line-broadening analysis.

Atyam et al. [88] described that the IR peaks at 536 and 468 cm−1 corresponded
to Fe-O bonding of iron oxide for well-calcined particles appearing with the increase of
temperature, which was in excellent agreement with our study, as we can see the shift of
the IR band (Figure 1) compared to the samples prepared at 150 ◦C (sample S1) and those
prepared at 200 or 250 ◦C (samples S2 and S3). The FE-SEM analysis revealed that the
goethite particles in samples RS1, S1, and S2 were nanorods and the hematite particles in
all samples had irregular shapes and sizes in the range from ~10 nm to 1 µm.

As mentioned in the Introduction, the microwave-assisted synthesis ensured a quick
investigation of the influence of various additives and their addition amount in the synthe-
sis mixture. In particular, the samples precipitated at 200 ◦C for 20 min, but with different
addition levels of CTAB in the precipitated system, from 0.25% in sample S4 to 2.5% in
sample S6 (Figure 5). The addition of less than 0.25% CTAB had no significant effect on the
goethite-to-hematite transformation process. However, higher additions of CTAB, from
0.5% to 2.5%, according to Table 2, indicated that as the amount of CTAB in the precipitated
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mixture of samples increased, the composition of goethite and hematite varied, resulting
in a smaller mass fraction of hematite phase in the final product. According to FE-SEM
images of samples RS3, S3, and S7 and results of PXRD line-broadening analysis, it was
concluded that CTAB addition had an insignificant influence on the size and shape of
hematite particles.

Based on this rapid and straightforward iron oxide preparation method, future stud-
ies will investigate the effects of other surfactants: anionic, cationic, or nonionic on the
precipitated mixture, with a strong emphasis placed on the reproducibility of the synthesis
data produced by microwave technology.

5. Conclusions

In this work, we reported the facile and fast microwave-assisted hydrothermal synthe-
sis of α-Fe2O3 particles from FeCl3 solution in highly alkaline media by heating at 200 ◦C
and 250 ◦C for 20 min. In these synthesis routes for hematite particles, it was proven that
0.25% of added CTAB slows down the transformation of goethite-to-hematite at 200 ◦C,
but any percentage of added CTAB had no effect on transformation at 250 ◦C. The shape of
the synthesized particles, goethite nanorods, and irregular hematite was about a few tens
of nm to 1 µm in size regardless of temperature or CTAB addition.
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the published version of the manuscript.

Funding: This work was funded by Croatian Science Foundation, project numbers: UIP-2017-05-6282
and IP-2016-06-8254.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bilecka, I.; Niederberger, M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2010, 2, 1358–1374. [CrossRef]
2. Kappe, C.O. How to measure reaction temperature in microwave-heated transformations. Chem. Soc. Rev. 2013, 42, 4977–4990.

[CrossRef] [PubMed]
3. Van der Eycken, E.V. Practical Microwave Synthesis for Organic Chemists.Strategies, Instruments, and Protocols. Edited by C.

Oliver Kappe, Doris Dallinger and Shaun Murphree. Angew. Chem. Int. Ed. 2009, 48, 2828–2829. [CrossRef]
4. Schutz, M.B.; Xiao, L.S.; Lehnen, T.; Fischer, T.; Mathur, S. Microwave-assisted synthesis of nanocrystalline binary and ternary

metal oxides. Int. Mater. Rev. 2018, 63, 341–374. [CrossRef]
5. Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave assisted synthesis–a critical technology overview. Green Chem.

2004, 6, 128–141. [CrossRef]
6. Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence, and Uses; VCH: New York, NY, USA, 2003.
7. Buxbaum, G. Industrial Inorganic Pigments, 1st ed.; VCH: New York, NY, USA, 1993; p. 281.
8. Li, P.; Miser, D.; Rabiei, S.; Yadav, R.; Hajaligol, M. The removal of carbon monoxide by iron oxide nanoparticles. Appl. Catal. B

2003, 43, 151–162. [CrossRef]
9. Zhang, W.; Singh, P.; Paling, E.; Delides, S. Arsenic removal from contaminated water by natural iron ores. Miner. Eng. 2004, 17,

517–524. [CrossRef]
10. Mohapatra, M.; Anand, S. Synthesis and applications of nano-structured iron oxides or hidroxides—A review. Int. J. Eng. Sci.

Technol. 2010, 2, 127–146.
11. Lu, A.-H.; Salabas, E.L.; Schueth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew.

Chem. Int. Ed. 2007, 46, 1222–1244. [CrossRef] [PubMed]
12. Marinho, J.Z.; Montes, R.H.O.; de Moura, A.P.; Longo, E.; Varela, J.A.; Munoz, R.A.A.; Lima, R.C. Rapid preparation of alpha-

FeOOH and alpha-Fe2O3 nanostructures by microwave heating and their application in electrochemical sensors. Mater. Res. Bull.
2014, 49, 572–576. [CrossRef]
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43. Ristić, M.; Mitar, I.; Musić, S. Forced hydrolysis of FeCl3 solutions in the presence of sodium dextran sulphate. Colloid Polym. Sci.
2019, 297, 177–182. [CrossRef]

http://doi.org/10.1016/j.jcrysgro.2004.03.034
http://doi.org/10.1186/1556-276X-7-144
http://www.ncbi.nlm.nih.gov/pubmed/22348683
http://doi.org/10.1021/cr068445e
http://www.ncbi.nlm.nih.gov/pubmed/18543879
http://doi.org/10.1021/cm200397g
http://doi.org/10.1007/s11671-008-9174-9
http://www.ncbi.nlm.nih.gov/pubmed/21749733
http://doi.org/10.1016/j.pcrysgrow.2008.08.003
http://doi.org/10.1016/j.molstruc.2006.10.030
http://doi.org/10.1007/BF00363442
http://doi.org/10.1016/0021-9797(82)90254-5
http://doi.org/10.1016/S0921-5107(98)00212-8
http://doi.org/10.1016/S0925-8388(98)00637-9
http://doi.org/10.1016/S0167-577X(02)00937-0
http://doi.org/10.1016/j.matlet.2004.04.002
http://doi.org/10.1016/j.jallcom.2005.09.016
http://doi.org/10.1016/j.jallcom.2005.09.043
http://doi.org/10.1016/j.molstruc.2006.10.059
http://doi.org/10.1016/j.jcrysgro.2007.10.072
http://doi.org/10.1016/j.jallcom.2007.10.014
http://doi.org/10.1016/j.molstruc.2008.10.011
http://doi.org/10.1016/j.matchemphys.2009.10.040
http://doi.org/10.1016/j.matlet.2010.08.028
http://doi.org/10.1016/j.molstruc.2010.09.048
http://doi.org/10.1016/j.jallcom.2013.01.027
http://doi.org/10.1016/j.matlet.2013.03.013
http://doi.org/10.5562/cca3412
http://doi.org/10.1007/s00396-018-4450-4


Crystals 2021, 11, 383 16 of 17

44. Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials
2005, 26, 3995–4021. [CrossRef]

45. Wu, W.; Jiang, C.Z.; Roy, V.A.L. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for
biomedical applications. Nanoscale 2016, 8, 19421–19474. [CrossRef] [PubMed]

46. Faraji, M.; Yamini, Y.; Rezaee, M. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and
applications. J. Iran. Chem. Soc. 2010, 7, 1–37. [CrossRef]

47. Wang, W.; Zhu, Y.; Ruan, M. Microwave assisted synthesis and magnetic property of magnetite and hematite nanoparticles. J.
Nanopart. Res. 2007, 9, 419–426. [CrossRef]

48. Hu, L.; Percheron, A.; Chaumont, D.; Brachais, C.H. Microwave-assisted one-step hydrothermal synthesis of pure iron oxide
nanoparticles: Magnetite, maghemite and hematite. J. Sol Gel Sci. Technol. 2011, 60, 198–205. [CrossRef]

49. Jiang, F.; Wang, C.; Fu, Y.; Liu, R. Synthesis of iron oxide nanocubes via microwave assisted solvolthermal method. J. Alloys
Compd. 2010, 503, 31–33. [CrossRef]

50. Yin, S.; Luo, Z.; Xia, J.; Li, H. Microwave-assisted synthesis of Fe3O4 nanorods and nanowires in an ionic liquid. J. Phys. Chem.
Solids 2010, 71, 1785–1788. [CrossRef]

51. Cao, S.-W.; Zhu, Y.-J. Iron oxide hollow spheres: Microwave–hydrothermal ionic liquid preparation, formation mechanism,
crystal phase and morphology control and properties. Acta Mater. 2009, 57, 2154–2165. [CrossRef]

52. Xavier, C.S.; Paskocimas, C.A.; da Motta, F.V.; Araujo, V.D.; Aragon, M.J.; Tirado, J.L.; Lavela, P.; Longo, E.; Delmonte, M.R.B.
Microwave-assisted Hydrothermal Synthesis of Magnetite Nanoparticles with Potential Use as Anode in Lithium Ion Batteries.
Mater. Res. 2014, 17, 1065–1070. [CrossRef]

53. Osborne, E.A.; Atkins, T.M.; Gilbert, D.A.; Kauzlarich, S.M.; Liu, K.; Louie, A.Y. Rapid microwave assisted synthesis of dextran
coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology 2012, 23, 3461–3467. [CrossRef]

54. Komarneni, S.; D’Arrigo, M.C.; Leonelli, C.; Pellacani, G.C.; Katsuki, H. Microwave-hydrothermal synthesis of nanophase ferrites.
J. Am. Ceram. Soc. 1998, 81, 3041–3043. [CrossRef]

55. Sreeja, V.; Joy, P. Microwave hydrothermal synthesis of γ-Fe2O3 nanoparticles and their magnetic properties. Mater. Res. Bull.
2007, 42, 1570–1576. [CrossRef]

56. Katsuki, H.; Komarneni, S. Microwave-Hydrothermal Synthesis of Monodispersed Nanophase α-Fe2O3. J. Am. Ceram. Soc. 2001,
84, 2313–2317. [CrossRef]

57. Ni, H.; Ni, Y.; Zhou, Y.; Hong, J. Microwave–hydrothermal synthesis, characterization and properties of rice-like α-Fe2O3
nanorods. Mater. Lett. 2012, 73, 206–208. [CrossRef]

58. Khollam, Y.B.; Dhage, S.R.; Potdar, H.S.; Deshpande, S.B.; Bakare, P.P.; Kulkarni, S.D.; Date, S.K. Microwave hydrothermal
preparation of submicron-sized spherical magnetite (Fe3O4) powders. Mater. Lett. 2002, 56, 571–577. [CrossRef]

59. Bakare, P.P.; Date, S.K.; Khollam, Y.B.; Deshpande, S.B.; Potdar, H.S.; Salunke-Gawali, S.; Varret, F.; Pereira, E. Mössbauer effect
studies on the formation of iron oxide phases synthesized via microwave–hydrothermal route. Hyperfine Interact. 2006, 168,
1127–1132. [CrossRef]

60. Dhage, S.R.; Khollam, Y.B.; Potdar, H.S.; Deshpande, S.B.; Bakare, P.P.; Sainkar, S.R.; Date, S.K. Effect of variation of molar ratio
(pH) on the crystallization of iron oxide phases in microwave hydrothermal synthesis. Mater. Lett. 2002, 57, 457–462. [CrossRef]

61. Parsons, J.; Luna, C.; Botez, C.; Elizalde, J.; Gardea-Torresdey, J. Microwave assisted synthesis of iron(III) oxyhydroxides/oxides
characterized using transmission electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy. J. Phys. Chem. Solids
2009, 70, 555–560. [CrossRef] [PubMed]

62. Hu, X.L.; Yu, J.C.; Gong, J.M. Fast production of self-assembled hierarchical alpha-Fe2O3 nanoarchitectures. J. Phys. Chem. C 2007,
111, 11180–11185. [CrossRef]

63. Mahmoud, W.E.; Al-Hazmi, F.; Al-Noaiser, F.; Al-Ghamdi, A.A.; Bronstein, L.M. A facile method to syntheses monodisperse
gamma-Fe2O3 nanocubes with high magnetic anisotropy density. Superlattices Microstruct. 2014, 68, 1–5. [CrossRef]

64. Deshmukh, R.G.; Badadhe, S.S.; Mulla, I.S. Microwave-assisted synthesis and humidity sensing of nanostructured alpha-Fe2O3.
Mater. Res. Bull. 2009, 44, 1179–1182. [CrossRef]

65. Dias, A.M.G.C.; Hussain, A.; Marcos, A.S.; Roque, A.C.A. A biotechnological perspective on the application of iron oxide magnetic
colloids modified with polysaccharides. Biotechnol. Adv. 2011, 29, 142–155. [CrossRef]

66. Ngenefeme, F.-T.J.; Eko, N.J.; Mbom, Y.D.; Tantoh, N.D.; Rui, K.W.M. A one pot green synthesis and characterisation of iron oxide
pectin hybrid nanocomposite. Open J. Compos. Mater. 2013, 3, 30–37. [CrossRef]

67. Kim, D.K.; Zhang, Y.; Voit, W.; Rao, K.V.; Muhammed, M. Synthesis and characterization of surfactant-coated superparamagnetic
monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 2001, 225, 30–36. [CrossRef]

68. Shokuhfar, A.; Alibeigi, S.; Vaezi, M.R.; Sadrnezhaad, S.K. Synthesis of Fe3O4 Nanoparticles Prepared by Various Surfactants and
Studying their Characterizations. Defect Diffus. Forum. 2008, 273–276, 22–27.
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