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Abstract. The dynamics of a triangular magnetocapillary swimmer is studied using the lattice Boltzmann
method. Performing extensive numerical simulations taking into account the coupled dynamics of the
fluid-fluid interface and of magnetic particles floating on it and driven by external magnetic fields we
identify several regimes of the swimmer motion. In the regime of high frequencies the swimmer’s maximum
velocity is centered around the particle’s inverse coasting time. Modifying the ratio of surface tension and
magnetic forces allows to study the swimmer propagation in the regime of significantly lower frequencies
mainly defined by the strength of the magnetocapillary potential. Finally, introducing a constant magnetic
contribution in each of the particles in addition to their magnetic moment induced by external fields leads
to another regime characterised by strong in-plane swimmer reorientations that resemble experimental
observations.
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1 Introduction

Understanding the mechanisms of swimming motion of
microorganisms and cells at low Reynolds number is the
key to new technologies in biological and medical applica-
tions [1, 2, 3]. Simultaneously with the study of motion of
biological objects like bacteria and sperm cells [4], a new
class of microscale devices appeared – artificial or human-
made microswimmers. Many of them are designed in a
rather simple way, consisting of a number of interacting
microscopic particles powered by external excitations, for
instance following the framework of the three-beads swim-
mer [5, 6]. Other examples of artificial microswimmers in-
clude magnetically active particles [7], Janus particles [8],
particles enduring chemo- [9], visco- [10], gravi- [11] or
thermo-taxis [12] or even swarms of microscopic particles
mimicking the behaviour of biological organisms [13].

A particular example of an artificial microswimmer ca-
pable of self-propelling at a gas/liquid interface is a mag-
netocapillary microswimmer. Here, several magnetic par-
ticles are placed onto an air/water interface. Their assem-
bly is achieved via balancing attractive capillary and re-
pulsive magnetic interactions [14]. The motion is induced

by applying periodically altered magnetic fields and it
can self-propel in a linear [15] or a triangular configura-
tion [16, 17] or perform fully controlled rotations at the
interface [18] offering a number of potential applications.
These include the transport of cargo particles or interfa-
cial mixing [19].

Although a number of theoretical studies are known for
the triangular swimmer configuration [20, 21, 22], many
of them disregard the presence of the interface or con-
sider external forces only effectively. Here, we study nu-
merically the rich dynamics of magnetocapillary swimmers
by taking all relevant effects into account. In ref. [23] we
thoroughly investigated the assembly and the motion of
the magnetocapillary swimmer in the regime where the
peak velocities of motion are centred at frequencies around
the inverse viscous time of a single particle. This regime
appears quite different from what is observed in the ex-
periments [17, 19]: 1) we do not observe sizable in-plane
rotations of the beads and of the swimmer, 2) the trans-
lational amplitudes of the bead motion are significantly
smaller, 3) the simulated average velocity of the swimmer
is lower than in the experiment. Additionally, the parti-
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cles detach from the interface and sink at low excitation
frequencies, limiting our study to high-frequency regimes.

The current paper aims at a thorough understanding of
the parameters that determine the collective motion of the
swimmer beads and the propagation efficiency of the full
magnetocapillary swimmer. We demonstrate and explain
the various modes of motion magnetocapillary swimmers
can undergo depending on the precise setup and choice of
parameters. Finally, we demonstrate that our simulations
are also able to qualitatively reproduce the strong reori-
entations of the swimmer as observed in the experiments.

To do so, we reconsider some of the assumptions made
in the previous numerical model. For example, in order to
prevent sinking, the ratio of the surface tension and the
magnetic forces needs to be strongly modified. Further-
more, the assumption of purely paramagnetic moments in
each bead, i.e. induced by external magnetic fields only,
is not sufficient to describe the regime observed in the
experiments. A constant magnetic contribution in each of
the particles leads to the experimentally observed in-plane
rotations of the particles.

The remainder of this article is organised as follows:
sect. 2 deals with the details of the numerical method,
in sect. 3 different regimes of motion are presented and
analyzed in depth. Main conclusions on the present and
our previous numerical simulations are summarized in the
final section.

2 Simulation method

The simulation method is thoroughly described in ref. [23]
and we only summarize the main ingredients here. We
use a lattice Boltzmann (LB) method for the simulation
of fluids [24]. It is based on a discretised version of the
Boltzmann equation

f ci (x+ ci∆t, t+∆t) = f ci (x, t) +Ωci (x, t). (1)

The latter describes the time evolution of a single-particle
distribution function f ci (x, t) at time t and position x and
ci denotes the discrete velocity vector in the ith direction
for fluid component c = {1, 2}. Here, we use a so-called
D3Q19 lattice with i = 1, . . . , 19 [25]. The left hand side of
eq. (1) describes the free streaming of fluid particles, while
their collisions are modelled by a Bhatnagar-Gross-Krook
(BGK) collision operator on the right hand side as [26]

Ωci (x, t) = −
f ci (x, t)− f

eq
i (ρc(x, t),uc(x, t))

τ c/∆t
. (2)

In eq. (2), f eqi (ρc(x, t),uc(x, t)) is a third-order equilib-
rium distribution function [27], and macroscopic densities
and velocities are given by ρc(x, t) = ρ0

∑
i f

c
i (x, t) as well

as uc(x, t) =
∑
i f

c
i (x, t)ci/ρ

c(x, t), respectively (ρ0 is a
reference density). τ c is the relaxation rate of component
c, which determines the relaxation of f ci (x, t) towards the
equilibrium. Space is discretised on a three-dimensional
lattice with lattice constant ∆x and the time t is discre-
tised with ∆t-steps. The speed of sound cs = 1/

√
3∆x/∆t

depends on the choice of the lattice geometry and allows
one to obtain the kinematic νc = c2s∆t(τ

c/∆t − 1/2) or
the dynamic ηc = νcρc fluid viscosities. For simplicity, we
set ∆x = ∆t = ρ0 = τ c = 1 in the remainder of this paper
and refer to the units as lattice units (l.u.).

For simulations of the interface and the associated cap-
illary interactions, we choose the pseudopotential method
of Shan and Chen and apply a mean-field force between
different fluid components as [28, 29]

F cC(x, t) = −ψc(x, t)
∑
c′

gcc′
∑
x′

ψc
′
(x′, t)(x′ − x). (3)

Here, c and c′ refer to different fluid components, x′ de-
notes the nearest neighbours of the lattice site x and
gcc′ describes a coupling constant determining the surface
tension. ψc(x, t) has the form ψc(x, t) ≡ ψc(ρc(x, t)) =
1− e−ρ

c(x,t). The force (3) is applied to the fluid compo-
nent c by adding a shift ∆uc(x, t) = τ cF cC(x, t)/ρ

c(x, t)
to the velocity uc(x, t) in the equilibrium distribution.
The method is a diffuse interface method, with an inter-
face width of typically 5 lattice sites depending weakly on
the coupling strength [30, 31]. In the binary fluid system
we refer to the fluids as “red” (r) and “blue” (b) [32]. In
addition, we initialize the system with two equally sized
volumes of red and blue fluid, separated by a flat fluid
interface.

Three rigid magnetic particles are simulated by solv-
ing Newton’s equations of motion for translational and
rotational degrees of freedom by means of a leap-frog al-
gorithm. The particles are discretised on the lattice. They
are coupled to both fluid species by means of a modi-
fied bounce-back boundary condition for both fluid com-
ponents [33, 34, 35, 32, 36].

A static magnetic field By is applied along the posi-
tive y-direction (see Fig. 1) perpendicular to the interface
and induces repulsive magnetic dipolar forces. The repul-
sion is balanced by an attractive capillary force which is
due to the interface deformation caused by the gravity-
induced immersion of the particles. This combination of
forces allows the assembly of stable particle arrangements
at the interface. In analogy with the experiments on mag-
netocapillary swimmers [16, 17] we choose the amplitude
of the time-dependent magnetic field to be approximately
three times lower than that of the static field to treat it
as a modulation. The field B(t) = B0x cosωtex causes
a deformation of the particle arrangement, which due to
collective hydrodynamic interactions leads to the motion
of the swimmer under a force free protocol. To describe
the paramagnetic nature of the particles, a homogeneous
external magnetic field B induces a magnetic moment
µi = χVB/µ0 in each particle i, where χ is the parti-
cle susceptibility, V is its volume and µ0 = 4π × 10−7 (in
lattice units) corresponds to the magnetic permeability of
vacuum. The resulting magnetic dipole-dipole interaction
between a pair of particles is

Uij = −
µ0

4πr3ij

[
3(µi · eij)(µj · eij)− (µi · µj)

]
. (4)
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In eq. (4), rij ≡ ||rij || ≡ ||ri − rj || is the distance be-
tween the centres of two spheres i, j located at ri and rj ,
respectively, and eij = (ri− rj)/ ||ri − rj ||. The effective
magnetic field generated by the magnetic moment µj at
the location of another particle i is

Bi = −
∂Uij
∂µi

=
µ0

4πr3ij

[
3eji(µj · eji)− µj

]
. (5)

The resulting magnetic force acting on the ith particle is
then F i = −∇ (−µi · (Bi +B)), or more explicitly

F i =
3µ0

4πr4ij

(
µi
(
µj · eji

)
+ µj (µi · eji)

−5eji
(
µj · eji

)
(µi · eji) + eji(µi · µj)

)
.(6)

We note that the external magnetic field B is homoge-
neous (∇(µi · B) = 0)), hence the magnetic forces (eq.
(6)) appear solely as a result of the magnetic dipolar in-
teraction. Analogously, the magnetic torque acting on the
particle i is T i = [µi × (Bi +B)], or explicitly

T i=
µ0

4πr3ij
·
(
3
(
µj · eji

) [
µj×eji

]
−
[
µi×µj

])
+ [µi×B] .

(7)
In the case of three particles the total force and the to-
tal torque for each particle include a summation of ex-
pressions (6) and (7) over index j. The method with im-
plemented magnetic interactions has already been bench-
marked and successfully applied for simulations of mag-
netocapillary phenomena [37, 38, 39] and swimmers [23].

The following numerical parameters are used through-
out the paper: the simulation box consists of 1283 cu-
bic cells containing two equally sized fluid lamellae. Rigid
walls with midgrid bounce back boundary conditions are
placed parallel to the fluid interface, while in any other
directions periodic boundary conditions are assumed. All
beads have equal radius R = 5∆x and density ρp = 2ρ0.
The coupling constant gcc′ = 0.1 between the two fluids
with densities ρr = ρb = 0.7ρ0 implies a numerical surface
tension γ = 0.04 in lattice units. The magnetic moment is
chosen in the range µ = [1; 3]× 105 in lattice units.

3 Results

The equilibrium properties of one, two and three parti-
cles at the fluid-fluid interface, are thoroughly studied in
ref. [23]. Therefore, here we start directly with three rigid
magnetic particles placed at the interface. The particles
are in their equilibrium position at a fixed ratio of gravita-
tional and surface tension forces, termed as Bond number,
i.e. Bo = 0.16 (Fig. 1a).

The assembly of the three particles is driven by a time-
dependent magnetic field and the main observable of in-
terest is the average velocity of the swimmer, defined as

〈v〉 = 1

3

∑
i

(ri(te)− ri(tb))
(te − tb)

, (8)
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Fig. 1. a) The simulated system including the directions of
external magnetic fields (B and B(t)) and particle orientation
vectors ni, coinciding with the directions of magnetic moments
of beads µi. b) Top view of the fluid interface showing angles αi

of the isosceles triangle formed by particles and the orientation
of the triangle within the interface θ.

where tb, te stand for the beginning and end times of the
external magnetic field action, i numbers the particles and
ri denotes the corresponding coordinates.

In general, the velocities and times can be expressed
in relative units related to characteristic processes of the
particles at the interface. Since each spherical particle in a
fluid experiences a drag force upon translation, its charac-
teristic time to reach the equilibrium can be measured via
the coasting or viscous time, defined as τcs = m/(6πηR)
or τcs = 2ρpR

2/(9η) ≈ 95 ∆t, where ρp is the particle
density, R is its radius and η is the total fluid viscos-
ity. Following the total magnetic field, the particles partly
rotate in the fluid, requiring another relevant time scale
associated with their rotation. This rotational time can
be defined as a ratio of the moment of inertia and the
mechanical torque, i.e. τrt = 2/5mR2/(8πηR3) or τrt =
ρpR

2/(15η) ≈ 29 ∆t. One can estimate the time describ-
ing the relaxation of the interface as τin = ηR/γ ≈ 44 ∆t,
where γ describes the surface tension. Finally, since the
particles are in the magnetocapillary potential, the time
related to its strength or effective spring k can be approx-
imated using τsp = 2π

√
m/k ≈ 65000 ∆t. It is mostly

convenient to use one of the shortest time scales associ-
ated with the colloid for the normalization and the time
having fewest variable parameters. Therefore, we express
time in units of the coasting time of a single particle τ cs
and the swimmer velocities in diameters per coasting time
(2R)/τcs.

Following the definition of the coasting time τ cs, we
denote high frequencies to be in the range of ω/(2π) ≈
1/τ cs , while the range of low frequencies corresponds to
ω/(2π)� 1/τ cs.

3.1 Motion at high frequencies

In ref. [23] we report on the static and some dynamic
properties of the magnetocapillary swimmer. It is shown
there that the swimmer demonstrates a stable controlled
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motion for a broad range of swimmer sizes at frequencies
in the vicinity of the inverse coasting time τcs.

60

65
1(t)
2(t)
3(t)

10

0

10

   
   

   
   

 A
ng

le
s [

]

(t)

0 5 10 15 20 25 30 35 40
Time t/T

B(t)/B0

Fig. 2. High-frequency time propagation of the inner angles αi

within the triangular swimmer and the orientation angle θ of
the swimmer as defined in Fig. 1b. LB-parameters: Bo = 0.16,
L = 2.3× (2R), |B(t)|/|B| = 0.36, T = 125 ∆t.

We introduce the angles αi(t) between the correspond-
ing arms of the swimmer as shown in Fig. 1,b as well as the
orientation of the swimmer in the plane of the interface
θ defined as the angle between the perpendicular to the
line connecting particles 1 and 2 through particle 3 and
the z-axis (Fig. 1b), where θ(t = 0) ≈ 0. Starting with an
equilateral triangle (αi(tb) = 60◦, Fig. 2, upper panel) it
transforms into an isosceles one for B(t) 6= 0, while the
triangle as a whole only slightly (< 10◦) rotates after a
number of field periods (Fig. 2, middle panel).

Approaching to lower frequencies in this regime often
leads to a sinking of one or two particles, thus destroy-
ing the swimmer. This effect is very pronounced at mod-
erate and large swimmer sizes (L > 3 × 2R), hindering
the study of its motion at low frequencies. In experiments
on magnetocapillary swimmers (refs. [17, 15, 19]) sinking
of particles was never observed, raising the question of
proper parameters in the LB-simulations. Indeed, one can
consider the ratio of surface tension and magnetic dipolar
forces Fst/Fmg = 2πγR/(µ0µ

2/(4πr4pp)), where µ0 is the
magnetic permeability of vacuum, µ is the total bead mag-
netic moment and rpp is the distance between the particle
centres. Aiming at the maximum of the magnetic force,
thus taking rpp = 2R, we find the ratio in the experimental
situation to be Fst/Fmg

∣∣∣
ex
≈ 104 and in LB-simulations

of the order of Fst/Fmg

∣∣∣
LB
≈ 1. It is obvious from this

estimate that in the experiments the surface tension dom-
inates over magnetic interactions, while in the simulations
the forces are of the same order. In addition to its strength,
the magnetic force is strongly dependent on the mutual
orientation of interacting magnetic moments (eq. (6)). In
particular, if the particles are in one plane and their mag-

netic moments are aligned strictly perpendicular to the
interface (Fig. 3a,b), the out-of-plane magnetic force is
zero. If, however, the magnetic moments become tilted
by the external time-dependent magnetic field (Fig. 3c),
the out-of-plane components of the magnetic forces beat
the surface tension forces detaching the particles from the
interface (Fig. 3d). Interestingly, only the particles along
the B(t)-field vector (particles 1 and 2) sink, since by
symmetry particle 3 does not experience any out-of-plane
magnetic force in this configuration.

3.2 Motion at low frequencies

In order to get closer to the experimental regime and
to avoid the sinking of particles, the ratio of the forces
Fst/Fmg needs to be increased. A natural way to increase
this ratio is by decreasing the magnetic moment. This does
not work, however, since it reduces the magnetic repulsion
and leads solely to the aggregation of particles. Alterna-
tively, the surface tension could be increased, but the com-
putational effort required to increase the surface tension
by several orders of magnitude is prohibitive.

We therefore numerically set the out-of-plane com-
ponent of magnetic forces to zero, and thus effectively
increase the ratio of surface tension to magnetic force.
This solution is physically sound since all magnetic dipo-
lar forces are pair forces and the total force remains zero.

As shown in Fig. 4, the swimmer in this regime prop-
agates in the direction perpendicular to the oscillation of
the magnetic field. This aspect is similar to the previ-
ously observed motion [23]. The way it propagates is, how-
ever, different. The amplitudes of particle oscillations are
significantly larger than before and reach values around
0.3× 2R. Also, all three beads experience pronounced os-
cillations and not only particles 1 and 2 as it is the case
at high frequencies [23].

Fig. 5 shows the trajectories of orientation vectors ni
stressing the fact that orientations of the particles fol-
low the direction of the time-dependent external mag-
netic field which is applied after a relaxation time of tb =
30000 ∆t. As mentioned in ref. [23], the time tb is cho-
sen after studying vertical relaxations of single and mul-
tiple particles at the fluid-fluid interface. It assures that
for t > tb the vertical motion of both the particles and
the fluid is negligibly small. The maximum declination
of the direction vector nmax

xi ≈ 0.36 is the consequence
of the applied time-dependent and static magnetic fields
|B(t)|/|B| ≈ 0.36. Since direction vectors are unit vectors
|ni| = 1 and the magnetic fields are applied in the xy-
plane, the nzi-component remains nearly zero attaining
the maximum declination for ∆nyi = 1−

√
1− n2xi ≈ 0.07

(see Fig. 5 for nyi).
The orientation of the swimmer θ in this case does

not show any regular pattern (Fig. 6), but it indicates
an overall slight rotation of the triangle with respect to
the initial orientation by less than 10◦. Since during the
motion of the swimmer θ reaches values exceeding 20◦, we
conclude that the swimmer in this regime tries to synchro-
nize its orientation with respect to the driving B(t)-field.
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Fig. 3. Demonstration of the irreversible sinking of particles during the swimmer motion. a) shows the swimmer during
its relaxation (B(t) is not applied), b) illustrates the state directly after the driving B(t)-field is switched on, c) shows the
swimmer just before the sinking of the base particles and d) demonstrates the state of the degraded swimmer, i.e. when two
particles are detached from the interface. Parameters of simulations: the Bond number Bo = 0.16, the ratio of magnetic fields
|B(t)|/|B| ≈ 0.57, the period of the external field is T = 105 ∆t.
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Fig. 4. Trajectories of each bead during the swimmer motion
in the regime of low frequencies. The inset shows the initial and
final positions of the swimmer on the interface. LB-parameters:
Bo = 0.16, L = 1.8× (2R), |B(t)|/|B| = 0.36, T = 20000 ∆t.

Fig. 6 demonstrates significant differences in the time de-
pendence of angles αi compared to the high frequency
mode. Here, angle α3 associated with the third particle
periodically decreases while angles α1 and α2 increase to
the same amount. This is the consequence of the reduced
magnetic moments µ1 and µ2 on the average of the field
period, hence a reduced magnetic repulsion between the
particles. As a result, the attractive capillary interaction
pushes particles 1 and 2 closer to each other compared to
the situation in equilibrium (αi = 60◦).

The fact that the frequencies of angle oscillations are
two times higher than the ones related to the driving mag-
netic field reflects the magnetic pair-interaction nature. In-
deed, the induced magnetic moment can be written as µ =
χV0/µ0(B+B(t)) or simply µ ∼ const+cosωt, where χ is
the magnetic susceptibility and V0 is the volume of a par-
ticle. If the magnetic moments are oriented nearly perpen-
dicular to the interface, then the magnetic repulsion force
scales as F12 ∼ (µ · µ) = (const + C1 cosωt+ C2 cos 2ωt),
where C1,2 are some physical constants. In other words,
the second harmonics are inherent in magnetic interac-
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Fig. 5. Trajectories of orientation vectors ni (Fig. 1a) for each
bead in the regime of low frequencies. LB-parameters: Bo =
0.16, L = 1.8 × (2R), |B(t)|/|B| = 0.36, T = 20000 ∆t. The
B(t)-field is applied after tb = 30000 ∆t.

tions and since each particle interacts with two others at
the same time, several first and second harmonics are al-
ways present in their trajectories with different weights.

Fig. 7 summarizes the behaviour of the average veloc-
ity of the swimmer as a function of the frequency of the ex-
ternal field B(t) for different swimmer sizes L. In general,
swimmer velocities are sensitive variables. Therefore, the
swimming velocity results from averaging in time and on
different numerical trajectories, namely: first, the swim-
mer velocity is calculated according to the definition given
by eq. (8) which describes a time average of the displace-
ment of the swimmer’s centre of mass. Second, for every
swimmer size L we average over two trajectories differing
in the time when the B(t) is applied, i.e. tb = 30000 ∆t
and tb = 100000 ∆t, meaning that initial positions of the
swimmer in both cases are slightly different. This aver-
aging is required to smoothen the discretisation effects of
the particles and the interface. Compared to the similar
dependence of the regime at high frequencies (Fig. 9a in
ref. [23]), we clearly identify the swimmer operation in a
much broader range of frequencies for all swimmer sizes.
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Fig. 7 also provides a deep insight into the physics
of the swimmer motion at low and moderate frequencies
of its driving. It captures the whole complexity of the
motion in terms of capillary and magnetic interactions
(magnetocapillary potential), hydrodynamic interactions,
the behaviour of the interface, triangular geometry of the
swimmer and the effects associated with the inertia of the
particles. Although there is a number of studies dealing
with the physics of swimmer motion [5, 6, 40, 41, 20,
22, 42], it is hardly possible to include all the aforemen-
tioned effects in a single theoretical formalism. Studies re-
lying on the force-based approach suggest that the max-
imum swimmer velocity should be centered around the
frequencies associated with the harmonic potential con-
trolling the arm length, e.g. ωSt = k/(6πηR) [20, 22].

At the same time, a naive estimate related to the reso-
nance frequency a harmonic oscillator is known to scale
ωspring ∼

√
k/m. Taking the approximate values of the

spring constants k12x extracted from the particle trajecto-
ries of the swimmer of moderate sizes (Appendix A), we es-
timate for the maximum velocities the range ω(〈V 〉max) ≈
[0.0005; 0.009] 1/τcs. Fig. 7 confirms this behaviour by
showing broad velocity distributions at different swimmer
sizes in this range of frequencies. A decay of averaged ve-
locities as a function of the swimmer size L in this ω-
range reflects decreasing hydrodynamic interactions upon
the swimmer growing, which is shown by expression (43)
of ref. [22] though in the Oseen-tensor representation only
(R/L < 1/6). Its Rotne-Prager extension applicable to the
sizes considered here (1/4 < R/L < 1/3) confirms the ob-
served behaviour of 〈V max(L)〉 for ω ∈ [0.001; 0.01] 1/τcs.

3.3 Motion at low frequencies and finite internal
magnetic moment

The simulated triangular magnetocapillary swimmer pre-
sented so far shows how its motion differs depending on
the applied field frequency ω, properties of the interface
or the swimmer size L. Compared to the experimental
situation in which high in-plane cyclic bead rotations are
observed (Fig. 6 in ref. [17]), the simulated swimmer never
shows such type of motion since the propagation of θ in
Fig. 6 is not periodic. Indeed, the strong in-plane bead
rotations observed in the experiments point to more com-
plex magnetic properties of the beads.

For unraveling the magnetic properties of the beads a
series of experiments was performed using a single parti-
cle placed at the interface and driven by an external mag-
netic field [18]. Therein, the magnetic bead rotates under
the application of a constant magnetic field in the plane
of the interface when the field rapidly changes its orienta-
tion by 180◦. Assuming that the magnetic moment is of
paramagnetic nature, i.e. µ ∼ B, the associated magnetic
torque on the particle should be zero (T ∼ [µ ×B] = 0)
and cannot cause the particle to rotate around its own
axes. This fact leads to the hypothesis of the existence of
a permanent internal magnetic moment that is randomly
oriented when the particle is placed at the interface. Upon
switching the field orientation from "+" to "−" the per-
manent internal magnetic moment follows the field and
mechanically rotates the particle. Moreover, a correct lin-
ear scaling was experimentally observed for the maximum
rotation frequency of the bead with respect to the mag-
netic field amplitude (Fig. 8 in ref. [18]).

The origin of the small constant internal magnetic con-
tribution in the particles is still under debate [18]. Tak-
ing into account their size (diameters of several hundred
micrometers) and almost perfect spherical form, it can
be shown by exact numerical micromagnetic simulations
(sect. 5 in ref. [18]) that their net magnetic moment should
be zero in the absence of an external field. The latter
should also be true in much larger systems, i.e. above di-
ameters 1-3 µm for which the micromagnetic simulations
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were performed. At large particle sizes (> 1µm) long-
ranged magnetic dipolar interactions start favoring the
formation of magnetic domains that are randomly oriented
in space and their number grows upon reaching hundreds
of micrometers. Considering that the particles are highly
monodisperse in density [18], only two effects can cause
the presence of a finite internal magnetic moment: i) de-
fects at the boundaries of some magnetic domains (similar
to the Barkhausen effect) and/or ii) the fabrication pro-
cess of the magnetic beads. In the latter case, steel wires
are originally cut into small cylinders, then pressed into
spherical dies and finally rounded [18]. We speculate that
this process might induce additional magnetic anisotropies
in the particles.
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Fig. 8. Trajectories of each bead during the swimmer motion
in the regime of low frequencies and finite internal magnetic
moment. The inset shows the initial and final positions of the
swimmer on the interface. LB-parameters: Bo = 0.16, L =
1.5× (2R), |B(t)|/|B| = 0.36, T = 100000 ∆t, µintx = 0.1µind,
µinty = 0, µintz = 0.

Being equipped with the experimental proof for the
existence of the permanent internal magnetic moment, we
assume that the total magnetic moment in each particle
has the induced µindi(B) and the internal constant µinti

magnetic contributions

µtoti(B) = µindi(B) + µinti, (9)

where µindi(B) = χV0B/µ0 is the function of the ex-
ternal field B in direction and amplitude, while µinti is
fixed in its direction ni and strength irrespective of the
B-orientation.

Appendix B provides full details of how magnetic forces
and torques are modified if eq. (9) holds. In particular,
magnetic forces gain three additional terms, since inter-
nal magnetic moments interact with the induced ones and
with themselves in different particles. The same applies to
the magnetic torques. For the strength of the internal mag-
netic moment we rely on experimental observations [18],
where the strength was estimated to be approximately in
the range |µint| ∈ [0.1; 0.15]|µmax

ind | of the maximum in-
duced magnetic moment.
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Fig. 9. Trajectories of orientation vectors ni (Fig. 1a) for each
bead in the regime of low frequencies and finite internal mag-
netic moment. LB-parameters: Bo = 0.16, L = 1.5 × (2R),
|B(t)|/|B| = 0.36, T = 100000 ∆t, µintx = 0.1µind, µinty = 0,
µintz = 0. The B(t)-field is applied after tb = 30000 ∆t.

Fig. 8 represents the motion of the swimmer at low
frequencies and in the presence of finite internal magnetic
moment µintx = 0.1µind (µinty = 0, µintz = 0). Each of the
three particles have the same internal magnetic moment in
strength and direction and the induced magnetic moment
is present as described above. There is a notable difference
in the way how all particles move in this case with respect
to previous modes (Fig. 4): both x- and z-components of
the particles along which the B(t)-magnetic field is ap-
plied experience sizable oscillations while the top particle
performs oscillations only along the x-direction. The net
swimmer displacement in this regime is approximately the
same as in the absence of the internal magnetic moment
(inset of Fig. 8).

The dynamics of rotation vectors ni (µintx = 0.1µind,
Fig. 9) does not essentially differ from that when the in-
ternal magnetic moment is zero (Fig. 5). We only witness
a very tiny z-component of ni for all particles which is
attributed to a new in-plane magnetic equilibrium due to
the presence of µintx.

The presence of the finite internal magnetic moment
leads to substantial in-plane dynamics of all the beads
within the swimmer. As shown in Fig. 10, the orientation
of the swimmer θ follows exactly the period of the external
magnetic field B(t) and on the large time scale the swim-
mer keeps its in-plane orientation such that

∫ t→∞
0

θ(t)dt ≈
0. Additionally, we observe that the strength of µint de-
fines how strong the angle θ deviates from the equilibrium
θ = 0 meaning that one can judge about the magnitude
of µint based on 〈θmax〉. Along with the pronounced θ(t)-
dependence we detect several changes in the propagation
of αi(t). In contrast to the triangle deformations in the
absence of µint (Fig. 6), where all angles ∆αmax

i < 5◦,
we now notice larger triangle deformations ∆αmax

i ≈ 10◦

that again depend on the magnitude of µint. Moreover,
an asymmetric propagation of the base angles α1 and α2

(Fig. 10, upper panel) complies with the asymmetry intro-
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duced by the direction of the internal magnetic moment
µintx: the x-components of the induced and the internal
magnetic moments are aligned anti- or -parallel depend-
ing on the B(t)-direction.

Noteworthy is also the orientation of the internal mag-
netic moment. The dynamics presented in Fig. 10 is valid
for the x- or in general an in-plane component of µint.
Once one introduces µinty or an out-of-plane component
solely, which is additive to the induced magnetic moment,
we do not observe periodic reorientations of θ (not shown
here).

Although quantitatively there might be differences be-
tween our simulations and the experimental observations
for angles αi and θ (e.g. Fig. 6 in ref. [17]), qualitatively we
recover the main experimental findings: when introducing
a smaller in-plane component of the internal magnetic mo-
ment µint ≈ 0.1µind, the swimmer demonstrates remark-
able reorientations defined by the angle θ which follow the
external B(t)-field by its simultaneous swift propulsion at
the interface.
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Fig. 10. Time propagation of the inner angles αi within the tri-
angular swimmer and the orientation angle θ of the swimmer as
defined in Fig. 1b. LB-parameters: Bo = 0.16, L = 1.5× (2R),
|B(t)|/|B| = 0.36, T = 100000 ∆t, µintx = 0.1µind, µinty = 0,
µintz = 0.

Finally, the dependence of the averaged velocity on the
applied frequency (Fig. 11) does not change significantly
with respect to the situation with the absent internal mag-
netic moment (Fig. 7), i.e. the swimmer is most efficient
for frequencies ω/(2π) ∼ [0.001; 0.01] 1/τcs . The increasing
value of the magnetic moment µintx broadens the averaged
velocity as expected.

4 Summary and Discussion

4.1 Different regimes of motion

Using the lattice Boltzmann method with the Shan-Chen
model for the fluid-fluid-interface we demonstrate three
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Fig. 11. Speed of the centre of mass of the swimmer averaged
over multiple periods vs. frequency of the external magnetic
field in the regime of low frequencies and finite internal mag-
netic moment. LB-parameters: Bo = 0.16, L = 1.5 × (2R),
|B(t)|/|B| = 0.36.

different regimes of stable swimmer motion: the regime
with paramagnetic particles at high i) and low ii) fre-
quencies and iii) the regime of ferromagnetic particles at
low frequencies.

In regime i) (ref. [23]) the magnetic moments of all par-
ticles are induced by a set of externally applied static and
oscillating magnetic fields. The swimmer propagates hav-
ing small particle displacements and shows neither typical
sizable in-plane rotations of the beads as observed in the
experiments [17] nor periodic reorientations of the swim-
mer (evolution of θ in Fig. 2). The peaks of the averaged
swimmer velocity (Fig. 11 in ref. [23]) are observed at
high frequencies (in lattice units) characteristic to viscous
or coasting times of the particles. Reduction of the driv-
ing frequency required for a better temporal resolution of
the motion often led to sinking of one or several parti-
cles (Fig. 2), thus destroying the swimmer. We find that
sinking is caused by sizable out-of-plane components of
magnetic forces exceeding the surface tension force.

Regime ii) is achieved through suppressing the vertical
component of the magnetic force of the swimmer having
otherwise the parameters of regime i). As a result, the
swimmer is capable to propagate at significantly lower
frequencies associated with the magnetocapillary poten-
tial strength and a good temporal resolution of its mo-
tion is accomplished. The swimmer in this regime shows
sizable side deformations, however, no periodic reorienta-
tions characterised by the angle θ (Fig. 6).

Finally, regime iii) is primarily characterised through
the existence of an additional small constant internal mag-
netic contribution that is evidenced in the experiments [18].
The swimmer demonstrates a motion at low characteristic
frequencies and possesses typical θ-reorientations (Fig. 10)
similar to those observed experimentally [17]. It should be
noted that only the in-plane component of the internal
magnetic moment causes the typical swimmer motion seen
experimentally, while the out-of-plane magnetic contribu-



Alexander Sukhov et al.: Regimes of motion of magnetocapillary swimmers 9

tions do not lead to any sizable swimmer reorientations,
since in this case it adds to the vertical paramagnetic mo-
ment.

In regimes ii) and iii) we witness one remarkable non-
trivial effect associated with the frequency of the driving
field. Even if the external magnetic field B(t) has only one
frequency ω, the associated magnetic force might have a
second harmonics, since the magnetic force between each
pair of particles scales Fij ∼ (µi · µj) ∼ const + cosωt +
cos 2ωt for each magnetic moment µi ∼ (B +B(t)). This
frequency doubling effect is clearly seen in Figs. 6 and 10.
This should be kept in mind in case of magnetocapillary or
in general any magnetically driven swimmer, when apply-
ing theoretical e.g. bead-spring models: the force always
follows 2ω although the field is applied with frequency ω.

4.2 Swimmer velocities

In experiments, for bead diameters 2R = 500 µm the av-
erage swimmer velocity reaches values up to 〈V exp〉 ≈
0.3 (2R)/T [17] for the ratio of oscillating to static field
|B(t)|/B ≈ 0.5 and about 〈V exp〉 ≈ 0.02 (2R)/T for mod-
erate |B(t)|/B ≈ 0.1. Our LB-simulations yield for the
maximum average velocities 〈V LB〉 ≈ 0.0004 (2R)/T in
regime i) [23] and approximately 〈V LB〉 ≈ 0.06 (2R)/T in
both regimes ii) and iii) (sects. 3.2 and 3.3, respectively).
Although the simulated velocities in absolute units are of
the same order of magnitude in all the described regimes
(〈V LB〉 ≈ 10−5 l.u.), we reach a better agreement with
the experiment in units of (2R)/T for regimes ii) and iii).
It is also in line with the analytical predictions for the
triangular swimmer velocity in ref. [22] (eq. (43)) or for
a dumbbell swimmer including effects of inertia (ref. [42],
eq. (2)): the lower the potential constant is (estimates in
Appendix A yield k ≈ 10−5 l.u.), the lower are the fre-
quencies of the peak velocities leading to a better time
resolution and the higher are the maximum velocity am-
plitudes. Finally, we note that since the swimmer velocity
typically scales quadratically 〈V 〉 ∼ A2 [43, 20, 22, 42]
with the external driving amplitude A, this is also the
way to tune up the velocity. With triangular magnetocap-
illary swimmers it has, however, a limitation at increasing
field ratios, since at values |B(t)|/B ≈ 0.6 a dynamic tran-
sition from a triangular to a linear swimmer configuration
occurs (Fig. 2 of ref. [19]). We are able to reproduce this
transition in our LB-simulations and therefore fix the ratio
around |B(t)|/B ≈ 0.36 to assure the triangular form [23].

4.3 Simulation method and parameters

The presented simulations of magnetocapillary swimmers
are a challenging task. On the one hand, we model the
fluid-fluid interface and its dynamics coupled with the dy-
namics of the externally driven magnetic particles. On the
other hand, the magnetic properties of the swimmer are
included in the simulation by taking into account not sim-
ply effective external repulsive forces but rather detailed
paramagnetic and ferromagnetic contributions to the total

magnetic moment of the beads leading to the particle re-
pulsion. As a consequence, such thorough modeling of the
problem allows for very detailed insights into the static
properties of magnetocapillary swimmers such as horizon-
tal and vertical positioning of the beads upon swimmer
self-assembling, the conditions for which the particles may
detach from the interface and a realistic description of
capillary phenomena for finite particle sizes and moderate
inter-particle distances [23]. Moreover, the rich physics of
the swimmer propagation associated with the potential
strength and the interface dynamics is reflected in their
velocity-vs-frequency dependencies (Figs. 7 and 11).

At the same time, the choice of the method and the
limitation in reaching realistic surface tensions with ac-
ceptable computational effort is also responsible for the
sinking of particles upon the swimmer motion (Fig. 3). It
helps better understand the experimental conditions such
as a very high surface tension that practically pins the
floating particles to the interface permitting thus only in-
plane particle dynamics. A possible solution of the prob-
lem associated with the sinking of beads in LB-simulations
consists in modifying not the interface, but rather in set-
ting the vertical components of magnetic forces to zero,
thus suppressing the out-of-plane swimmer dynamics.

Furthermore, a number of parameters have a strong
impact on the propagation of the magnetocapillary swim-
mer. First, it is the particle radius R which should be
larger than the thickness of the diffuse interface (≈ 5∆x)
[32, 44] and large enough to provide a spatial resolution re-
quired to reproduce the correct surrounding flow field. At
the same time, R has to be small enough to assure a com-
parison with the experimental situation, where the radius
is small compared to the system size. Second, in view of
simulations of long-ranged capillary phenomena the total
size of the simulated fluid or the box size is very crucial.
Using periodic boundary conditions in lateral directions
of the box (Fig. 1 a), the box side length should be large
to ensure saturation of the interface from the point of con-
tact with the particles towards the edges. And although
the LB-method is nicely scalable with the box size, very
large system sizes require enormous computational times.
The third parameter that should be carefully chosen is
the Bo-number, which can be tuned either by the particle
density or by its radius. For a better interface resolution
a notably curved interface profile is desired, hence, large
Bo-number, while exceeding Bocrit ≈ 0.21 leads to sink-
ing of particles. Taking into account the listed criteria and
the available computational resources is the base for our
choice of parameters as given in the end of sect. 2.

5 Conclusions and Outlook

We demonstrated that our LB simulations are capable of
reproducing the rich dynamics of magnetocapillary mi-
croswimmers by taking into account all relevant physical
ingredients. We proved in particular that the existence of
small ferromagnetic contributions in the particle proper-
ties (µint 6= 0) captures the characteristic swimmer re-
orientations observed experimentally [17]. Moreover, we
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claim that when the magnetization of the beads is only in-
duced by an external magnetic field (µind 6= 0, µint = 0),
the swimmer is also capable of swimming and its motion is
then characterised by the maximum swimmer velocity to
be centered around the particle’s inverse coasting time in
the range of higher driving frequencies. For lower driving
frequencies and a high ratio of surface tension to magnetic
forces, the swimmer motion is determined by the strength
of the magnetocapillary particle interactions.

As an outlook, yet another regime of motion might
be numerically studied. In that case, an additional small
static magnetic field is applied along the z-axis (Fig. 1)
leading to sizable individual rotations of each bead in
the plane of the interface. In this setup a swift swimmer
motion is reached experimentally presumably because of
strong hydrodynamic flows [19].
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Appendix A: Calculation of spring constants

For the spring potential between e.g. particles 1 and 2
(Fig. 1) defined as

φ(r1 − r2) = φ12 =
1

2
k (|r1 − r2| − L)2 , (A.1)

with L being the equilibrium distance between the centres
of particles, we define the force acting on particle 1 via

F 1(t) = −∇1φ(r1 − r2). (A.2)

In general, spring constants have different components kx,
ky and kz, so that

F 1(t) = −
(
1− L

|r1(t)− r2(t)|

)
×k1x 0 0

0 k1y 0
0 0 k1z

x1(t)− x2(t)y1(t)− y2(t)
z1(t)− z2(t)

 .

(A.3)

The x-component is defined according to eq. (A.2) as

k1x =
−F1x(t)(

1− L
|r1(t)−r2(t)|

)
(x1(t)− x2(t))

. (A.4)
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Fig. 12. Extraction of spring constants characteristic for the
motion of particles 1 and 2 within the swimmer. Upper panel:
mutual displacement x2(t) − x1(t) together with the director
vector nx1(t) showing its propagation driven by B(t). Mid-
dle panel: non-averaged force Fx1(t). Low panel: Averaged and
fitted forces acting on particle 1. LB-parameters: Bo = 0.16,
L = 2.1× (2R), |B(t)|/|B| = 0.36, T = 100000 ∆t.

The time average is defined using

〈k1x〉 =
1

t∞ − t0

∫ t∞

t0

−F1x(t)dt(
1− L

|r1(t)−r2(t)|

)
(x1(t)− x2(t))

.

(A.5)
Using expression (A.5) one can determine e.g. 〈k12x〉 be-
tween particles 1 and 2 from their trajectories upon the
swimmer motion. The unit for the k-constant in LB-simu-
lations is [ρ0 ∆x

3

3∆t2 ].
Fig. 12 demonstrates how the effective spring constant

k12x related to the interaction between particles 1 and 2
can be calculated. For this the relative displacement be-
tween particles 1 and 2 x2(t)− x1(t) is steadily measured
while the swimmer moves (Fig. 12, upper panel). At the
same time the total force acting on particle 1 is recorded
(Fig. 12, middle panel) and averaged over the period of the
external magnetic field 2π/ω. Inserting the obtained ex-
pressions for the force and the mutual displacements into
eq. (A.5), we obtain the values of k12x(L) as a function of
the swimmer size. Since the capillary potential gets very
distorted at low swimmer sizes, the expressions of total
averaged forces 〈Fx1(t)〉 are very noisy [45]. For moder-
ate and large swimmer sizes (L ≈ 2 × (2R)) the picture
is represented by Fig. 10 and yields values of the order
k12x ≈ 10−5 l.u.

Appendix B: Implementation of magnetic for-
ces in case of a finite internal magnetic mo-
ment

In the experiments on magneticapillary swimmers [17],
there are indications of the existence of a small permanent
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magnetic moment, such that the total magnetic moment
of each particle reads

µtot = µind + µint, (B.1)

whereby the induced magnetic moment is the result of the
external field, i.e µind ∼ B, while the internal magnetic
moment µint � µind is not a function of the external field
and is always present.

Thus, the force exerted by the moment µtotj on the
magnetic moment µtoti is

Fmagn.tot
ji = −∇

(
−(µindi + µinti) ·Btotj

)
, (B.2)

where

Btotj/

(
µ0

4π|r|3ij

)
=
[
3eij(µindj · eij)− µindj

]
+
[
3eij(µintj · eij)− µintj

]
.

(B.3)

The resulting force exerted by the moment µtotj on the
magnetic moment µtoti is

Fmagn.tot
ji /

(
3µ0

4π|rji|4

)
=(

µindi

(
µindj · eji

)
+ µindj (µindi · eji)− 5eji

(
µindj · eji

)
(µindi · eji) + eji(µindi · µindj)

)
+(
µindi

(
µintj · eji

)
+ µintj (µindi · eji)− 5eji

(
µintj · eji

)
(µindi · eji) + eji(µindi · µintj)

)
+(
µinti

(
µindj · eji

)
+ µindj (µinti · eji)− 5eji

(
µindj · eji

)
(µinti · eji) + eji(µinti · µindj)

)
+(
µinti

(
µintj · eji

)
+ µintj (µinti · eji)− 5eji

(
µintj · eji

)
(µinti · eji) + eji(µinti · µintj)

)
.

(B.4)

Similarly, magnetic torques should read

Tmagn.tot
ji =

[
(µindi + µinti)×

(
Bindj +Bintj +B

)]
.

(B.5)
The resulting total magnetic torque is

Tmagn.tot
ji /

(
µ0

4π|rji|3

)
=(

3
(
µindj · eji

)
[µindi × eji]−

[
µindi × µindj

])
+(

3
(
µintj · eji

)
[µindi × eji]−

[
µindi × µintj

])
+(

3
(
µindj · eji

)
[µinti × eji]−

[
µinti × µindj

])
+(

3
(
µintj · eji

)
[µinti × eji]−

[
µinti × µintj

])
+

[(µindi + µinti)×B] /

(
µ0

4π|rji|3

)
.

(B.6)
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