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Abstract 
 

The lack of pixel-wise annotated images severely hinders the deep learning approach to 

computer-aided diagnosis in histopathology. This research creates a public database comprised 

of: (i) a dataset of 82 histopathological images of hematoxylin-eosin stained frozen sections 

acquired intraoperatively on 19 patients diagnosed with metastatic colon cancer in a liver; (ii) 

corresponding pixel-wise ground truth maps annotated by four pathologists, two residents in 

pathology, and one final-year student of medicine. The Fleiss' kappa equal to 0.74 indicates 

substantial inter-annotator agreement; (iii) two datasets with images stain-normalized relative 

to two target images; (iv) development of two conventional machine learning and three deep 

learning-based diagnostic models. The database is available at http://cocahis.irb.hr. For binary, 

cancer vs. non-cancer, pixel-wise diagnosis we develop: SVM, kNN, U-Net, U-Net++, and 

DeepLabv3 classifiers that combine results from original images and stain-normalized images, 

which can be interpreted as different views. On average, deep learning classifiers outperformed 

SVM and kNN classifiers on an independent test set 14% in terms of micro balanced accuracy, 

15% in terms of the micro F1 score, and 26% in terms of micro precision. As opposed to that, 

the difference in performance between deep classifiers is within 2%. We found an insignificant 

difference in performance between deep classifiers trained from scratch and corresponding 

classifiers pre-trained on non-domain image datasets. The best micro balanced accuracy 

estimated on the independent test set by the U-Net++ classifier equals 89.34%. Corresponding 

amounts of F1 score and precision are, respectively, 83.67% and 81.11%. 

 

Keywords: intraoperative diagnosis, metastatic colon cancer, liver, stain normalization, U-

Net(++), DeepLabv3. 
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1. Introduction 

According to the International Agency for Research on Cancer of the World Health 

Organization, there were 18 million new cases and 9.5 million cancer-related deaths in 2018 

[1]. 10.2% of diagnosed cases are related to colorectal cancer. A recent publication predicts for 

the US population in 2020, 9% of colorectal cases among men and 8% among women [2]. The 

gold standard for diagnosing cancer is still microscopic examination through pathologist' visual 

inspection of stained histopathological samples [3, 4].  Due to the rise in cancer incidence, it is 

an increasingly complex and highly time-consuming task for pathologists [4-6]. That is why 

computer-aided diagnoses (CAD) are expected to relieve pathologists' workload [4-9].  

 Visibility of tissue structures is improved through staining histopathological samples 

with one or more dyes. The most frequently used dye by pathologists is hematoxylin-eosin 

(H&E). Fixation of tissue sample across a glass slide is carried out through formalin-fixed 

paraffin-embedding (FFPE). It typically takes 48 hours to prepare a glass slide for microscopic 

examination. Since the time for establishing diagnosis during surgery is minimal, rapid freezing 

of tissue followed by cutting on cryotome and shortly staining with HE is used instead of the 

FFPE section [8].  However, that influences tissue morphology and, consequently, the quality 

of staining, which, even in FFPE, is burdened with experimental variations known as batch 

effects [10]. That stands for motivation to develop a CAD-assisted intraoperative decision-

making system. However, as pointed in [8], a small amount of research has analyzed frozen 

sections so far [11, 12]. The most important reason is the unavailability of publicly accessible 

datasets with a sufficient number of annotated histopathological images necessary to train 

classification algorithms. That is especially the case with pixel-wise annotated images. Because 

they require a large amount of annotated training data that creates a significant problem for 

convolutional neural networks (CNNs)-based deep learning (DL) structures [7, 5, 13-16].  

 In this paper, we introduce a database comprised of: (i) a dataset with 82 histopathology 
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images of H&E stained frozen sections acquired intraoperatively on 19 patients diagnosed with 

metastatic colon cancer in a liver. Information is provided for each image whether it belongs to 

train or test set; (ii) corresponding pixel-wise ground truth maps annotated by four pathologists, 

two residents in pathology, and one student of medicine.; (iii) two datasets with images that 

were stain (color) normalized relative to two target images using a structure-preserving color 

normalization method [17]; (iv) a baseline multi-view like conventional machine learning and 

deep learning-based diagnostic models. Stain-normalized datasets are provided to cope with the 

problem caused by batch effects known as biochemical noise [19, 10]. The variations can 

change the quantitative morphological image features making it difficult to reach an accurate 

diagnosis for pathologists and CAD systems [10]. As emphasized in studies [20, 19], 

standardization of the H&E staining process is one of the critical prerequisites of computer-

aided systems to produce accurate clinical data for use by anatomical pathology diagnosis 

assisting systems. A metastatic colon cancer histopathological annotation and diagnosis 

database is called CoCaHis. It is available at [21]. To the best of our knowledge, there is no 

other publicly available pixel-wise annotated dataset for this diagnosis. 

 In analogy with [6], we present in this paper the diagnostic performance of baseline 

pixel-wise CAD systems. They were designed to discriminate between cancerous and non-

cancerous pixels and demonstrate the difficulty of the problem. Conventional machine learning-

based CAD systems include incremental support vector machine (SVM) and adaptive k-nearest 

neighbors (kNN) classifiers. DL-based CAD systems include U-net [22], Nested U-Net (U-

Net++), [23], with DenseNet201 as an encoder [24], and DeepLabv3 [25] classifiers. Motivated 

by the results presented in [9], to cope with the problem of insufficient training data, we 

initialized the U-net's and U-Net++' encoder weights (backbone) on the pre-trained ImageNet 

classification problem and then trained the whole network on the CoCaHis. Analogously, 

DeepLabv3 was pre-trained for segmentation problem on the PASCAL VOC 2012 dataset. 
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However, as shown in section 3, there was minor performance improvement relative to the case 

when weights of the corresponding networks were initialized randomly and trained from 

scratch. It is however, worth mentioning that all deep models converged faster in cases when 

pre-trained weights were initialized. On average, deep learning classifiers outperformed SVM 

and kNN classifiers on an independent test set 14% in terms of micro balanced accuracy, 15% 

in terms of the micro F1 score, and 26% in terms of micro precision. As opposed to that, the 

difference in performance between deep classifiers is within 2%. The best micro balanced 

accuracy estimated on an independent test set, in the amount of 89.34%, was obtained by the 

U-Net++ classifier pre-trained on the ImageNet dataset. The corresponding amounts of F1 score 

and precision are, respectively, 83.67% and 81.11%. 

 

2. Materials and Methods 

2.1 CoCaHis Database 

The CoCaHis database contains 82 microscopic images of H&E stained sections of frozen 

human specimens of metastatic colon cancer in a liver collected intraoperatively from 19 

patients. Thereby, 32.75% of the pixels represent cancer class. Images were collected through 

a clinical study from March 2017 to February 2020 at the Department of Pathology and 

Cytology in Clinical Hospital Dubrava, Zagreb, Croatia.  The Institutional Review Board of the 

same hospital approved the collection of samples on May 24, 2016. All the patients gave written 

informed consent, and all the data were anonymized. 

 

2.2 Staining 

 Pathologist established diagnosis of metastatic colon cancer in a liver after microscopic 

examination of samples stained by H&E and immunostained to diagnosis-relevant antigens 

using primary antibodies specific to: hepatocyte protein (Hep Par 1 -  OCH1E5), a transcription 
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factor expressed in colorectal carcinoma cells (CDX2), and cytokeratin 20 as a marker of 

adenocarcinoma cells (CK20 - clone Ks20.8, all from Dako, Denmark). 

  

2.3 Image Acquisition  

The image acquisition system was described previously in [25, 26]. To avoid overlap with 

the prior work, we present here a minimal quantity of technical details. The system is comprised 

of light microscope Olympus BX51 with a DP50 camera, UPPLANFL objective with 40× 

magnification and numerical aperture 0.75, and an eyepiece lens with a magnification of 10×. 

Thus, images were acquired with an overall magnification of 400×. The pathologist selected 

images with either mostly metastasis of colon cancer or with a combination of normal liver 

tissue and colon cancer metastasis focusing the camera manually by looking on the computer 

screen. The specimen was illuminated between 480 nm and 620 nm. RGB images with 2074 × 

2776 pixels were acquired with an 8-bit resolution per monochromatic image. Afterward, 

images were down-sampled to 1388 × 1037 pixels. Since the pixel footprint' size is equal to 

0.1098 µm2 and the microscope spatial resolution is 0.45 µm, down-sampling did not cause the 

spatial information loss. However, it reduced the load on pathologists who performed pixel-

wise labeling. Table 1 summarizes the distribution of images across the patients. 

 

 

 

 Table 1. Distributions of images per patient. 

 

 

Patient 1 2 3  4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

No. of 

images 

15 8 8  5 6 4 4 2 2 1 4 2 8 4 1 1 2 2 5 
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2.4 Pixel-wise Labeling 

 Pixel-wise labeling of H&E stained sections images was done by four pathologists, two 

residents in pathology, and one final-year student of medicine. Labeling was performed on 

originally stained RGB images with the assistance of a super-pixels based software system that 

grouped similar pixels in a zoomed area. During the annotation process, annotators could 

choose between the brush and super-pixel tool. The size of brush or super-pixels and the super-

pixel algorithm, e.g., SLIC, Watershed, Quickshift, and Felzenszwalb from the scikit-image 

package, [28], could be changed. During the annotation procedure, pathologists could fix 

incorrectly marked regions by discarding them or refining them. While the software system was 

reducing the burden on annotators by calculating super-pixels, they still could zoom the image 

and annotate it up to the pixel-level. 

 Pixel-wise labeling by seven experts was motivated by the known phenomenon of inter-

observer variability and subjectivity [29]. Thus, ground truth labeling may suffer from the gold-

standard paradox [30, 31]. Validation by multiple pathologists is required to minimize inter-

observer variability and subjectivity [29]. To this end, we calculated the Fleiss' kappa statistics 

to estimate the inter-annotator agreement, i.e. reliability (validity) of annotation [32, 33]. To 

calculate the Fleiss' kappa statistics, we used freely available Matlab code [34]. The input to the 

function is a matrix X with the first dimension equal to the number of pixels, 1037×1388×82, 

and the second dimension equal to 2, i.e. the number of classes. Thus, element xij stands for the 

number of annotators that at the pixel location i are declared to be cancerous (j=1) or non-

cancerous (j=2). For a given dataset, the Fleiss' kappa statistic is equal to 0.74. Following the 

Table 2, adopted from [33], it corresponds to the substantial inter-annotator agreement. For 

each image separately, we also calculated the kappa statistics for seven annotators. That is 

shown in Fig. 1. The ground truth used for the experiments reported in section 3 was for each 
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image obtained by the majority vote. 

 

 

 

 

Table 2. Kappa statistics and strength of agreement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The Fleiss' kappa statistics estimated for each image from pixel-wise annotations by 

seven experts. 

 

Kappa statistics Strength of Agreement 

<0.00 Poor 

0.00-0.20 Slight 

0.21-0.40 Fair 

0.41-0.60 Moderate 

0.61-0.80 Substantial 

0.81-1.00 Almost Perfect 
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As seen in Fig. 1, images 23 and 27 are characterized by a fair agreement between the 

annotators. Thus, we show in Fig. 2a the originally stained image 23, and in Fig. 2b to Fig. 2h 

the pixel-wise ground truth maps annotated by seven experts. Image 23 illustrates the challenges 

associated with intraoperative tissue collection, sectioning, and staining. In addition to the low 

quality of the frozen section, the cancer is poorly differentiated. Combining that with the color 

variation makes it hard to discriminate between the cancerous and non-cancerous pixels even 

for experienced pathologists. As it is already pointed out in [29], validation by multiple 

pathologists is required to minimize inter-observer variability and subjectivity. In such cases, 

the ground truth map used for the classifiers' training has to be formed by a majority vote of the 

greater number of annotators (seven in the study conducted herein). When the annotation is 

interpreted as a random process, the individual annotations can be interpreted as realizations of 

that process. Thus, the majority vote stands for the most probable outcome of the annotation 

process. Furthermore, shown in Fig. 1, images 11, 12, 14, 58, 59, 71 and 72 are characterized 

by an almost perfect agreement between the annotators. Therefore, we show in Fig. 3a the 

originally stained image 58, and in Fig. 3b to Fig. 3h, the pixel-wise ground truth maps 

annotated by seven experts. As opposed to image 23, cancer shown in image 58 is well-

differentiated with clear boundaries corresponding to the fibrous tissue on the tumor's 

periphery. The quality of the frozen section is good. Since the experts' agreement is high, the 

majority vote does not play such an important role as in the previous case. 
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Fig. 2. (a) image of the H&E stained frozen section. (b) to (h) ground truth maps annotated 

pixel-wise by seven experts. Fleiss' kappa statistic equals 0.3805 and stands for a fair 

agreement. (i) majority vote ground truth map. 
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Fig. 3. (a) image of the H&E stained frozen section. (b) to (h) ground truth maps annotated 

pixel-wise by seven experts. Fleiss' kappa statistic equals 0.8829 and stands for almost perfect 

agreement. (i) majority vote ground truth map. 

 

2.5 Stain Normalization 

 To cope with the experimental variations present during the slide preparation process, 

we applied the structure-preserved color (stain) normalization method [17], relative to target 

images selected by a pathologist, Figs. 4d and 4f. Thus, pixel-wise classification systems can 

be trained using either dataset composed of images of the H&E stained frozen sections or using 

one of the two datasets composed of stain-normalized images. As it was done in this paper, it 

is also possible to train classifiers on all three datasets and combine diagnostic results by 
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majority vote. Fig. 4a shows one image of the H&E stained frozen section. The corresponding 

ground truth map is shown in Fig. 4b. Two images stained-normalized relative to target images 

Figs.4d and 4f are shown in Fig. 4c and Fig. 4e, respectively.  

 

 

Fig. 4. (a) image of the H&E stained frozen section. (b)  majority vote ground truth map. (c) 

stain-normalized image w.r.t. target image 1. (d) target image 1. (e) stain-normalized image 

w.r.t. target image 2. (f) target image 2. Images were acquired with magnification 400×.  

 

2.6 Conventional Machine Learning Classifiers 

 Conventional machine learning classifiers such as SVM and kNN can yield good 

diagnostic performance if high-quality hand-crafted features are provided. It is however, known 

for a long time that "feature extraction matters more than the method used for classification" 

[35]. In other words, the extraction of discriminative features is a challenging problem in itself. 

Herein we relied on color as a feature that is a result of the H&E staining. In addition to the 

originally stained images, we trained the SVM and kNN classifiers on the two corresponding 
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sets of the stain-normalized images. The biggest challenge in training these two classifiers in a 

pixel-wise setting comes from a huge training set (58 images with the size 1037×1388 pixels). 

Hence, we had to train the classifiers in an incremental (online) mode. Incremental learning of 

the linear SVM is implemented through the incrementalLearner function using Matlab 

2020b. The learner can be implemented by one of the three types of solvers: scale-invariant 

solver [36], stochastic gradient descent (SGD) solver [37], and average SGD (ASGD) solver 

[38]. Linear SVM classifier is the only one supported by the incrementalLearner function. 

In our previous work [26] SVM classifiers were trained on the selected region of interest with 

the size of 100×100 pixels. The linear SVM classifier exhibited the best performance. That 

provides an additional justification for its use in the incremental mode herein. kNN is applied 

in an adaptive mode employing a sliding window algorithm (ADWIN) [39], using a scikit-

multiflow package [40].  

 

2.7 Deep Learning Classifier 

 Deep learning (DL) is a methodology that extracts feature representation directly from 

image data [5, 7, 15]. Because of that, DL is considered suited for image analysis challenges in 

digital pathology [41]. Herein, we are focused on fully convolutional neural networks (FCNNs). 

They differ from CNNs in that FCNNs replace the fully connected layer with the up-sampling 

and deconvolution layer [42, 14]. These layers are considered a backward version of, 

respectively, the pooling layer and convolutional layer. That yields a characteristic U-shape of 

the network [22]. FCNNs are adopted for image segmentation because they can be applied to 

images of virtually any sizes. Improvement of the well-known U-Net architecture for 

biomedical image segmentation [22], is known as U-Net++ architecture [23]. As shown in [9], 

pre-trained deep networks produced results comparable or even superior to results from state-

of-the-art hand-crafted feature-based classification approaches. Thus, the insufficiency of 



14 
 

labeled training data is addressed through (i) transferring the DensNet201 encoder network 

(backbone) [24] pre-trained on the ImageNet database for classification purposes. However, in 

section 3, we compared results achieved by pre-trained backbones of U-Net and U-Net++ 

networks with results achieved by networks trained from scratch. We found an insignificant 

difference in performance. See Tables 5 to 8, but the convergence speed improved on average 

by 15% in the case of pre-trained initializations. It is also seen that in the problem considered 

herein, the U-Net++ brought the minor performance improvement compared to the U-Net. (ii) 

augmenting data every epoch by elastic transformations, e.g., zoom, shear, rotation, horizontal 

and vertical flip, by randomly choosing their parameters [43].  

 Repeated combinations of max pooling and down-sampling (convolution striding) leads 

to the reduced feature resolution. This problem is resolved by removing the last several max-

pooling layers of deep CNN and up-sampling filters in the subsequent convolutional layers. 

Filter up-sampling step is carried out through the insertion of holes (zeros) between the nonzero 

coefficients of the kernel, which is known as atrous convolution (also known as dilated 

convolution) [44]. This step brings no extra computational burden but produces denser feature 

maps at multiple scales. The approach is known as DeepLab [45]. Its computationally improved 

version that eliminates the post-processing step is known as DeepLabv3 [25]. Its TensorFlow 

implementation, [46], was used to train the corresponding diagnostic model. To cope with the 

labeled data insufficiency, weights of DeepLabv3 were transferred from the Pascal VOC 2012 

dataset and further trained with the rest of the network on CoCahis dataset. Analogously to the 

U-Net and U-Net++, we also trained the DeepLabv3 from scratch for comparison. Similarly, as 

it was the case with the U-Net and the U-Net++, we found an insignificant difference in 

performance between the DeepLabv3 network trained from scratch and pre-trained on the 

Pascal VOC 2012 dataset, see Tables 9 and 10.  However, the pre-trained version converged 

10% faster than the network trained from scratch. All deep learning-based diagnostic models 
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were implemented in Tensorflow [47] and Keras [48]. 

 

2.8 Train and Test Protocol 

The CoCaHis dataset has been divided into a training (70%) and a testing (30%) set. This 

splitting ratio was applied to images and patients. To ensure that the classifiers generalize to 

unseen data, we guarantee that the test set's images did not come from the train set's patients. 

In other words, in addition to images, patients included in the test set were not included in the 

train set. Regarding the U-Net, U-Net++, and DeepLabv3 classifiers, the training set is 

preprocessed by normalizing pixels to the range from 0 to 1. Furthermore, to extract the most 

out of the given set, patching is performed by a 128×128 sliding window with 64 pixels strides. 

By this approach, more cancer-context could be caught [26]. 20% of the preprocessed train set 

was assigned to the validation set to have an independent performance metric for reducing the 

learning rate or the early stopping. After the models are trained, the test set was preprocessed 

to fit the implementation-specific input size and range constraint. Also, the window was 

stridden by 32 pixels leading to 16 context-unique segmentations. A minimum number of 

context-unique pixel classifications as cancer, necessary to mark the corresponding pixel as 

cancer, was optimized on train images and applied to the test set [26]. That resulted in a 

diagnostic map for each test image.  

 Regarding the incremental linear SVM classifier, we used 10-fold cross-validation to 

tune the hyperparameters. The scale-invariant solver was validated on standardized and non-

standardized samples. For SGD and ASGD solvers additional hyperparameters were the batch 

size validated from the set {2, 3, 5, 7, 10, 15, 20}, and the strength of ridge regularization term 

validated from the set {10-6, 5×10-6, 10-5, 5×10-5, 10-4}. Regarding the kNN classifier, with the 

ADWIN change detector, cross-validation was performed on the same train and validation set 

as for deep learning models. It was used to select the hyperparameters: the number of neighbors, 
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the maximum number of samples that can be stored in one leaf node, and the maximum size of 

the window storing the last viewed samples [40, 39]. The respective sets were {3, 5, 7}, {30, 

40, 50}, and {1000, 2000, 3000}.  On the originally stained images the cross-validated 

parameters in respective orders were: 5, 30, and 1000. On images stain-normalized relative to 

the target 1 the parameters were: 7, 40, and 1000. On image stain-normalized relative to the 

target 2 the parameters were: 7, 40, and 1000.  

 

2.9 Performance Measures  

 Diagnostic performance was quantified using five metrics: sensitivity, specificity, 

positive predicted value (PPV), F1, and balanced accuracy (BACC). Sensitivity, also known as 

recall and true positive rate (TPR), is defined as: 

 

   TPTPR
TP FN

=
+

      

 

where TP denotes the number of true positives (correctly diagnosed cancerous pixels) and FN 

denotes the number of false negatives (incorrectly diagnosed cancerous pixels). Specificity, also 

known as selectivity and true negative rate (TNR), is defined as: 

 

   
TNTNR

TN FP
=

+
   

 
 

where TN denotes the number of true negatives (correctly diagnosed non-cancerous pixels) and 

FP denotes the number of false positives (incorrectly diagnosed non-cancerous pixels). PPV, 

also known as precision, is defined as: 
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   TPPPV
TP FP

=
+

  

 

F1 score, also known as the Dice coefficient, is the harmonic mean of PPV and TPR defined as: 

 

      1
2

2
TPF

TP FP FN
×

=
× + +

  

 

Since 32.75% of the dataset's pixels were cancerous (dataset is imbalanced), we used BACC, 

defined as the arithmetic mean between TPR and TNR, instead of standard accuracy that is 

biased towards dominating class. For all five metrics, value 0 indicates the worse and value 1 

the best performance.  

 

3. Results 

 All the classifiers were trained independently for the set of originally stained images, 

and for each of the two sets of stain-normalized images. Three individual diagnoses were also 

combined using the majority vote. The micro diagnostic performance of the incremental SVM 

classifier is presented in Table 3. We selected the version of the incremental linear SVM 

classifier that yielded the highest value of BACC. That occurred with the scale-invariant solver 

[36] with standardized samples. The micro diagnostic performance of the kNN classifier is 

presented in Table 4. The micro diagnostic performance for the U-Net trained, respectively, 

from scratch and pre-trained on the ImageNet datasets is presented in Table 5 and Table 6. 

Corresponding results for the U-Net++ classifier are presented in Tables 7 and 8, and for 

DeepLabv3 classifier in Tables 9 and 10. DL-based classifiers outperformed the conventional 

machine learning classifiers: 14% in terms of micro balanced accuracy, 15% in terms of the 

micro F1 score, and 26% in terms of micro precision. As opposed to that, the difference in 

performance between deep classifiers is within the margin of 2%. Thus, there were no 
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significant performance improvements due to the pre-training on non-domain image datasets. 

As seen in Tables 3 and 4, conventional classifiers benefited from stain-normalization. In other 

words, since SVM and kNN were based on "hand-crafted" (color) features, color normalization 

was essential for performance improvement. That was achieved on datasets comprised of stain-

normalized images. Unlike conventional classifiers, DL-based classifiers were able to learn new 

features from originally stained images and from stain-normalized versions. That is why in 

several cases the majority vote improved diagnostic performance further. See Tables 6 to 10. 

To visualize the quality of the diagnosis by SVM, kNN, U-Net, U-Net++, and DeepLabv3 

classifiers, we provide the following illustrations. Fig. 5 shows the U-Net++ best diagnostic 

performance for the originally stained image and stain-normalized images. Fig. 6 shows the 

best result achieved for the same case by the SVN, kNN, U-Net++, U-Net, and DeepLabv3. 

Corresponding results for the worse diagnostic performance are shown in Figs. 7 and 8. Figs. 5 

and 7 combined with Tables 6 to 10 demonstrate that majority vote combinations of diagnosis 

based on the originally stained and stain-normalized images improve performance in terms of 

TPR, TNR, PPV, F1 score, and/or BACC. Furthermore, it is important to notice in Fig. 8 that 

the DeepLabv3 classifier yielded anatomically more meaningful and more accurate diagnosis 

than U-Net and U-Net++  in a clinically demanding scenario. We contribute that to the field of 

view expansion property of the DeepLabv3 network that, in comparison with the U-Net/U-

Net++, leads to denser feature maps. 
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Table 3. Micro diagnostic performance of incremental linear SVM on standardized originally 

stained (OS) and stain-normalized (SN) images. Best values are in bold. 

Metric OS images SN target 1 SN target 2 Majority vote 

TPR 0.9151 0.8031 0.7379 0.7969 

TNR 0.4588 0.7248 0.7656 0.7220 

PPV 0.3931 0.5279 0.5467 0.5234 

      F1 Score 0.4235 0.6830 0.7035 0.6698 

   BACC 0.6869 0.7640 0.7516 0.7594 

 

Table 4. Micro diagnostic performance of incremental kNN classifier on non-standardized 

originally stained (OS) and stain-normalized (SN) images. Best values are in bold. 

Metric OS images SN target 1 SN target 2 Majority vote 

TPR 0.7830 0.7707 0.8917 0.8245 

TNR 0.6111 0.7606 0.4853 0.6345 

PPV 0.4355 0.5523 0.3990 0.4636 

      F1 Score 0.5597 0.6434 0.5513 0.5935 

   BACC 0.6971 0.7657 0.6885 0.7295 

 

Table 5. Micro diagnostic performance of U-Net classifier on originally stained (OS) and 

stain-normalized (SN) images. The network is initialized randomly and trained from scratch. 

Best values are in bold. 

Metric OS images SN target 1 SN target 2 Majority vote 

TPR 0.8408 0.8974 0.7611 0.8250 

TNR 0.8851 0.8221 0.9209 0.9241 

PPV 0.7371 0.8103 0.7867 0.8063 

      F1 Score 0.7855 0.8161 0.7737 0.8155 

   BACC 0.8630 0.8598 0.8410 0.8746 
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Table 6. Micro diagnostic performance of U-Net classifier on originally stained (OS) and 

stain-normalized (SN) images. Backbone of the network is pre-trained on the ImageNet 

dataset and fine-tuned on CoCaHis dataset. Best values are in bold. 

Metric OS images SN target 1 SN target 2 Majority vote 

TPR 0.8492 0.8159 0.8051 0.8534 

TNR 0.8742 0.9186 0.9217 0.9237 

PPV 0.7212 0.7934 0.7976 0.8108 

      F1 Score 0.7780 0.8045 0.8013 0.8316 

   BACC 0.8617 0.8673 0.8634 0.8886 

 

 

Table 7. Micro diagnostic performance of U-Net++ classifier on originally stained (OS) and 

stain-normalized (SN) images. The network is initialized randomly and trained from scratch. 

Best values are in bold. 

Metric OS images SN target 1 SN target 2 Majority vote 

TPR 0.8760 0.8336 0.7995 0.8423 

TNR 0.8942 0.9247 0.9199 0.9258 

PPV 0.7500 0.8091 0.7928 0.8131 

      F1 Score 0.7874 0.8211 0.7961 0.8274 

   BACC 0.8851 0.8792 0.8597 0.8841 
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Table 8. Micro diagnostic performance of U-Net++ classifier on originally stained (OS) and 

stain-normalized (SN) images. Backbone of the network is pre-trained on the ImageNet 

dataset and fine-tuned on CoCaHis. Best values are in bold. 

 Metric OS images SN target 1 SN target 2 Majority vote 

TPR 0.8886 0.8033 0.8145 0.8639 

TNR 0.8838 0.9231 0.9167 0.9229 

PPV 0.7451 0.8001 0.7893 0.8111 

      F1 Score 0.8097 0.8018 0.8017 0.8367 

   BACC 0.8862 0.8632 0.8656 0.8934 

 

Table 9. Micro diagnostic performance of DeepLabv3 classifier on originally stained (OS) and 

stain-normalized (SN) images. The network is trained from scratch. Best values are in bold.  

Metric OS images SN target 1 SN target 2 Majority vote 

TPR 0.8239 0.8032 0.8028 0.8247 

TNR 0.8980 0.9317 0.9228 0.9303 

PPV 0.7559 0.8183 0.7993 0.8193 

      F1 Score 0.7884 0.8107 0.8011 0.8219 

   BACC 0.8610 0.8675 0.8628 0.8775 
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Table 10. Micro diagnostic performance of DeepLabv3 classifier on originally stained (OS) 

and stain-normalized (SN) images. The network is pre-trained on the Pascal VOC 2012 dataset 

challenge and fine-tuned on CoCaHis. Best values are in bold. 

 Metric OS images SN target 1 SN target 2 Majority vote 

TPR 0.8824 0.8155 0.7810 0.8457 

TNR 0.8879 0.9123 0.9172 0.9193 

PPV 0.7510 0.7809 0.7833 0.8006 

      F1 Score 0.8114 0.7978 0.7822 0.8225 

  BACC 0.8852 0.8639 0.8491 0.8825 
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Fig. 5. (a) OS image 56 of H&E stained frozen section. (b) stain-normalized image w.r.t. target 

image 1. (c) stain-normalized image w.r.t. target image 2. (d) to (f) U-Net++ diagnosis. (g) 

majority vote diagnosis combining (d), (e) and (f). (h) majority vote ground truth. F1 score 

between (g) and (h) equals to 0.9176. Images were acquired with magnification 400×.  
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Fig. 6. Diagnostic maps for the images of H&E stained frozen section shown in Fig. 5(a), 5(b) 

and 5(c). (a) majority vote ground truth. (b) SVM' diagnostic map of stain-normalized image 

Fig. 5(b). (c) kNN diagnostic map on stain-normalized  image Fig. 5(b). (d) Majority vote of 

U-Net++ diagnosis in Fig. 5 (d), 5(e) and 5(f). (e) U-Net, and (f) majority vote of DeepLabv3 

diagnosis on original and stain-normalized images. F1 scores of (a) and (b) to (f) in the 

respective order: 0.7202, 0.7219, 0.9176, 0.9171, and 0.9062. 
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Fig. 7. (a) image 45 of H&E stained frozen section. (b) stain-normalized image w.r.t. target 

image 1. (c) stain-normalized image w.r.t. target image 2. ( d) to (f) U-Net++ diagnosis. (g) 

majority vote diagnosis combining (d), (e) and (f). (h) majority vote ground truth. F1 score 

between (g) and (h) equals to 0.5141. Images were acquired with magnification 400×. 
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Fig. 8. Diagnostic maps for the images H&E stained frozen section shown in Fig. 7(a), 7(b) and 

7(c). (a) majority vote ground truth. (b) SVM on stain-normalized image Fig. 7(b). (c) kNN on 

stain-normalized image Fig. 7(b). (d) U-Net++ by majority vote of Fig. 7(d), 7(e) and 7(f). (e) 

Majority vote of U-Net' diagnosis 7(d), 7(e) and 7(f). (f) DeepLabv3 by majority vote of 

diagnosis on original and stain-normalized images in Fig. 7. F1 scores of (a) and (b) to (e) in 

the respective order: 0.0944, 0.0.0936, 0.5141, 0.3888, and 0.5674. 

 

4. Discussion and conclusion 

Artificial intelligence and computational pathology hold high potential in assisting pathologists 

in establishing diagnosing and/or grading cancer. However, that is hindered by the lack of 

publicly accessible datasets with expert labeling. Mostly, it is the case with an intraoperative 

pixel-wise diagnosis. Although CAD-assisted intraoperative decision-making systems are of 

potentially high clinical importance, their development is complicated due to several 

challenges: (i) collection of samples in the intraoperative procedure is demanding, (ii) the 

quality of frozen sections and quality of staining varies significantly due to tight time constrain 
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imposed on laboratory technicians, (iii) highly time-consuming pixel-wise annotation process. 

Experimental variations in sample preparation, combined with the occasionally poorly 

differentiated cancer, make pixel-wise annotation even harder and more time-consuming, 

possibly leading to significant disagreement between the annotators. Thus, labeling by multiple 

pathologists is necessary to obtain a reasonably good estimate of the most probable outcome of 

the annotation process. That, however, adds further to the complexity of the development of the 

CAD-based intraoperative diagnosis systems. Motivated by outlined reasons, we provide a 

pixel-wise annotated database comprised of 82 histopathological images of H&E stained frozen 

sections. The sections with the metastatic colon cancer in a liver were collected intraoperatively 

on 19 patients. Seven experts generated corresponding pixel-wise ground truth maps. In 

addition to a dataset with originally stained images, two datasets comprised of images stain-

normalized relative to two target images are also provided. Adding these two datasets is 

motivated by recent advances in computational methods for segmentation and/or classification 

of multi-view and/or multimodal data [49]. In principle, these methods improve performance 

relative to the case when either originally stained images or stain-normalized images are treated 

separately. Moreover, it is shown that SVM and kNN classifiers benefited from stain 

normalization. That is because they are based on "hand-crafted" (color) features. Due to the 

capability of learning new features, deep learning classifiers benefited from the stain 

normalization in a different way. They were able to learn discriminative and up to a certain 

extent, complementary features from all three datasets. That is why in several cases majority 

vote furtherly improved the diagnostic performance. Hence, a possible direction for further 

improving diagnostic performance is combining originally stained and stain-normalized 

versions into one multispectral image or one multi-view dataset. One of the challenges in the 

design of a CAD-based diagnostic system is the selection of the classifier. Herein, we verified 

that deep learning classifiers outperform SVM and kNN classifiers on an independent test set 
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by a large margin in terms of balanced accuracy, F1 score, and precision. It is also verified that 

the difference in performance between U-Net, U-Net++ and DeepLabv3 classifiers is within 

the margin of 2% independently on whether they were trained from scratch or pre-trained on 

non-domain image datasets. Thus, to clarify issues related to the architecture of deep learning 

networks and the usefulness of pre-training on non-domain image datasets, a larger database 

than the one presented herein is required. Currently, the baseline diagnostic result achieved on 

the independent test set is obtained with the "multi-view" U-Net++ classifier pre-trained on the 

ImageNet dataset. It respectively yields micro balanced accuracy, F1 score, and precision in the 

amounts of 89.34%, 83.67% and 81.11%. Thus, the database can be used to train and test pixel-

wise computer-aided intraoperative diagnostic systems that could act as a second reader. 
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