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In this study, we compare the performance of semi-supervised and supervised machine learning methods 
applied to various problems of modeling Quantitative Structure Activity Relationship (QSAR) in sets of 
chemical compounds. Semi-supervised learning utilizes unlabeled data in addition to labeled data with 
the goal of building better predictive models than can be learned by using labeled data alone. Typically, 
labeled QSAR datasets contain tens to hundreds of compounds, while unlabeled data are easily 
accessible via public databases containing thousands of chemical compounds: this makes QSAR 
modeling an attractive domain for the application of semi-supervised learning. We tested four different 
semi-supervised learning algorithms on three different datasets and compared them to five commonly 
used supervised learning algorithms. While adding unlabeled data does help for certain pairings of 
dataset and method, semi-supervised learning is not clearly superior to supervised learning across the 
QSAR classification problems addressed by this study.

Povzetek: Metode delno-nadzorovanega učenja smo testirali na različnih podatkih iz domene 
kvantitativnega modeliranja razmerja med strukturo in aktivnostjo kemičnih spojin (angl. Quantitative 
Structure Activity Relationship, oziroma QSAR).

1 Introduction
Two major approaches to machine learning are 
supervised learning (e.g., classification, regression),
where all the data are labeled, and unsupervised learning 
(e.g., clustering, dimensionality reduction) where all the 
data are unlabeled. The semi-supervised learning (SSL) 
paradigm [21] examines how merging both types of data 
(labeled and unlabeled) affects learning, aiming to 
benefit from the information that unlabeled data bring in 
the context of the supervised learning tasks. 

SSL is of important practical value since the 
following scenario often holds true: labeled data are 
scarce and hard to get because they require human 
experts, expensive devices or time-consuming 
experiments, while, at the same time, unlabeled data 
abound and are easily obtainable. Real-world 
classification problems of this type include: phonetic 
annotation of human speech, protein 3D structure 

prediction, and spam filtering. Intuitively, SSL yields 
best results when there are few labeled examples as
compared to unlabeled ones (i.e., large-scale labelling is 
not affordable). But, the setting where plenty of labeled 
data are available is also suitable for SSL, if even more 
unlabeled data are available. The other scenario where 
SSL can be applied is ‘domain adaptation’; where we 
have labeled examples belonging to one domain, but we 
want to develop a model for another, related, domain.

Establishing a connection between biological effects 
and structural and/or physicochemical properties of 
chemicals is the task of quantitative structure-activity 
relationship or QSAR modeling. Formal studies of such 
relationships are the basis for the development of 
predictive models. The main value of a predictive QSAR 
model is the fact that it provides insight into the 
biological activity of a molecule without the need to 
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synthesize it. This leads to a number of benefits 
including savings in the cost and duration of product 
development (e.g., in the pharmaceutical or pesticide 
industries), reduction of the need for animal testing, 
prediction of unwelcome or toxic environmental impact, 
and overall improvement in the efficiency of drug design.     

The application of SSL to the domain of QSAR 
modeling is particularly attractive since the premise: 
“labeled data are scarce, while unlabeled data abound” is 
generally satisfied in this domain. Public databases with 
(hundreds of) thousands of chemical compounds are 
available (e.g., the human tumor cell line screen database 
from the U.S. National Cancer Institute’s Developmental 
Therapeutics program), while labeled datasets sizes 
typically range from tens to hundreds and rarely surpass 
a thousand  molecules. 

In this work, we empirically investigate whether we 
can successfully apply SSL (i.e., whether we can achieve 
better performance with SSL than with supervised 
learning) to build predictive QSAR models. To draw 
reliable conclusions, we use several SSL methods which 
embody different approaches, together with three QSAR 
datasets from various domains. We compare the SSL 
methods to several commonly used supervised learning 
methods. The results show that the improvements which 
SSL yields are selective - the degree to which unlabeled 
data help varies from notable to insignificant, depending 
on the dataset or SSL method used.

2 Semi-supervised learning
In this study, we are concerned with semi-supervised 
classification, while other forms of SSL, such as semi-
supervised regression or semi-supervised clustering are 
not considered.

2.1 The task of semi-supervised 
classification

In supervised learning, we are given training data in the 
form of instance-label pairs, i.e., for each instance we 
know the desired prediction. The goal is to use the 
training data to infer a mapping, from instances to labels, 
which will provide (true) labels for future instances. If 
the domain of labels is discrete, such a mapping is called 
a classification function (or a classifier).

The task of semi-supervised classification is an 
extension to the task of supervised classification, where 
the training data, in addition to the labeled instances, 
contain a set of unlabeled instances. The goal is again to 
produce a classification function, which hopefully
performs better than the classifier learned from the
supervised data only classifier. Figure 1 shows a simple 
example how unlabeled data can help to induce a
classifier that is better in separating the classes.

2.2 Major approaches to semi-supervised 
classification

In order for SSL to work, the knowledge we gain trough 
unlabeled data has to carry some information 

Figure 1. Semi-supervised linear SVMs use unlabeled 
data to find decision boundary which separates the two 
classes better than the decision boundary discovered by 
supervised SVMs.

about the class labels. If this prerequisite is fulfilled, we 
can draw on unlabeled data by making certain 
assumptions about the behavior of labels with respect to 
the structure of unlabeled data. Different assumptions 
inspire different classes of algorithms; therefore, SSL 
methods can be grouped on the basis of the 
assumption(s) they implement as follows: low-density 
separation methods, graph-based methods, generative 
models, self-training and co-training.

Low-density separation methods assume that the 
decision boundary should lie in the region of low density 
of the data. For example, semi-supervised support vector 
machines try to find a labeling for the unlabeled data in a 
way that maximizes the margin of the decision boundary
considering both labeled and unlabeled data. Equivalent 
to the low density separation assumption is the cluster 
assumption: the points belonging to the same cluster 
should be of the same class.

Graph-based methods use nodes for data 
representation (labeled and unlabeled) and edges (usually 
with weights representing the similarity of the data 
points) for propagation of the labels through the graph, 
assuming label smoothness over the graph (i.e, the label 
of the unlabeled instance should be similar to its 
neighbors in the graph). Here, unlabeled data help to 
“bridge” the points which would otherwise be 
unconnected. The construction of the graph is a critical
step of graph-based methods – it should reflect the 
information which is not easily encoded in feature 
vectors.

Generative models assume a probabilistic model of 
the data and use unlabeled, together with labeled data, to 
estimate the most probable model parameters. The 
success of generative models depends largely on 
choosing a probabilistic model which is appropriate for 
the data. Once the probabilistic model is chosen (e.g., 
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Gaussian mixture models), a maximum likelihood 
estimate (MLE) of the parameters can be calculated (e.g., 
by using the Expectation-Maximization algorithm), 
followed by a calculation of class distributions using 
Bayes’ rule.

Self-training and co-training are two approaches that 
are often used by SSL algorithms, since they can be 
“wrapped” around any (supervised) learning algorithm. 
They iteratively use their own most reliable predictions 
in the training process (assuming they are correct), as 
additional data for learning. The main pitfall of these 
methods is the reinforcement of mistakes – a mistake 
once made can reinforce itself in the next iterations, 
leading to degradation of performance.

These assumptions are at the heart of SSL, but also 
present the main risk for bad performance of SSL: an 
inappropriate match of a problem structure to a method’s 
assumption can cause severe degradation of performance 
when using unlabeled data [2]. This is a particularly 
relevant issue since it is not yet clearly understood which 
SSL method should be used for which problem, or
whether a certain problem (or dataset) is suitable for SSL
the use of at all. As mentioned before, unlabeled data has 
to carry useful information about the structure of the data 
with respect to the labels.

Zhang and Oles [19] tried to quantify the value of 
unlabeled data in a probabilistic framework by using
regularized logistic regression as an approximation of
support vector machines. They showed that, in the setting 
where labeled and unlabeled data do not share 
parameters, semi-supervised support vector machines are
unlikely to be helpful in general, and are prone to 
maximize the “wrong margin”. It should be noted that 
unlabeled data should not be used to compensate for the 
lack of labeled data, but to complement labeled data. In 
other words, the improvements based on SSL should not 
rely on the inability of supervised methods to learn 
anything useful at all due to the lack of data.

We tackled the difficulties of matching the problem 
structure with the right SSL method empirically, i.e., by 
selecting methods which differ in their basic approach. 
We tried to cover most of the groups of methods 
mentioned above. The SSL methods we used will be 
described in Section 4.

3 QSAR datasets
To better assess the performance of SSL algorithms in 
the domain of QSAR modeling, we extracted three 
different datasets from publicly available sources. These 
are the NCI, Mutagenicity and MUSK dataset. The 
datasets differ in terms of the biological activity they 
model, the number and type of molecular descriptors 
used to represent molecules, and the number of 
compounds (size of the dataset).

3.1 NCI dataset
The NCI datasets was extracted from the human tumor 
cell line screen database [11] of the National Cancer 
Institute’s Developmental Therapeutics (NCI-DTP) 

program (October 2009 release). The NCI-DTP measures
cytostatic activity of chemical compounds against 60 
human tumor cell lines grown in cell culture. For 
representation of a compound’s cytostatic activity we 
used GI50 measurements – the compound concentration 
that inhibits cell growth by 50%. Only compounds that 
have missing or default values for at most 20 cell lines
were accepted. Additionally, cell lines with more than 
20% of missing values were removed, leaving 49 cell 
lines in total. The compounds were thus described with 
the GI50 profiles across the 49 cell lines, and in addition
with two other groups of attributes: (1) molecular 
descriptors describing the structure of a molecule 
(calculated with the DRAGON 3.0 web interface [18]),
and (2) molecular charge densities and charge density-
based electrostatic properties of a molecule (calculated 
with the RECON software [4]). 

The subject of interest for the NCI dataset is to 
predict a compound’s mechanism of action (MOA) – the 
biological process in which the molecule interacts with 
its molecular targets - proteins (enzymes or otherwise) or 
DNA. The type of MOA influences the pharmacological 
effects of a molecule; therefore, the drug discovery 
process benefits from an early detection of an appropriate
MOA for a given use. The NCI dataset represents a
multiclass classification problem, with 12 different MOA 
classes, where each molecule belongs to a single class. A 
very similar dataset has been used to find putative MOAs 
for new drug candidates [7, 16], and is essentially an 
updated and extended version of the dataset used in 
previous analyses of cytostatic activities and MOA in
global computational analyses of the NCI database using
self-organizing maps [13, 15].

3.2 Mutagenicity dataset
The Mutagenicity dataset [10] is the benchmark dataset 
for modeling of Ames mutagenicity. The Ames test is a 
standard microbiological assay for assessing the 
mutagenic potential of a chemical compound. A
compound which is positive to the test causes mutations 
on the DNA (and consequently can be carcinogenic);
avoiding mutagenicity is important for drug-candidates 
and other molecules with significant human exposure 
(e.g., cosmetics, food additives).

The mutagenicity dataset represents a binary 
classification problem where compounds are classified as 
mutagenic or non-mutagenic. Molecules from this dataset 
were represented by using DRAGON molecular 
descriptors [18]. 

3.3 MUSK dataset
The MUSK dataset was downloaded from the UCI 
machine learning repository [8]. Musk, a substance 
secreted by the Asian musk deer, is an expensive animal 
product heavily used by the perfume industry; therefore, 
synthetic compounds are often used instead. The 
prediction of the strength of such synthetic musk 
compounds has similarities to the prediction of biological 
drug activity – the molecules are similar in size and 
composition to the orally active drug molecules [5].
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A single molecule can adopt multiple conformations 
– different shapes of the same molecule, when some of 
the internal bonds rotate. The features that describe 
compounds from the MUSK dataset depend on the exact 
shape (conformation) of a molecule (“distance features” 
and displacement of oxygen; a detailed description is 
given by Dietterich et al. [5]), where each molecule is 
represented by several feature vectors. This dataset was 
assembled by generating low-energy conformations of 
molecules, which were then filtered to remove highly 
similar conformations. The molecules from the MUSK 
dataset were categorized by human experts to be musk or 
non-musk.

4 Experimental setup
To evaluate the potential of SSL in a controlled manner
(i.e., to be able to evaluate the methods thoroughly, and 
to make sure that the unlabeled data is relevant to the 
problem), our experiments were carried out using only 
labeled data. We simulated unlabeled data by temporarily 
ignoring the class label for a portion of the data. The 
relative amount of unlabeled and labeled data is a
relevant factor when measuring the success of SSL 
methods: SSL should perform better when the labeled set 
is rather small and a lot of unlabeled data are available.
Our experiments were aimed to test the former premise
by creating situations where we have different ratios of 
labeled and unlabeled data.

The data were randomly split into a training and a 
test set. Both the supervised and the semi-supervised 
methods used the training set for learning and were then 
evaluated by using the test set. For the SSL methods, the 
test set served as unlabeled data during the learning 
process. Several different train/test splits were produced 
where labeled data ranges from 1% to 66% (i.e., 
unlabeled data ranges from 99% to 33%). The final 
results were averaged over 10 different train/test split 
repetitions, in order to obtain a more robust evaluation of
the algorithms. We performed experiments using the 
Weka [9] machine learning environment and the R [17]
environment for statistical computing.

4.1 Datasets
As described in Section 3, we conducted experiments on 
three different QSAR datasets. The NCI dataset contains
507 compounds, each described with: GI50 profiles (49 
features in the form of -logGI50), DRAGON descriptors 
(1497 features) and RECON descriptors (248 features). 
The Mutagenicity dataset is the largest with 6512 
compounds represented with 1497 DRAGON 
descriptors. The MUSK dataset has 166 features and 476 
examples, which correspond to different conformations 
of 92 molecules.

4.2 Methods
We used publicly available implementations of several
SSL algorithms. As mentioned in Section 2, we selected 
the SSL algorithms to cover different groups of SSL 
methods. The algorithms used are: Yet Another Two 

Stage Idea (YATSI), Co-training: Fitting the Fits (Co-
FTF), Learning with Local and Global Consistency 
(LLGC) and TSVMLight.

The YATSI [6] algorithm, implemented in the Weka 
Collective Classifiers package, is similar to the self-
training concept, since it can be wrapped around any 
classifier and it uses its own predictions in the training 
process. As the name implies, YATSI works in two 
steps. First, a base classifier is trained on the labeled data 
and then unlabeled data is “pre-labeled”. This pre-labeled 
data is then given weights and used by the nearest 
neighbors classifier to improve on the initial classifier.

Co-FTF [3] is an implementation of the co-training 
algorithm in the R programing language. Co-FTF uses 
two different features sets (views) to train separate 
classifiers, which iteratively use their most confident 
predictions as additional labeled training data. It is 
assumed that views provide different, complementary 
information about the data. We applied Co-FTF only to 
the NCI dataset (the other datasets do not meet the 
prerequisite for different views) with the combination of 
the descriptors which proved to be the best: RECON and 
DRAGON. Other combinations: GI50 profiles coupled 
with RECON or DRAGON descriptors, achieved lower 
performances (not shown). The baseline classifier for 
Co-FTF was the random forests classifier with 500 trees.

LLGC [20] is a graph-based method implemented in 
the Weka Collective Classifiers package. LLGC first 
performs spectral clustering and then propagates labels 
through the graph using a spreading activation network.

TSVMLight [12] is a representative of the low-
density separation methods. It implements a semi-
supervised version of support vector machines by finding 
the locally optimal solution.

The supervised machine learning methods that we 
compared with SSL methods were taken from Weka: 
decision trees (J48), k-nearest neighbors (KNN), Naive 
Bayes (NB), support vector machines (SMO from Weka,
and the stand-alone version of SVMLight) and random 
forests (RF).

We used the J48, NB and SMO methods with their
default parameters and RF with 500 trees. For the KNN
method, the ‘crossValidate’ option was used to select an 
appropriate number K of neighbours. For YATSI and 
LLGC, we used the Weka Experimenter Environment to
search for the parameter values which produce the best 
classification accuracy. The parameters for (T)SVMLight 
were tuned manually.

5 Results and discussion
In this section we present the experimental comparison 
of performance of semi-supervised and supervised 
machine learning methods. In Tables 1-3, the predictive 
accuracies for different ratios of labeled and unlabeled 
data are presented. The best result for each ratio is shown 
in bold, and whether YATSI exhibited improvement in 
accuracy over the baseline classifier is marked with an 
upward (improvement) or downward (deterioration) 
arrow. The baseline classifier for YATSI is given in 
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brackets. The number of neighbors for the KNN 
algorithm is indicated (e.g., 1NN). 

Semi-supervised methods behave differently over the 
three datasets. Improvements of semi-supervised over 
supervised learning are most notable for the NCI dataset 
with a small percentage of labeled data (≤10%), where 
LLGC achieves the best overall predictive accuracy and 
YATSI significantly improves the baseline classifier in 
most cases. YATSI consistently deteriorates the 
performance of SMO for all amounts of labeled data. 

For the other two datasets, Mutagenicity and MUSK, 
semi-supervised and supervised algorithms show very 
similar performance with small improvements of SSL 
over supervised learning in some cases. Generally, the 
improvements achieved by YATSI over the baseline 
classifier are more frequent and significant for the less 
complex classifiers (KNN, J48, NB), while for classifiers 
with greater capacity for learning (RF, SMO) the 
improvements are not so regular and are sometimes 

negative, i.e., the usage of YATSI even deteriorates their 
predictive accuracy (Figure 1).

Driessens et al. [6] performed an extensive testing of 
YATSI over 29 different datasets with several different 
base classifiers and made similar observations: YATSI 
behaves somewhat differently when using RF and SMO 
as base classifiers, as compared to the other algorithms
(including J48 and KNN). In most cases, YATSI lost 
some of the accuracy achieved by RF, and performed 
equal to SMO, while it improved other base classifiers
(with most notable improvements when little labeled data
were available).

In the setting of supervised learning, robust methods, 
such as support vector machines or random forests are 
known to perform well on a wide range of classification 
tasks, and can be successfully used without specific 
domain knowledge. The results obtained on the datasets 
considered in this study confirm this: the SMO and RF 
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Percentage of labeled data
5% 10% 20% 33% 66%
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J48 45.93 57.98 69.05 76.31 81.92
1NN 47.45 67.19 78.14 82.73 86.80
NB 42.41 51.19 66.13 74.49 84.14

SMO 62.80 73.15 83.42 87.41 92.69
RF 56.24 66.32 78.29 84.14 88.64
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ni

ng

YATSI(J48) 55.37↗ 68.27↗ 78.54↗ 83.31↗ 84.87↗
YATSI(1NN) 58.87↗ 70.89↗ 79.95↗ 82.79↗ 86.50↘
YATSI(NB) 54.70↗ 65.96↗ 75.61↗ 81.67↗ 83.03↘
YATSI(SMO) 62.06↘ 72.69↘ 81.99↘ 84.76↘ 87.59↘
YATSI(RF) 58.76↗ 68.44↗ 79.11↗ 83.46↘ 86.32↘
LLGC 66.50 74.95 82.46 85.46 88.29
Co-FTF - 35.78 51.16 65.43 76.45

Table 1: Predictive accuracies of semi-supervised and supervised learning methods on the NCI dataset

Figure 1. Comparison of learning curves for YATSI and baseline algorithms on the NCI dataset show that YATSI 
improves the performance of the less complex classifiers (J48, KNN, NB), but not the more complex classifiers (SMO 
and RF). The improvements in accuracy which unlabeled data brings gradually decrease with the increase of the 
relative amount of labeled data.
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Algorithm
Percentage of labeled data

1% 5% 10% 20%
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J48 58.40 63.98 67.08 69.97
1NN 58.32 64.24 64.71 67.86
NB 57.80 60.40 61.10 60.79
SMO 61.86 68.95 72.41 75.41
RF 62.13 68.68 71.27 73.68
SVMLight 62.73 69.29 72.52 75.16

S
em
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rv
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ng

YATSI(J48) 58.85↗ 65.78↗ 68.19↗ 70.88↗
YATSI(1NN) 58.45↗ 64.57↗ 66.77↗ 69.30↗
YATSI(NB) 57.85↗ 62.71↗ 64.62↗ 65.02↗
YATSI(SMO) 61.53↘ 67.84↘ 70.35↘ 72.73↘
YATSI(RF) 59.50↘ 66.36↘ 67.89↘ 70.62↘
TSVMLight 61.24 69.65 72.85 75.41
LLGC 58.75 62.70 63.65 64.86

Table 2: Predictive accuracies of semi-supervised and supervised learning methods on the Mutagenicity dataset

Algorithm
Percentage of labeled data

5% 10% 20%
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2NN 63.89 71.15 77.97
SMO 66.01 71.65 76.03

RF 62.70 71.84 78.77
SVMLight 69.49 75.18 81.02

S
em

i-
su

pe
rv

is
ed
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ng

YATSI(2NN) 65.12↗ 71.51↗ 78.05↗
YATSI(SMO) 67.83↗ 74.42↗ 78.07↗
YATSI(RF) 63.57↗ 73.25↗ 78.48↘
TSVMLight 66.69 75.25 80.50
LLGC 65.34 73.11 80.39

Table 3: Predictive accuracies of semi-supervised and supervised learning methods on the MUSK dataset.

classifiers consistently outperform the other (supervised) 
methods. However, if we compare SSL methods across 
the three datasets (Tables 1-3) we do not have a clear 
winner. For example, the LLGC algorithm performs 
better than the other SSL methods on the NCI dataset, 
but it is outperformed on the Mutagenicity and MUSK 
datasets.

Similar observations have been made by other 
scientists: Chawla and Karakoulas [1] performed an 
extensive empirical study of SSL techniques over various 
domains (not including QSAR modeling), using real-
world and artificial datasets to investigate the conditions 
under which SSL can perform well. They observed that 
SSL methods behave very differently depending on the 
nature of the datasets, and that no single SSL method 
consistently performs better than supervised learning.

In practice, it is not easy to assess in advance how 
certain SSL method will behave given the task at hand. 
Several method/problem combinations are known to 
work well together (e.g., semi-supervised SVMs and text 
classification, [12]), but there are no clear strategies how 
to verify the model assumptions against certain problem 
structure. Specific domain knowledge and understanding 

of SSL algorithms should be used to couple the problem 
at hand with an appropriate method. Currently, scientists 
in this area are dealing with the question of how to make 
SSL safe, i.e., how to make sure that SSL performs at 
least as well as supervised learning, and how to make 
SSL usable by non-experts on realistic tasks [14].

6 Conclusion and future work
In this study, we performed an empirical comparison of 
several semi-supervised and supervised machine learning 
methods on three different QSAR datasets under 
different experimental conditions (amount of unlabeled 
data relative to labeled data). Our results show that SSL 
can achieve better predictive performance than 
supervised learning (typically when a small portion of 
the data is labeled), but the improvements depend on the 
dataset and method used. We cannot claim clear 
superiority of semi-supervised over supervised learning
on the QSAR classification problems addressed by this 
study. However, the large improvements (in general and 
relative to the baseline classifier) in classification 
accuracy in certain cases suggest that it is worthwhile to 
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take SSL into consideration when dealing with problems 
of QSAR modeling.

Semi-supervised learning is a more delicate task than 
supervised learning, where more (labeled) data generally 
a means better and more robust model. While more
unlabeled data can help, it is not guaranteed to do so. We 
have pointed out the difficulties that one can encounter 
when dealing with the task of semi-supervised learning, 
as compared to supervised learning.

In further work, we would like to systematically 
investigate which features of a dataset make it suitable 
for the use of SSL. In addition, we would like to extend 
our experiments and use data which are truly unlabeled. 
This would enable us to exploit the vast amount of 
information readily available within public compound 
databases.
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