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Abstract 

Relative diffusion of free radicals in solution modulates the Heisenberg spin exchange and dipole-

dipole interactions among them, which affects their electron paramagnetic resonance (EPR) spectra. 

The radical concentration dependence of EPR parameters can, in turn, give information about radical 

diffusivity in a liquid. We studied the diffusivities of the 
14

N- and 
15

N-labeled perdeuterated 

TEMPONE radicals at various temperatures in three viscous liquids: 1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide ionic liquid, propylene carbonate, and ethylene glycol. By fitting 

EPR spectra at various radical concentrations, we obtained the concentration coefficients of EPR 

parameters. The concentration coefficients were related to the radical diffusivity by solving the 

kinetic equations for the spin evolution of a radical pair, considering the radicals as continuously 

diffusing spherical objects in the hard-core pair potential. We tested the method by comparing the 

calculated radical diffusivities of isotopically substituted TEMPONE radicals.  Temperature 

dependences of radical diffusivities were discussed in terms of the Stokes-Einstein relation. 

Additionally, the radical diffusivities were compared to the self-diffusivities of the studied liquids. 

At lower temperatures, the radical diffusivities follow the self-diffusivities, while at the higher 

temperatures, the radical diffusivities start deviating from the self-diffusivities.   

 

 

 

 

Keywords: molecular liquids; ionic liquids; electron paramagnetic resonance; nitroxide radicals; spin 

interactions; tracer diffusivity;  
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1. Introduction 

Diffusion of host molecules (self-diffusion) and diluted guest molecules (tracer diffusion) in 

neutral molecular liquids and ionic liquids have attracted great attention due to theoretical and 

practical interests [1-5]. By using electron paramagnetic resonance (EPR) spectroscopy, one can 

detect free radicals in a liquid solution, as well as obtain information on their translational motion. 

This is possible because the relative motion of radicals modulates the Heisenberg spin exchange 

(HSE) and dipole-dipole (DD) spin interactions between them, which in turn changes the shape of 

the EPR spectrum. The change of the shape of the EPR spectrum depends on the radical 

concentration C and the diffusion coefficient (diffusivity) of radical D [6,7]. Since this modulation 

induces an additional dephasing of the radical’s magnetization and broadens the EPR lines, the effect 

of spin interactions has traditionally been studied by measuring the concentration-induced 

broadening of the EPR lines [6,8-13]. Although the line-broadening method has been applied to 

study radical diffusion in liquids, liquid crystals, biological systems, porous hosts, and other systems 

[6,8-13], the method is most effective in non-viscous systems, where the diffusion is fast enough that 

the line broadening due to the HSE interaction dominates over that due to the DD interaction [8]. 

While the HSE broadening is proportional to the spin exchange frequency, which linearly increases 

with both C and D, the DD broadening increases with decreasing diffusivity, which makes the line-

broadening method insensitive to the changes in diffusivity in viscous systems.  

In a more advanced study of the effects of the spin interactions on EPR parameters [14], the 

spin exchange broadened EPR spectra of a nitroxide radical were successfully fitted to the sum of 

Lorentzian absorption and dispersion lines (absorption-dispersion function) by using a nonlinear 

least-squares fitting method. The fitting method provided two additional EPR parameters that depend 

on the spin exchange frequency: (i) the ratio between the amplitudes of dispersion and absorption 

components, and (ii) the absorption nitrogen hyperfine splitting absA  calculated from the positions of 
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the outer absorption lines [14,15]. The spin coherence transfer between hyperfine lines, which is 

induced by HSE and DD interactions, was predicted to cause the appearance of dispersion 

components in the EPR spectra [6,7].
 
The spin coherence transfer together with the mechanism that 

changes the nitrogen hyperfine splitting A  due to the HSE interaction and a finite encounter time of 

colliding radicals was also predicted to affect absA  [7,16]. In the EPR studies of the stable nitroxide 

radical, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (
14

N-pDTEMPONE) in squalane 

and water, a method to separate the effects of HSE and DD interactions on EPR parameters was 

proposed [17,18]. The HSE-DD separation method applies approximate relations for the spin 

coherence transfer and spin dephasing due to the DD interaction using the theoretical analysis 

derived in Ref. [7]. The absorption-dispersion function fitting and HSE-DD separation method were 

improved in a follow-up EPR study of 
14

N-pDTEMPONE and 
15

N-labeled pDTEMPONE (
15

N-

pDTEMPONE) diffusion in water [19]. The EPR spectra of both radicals were fitted to the original 

spectral function derived from the modified Bloch equations in the presence of HSE and DD 

interactions. The original function fitting method provides the original EPR parameters directly from 

the Bloch equations, unlike the absorption-dispersion function fitting method [14,15]. However, both 

fitting methods give the same results after suitable transformations of the EPR parameters obtained 

by the latter method [19]. The HSE-DD separation method is further improved by iterative solving of 

the kinetic equations for the spin evolution of two radicals moving according to the continuous 

diffusion model and interacting by HSE and DD interactions [19]. The obtained relations for the 

concentration coefficients of spin dephasing, spin coherence transfer, and hyperfine splitting were 

then used to calculate the diffusivities of radicals.  

Here, we apply these experimental and theoretical methods to study the diffusivities of the 

14
N- and 

15
N-pDTEMPONE radicals at various temperatures in three different viscous liquids: 1-

ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid, glass forming liquid 

propylene carbonate, and hydrogen-bonding liquid ethylene glycol. The choice of these two radicals 
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is useful for testing the HSE-DD separation methods since these radicals’ EPR spectra are very 

different while their size and diffusivity are the same. 

 

2. Materials and Methods  

2.1. Materials and EPR spectroscopy 

The spin probes 
15

N-pDTEMPONE (98 atom % D, 99 atom % 
15

N) and 
14

N-pDTEMPONE 

(99 atom % D) were purchased from CDN Isotopes and used as received. The ionic liquid 1-ethyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide (C2C1ImTFSI) of 99% purity was purchased 

from IOLITEC. It was dried under vacuum for three days before use. Propylene carbonate (PC) and 

ethylene glycol (EG), both of 99% purity, were purchased from Alfa Aesar and used as received. The 

structures of the spin probe and the solvents are shown in Figure 1. 

 

Figure 1. Chemical structures of pDTEMPONE, C2C1ImTFSI, PC, and EG. 

 

Stock solutions of 36 mM of
 15

N- and 
14

N-pDTEMPONE were prepared by weight in all 

solvents. The stock solutions were then diluted to 12 concentrations of pDTEMPONE (from 3 mM to 
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36 mM in steps of 3 mM), and the exact concentrations were determined by weighing. Just prior to 

EPR measurements, the samples were drawn into 5-μL capillaries (radius ≈ 150 μm) and sealed at 

the lower end by Haematocrit sealing compound, while the upper end was left open. EPR spectra 

were recorded with a Varian E-109 X-band spectrometer upgraded with a Bruker microwave bridge 

and a Bruker high-Q cavity. The sample temperature, controlled by a Bruker variable temperature 

unit, was held stable within ±0.2 K and measured with a thermocouple using an Omega temperature 

indicator. The thermocouple tip was always positioned at the top of the active region of the EPR 

cavity to avoid reducing the cavity quality factor. All samples were measured in steps of 5 K in 

various temperature ranges depending on the solvent. The radical concentrations were corrected for 

each measured temperature using the temperature dependences of solvents’ densities from literature. 

The EPR spectra were acquired with a sweep time of 20 s, microwave power of 0.5 mW, time 

constant of 16 ms, modulation amplitude of 0.1 G, and sweep width of 50 G. 

 

2.2. Fitting EPR spectra and determining the concentration coefficients 

The experimental EPR spectrum dBBdRBS /)()(   is the first derivative of the absorption 

EPR signal )(BR  with respect to the applied magnetic field B . Since the EPR spectra of nitroxide 

radicals exhibit 12 I  hyperfine lines, where the spin of the nitrogen nucleus is 2/1I  for 
15

N and 

1I  for 
14

N, the 
15

N- and 
14

N-labeled radicals exhibit two and three hyperfine lines, respectively 

(Fig. 2a-b). The original spectral function for the absorption EPR spectra of 
15

N- and 
14

N-labeled 

radicals interacting by HSE and DD interactions was obtained from the modified Bloch equations 

[7,19]. It has the form: 




 













12

1 0

0
)(

1
)(;

)(1

)(
Re)(

I

k k BBiz
BG

BG

BG
JBR ,     (1a) 



 7 

where 0J  is a constant, while the other parameters having the magnetic field units are: the coherence 

transfer rate  , the central field line position of the spectrum 0B , and the k-th hyperfine line 

parameters kz . The line parameters have the forms:  

2/;2/ 2211 iAziAz          (1b) 

for the 
15

N-labeled radical and the forms: 

)3/(;3/2;)3/( 332211 SAiziSzSAiz      (1c) 

for the 
14

N-labeled radical, where k  is the spin dephasing rate or the linewidth of k-th line, A  is the 

nitrogen hyperfine splitting, and S  is a small relative second-order hyperfine shift. 

Experimental EPR spectra were transferred to a personal computer and fitted to the first 

derivative of )(BR  defined by Eqs. (1). The fitting procedure was performed using the nonlinear 

regression command in the program package Mathematica. The experimental spectra of 3 and 36 

mM solutions at 60°C are shown in Fig. 2a-b, together with the fitting curves and residuals. The fits 

are quite good, as can be seen from the small values of the residuals, which are dominated by the 

weak satellite lines due to 
13

C nuclei.  

The concentration-induced increase of spin dephasing rates and the corresponding broadening 

of EPR lines can be clearly seen in Fig. 2a-b. We define the average linewidth of hyperfine lines as 

2/)( 21   for 
15

N- and 3/)( 321   for 
14

N-pDTEMPONE, whose calculated values 

are pltted in Fig. 2c-d, together with the fitted values of   and A . The appearance of dispersion 

components in the hyperfine lines due to the spin coherence transfer can be seen in Fig.2a-b. A 

positive coherence transfer rate lifts up the low field line and pushes down the high field line [14,15], 

which can be clearly seen for the C=36 mM sample. The coherence transfer rate between the two 

transitions (lines) of 
15

N-pDTEMPONE is a well-defined quantity )(a  depending on the 

frequency difference between the lines, which is equal to the hyperfine coupling constant Aa e , 
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where /B ge   is the electron gyromagnetic ratio (g is the radical g-factor and B  is the Bohr 

magneton). Since the frequency differences between the 
14

N-pDTEMPONE transitions are given by 

a and 2a, neglecting a small second-order shift, the coherence transfer rate between the neighbor 

lines )(a  is generally different from that between the outer lines )2( a . The analysis showed that 

this difference is so small that it cannot be extracted by fitting and that the coherence transfer rate 

obtained from Eq. (1) corresponds to the average coherence transfer over different lines, i.e. 

3/)2(3/)(2 aa  . 

 

Figure 2. EPR parameters from the fitting procedure. The experimental EPR spectra, fitting curves, 

and residuals of 3 and 36 mM nitroxide solutions of (a) 
15

N- and (b) 
14

N-pDTEMPONE in 

C2C1ImTFSI at 60°C. The fitted values of average spin dephasing rate , coherence transfer rate , 

and nitrogen hyperfine splitting A as a function of concentration for (c) 
15

N- and (d) 
14

N-

pDTEMPONE in C2C1ImTFSI at 60°C. The lines are fits to linear concentration dependences. 
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Figure 3. Concentration coefficients Wj, Vj, and Bj as a function of temperature and diffusivity. The 

experimental temperature dependence of the concentration coefficients for (a) 
15

N- and (b) 
14

N-

pDTEMPONE in C2C1ImTFSI. The theoretical diffusivity dependence of the coefficients for a 

spherical nitroxyl radical of radius 3.5 Å having hyperfine splittings A=22 G for 
15

N and A=16 G for 

14
N. The theoretical dependences are calculated numerically (full lines) and approximately using the 

first iteration solutions (dashed lines).  

 

At low radical concentrations, the EPR parameters  ,  , and A  exhibit linear concentration 

dependences due to HSE and DD interactions [7], which can be written as: 

CBAACVCW jjj  000 ;; .      (2) 

Here, 
jW , 

jV , and 
jB  are the linear concentration coefficients of the average linewidth, coherence 

transfer rate, and hyperfine splitting, respectively, while the index Ij 2  has value 1 for 
15

N-and 2 
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for 
14

N-pDTEMPONE [7]. The parameters  ,  , and A  indeed show a linear dependence on C  in 

the measured concentration range (Fig. 2c-d), implying that the concentration coefficients can be 

evaluated as the slopes of the linear fits. The linear fits and concentration coefficients are obtained by 

the weighted linear regression method, where the weights are the inverse squares of the standard 

errors from the fitting procedure. By repeating the fitting procedure for EPR spectra and the linear 

regression method for the concentration dependences of the fitted parameters, the concentration 

coefficients 
jW , 

jV , and 
jB  for 

15
N- and 

14
N-pDTEMPONE are obtained at each measured 

temperature (Fig. 3). The concentration coefficients are analyzed by the model presented in the 

following section 3. 

 

3. Theory 

3.1. Model 

The radicals A and B subjected to an external magnetic field in solution are supposed to 

differ only in their Zeeman frequencies 
BA, . The radicals are modeled as hard spheres of the radius 

2/ , where   is the closest distance of the hard-core pair potential. The radius of pDTEMPONE is 

set to its van der Waals radius having the value of 3.5 Å [20]. Assuming that the radicals 

continuously diffuse in the medium with the diffusivity D , the relative motion of a radical pair is 

characterized by the relative diffusion coefficient DDr 2 , while the encounter time of a pair is 

given by rD/2

D    [16]. In the HSE interaction having the form BAHSE )( SSrJH


 , the 

exchange integral )(rJ  strongly decreases with the relative distance r between radicals. Hence, )(rJ  

is approximated by the function having a constant value 0J  in a narrow interaction layer and zero 

value outside of it. The interaction layer covers relative distances in the range   r , where a 

small interaction layer width,  satisfies 1/   . The values of 0J  and the contact time of 

radicals in the interaction layer rD/C   are assumed to be large enough for pDTEMPONE to 
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fulfill the strong HSE regime condition 1C0 J  [16]. Assuming that the encounter time D  is so 

long that it satisfies 1BA,D  , the DD interaction affects EPR spectra only by modulation of its 

secular part  zz SSSSSSYrH BABABA

0

2

3

DD

(0)

DD 4)()/(   . Here,  denotes the orientation 

angles of relative position vector r


 with respect to the magnetic field and 

)4/()(5/ 3

0

2

DD  e  defines the characteristic DD frequency. The last assumption of the 

model is that the contact time C  is short enough to satisfy 1CDD   and 1C  , where 

BA    is the difference in Zeeman frequencies of the radicals. The frequency differences 

between the radicals A and B can be a ,0  for the 
15

N-pDTEMPONE solution, and 

aa 2,,0   for the 
14

N-pDTEMPONE solution. The values of frequency differences were set by 

taking typical values of the nitrogen hyperfine splitting A=22 G for 
15

N- and A=16 G for 
14

N-

pDTEMPONE. 

 

3.2. Evaluating the effects of spin interactions on the concentration coefficients 

We applied the formalism of the kinetic equations for the spin density matrices of radical 

pairs [6,16,21] for the system of radicals described in the previous section. The concentration 

coefficients in G/M units were found to have the following form for the 
15

N-pDTEMPONE solution 

[19]:  

   
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     (3a) 

and the following form for the 
14

N-pDTEMPONE solution: 
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 (3b) 

In Eqs. (3a-b), AN  is the Avogadro constant, rDk 4D   is the rate constant of diffusion 

encounters, and 
DD

3

DD 2    is the rate constant of the DD interaction, while the complex 

parameters are given by [19]: 
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Here, /rx   (  x1 ) is the relative distance variable, 
DDDD    is a dimensionless DD 

parameter, and the functions ),(2,1 xT  represent non-zero elements of the correlation operator for 

the pair density matrix. These functions satisfy the following partial differential equations:  
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where 
2

  is the angular part of Laplacian. The boundary conditions for 1x  are 21 TT   and 

xTxT  // 21
, while those for x  are 11 T  and 02 T . Solving Eq. (3d) in the first 

iteration (FI), the following relations for the parameters in Eq (3c) were derived [19]:   
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
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


  ,    (4) 
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where D

2 iy  . Introducing the FI relations (Eq. 4) into Eqs. 3(a-c), the concentration 

coefficients Wj, Vj, and Bj of 
15

N- and 
14

N-pDTEMPONE were calculated as functions of radical 

diffusivity and presented by the dashed lines in Fig. 3c-d. In order to validate the FI relations, the 

diffusivity dependences of the concentration coefficients were also calculated by numerical solving 

of Eq. (3d), as described in Appendix. These exact results are presented by the full lines in Fig. 3c-d. 

As can be seen, the coefficients of spin dephasing or broadening coefficients Wj have the highest 

values, but the exact and FI results differ most strongly. On the other hand, the exact and FI results 

for the hyperfine-splitting coefficients Bj are close to each other, but the small values of these 

coefficients make them impractical for calculating the diffusivity in comparison with the other two. 

It can also be seen that the broadening coefficients Wj saturate and become insensitive to the changes 

in diffusivity below the value of about 10×10
−11

m
2
s

−1
, while the coherence-transfer coefficients Vj 

remain sensitive to the smaller values of diffusivity. Additionally, the exact and FI results for the 

coefficients Vj hardly differ above the value of about 5×10
−11

m
2
s

−1
. The above analysis implies that 

the coherence-transfer coefficient is the best candidate for the calculation of the radical diffusivity. 

 

Figure 4. Interrelations between the concentration coefficients. The dependences of Wj and Bj on Vj 

for (a) 
15

N- and (b) 
14

N-pDTEMPONE in C2C1ImTFSI (circles), propylene carbonate (triangles), and 

ethylene glycol (squares). The lines denote the theoretical dependences for a spherical nitroxyl 

radical of radius 3.5 Å with hyperfine splittings  A=22 G for 
15

N and A=16 G for 
14

N.  
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In order to test our model, we compared the theoretical and experimental interrelations 

between different concentration coefficients. The experimental dependences of Wj and Bj on Vj for 

15
N- and 

14
N-pDTEMPONE in all studied liquids are compared with the theoretical dependences 

(Fig. 4). We can see that agreement between the theoretical and experimental dependences is quite 

good, which justifies the used model and allows us to calculate the diffusivities of both radicals from 

the theoretical dependences of Vj in Fig. 3c-d. 

 

4. Results and discussion 

The values of radical diffusivity D were obtained from the experimental values of 

coefficients 
jV  and the numerically calculated theoretical diffusivity dependences of 

jV  (Fig. 3). In 

the Stokes-Einstein plot (Fig. 5), the obtained values of D were presented as a function of /T , 

where   is the viscosity of liquid. The viscosity values were obtained by fitting the experimental 

data for C2C1ImTFSI [22] and EG [23] to a power-law temperature dependence. The viscosity values 

for PC were calculated from the published parameters of Vogel-Fulcher-Tamman (VFT) law [24]. 

Expectedly, the calculated diffusivities of 
15

N- and 
14

N-pDTEMPONE are close to each other, 

justifying the applied experimental and theoretical methods. 

The simplest model for prediction of tracer diffusivity is the Stokes-Einstein (SE) relation 

)6/( UBSE RTkD  , where UR  is the radius of the solute molecule. Usually, the SE relation predicts 

the correct order of magnitude for the tracer diffusivity, and it tends to be more accurate as the tracer 

molecule becomes larger than the solvent molecule [3]. The SE diffusivity SED  for pDTEMPONE is 

calculated by taking UR =3.5 Å (Fig. 5). It can be seen that the radical diffusivity values generally 

exceed those predicted by the SE relation. This effect, which can be quantified by the diffusion ratio 

SE/ DD , is lowest for PC, medium for EG, and highest for C2C1ImTFSI. Such an order of solvents 
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can be illustrated by calculating the values of the diffusion ratio SE/ DD  at 25°C ( D  is the average of 

15
N- and 

14
N-pDTEMPONE), which are found to be 1.1 for PC, 2.3 for EG, and 3.4 for C2C1ImTFSI. 

This diffusion ratio for neutral solutes was found to decrease with the relative size of van der Waals 

volumes of the solute ( UV ) and solvent ( VV ) molecules [3]. Using the method for the fast calculation 

of van der Waals volumes [25], we obtained the values UV =177 Å
3
 for pDTEMPONE, VV =89 Å

3
 for 

PC, and VV =61 Å
3
 for EG, while the value VV =138 Å

3
 for C2C1ImTFSI was obtained as the average 

cation and anion volume in C2C1ImTFSI [3]. It can be noticed that the ratio VU /VV  is smaller for PC 

than for EG, suggesting that SE/ DD  should be larger for PC than for EG, while the opposite is 

observed. 

 

Figure 5. Stokes-Einstein plots of radical diffusivity. The diffusivity of 
15

N- and 
14

N-pDTEMPONE 

in C2C1ImTFSI, propylene carbonate, and ethylene glycol. The dashed lines denote the Stokes-

Einstein relations. The full lines are fits to Eq. (6). 
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In order to take into account the type of solvent in the diffusion ratio, we applied the 

phenomenological relation that was used to fit the room-temperature diffusion data of various neutral 

tracers in various solvents [3]. The relation has the form:  

 pVVaDD  )/(1/ VUSE
,         (5) 

where the fitted values of the positive parameters a and p differ for the ionic liquid, non-polar, and 

alcohol solvents. Using Eq. (5), we found the values SE/ DD =1.4 for PC with the parameters for non-

polar solvents, SE/ DD =1.8 for EG with the parameters for alcohol solvents, and SE/ DD =2.2 for 

C2C1ImTFSI with the parameters for ionic liquid solvents. These results predict a correct order of 

solvents in the observed values of SE/ DD  at 25°C, implying that the deviations from the SE law not 

only depend on the relative sizes of solute and solvent molecules but also on their relative types [3]. 

In the case of similar solute and solvent molecules, the smaller the difference between solute-solvent 

and solvent-solvent interactions, the smaller the deviation from the SE law. Here, the difference 

between neutral pDTEMPONE and the solvent molecules is lowest in PC, medium in EG having 

hydrogen-bonding molecules, and highest in C2C1ImTFSI having charged molecules. The results of 

the molecular dynamics simulation of the diffusion of small neutral tracer in ionic liquid [26] suggest 

that the positive deviations of tracer diffusivity from the SE relation are additionally caused by the 

structural duality (heterogeneity) of ionic liquids, which consist of ionic (“stiff”) and apolar (“soft”) 

components. The “soft” component associated with the cationic apolar tails is more mobile and thus 

it is coupled to the tracer motion more than the “stiff” component. Hence, a tracer diffusing through 

the “soft” component makes its average diffusivity faster than expected from the SE relation. 

Since the values of SE/ DD  increase with lowering the temperature (Fig. 5), the temperature 

effect on the deviation from the SE law should also be analyzed. The average diffusivities of 
15

N- 

and 
14

N-pDTEMPONE were fitted to the empirical power-law dependence [27] of the form: 
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1211


,        (6) 

resulting in the fitting curves shown in Fig. 5. The fitting procedure gives similar values of the 

exponent P for all liquids (0.74 for C2C1ImTFSI, 0.73 for PC, and 0.78 for EG), while the value of 

the prefactor 0D  is about 50% larger in C2C1ImTFSI (1.29) than in PC (0.86) and EG (0.85). The 

increase of 0D  from PC to C2C1ImTFSI agrees with the proposed relation )/( UV0 VVD   where 

1  [27] because the volume VV  of C2C1ImTFSI is about 55% larger than that of PC. However, the 

volume of EG is about 68% of that for PC while 0D  is practically the same for both liquids, which 

indicates that the relative types of solute and solvent also play some role. 

In order to further examine the temperature dependence of the tracer diffusivities of 
15

N- and 

14
N-pDTEMPONE, their values are compared to the self-diffusivity values of each solvent obtained 

by NMR measurements (Fig. 6). The self-diffusivity values for the cation C2C1Im and the anion 

TFSI in C2C1ImTFSI were calculated from the published parameters of the VFT law [28]. The self-

diffusivity data for PC were obtained by fitting the experimental data [1] to the VFT law, and those 

for EG were calculated from the published Arrhenius parameters [29]. 

 Another model for the prediction of tracer diffusivity near room temperature for various 

solutes in organic solvents and water was proposed in Ref. [2]. The model predicts that the ratio 

between the tracer diffusivity D and the self-diffusivity SDD satisfies: 

2/1
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VUSD
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D
,       (7) 

where UR  and VR  are van der Waals radii of the solute and solvent molecules, respectively, while 

UM  and VM  are the corresponding molecular masses.  
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Figure 6. Tracer diffusivities of 
15

N- and 
14

N-pDTEMPONE compared to the self-diffusivity in 

C2C1ImTFSI, propylene carbonate, and ethylene glycol. The dashed lines represent the tracer 

diffusivities calculated by Eq. (7).   

 

The parameters that describe the solute pDTEMPONE molecule in Eq. (7) are UR =3.5 Å and 

UM =186.8 g/mol, which is the average value of the molar mass of 
15

N- and 
14

N-pDTEMPONE. 

Using the formula for van der Waals radii 3/1

VV )4/3( VR  , we obtained VR =3.2 Å
3
 for 

C2C1ImTFSI, VR =2.8 Å for PC, and VR =2.4 Å
3
 for EG. The average cation and anion mass in 

C2C1ImTFSI is VM =195.7 g/mol, while the molar masses of PC and EG are VM =102.1 g/mol and 

VM =62.1 g/mol, respectively. By inserting the above parameters in Eq. (7), we obtain the following 

predictions of SD/ DD =0.93 for C2C1ImTFSI, SD/ DD =0.69 for PC, and SD/ DD =0.55 for EG. The 

predicted tracer diffusivities are calculated from these ratios and the experimental self-diffusivities 
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(Fig. 6). In the calculations, the self-diffusivity of C2C1ImTFSI was taken as the average cation and 

anion diffusivities. The predictions work well at the highest measured temperatures in all liquids, but 

positive deviations from the predictions appear by decreasing the temperature (Fig. 6). The radical 

diffusivity in C2C1ImTFSI tends to have the values of cation diffusivity, while the radical 

diffusivities in PC and EG tend to have the values of the corresponding self-diffusivities. The former 

result agrees with the coupling between the diffusive motions of a neutral tracer and cationic apolar 

tails, as indicated by molecular dynamics simulations in ionic liquid [26]. The latter results could 

indicate that such a coupling between the diffusive motion of tracer and original molecules exist in 

other liquids. These results need further examination, but they suggest that diffusive motion in a 

liquid becomes more cooperative and collective by decreasing the temperature. Such behavior of 

diffusive motion in glass-forming liquids has been evidenced by molecular dynamics simulations 

[30] and experiments [31,32]. 

 

5. Conclusions 

With the aim to study radical diffusion in viscous liquids by EPR, we performed temperature 

dependent EPR measurements of the 
14

N- and 
15

N-pDTEMPONE radicals in C2C1ImTFSI ionic 

liquid, propylene carbonate, and ethylene glycol. In order to obtain the linear concentration 

coefficients of radicals’ EPR parameters, the EPR spectra for various radical concentrations were 

fitted by the original spectral function derived from the modified Bloch equations. The calculated 

concentration coefficients of the average linewidth, coherence transfer rate, and hyperfine splitting 

were related to the radical diffusivity by using the kinetic equations for the spin evolution of a radical 

pair with the HSE and DD spin interactions. The radicals were modeled as continuously diffusing 

spherical objects in the hard-core pair potential, where the closest distance was set to twice the van 

der Waals radius of the radical, while the kinetic equations were solved numerically and 

approximately in the first iteration. The theoretical relations between the concentration coefficients 
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and the radical diffusivity imply that the coherence-transfer coefficient is the most appropriate 

coefficient for calculation of radical diffusivity. Its values are comparable to the values of linewidth 

coefficient, but it stays sensitive to diffusivity down to smaller diffusivity values. Also, a practical 

advantage is that the difference between the numerically and approximately calculated relations is 

smaller for the coherence-transfer than the linewidth coefficient. Our model was tested by 

comparison of the theoretical and experimental interrelations between different concentration 

coefficients, which showed a good agreement.  

By calculating the radical diffusivities from the coherence-transfer coefficients, the 

diffusivities of 
15

N- and 
14

N-pDTEMPONE were found to be close to each other, which additionally 

justifies the applied experimental and theoretical methods. The calculated radical diffusivities 

generally exhibit positive deviations from the Stokes-Einstein prediction, which is the lowest for 

propylene carbonate, medium for ethylene glycol, and the highest for C2C1ImTFSI. These deviations 

depend on the relative sizes of solute and solvent molecules, as well as on their relative types. The 

temperature dependencies of radical diffusivities in all three liquids were satisfactorily described by 

the fractional power-law modification of Stokes-Einstein law (6). We found similar values of the 

fractional exponent, but different values of the prefactor, which possibly reflects an influence of 

different relative sizes and types of solute and solvent molecules. The temperature dependencies of 

radical diffusivities in all liquids were further examined by comparing them to the temperature 

dependencies of the self-diffusivities from NMR measurements. We tested the model that predicts 

the tracer diffusivity from the self-diffusivity by only taking into account the relative sizes and 

masses of solute and solvent molecules. The model predicts well the radical diffusivity at the highest 

measured temperatures, but positive deviations from the predictions appear by lowering the 

temperature. The positive deviations seem to be due to the tendency of radical diffusivity to approach 

the values of cation diffusivity in C2C1ImTFSI and the values of self-diffusivities in PC and EG. This 

effect for the solute molecule diffusing slower than the solvent molecule has not been noticed 
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previously, as far as the authors are aware, and it could be one of the indicators of how diffusive 

motion in a given liquid can become more cooperative and collective in its nature. 
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Appendix A. Setting up the equations 

Defining the frequency difference parameter 
DD    and using the relation for spherical 

functions 2/10 )2/()()( wpY LL  , where  cosw  and )()2/1()( 2/1 wPLwp LL   is the 

normalized Legendre polynomial of L-th degree, Eqs. (3d) can be transformed into the form:  
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The boundary conditions (BCs) for ),(2,1 wxT  are:  
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while the parameters in Eq. (3c) can be written as: 
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We define the new variable xq /1  ( 10  q ) and the new functions 1),(),(   wqTwqF   and 

qwqTwqF   1),(),( , where ),(),(),( 21 wqTwqTwqT 
. For these variables and functions, we 

get the following differential equations: 
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and the following BCs: 
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 0),1(),0(;0)/(),0( ,1   wFwFqFwF w  .      (A2b) 

The parameters (A1c) take the form: 
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We perform the expansion 





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1 22 )()(),(

m mm quwpwqF  in (A2a). Using the equality 

)()1()(2 wpLLwp LLw   and integrating both sides with )(22 wpdw l , we get the following 

system of differential equations for radial functions )(qul

 : 
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where 22 /)()( dqqudqu ll

  , 22  lL  and )()()( 22222 wpwpwpdw mllm  . The BCs are: 
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The quantities (A2c) become:  
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The solutions of the differential equation:  
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that satisfy BCs (A3b) at 0q , i.e., 0)0( 

lv  are given by )()( 34 zzJqv ll 

  , where 2/1)(2 qz l

   

and )(34 zJ l
 is Bessel functions of the first kind. In order to satisfy BCs (A3b) at 1q , we define 
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sets of numbers 2)2/( ljlj s  and 2)2/( ljlj p  where ...3,2,1j , while 0, ljlj ps  satisfy the 

following relations 0)()( 3434   ljlljljl sJssJ   and 0)(34  ljl pJ . We construct the functions: 
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These functions satisfy the following conditions at 1q : 
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and the orthogonality relationships:  
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Thus, the functions )(, qv jl


 form an orthonormal set with weight 1q  and satisfy the same BCs (A3b) 

as )(qul

 . Using the expansions 
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transformed into the following sets of equations after dividing by i: 
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Integrating (A8a) and (A8b) with 
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1 )(qvdqq lk  and 


1

0

1 )(qvdqq lk , respectively, we get the 

following linear equations for the coefficients lkM  and lkN :  
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The parameters in these equations are given by the following integrals:  
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Appendix B. Solving the equations 

In order to numerically solve the set of linear equations (A9), we construct matrices of 

dimension BB , where bnB 2 . Here, b and n are the numbers of the used angular and radial basis 

functions, respectively, i.e, bl ...,2,1  and njk ...,2,1,  . Defining indices jlbm jl  )1(,  and 

jlnbn jl  )1(, , the system of linear  equations (A9) can be written in the matrix form:  

rKs   ,           (B1a) 

where the components of column vector s  are related to the unknown coefficients as: 
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The column vector r  in (B1a) can be written as   rrr DD  , where the non-zero components of 

r  and r  are given by: 
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The matrix of the system K  in (B1a) can be written as   KKKK DD  Ii , where the 

matrices 
IK , K , and K  have the following non-zero components: 
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The HSE parameter in Eq. (A3c) takes the form: 
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Using )(sgn)2/()1( 1211 kkk pJpv  , we get: 
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The DD parameters in Eq. (A3c) take the form: 

 










 
1

DD,21,DD,21,

D

2,1 ),(),(
1

2
)(

k

kkkk NdMd
i

q 



 ,     (B4) 

where the parameters 
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The complex parameters in Eqs. (3c) can be calculated from the HSE and DD parameters in Eqs. 

(B3) and (B4). 

After defining the basis dimensions b and n, we calculated the sets of numbers ljs  and ljp  

using the Mathematica commands for finding the roots of Bessel functions and their derivative. 

Then, we constructed radial basis functions according to Eq. (A5) and calculated the parameters from 

Eq. (A9c) that gives non-zero-elements of the matrices and column vectors defined by Eqs. (B1). 

The calculated matrices 
IK , K , and K  of dimension BB  and column vectors r  and r  of 

dimension B  were saved for further calculations. 

 

Figure B1. Numerically calculated concentration coefficient V1 for 
15

N-pDTEMPONE as a function 

of the basis dimensions b and n. 
15

N-pDTEMPONE is modeled as a spherical radical of radius 3.5 Å 

having the hyperfine splitting A=22 G.  

 

Using the previously saved matrices and column vectors for particular numbers b and n, the 

concentration coefficients Wj, Vj, and Bj of 
15

N- or 
14

N-labeled radicals were calculated in a separate 

procedure as a function of radical diffusivity. In the calculations, the minimum, maximum, and step 

values of diffusivity were defined, and the linear system (B1a) was solved for each value of 

diffusivity. The concentration coefficients were calculated from the linear system solution by using 

Eqs. (B3), (B4), and (3). Each calculation was performed at fixed values of the radius of radical 2/  
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and the nitrogen hyperfine splitting A. The convergence of the results with the basis dimensions b 

and n was checked for the 
15

N-labeled radical (Fig. B1). It was found that b =4 and n=120 are large 

enough for our purposes. 
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