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25 Abstract 

26 Glutathione S-transferases (GSTs) are multifunctional phase II detoxification enzymes with primary function of 

27 glutathione conjugation of various endogenous and exogenous compounds. Teleost-specific Gstr1 in zebrafish 

28 (Danio rerio) was previously shown to have high expression in toxicologically relevant tissues and high activity 

29 towards model substrates. The aim of this study was a detailed functional characterization of zebrafish Gstr1. 

30 Molecular docking analyses were used to get novel insight into structural characteristics of Gstr1 and elucidation 

31 the mechanistic interactions with both GSH and various Gstr1 substrates or inhibitors. An initial screening 

32 inhibition assay performed by using model fluorescence substrate monochlorobimane (MCB) revealed 

33 interactions of different endogenous compounds and environmentally relevant xenobiotics with zebrafish Gstr1. 

34 All interacting compounds were further analyzed to determine their inhibition type and Ki values. Our data 

35 revealed that pregnenolone, progesterone, testosterone, DHEAS and corticosterone competitively inhibited 

36 transformation of MCB by Gstr1 with the calculated Ki values in the range 14-26 μM, implying that these hormones 

37 are physiological substrates of zebrafish Gstr1. Estrogens had no effect on Gstr1 activity. Taurochenodeoxycholate 

38 (TCDC) expressed lower inhibition potency toward Gstr1 with the Ki value of 33 μM. Among tested xenobiotics 

39 tributyltin chloride and rifampicin non-enzymatically bound Gstr1 enzyme (the calculated Ki values are 0.26 μM 

40 and 65 μM, respectively) and inhibited its activity, showing that these compounds are reversible noncompetitive 

41 inhibitors of zebrafish Gstr1. Insecticide diazinon competitively inhibited Gstr1 activity with calculated Ki value of 

42 27 μM, while others Gstr1-interacting insecticides, chlorpyrifos-methyl (CPF-methyl) and malathion, showed 

43 allosteric activation-like effect. Among tested pharmaceuticals, tetracycline, erythromycin and methotrexate 

44 demonstrated competitive type of inhibition with the calculated Ki values of 17.5, 36.5 and 29 μM, respectively. 

45 In summary, we suggest that zebrafish Gstr1 has an important role in steroidogenesis, metabolism and/or 

46 physiological actions of androgens, but not estrogens in fish. Finally, our results imply the role of Gstr1 in 

47 metabolism of xenobiotics and protection of fish against deleterious environmental contaminants such as 

48 organophosphate insecticides and pharmaceuticals.

49

50 Keywords: Glutathione-S-transferase r1; zebrafish; molecular docking, functional characterization, interaction 

51 screening, endogenous compounds, xenobiotics.
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57 1. Introduction

58 Aquatic environment is under constant pressure of newly emerging environmental contaminants. Large portion 

59 of these contaminants persistently stays in the freshwater systems and can cause deleterious effects to aquatic 

60 organisms (Murray et al., 2010). Consequently, it is of great importance to have better insight into mechanisms 

61 evolutionary developed and present in aquatic organisms as protection against xenobiotic compounds. Cellular 

62 uptake, metabolism and elimination of xenobiotics is largely mediated by numerous phase 0 membrane transport 

63 proteins, following with the phase I oxidation reactions maintained mainly by the cytochrome P450 enzymes and 

64 various conjugation reactions of phase II, and finally extrusion mechanisms mediated by membrane extrusion 

65 transporters of the phase III of cellular detoxification. Together, these integral elements form absorption, 

66 distribution, metabolism and excretion system (ADME) which critically determine toxicity of environmental 

67 contaminants (ADME-Tox) and is directly or indirectly modulated by endo- and xenobiotics (Stegeman et al., 

68 2010).

69 One of critical ADME-Tox elements are glutathione S-transferases (GSTs), multifunctional phase II detoxification 

70 enzymes with primary function of glutathione conjugation of various endogenous and exogenous compounds. 

71 GSTs are ubiquitously present in most living organisms, from bacteria to humans (Hayes and Pulford, 1995). 

72 Sheehan et al. (2001) proposed that GSTs evolved from primordial stress proteins and diverged into several 

73 classes. GST classes are organized into three families: soluble cytosolic GSTs, membrane-associated microsomal 

74 GSTs also known as MAPEG (membrane-associated proteins involved in eicosanoid and glutathione metabolism), 

75 and mitochondrial GSTs comprised of only one Kappa class (Hayes et al., 2005; Sheehan et al., 2001; Oakley, 2011). 

76 The most characterized are cytosolic GSTs, divided into six classes: alpha, mu, pi, omega, theta and zeta (Hayes 

77 and Pulford, 1995). There are several additional classes reported in non-mammalian species, such as rho class in 

78 teleosts and cephalochordates (Glisic et al., 2015).  

79 Conjugation of GST substrates by reduced glutathione (γ-L-glutamyl-L-cysteinyl-glycine; GSH) is quantitatively the 

80 major reaction of phase II metabolism (Hodgson, 2010). GSTs enzymatic activity primarily consists of ability to 

81 bring a substrate to close proximity of GSH using the active site capable of binding both electrophilic substrate 

82 and GSH. Second part of GST enzymatic activity is activation of sulfhydryl group of GSH, allowing the nucleophilic 

83 attack to electrophilic substrate which results with more water soluble and less reactive compound (Armstrong, 

84 1997). Additionally, GSTs are capable of several other enzymatic activities such as isomerization, opening of 

85 epoxide rings, nucleophilic aromatic substitutions, reversible Michael additions to α,β-unsaturated aldehydes and 

86 ketones, and peroxidase activity (Eaton and Bammler, 1999).

87 GSTs are active in monomeric and dimeric forms. Dimers usually consist of two identical chains, however 

88 heterodimers are also found. GST monomers are made of two distinct domains, C-terminal alpha helical domain 
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89 and N-terminal thioredoxin-like domain. Within the N-terminal domain there is a specific GSH-binding site, termed 

90 G-site, where the GSH cysteinyl side chain gets activated through hydrogen bonding. The C-terminal and N-

91 terminal domain together shape the substrate binding site, termed H-site due to hydrophobic nature of 

92 substrates. The variability of structure and chemical properties of H-sites is the main reason for polyspecific 

93 interactions of GSTs with substrates (Oakley, 2011).

94 Some of well known deleterious endogenous and exogenous substrates which are conjugated by GSTs are 4-

95 hydroxynonenal (4-HNE), an aldehyde product of lipid peroxidation that can damage proteins and DNA (Singhal 

96 et al., 2015), and acrolein, a reactive aldehyde used in various synthesis reactions in organic chemistry and as 

97 agricultural biocide. Numerous xenobiotics such as pesticides, pharmaceuticals, polyaromatic hydrocarbons 

98 (PAHs), persistent organic pollutants (POPs) and heavy metals are also reported to be substrates of GST 

99 conjugating activity (Higgins and Hayes, 2011). GSTs are also involved into detoxification processes of numerous 

100 epoxide carcinogens, such as aflatoxin B1, a toxic metabolic product of some Aspergillus species and 

101 environmental contaminant present in cereal crops. It is detoxified by GST conjugation and later eliminated 

102 through the mercapturic acid pathway (Dohnal et al., 2014). Furthermore, benzo(a)pyrene and trans isomer of 

103 stilbene oxide are reported as the GST substrates (Hu et al., 1997; Seidegard et al., 1989). 

104 Due to GSTs role in multidrug cancer resistance, high number of GST inhibitors have been developed (Allocati, 

105 2018). Additionally, the naturally occurring GST inhibitors in plants have been identified (Harshbarger et al., 2017). 

106 Some of the most characterized GST inhibitors are ethacrynic acid, an α,β-unsaturated ketone used as diuretic 

107 drug, and its derivatives (Sau et al., 2010). Ethacraplatin is GST inhibitor developed to overcome cisplatin 

108 resistance by adding two ethacrynic acid ligands (Johnstone et al., 2016). Some other frequently used GST 

109 inhibitors are 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX), potent inhibitor of GSTP1-1, and 

110 auranofin, gold phosphine used as antiarthritic, with similar anticancer effects as cisplatin (Tentori et al., 2011; De 

111 Luca et al., 2013).

112 Recent advances achieved using zebrafish (Danio rerio) as model organism make zebrafish and ideal candidate for 

113 investigation of integral elements of ADME processes. In zebrafish, 27 Gst members are distributed within 3 major 

114 families, with 7 cytosolic Gst classes showing clear orthology relationships with human GST genes (Glisic et al., 

115 2015). Tissue expression analyses of Gst genes in zebrafish revealed classes Gst Pi, Gstt1a, Gstz1, Gstr1, Mgst3a 

116 and Mgst3b as crucial elements of biotransformation of xenobiotics based on their high expression in barrier 

117 tissues such as liver, kidney, gills and intestine (Glisic et al., 2015). These GST members are even dominantly 

118 expressed in zebrafish embryos (Glisic et al., 2016). Additionally, tissue expression of adult zebrafish GSTs 

119 determined on the protein level showed comparable expression profile with mRNA levels (Tierbach et al., 2018). 
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120 Functionally, the most potent activities, with high affinities and turnover numbers in reactions with model 

121 substrates, were determined for members of Pi class and Gstr1 (Glisic et al., 2015).

122 Consequently, due to high expression of teleost-specific Gstr1 in toxicologically relevant tissues, and high activity 

123 it shows towards model substrates, in this study we have characterized zebrafish Gstr1 in more detail. Our major 

124 goals were (1) to analyze interactions of zebrafish Gstr1 with different groups of endo- and xenobiotics, and (2) to 

125 determine the type of interaction of Gstr1 with tested substances in order to be able to perform initial evaluation 

126 of possible protective and/or physiological role of Gstr1. Furthermore, our intention was to provide novel insight 

127 into structural characteristics of this teleost-specific GST protein and elucidate the mechanistic interactions with 

128 both GSH and various Gstr1 substrates or inhibitors. Therefore, by using recombinant zebrafish Gstr1 protein we 

129 performed a screening inhibition assay with different endogenous and exogenous compounds to identify 

130 interacting compounds, and to define their inhibition type and Ki values. By molecular docking analyses we 

131 obtained data on the mechanistic interactions of Gstr1 with GSH and different endogenous and exogenous 

132 compounds. 

133

134 2. Materials and methods 

135 Chemicals 

136 All tested compounds were purchased from Sigma-Aldrich (Taufkirchen, Germany) or Alfa Aesar (Ward Hill, MA, 

137 USA) unless stated otherwise.

138 Inhibition assay

139 Gstr1 was cloned and purified as described before by Glisic et al., 2015. The inhibition assay was based on 

140 previously described fluorometric assay for GST activity toward monochlorobimane (MCB). The assay was 

141 performed at 25 °C in black, flat bottom 96-well plates with final reaction volume of 250 μL. The reaction mixture 

142 consisted of phosphate buffer (pH 6.5) in concentration of 100 mM, Gstr1 recombinant protein in final 

143 concentration of 1.5 μg per well, inhibitor of desired final concentration, GSH co-substrate in final concentration 

144 of 1 mM, and model substrate (MCB) in final concentration of 100 μM. The resulting fluorescence was measured 

145 with microplate readers (Infinite M200, Tecan, Salzburg, Austria or Fluoroskan Ascent FL Microplate Reader, 

146 Thermo Fisher, Helsinki, Finland) at 355 nm excitation and 460 nm emission wavelengths for 10 min in 15 or 30 s 

147 intervals. For blank control the reaction mixture was prepared without Gstr1 recombinant protein with 100 μL of 

148 phosphate buffer. Reaction mixture without tested compound was used as positive control, with 100 μL of 

149 phosphate buffer.

150 An initial Gstr1 inhibition screening was performed first, using single 100 μM concentration of tested compounds. 

151 Then, for compounds which showed the Gstr1 inhibition above 50% the Ki values and type of reversible interaction 
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152 were determined. Inhibition assay for determination of Ki values of tested compounds was based on Michaelis-

153 Menten kinetics of MCB, which was determined using MCB in the range of 5 - 600 μM. MCB dose response was 

154 inhibited with three concentrations of inhibitors based on the percentage (%) of inhibition observed by single 

155 concentration inhibition screening. The strength of inhibition of the tested compounds was considered to be very 

156 strong for Ki < 1 μM, strong for Ki 1-20 μM, moderate for Ki 20-40 μM, and weak for Ki > 40 μM.

157 Modeling the three-dimensional structure of Danio rerio Rho class, Gstr1, and molecular docking studies

158 Biovia Discovery Studio Client v17.2 (Accelrys, San Diego, CA, USA) implemented Build Homology Models protocol 

159 was used to construct Gstr1 homology models as based on alignment of the model sequence and the template 

160 structure. Build Homology Models protocol uses MODELER (Sali and Blundell, 1993) automodel to build homology 

161 models. To build Gstr1 homology model, the input sequence alignment between the model sequence of Gstr1 

162 monomer and the sequence of chain A from Gst from Antarctic clam (Laternula elliptica) was used (Fig. 5) (Park 

163 et al., 2013). Rest of the parameters in the Parameters Explorer of Build Homology Models protocol were set as 

164 described previously (Mihaljević et al., 2017). Ligands to be docked in the homology model of Gstr1 were created 

165 with ChemBio3D Ultra 13.0 (PerkinElmer, Inc., Waltham, MA, USA) and minimized using the MMFF94 force field 

166 implemented in ChemBio3D Ultra 13.0. 

167 Biovia Discovery Studio Client v17.2 implemented Dock Ligands (CDOCKER) protocol was used for the docking 

168 study. CDOCKER is a grid based molecular docking method that employs CHARMm force field (Brooks et al., 1983; 

169 Momany and Rone, 1992). The model with the highest overlay similarity was used as the rigid receptors while the 

170 ligands were allowed to flex during the refinement. Binding site within the homology models was defined by a 

171 sphere (r = 13.0 Å) surrounding the amino acids that have been located within the identified G- and H-site. Rest 

172 of the parameters included in the CDOCKER protocol were set as described elsewhere (Maraković et al., 2016).

173 The binding affinities of docked ligands in the poses generated by Dock Ligands (CDOCKER) protocol were 

174 estimated using the scoring functions as implemented in the Biovia Discovery Studio Client v17.2 Score Ligand 

175 Poses protocol. Together with POSE_NUMBER, -CDOCKER_ENERGY, -CDOCKER_INTERACTION_ENERGY, following 

176 scoring functions were calculated. LigScore1_Dreiding and LigScore2_Dreiding (Krammer et al., 2005) are fast, 

177 simple scoring functions for predicting receptor-ligand binding affinities which are computed in units of pKI (-

178 logKI). PLP1 (Gehlhaar et al., 1995) and PLP2 (Parrill and Reddy, 1999) are fast and simple docking functions that 

179 have been shown to correlate well with protein-ligand binding affinities. PLP scores are measured in arbitrary 

180 units. Higher PLP scores indicate stronger receptor-ligand binding (larger pKI values). Jain (Jain, 1996) is an 

181 empirical scoring function developed through an evaluation of the structures and binding affinities of a series of 

182 protein-ligand complexes. The Jain score is a sum of five interaction terms. These terms describe: lipophilic 

183 interactions, polar attractive interactions, polar repulsive interactions, solvation of the protein and ligand and an 
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184 entropy term for the ligand. The PMF (Muegge and Martin, 1999) and PMF04 (Muegge, 2006) scoring functions 

185 were developed based on statistical analysis of the 3D structures of protein-ligand complexes. They were found 

186 to correlate well with protein-ligand binding free energies while being fast and simple to calculate. The PMF04 

187 score is an updated version of the original PMF score. The PMF scores are reported in arbitrary units. A higher 

188 score indicates a stronger receptor-ligand binding affinity.

189 To identify the poses of docked ligands that score high in more than one scoring function, the Biovia Discovery 

190 Studio Client v17.2 Consensus Score protocol was used. The Consensus Score protocol calculates the consensus 

191 scores of a series of docked ligands for which other scores have been previously computed. For each selected 

192 scoring function, the ligands are listed by score in descending order. The consensus score for a ligand is an integer 

193 between zero (none of the scores are in the top-ranking percentile) and the total number of scores (all of the 

194 scores are in the top-ranking percentile) listed in Input Properties. Thus, in the Parameters Explorer of Consensus 

195 Score protocol, the following parameters were set. In Input Properties score properties -PLP2, -PMF, -PMF04, Jain, 

196 -CDOCKER_ENERGY, -CDOCKER_INTERACTION_ENERGY, LigScore2_Dreiding, LigScore1_Dreiding, and 

197 POSE_NUMBER were chosen to calculate the consensus score. Consensus Percentage was set to 20 to specify the 

198 percentage of top molecules to include in the consensus. Use Best Pose only was set to False.

199 The representative poses of docked ligands with the highest consensus score were minimized using Biovia 

200 Discovery Studio Client v17.2 Minimization protocol, as described elsewhere (Maraković et al., 2016).

201 Data analysis

202 All assays were performed in 3 independent experiments run in triplicates. Data shown on related figures 

203 represent mean ± standard errors of mean (SEM). All calculations were performed using GraphPad Prism 6.00 for 

204 Windows (GraphPad Software, San Diego, California, USA) as described below. The kinetic parameters, Km and 

205 Vmax values were calculated using the Michaelis-Menten equation (1):

206

207 (1)     𝑉 =  
𝑉𝑚𝑎𝑥 ×  [𝑆]

[𝑆] + 𝐾𝑚

208

209 where V is velocity (fluorescence units per milligram of protein per minute), Vmax is maximal velocity, [S] is 

210 substrate concentration and Km is Michaelis–Menten constant.

211 For purpose of Ki determination, measured data were analyzed by nonlinear regression, mixed model enzyme 

212 inhibition. The used model also provided the alpha value (α) which was used to determine the type of interaction 

213 of tested compounds with Gstr1. Alpha value determines the level to which the inhibitor changes the affinity of 

214 the enzyme for substrate. In case of alpha equals 0, the inhibitor does affect the binding of substrate to the 
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215 enzyme, which results in noncompetitive inhibition. When alpha equals higher number, binding of inhibitor blocks 

216 binding of the substrate resulting in competitive inhibition. If alpha equals less than 1, binding of the inhibitor 

217 additionally stimulates binding to the enzyme, which results in uncompetitive inhibition. In addition, Lineweaver-

218 Burk plots (or double reciprocal plots), a graphical representation of the Lineweaver-Burk equation of enzyme 

219 kinetics, were used to illustrate the type of interactions. Intersecting lines that converge at the y-axis is diagnostic 

220 signature for the competitive inhibition modality. Intersecting lines that converge to the left of the y-axis and on 

221 the x-axis is diagnostic signature for noncompetitive (α = 1) inhibition modality (Copeland, 2005).

222

223 3. Results

224 3.1 Inhibitory potential of tested compounds

225 To elucidate possible interaction of different endogenous compounds (Fig. 1) and environmentally relevant 

226 xenobiotics (Fig. 2) with zebrafish Gstr1, we performed an initial screening inhibition assay with 100 μM 

227 concentration of selected chemicals, except carbaryl and probenecid which were tested in concentration of 50 

228 μM due to their low solubility. The selection of xenobiotics was based on the prioritization of trace pollutants in 

229 surface waters (Murray et al., 2010). In the second step, all compounds that inhibited Gstr1 enzyme activity at 100 

230 µM by more than 50% compared to the control were further analyzed to define their inhibition type and to 

231 determine Ki values as it is shown in Table 1. To determine the type of interaction with Gstr1, we compared kinetic 

232 parameters (Km and Vmax) of transformation of fluorescence substrate MCB in the absence and in the presence 

233 of different interacting compounds using nonlinear regression, and mixed model enzyme inhibition. All of the 

234 inhibition curves obtained are given in the Supplementary Data, while representatives of exemplary interactors 

235 are shown in Figs. 3 and 4.
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236
237

238 Figure 1. Interaction of zebrafish Gstr1 with endogenous compounds. Data are expressed as percentage (%) of the 

239 Gstr1 activity toward model fluorescence substrate monochlorobimane (MCB; 100 μM) in presence of each 

240 modulator (100 μM) and co-substrate glutathione (GSH; 1 mM) relative to Gstr1 activity in absence of a modulator 

241 (control, set to 100%). Abbreviations: dehydroepiandrosterone sulfate (DHEAS), dihydrotestosterone (DHT), 

242 estrone-3-sulfate (E3S), taurochenodeoxycholate (TCDC). Data represent mean ± SEM of triplicates from three 

243 independent experiments.
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244
245 Figure 2. Interaction of zebrafish Gstr1 and environmental contaminants. Data are expressed as percentage (%) 

246 of the Gstr1 activity toward model substrate monochlorobimane (MCB; 100 μM) in presence of each modulator 
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247 (100 μM) and co-substrate glutathione (GSH; 1 mM) relative to Gstr1 activity in absence of a modulator (control, 

248 set to 100%). Carbaryl and probenecid are tested at 50 μM concentration due to their low solubility. Xenobiotic 

249 interactors are divided into four groups: (1) polycyclic aromatic hydrocarbon, (2) industrial chemicals, (3) 

250 pesticides, and (4) pharmaceuticals and personal care products (PPCPs). Abbreviations: 3,4-dichlorophenol (DCP), 

251 2,4-dichlorophenoxyacetic acid (2,4-D), 3,4-dichloroaniline (DCA), 17α-ethynilestradiol (EE2), acetylsalicylic acid 

252 (ASA), bis(2-ethylhexyl) phthalate (DEHP), butylated hydroxytoluene (BHT), chlorpyrifos-methyl (CPF-methyl), 

253 dichlorodiphenyldichloroethylene (DDE), N,N-diethyl-meta-toluamide (DEET), perfluorooctane sulphonate 

254 (PFOS), perfluorooctanoic acid (PFOA) and tert-Butylhydroquinone (tBHQ). Data represent mean ± SEM of 

255 triplicates from three independent experiments.

256

Table 1. Inhibition constants (Ki) determined for a series of endogenous compounds and xenobiotic interactors 

of zebrafish Gstr1. Type of interactions, alpha (α) values, 95% confidence intervals and coefficients of 

determination are shown. Interactors are divided into four groups separated by doted lines: endogenous 

compounds, industrial chemicals, pesticides and pharmaceuticals.

Compound Inhibition type α Ki (μM) 95% c.i. R2

Pregnenolone Competitive α » 1 13.55 ± 1.49 10.60-16.50 0.98
Progesterone Competitive α » 1 26.24 ± 2.59 21.10-31.39 0.98
DHEASa Competitive α » 1 19.50 ± 1.61 16.31-22.69 0.98
Testosterone Competitive α » 1 19.91 ± 2.23 15.54-24.29 0.94
Corticosterone Competitive α » 1 20.49 ± 4.89 10.79-30.19 0.89
TCDCb Competitive α » 1 32.99 ± 2.74 27.55-38.44 0.98
Tributyltin chloride Noncompetitive 1.2 ± 0.6 0.26 ± 0.02 0.21-0.31 0.93
Chlorpyrifos-methyl nd 0.1 ± 0.0 nd - -
Diazinon Competitive α » 1 27.03 ± 2.06 22.93-31.12 0.98
Malathion nd 0.7 nd - -
Erythromycin Competitive α » 1 36.47 ± 3.29 29.94-43.00 0.97
Methotrexate Competitive α » 1 29.29 ± 3.04 23.25-35.33 0.98
Rifampicin Noncompetitive 1.8 ± 0.4 64.83 ± 2.48 59.96-69.70 0.96
Tetracycline Competitive α » 1 17.48 ± 0.95 15.59-19.37 0.98
nd – not determined.
a Dehydroepiandrosterone sulfate;
b Taurochenodeoxycholate

257

258 3.1.1 Endogenous compounds 

259 Among 10 steroid gonadal hormones screened for their interaction with Gstr1, 4 hormones showed over 50% 

260 inhibition of enzyme activity compared to the control (Fig. 1) which implies possible physiological interaction of 

261 Gstr1 with those steroids. All of them demonstrated competitive type of inhibition of Gstr1 activity (Table 1, Fig. 
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262 3). The calculated Ki values are in the micromolar range (14-26 μM), and the pregnenolone expressed the highest 

263 inhibition potency (Ki of 13.55 ± 1.49 μM) and is classified as strong inhibitor. All other endogenous compounds 

264 that showed interactions with Gstr1 are classified as moderate inhibitors. Testosterone and DHEAS showed similar 

265 potency with Ki (approx. 20 μM, Table 1, Fig. 3, Supplementary Data Fig. S1), while none of the tested estrogenic 

266 hormones expressed activity toward Gstr1 (Fig. 1). Corticosterone showed similar inhibition potency as androgens 

267 with calculated Ki of 20.49 ± 4.89 μM (Table 1, Fig. 3), while cortisol was without effect. Taurochenodeoxycholate 

268 (TCDC) expressed lower inhibition potency toward Gstr1 with Ki value of 33 μM (Table 1, Fig. 3). 

269

270
271 Figure 3. Competitive inhibition of zebrafish Gstr1 activity by selected endogenous compounds (pregnenolone – 

272 the lowest Ki value of tested endogenous compounds; testosterone – the lowest Ki value of tested androgens; 

273 corticosterone – representative of glucocorticoids; taurochenodeoxycholate (TCDC) – representative of bile salts). 

274 Results are shown as concentration dependence of Gstr1 mediated monochlorobimane (MCB) transformation 

275 expressed in fluorescence units normalized to time and protein concentrations (FU/min/mg proteins) over MCB 

276 concentration (μM) at 25 °C in presence of 1 mM GSH co-substrate. Inserted figures: Lineweaver-Burk plots that 

277 show the type of inhibition. Data were fitted in the GraphPad Prism 6. Mean, SEM and confidence interval (c.i.) 

278 were calculated from 4-6 replicates of three independent experiments. 
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279

280 3.1.2 Industrial chemicals

281 Among tested industrial chemicals only tributyltin chloride showed a very strong noncompetitive inhibition of 

282 Gstr1 activity, with Ki value of 0.26 μM (Table 1, Fig. 4). Phthalates (DEHP, dibutyl phthalate and diethyl phthalate), 

283 and perfluorinated compounds (PFOA and PFOS) showed no interaction with Gstr1 enzyme. Other tested 

284 industrial chemicals showed limited (inhibition of enzyme activity <50%) to no interaction with Gstr1 enzyme (Fig. 

285 2). 

286

287
288 Figure 4. Inhibition of zebrafish Gstr1 activity by industrial chemical (tributyltin chloride – the lowest Ki value of all 

289 tested compounds), pesticide representative (diazinon) and pharmaceuticals (rifampicin – as a noncompetitive 

290 inhibitor; tetracycline – the lowest Ki value among tested pharmaceuticals). Concentration dependence of Gstr1 

291 mediated monochlorobimane (MCB) transformation is expressed as fluorescence unit normalized to time and 

292 protein concentrations (FU/min/mg proteins) over MCB concentration (μM) at 25 °C in presence of 1 mM GSH co-

293 substrate. Inserted figures: Lineweaver-Burk plots that show type of inhibition. Data were fitted in the GraphPad 

294 Prism 6. Mean, SEM and confidence interval (c.i.) were calculated from 4-6 replicates of three independent 

295 experiments.
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296 3.1.3 Pesticides

297 Gstr1 showed interaction with insecticides chlorpyrifos-methyl (CPF-methyl), diazinon and malathion, and 

298 inhibition of enzyme activity was in the range of 49-66% (Fig. 2). Diazinon expressed moderate competitive type 

299 of inhibition with calculated Ki value of 27 μM (Table 1, Fig. 4). However, CPF-methyl and malathion showed 

300 allosteric activation-like effect. In fact, in the presence of the lowest concentration of both pesticides the enzyme 

301 activity was increased in comparison to control, while in the presence of the highest concentration (100 μM) the 

302 enzyme activity was similar to control values (Supplementary Data, Fig. S2). Other tested pesticides showed no 

303 interaction with Gstr1 enzyme (Fig. 2). 

304

305 3.1.4 Pharmaceuticals and personal care products (PPCPs) 

306 Initial screening inhibition assay showed that pharmaceuticals erythromycin, methotrexate, rifampicin and 

307 tetracycline inhibited Gstr1 activity in the range of 47-72% (Fig. 2). Among them tetracycline demonstrated strong 

308 competitive type of inhibition with the lowest calculated Ki value of 17.5 μM (Table 1, Fig. 4), while erythromycin 

309 and methotrexate, moderate competitive inhibitors, have higher Ki values of 36.5 and 29.29 μM, respectively 

310 (Table 1, Supplementary Data, Fig. S3). On the contrary, rifampicin showed weak noncompetitive inhibition of 

311 Gstr1 activity with Ki values of 65 μM (Table 1, Fig. 4). Other tested PPCPs showed limited (inhibition of enzyme 

312 activity <25%) to no interaction with Gstr1 enzyme (Fig. 2). 

313

314 3.2 In silico analysis of zebrafish Gstr1 structure and binding sites

315 3.2.1 Homology modeling

316 Prior to the docking studies, the three-dimensional model structure of Danio rerio Rho class Gstr1 was constructed 

317 by homology modeling. For template structure used in homology modeling, crystal structure of a glutathione S-

318 transferase from Antarctic clam Laternula elliptica, chain A (PDB ID: 3QAV) (Park et al., 2013; Espinoza et al., 2013) 

319 was chosen based on high indexes of sequence identity (39.1) and sequence similarity (63.9), and sequence 

320 alignment was carried out (Fig. 5). To further improve the obtained model structure, energy minimization was 

321 performed as described in the Materials and methods section. However, prior to defining and editing binding site 

322 of the Gstr1 model structure we needed to obtain the full dimer of model structure, as it is known for binding site 

323 to be outlined with amino acid residues from counterpart B monomer to considerable extent. This was done 

324 through structural alignment of two copies of generated Gstr1 model structure with crystal structure of dimer of 

325 human class pi glutathione S-transferase P1-1 (hGSTP1-1) (PDB ID: 1MD3), followed by manual rotation of one 

326 monomer of modeled structure until the same symmetry between the two monomers was obtained as the one 
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327 observed in crystal structure of hGSTP1-1. Finally, binding site was defined and edited using software feature that 

328 automatically identifies cavities within the receptor and knowledge of different GSTs active sites.

329

330
331
332 Figure 5. Sequence alignment between 3QAV and Gstr1.
333

334 3.2.2 Molecular docking

335 To confirm our experimental data that showed different modes of interaction between substrates and inhibitors 

336 of rho class GST, binding studies were carried with GSH and compounds identified as substrates (testosterone and 

337 corticosterone) or inhibitors (tributyltin chloride and rifampicin) using molecular docking approach. Since amino 

338 acid residues that constitute glutathione-binding site (G-site) and hydrophobic substrate binding site (H-site) are 

339 largely conserved through different classes of GSTs, by sequence alignment of zebrafish Gstr1 with different GSTs 

340 (GSTP1, GSTP2, 6GST, GST4_4) the residues forming G-site (Tyr8, Trp9, Ser13, Pro15, Lys40, Glu42, His43, Glu47, 

341 Lys49, Gln56, Leu57, Glu69, and Ser70) and H-site (Thr11, Pro14, Cys16, Glu107, Gln111, Lys112, Tyr114, Glu115, 

342 Val116, Phe118, Pro124, Gly219, and Glu220) were identified. Also, to obtain starting structure for docking studies 

343 with GSH occupying G-site, structural alignment between model structure of Gstr1 and crystal structure of a 

344 glutathione S-transferase from Antarctic clam Laternula elliptica in a complex with GSH (PDB ID: 3QAW) was 

345 conducted to hard dock the GSH to the G-site of Gstr1 model structure. Moreover, hard docking of GSH was used 

346 to confirm the positions of G-site forming amino acid residues above identified via sequence alignment. Indeed, 

347 GSH was found to be in close proximity to Ser13, Pro15, His43, Gln56, Leu57, Glu69, and Ser70 (Fig. 6).   
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349
350
351 Figure 6. Final 3D structure of zebrafish Gstr1 with docked GSH in each monomer G-site.
352
353

354 Using molecular docking of compounds previously established as substrates (testosterone or corticosterone) we 

355 were able not only to confirm its susceptibility to nucleophilic addition of the GSH, but also to confirm the positions 

356 of above identified H-site forming amino acid residues. From the 30 generated conformations of docked ligand 

357 the representative pose was chosen based on the shortest distance between the thiol sulfur of GSH and β-carbon 

358 atom from α,β-unsaturated carbonyl group of ligand. Namely, testosterone and corticosterone are supposed to 

359 undergo conjugate addition of GSH to their α,β-unsaturated carbonyl group. Figure 7 depicts model complex 

360 between corticosterone and GSH-Gstr1 obtained via molecular docking. The distance between thiol sulfur and β-

361 carbon atom of corticosterone is estimated to be 4.43 Å, a distance close enough for reactivating groups in pre-

362 reactionary complex for nucleophilic addition to proceed. Another important feature predicted by model complex 

363 is the 3.41 Å distance between thiol sulfur and hydrogen atom of the hydroxyl group of Ser13, a highly conserved 

364 residue known to catalyze nucleophilic addition of the GSH to substrates electrophilic groups, which is sufficient 

365 for hydrogen bond to occur between these two atoms. Also, corticosterone is found to be in close proximity of 

366 Tyr114 and Glu115, amino acid residues above identified to form H-site, but also in close proximity of Gln110, 

367 pointing at this residue as another H-site forming residue. Interestingly, corticosterone is found to be forming 

368 alkyl-type hydrophobic interaction with Val116, another H-site forming residue, but from the counterpart B 
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369 monomer. Other H-site residues from the B monomer in close proximity of corticosterone include Gln111 and 

370 Glu115. This finding emphasizes the importance of using dimeric model structures of GSTs for more accurate 

371 binding studies.

372

373
374
375 Figure 7. Final docking pose of the corticosterone-GSH-Gstr1 complex, and close-up view of the active site 
376 residues.
377
378 On the other hand, with molecular docking of compounds established as reversible noncompetitive inhibitors 

379 (tributyltin chloride or rifampicin) we were able to elucidate the binding mode responsible for its inhibitory mode 

380 of action. The representative pose was chosen based on the highest score when implementing Consenus Score 

381 protocol from Biovia Discovery Studio Client v17.2 (for more details, please see Materials and methods section). 

382 Indeed, as can be seen in Figure 8, binding studies suggest that known reversible inhibitor rifampicin occupies G-

383 site, thus blocking the approach of GSH. In doing so, rifampicin interacts with neighboring residues via different 

384 types of non-covalent interactions.
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385

386  
387

388 Figure 8. Final docking pose of the rifampicin-GSH-Gstr1 complex, and close-up view of the active site residues. 

389 Dotted lines represent non-covalent interactions.

390

391 4. Discussion

392 Zebrafish (Danio rerio) is a powerful model organism for the study of vertebrate biology. In recent years it has 

393 emerged as a popular model for use in pharmacological and toxicological studies. To understand the disposition 

394 of endo- and xenobiotic compounds in zebrafish, it is important to identify and characterize in detail critical 

395 elements of the absorption, distribution, metabolism and excretion (ADME) processes. GST superfamily, an 

396 integral element of ADME, still awaits to be fully elucidated in fish species. In our previous study (Glisic et al., 

397 2015) we performed a comprehensive characterization of the GST superfamily in zebrafish, revealing a great 

398 diversity of fish GSTs (in total 27 members found in zebrafish), as well as clear orthology relations with human and 

399 other species Gsts. Furthermore, our tissue expression profiling, the initial functional characterization of nine 
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400 cytosolic Gst enzymes, and their functional similarity to the human orthologs in respect to the xenobiotic 

401 metabolism, pointed to involvement of Gst pi, Gstt1a, Gstz1, Gstr1, and Mgst3a and 3b in biotransformation of 

402 xenobiotics. Gstr1 is highly expressed in toxicologically relevant tissues and, together with members of Pi class, it 

403 functionally showed the most potent activities, with high affinities and turnover numbers in reactions with model 

404 substrates (Glisic et al., 2015). Based on those insights in this study we aimed at detailed characterization of a 

405 teleost-specific GST member, Gstr1. 

406 Using the recombinant enzyme and the screening assay, we have been able to identify endo- and xenobiotic 

407 compounds that interact with zebrafish Gstr1. In the next step of our study, by using inhibition enzyme assays we 

408 have determined type and Ki values of observed interactions. Finally, by in silico analysis of zebrafish Gstr1 

409 structure and binding sites we have confirmed the positions of identified G- and H-site forming amino acid residues 

410 (Fig. 6) and substrates susceptibility to nucleophilic addition of the GSH (Fig. 7). In addition, we elucidated the 

411 binding mode responsible for reversible noncompetitive inhibitor mode of action (Fig. 8).

412 There is a high degree of conservation of endocrine processes and roles of steroid hormones between zebrafish 

413 and terrestrial vertebrates (Tokarz et al., 2013). As a discrepancy, it was shown that  11-ketotestosterone instead 

414 of testosterone is the prominent circulating androgen in zebrafish (Waal et al., 2007). We showed that zebrafish 

415 Gstr1 activity is competitively inhibited by four steroid hormones: progesterone, pregnenolone, DHEAS and 

416 testosterone, with calculated Ki values in range of 14-26 μM (Tab. 1, Fig. 3, Supplementary Data Fig. S1). Molecular 

417 docking of testosterone, experimentally identified as Gstr1 substrate, confirms its susceptibility to nucleophilic 

418 addition of the GSH by Gstr1. These findings revealed steroid hormones as probable physiological substrates of 

419 zebrafish Gstr1. It was shown that mammalian GSTs have the ability to bind hormones, and particularly sexual 

420 steroids, and influence their transport, metabolism, and physiological action (Listowsky et al., 1988). A high 

421 binding capacity for steroids was previously displayed by certain isoenzymes of GST (Eliasson et al., 1999; Homma 

422 et al., 1986). Particularly, testosterone and progesterone have the ability to bind mammalian GSTs with moderate 

423 (10-6 M < Kd < 10-4 M) or high (Kd < 10-6 M) affinity, respectively (Listowsky et al., 1988). This is in line with our 

424 findings. Another study (Remoué et al., 2002) demonstrated a specific binding between testosterone and a 

425 parasite Schistosoma haematobium GST enzyme, with higher affinity of binding (Kd = 5.7 x 10-7 M). Functionally, 

426 cytosolic alpha class of GST enzymes has role in the GSH dependent obligatory double-bond isomerization of 

427 delta(5)-androstene-3,17-dione and delta(5)-pregnene-3,20-dione, precursors to testosterone and progesterone, 

428 respectively (Johansson and Mannervik, 2001; Tars et al., 2010). Demonstrated interactions of 4 steroid hormones 

429 and zebrafish Gstr1 enzyme suggest possible involvement of Gstr1 in steroidogenesis, metabolism and/or 

430 physiological action of these androgens. On the contrary, none of the tested estrogenic hormones showed activity 

431 toward Gstr1 (Fig. 1). As we previously showed, Gstr1 expression in ovary is 5-fold lower than in testes (Glisic et 
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432 al., 2015) which could be possibly explained by absence of interactions between Gstr1 enzyme and estrogenic 

433 hormones. 

434 GSTs have glucocorticoid-binding properties and, thereby, may influence transport, metabolism, and action of 

435 steroids (Homma and Listowsky, 1985). While corticosterone is no hormone naturally occurring in teleosts (Balm 

436 et al., 1989), it is almost identical to cortisol lacking only the 17α-hydroxyl group. Furthermore, it was found to 

437 bind to and activate the teleostean glucocorticoid receptor (Mommsen et al., 1999). We showed that zebrafish 

438 Gstr1 activity is competitively inhibited by corticosterone, with calculated Ki value of 20.5 μM (Table 1, Fig. 3). This 

439 finding showed that corticosterone could be a physiological Gstr1 substrate. As previously showed, Gstr1 is highly 

440 expressed in zebrafish brain of both genders (Glisic et al., 2015). Interestingy, in brain of rats a corticosterone-

441 induced decline of GST activity that may strongly promote neurodegeneration was reported (Zafir and Banu, 

442 2009). Molecular docking of corticosterone, identified in this study as a substrate, confirms its susceptibility to 

443 nucleophilic addition of the GSH by Gstr1. We showed that corticosterone forms alkyl-type hydrophobic 

444 interaction with Val116, another H-site forming residue, but from the counterpart B monomer. In addition, H-site 

445 residues from the B monomer are in close proximity of corticosterone (Fig. 7). These findings emphasize the 

446 importance of using dimeric model structures of GSTs for more accurate binding studies. However, although 

447 cortisol is the major stress hormone in zebrafish that acts as both glucocorticoid and mineralocorticoid (Tokarz et 

448 al., 2013), it does not interact with Gstr1 (Fig. 1). 

449 One of the two major primary bile salts in many ray-finned fish is chenodeoxycholyltaurine 

450 (taurochenodeoxycholic acid), while zebrafish is the only teleost model species that synthesizes mainly 5α (trans 

451 A/B ring) bile salts (Hagey et al., 2010). Herewith we show that taurochenodeoxycholate (TCDC) is a competitive 

452 inhibitor, i.e. probable physiological substrate of zebrafish Gstr1 (Table 1, Fig. 3) with calculated Ki value of 33 μM. 

453 Therefore, we suggest that Gstr1 activity could influence physiological actions of TCDC in zebrafish.

454 Among tested industrial chemicals (Fig. 2) only tributyltin chloride, an organometal used as an antifouling biocide, 

455 demonstrated a strong noncompetitive inhibition of Gstr1 with calculated Ki value of 0.26 μM (Table 1, Fig. 4). 

456 These findings, together with molecular docking results, revealed reversible inhibitor character of tributyltin 

457 chloride toward Gstr1 enzyme. Our results are similar to some previous observations for inhibitory effect of 

458 tributyltin on GST activity in fish. A very high potency of organotin compounds (tributyltin, triphenyltin) for 

459 inhibition of plaice cytosolic GST activity in vitro was shown by George and Buchanan (1990). Also, organotins 

460 including tributyltin are reported to inhibit GST activity in fish (Al-Ghais and Ali, 1999; Padrós et al., 2003; WU et 

461 al., 2007), and it was speculated that organotin-GSH complexes bind to the first and the second catalytic sites of 

462 GST. On the contrary, it was shown that long-term exposure to sub-lethal concentrations of tributyltin, in a range 

463 of Ki value we calculated, caused ROS stress in the liver of common carp and significantly induced GST activity (Li 
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464 et al., 2015). Also, Wang et al. (2006) showed that GST activity increased after exposure to lower dose of tributyltin 

465 in liver of Sebastiscus marmoratus, and opposite effect was noted with higher dose. Studies with rats confirmed 

466 that tributyltin induces oxidative stress by inhibiting GST which results in apoptosis (Ishihara et al., 2012; Mitra et 

467 al., 2013). GST activity inhibition leads to increase lipid peroxidation as its substrates inside the cells are organic 

468 hydroperoxides and 4-hydroxyalkenals. Generally, inhibition of the GST activity by tributyltin reduced the capacity 

469 of cells/organs to detoxify other chemicals and increase the vulnerability to oxidative stress. 

470 Of all tested pesticides, group of organophosphate insecticides, chlorpyrifos-methyl (CPF-methyl), diazinon and 

471 malathion caused inhibition of Gstr1 activity in the range of 49-66% in comparison to control (Fig. 2). The absence 

472 of interactions of Gstr1 enzyme with other tested pesticides is in line with data published so far. Actually, Trute et 

473 al. (2007) showed that major hepatic coho salmon (Oncorhynchus kisutch) GST isoforms, belonging to Pi and a 

474 Rho-class, have no activity towards the pesticides, including atrazine. However, Booth and O’Halloran (2001) 

475 revealed that GST catalyses the conjugation of glutathione with xenobiotics, including organophosphorus 

476 pesticides. Our results revealed that diazinon competitively inhibits Gstr1 activity with calculated Ki value of 27 

477 μM (Table 1, Fig. 4). Gstr1 activity changes caused by different concentration of CPF-methyl and malathion did not 

478 reveal clear and consistent inhibition pattern and it was not possible to calculate Ki values (Table 1, Supplementary 

479 Data Fig. S2). Because of that, the nature of interactions of these pesticides with Gstr1 remains unclear. However, 

480 their environmental loads (Murray et al., 2010) are not sufficient to reach effective concentrations required to 

481 modulate zebrafish Gstr1 activity (Fig. 2). Based on presented results, we propose that diazinon is possible Gstr1 

482 substrate, which could qualify zebrafish Gstr1 as a diazinon-metabolizing enzyme. Diazinon-metabolizing GST 

483 enzyme was revealed for silkworm, suggesting that it may detoxify diazinon (Yamamoto and Yamada, 2016). 

484 Another study revealed that diazinon exposure to common carp (Cyprinus carpio) induces GST enzyme activities 

485 in liver, which were assumed to have resulted from the defense against the toxicity of diazinon (Oruc, 2011). 

486 Previous studies on effect of chlorpyrifos on GST activity showed statistically significant decrease in the GSTs 

487 activity in the zebrafish larvae, common carp and rats (Jin et al., 2015; Xing et al., 2012; Mansour and Mossa, 

488 2009). Interestingly, in fish species Labeo rohita and Carassius auratus gibelio, malathion caused modulation of 

489 GST activity in time-dependent and tissue-specific manner (Thenmozhi et al., 2011; Huculeci et al., 2008). Similarly, 

490 increase and decrease of GST activity across different organs were observed after exposure of neonatal rats to 

491 malathion (Timur et al., 2003). Overall, according to our results and previously published data, Gstr1 probably 

492 belongs to group of enzymes capable of metabolizing organophosphate insecticides, thus protecting fish against 

493 those deleterious environmental contaminants. 

494 Screening assay performed in this study revealed that from all tested pharmaceuticals and personal care products 

495 (PPCPs), only erythromycin, methotrexate, rifampicin and tetracycline interact with zebrafish Gstr1 (Fig. 2). 
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496 However, these pharmaceuticals interact with Gstr1 differently. E.g., macrocyclic antibiotic rifampicin is a 

497 noncompetitive reversible inhibitor of Gstr1 activity with calculated Ki value of 65 μM (Table 1, Fig. 4). Molecular 

498 docking confirmed that rifampicin is reversible noncompetitive inhibitor of zebrafish Gstr1 enzyme and elucidated 

499 the binding mode responsible for its inhibitory action. Binding studies suggest that rifampicin occupies G-site of 

500 Gstr1, thus blocking the approach of GSH. Actually, rifampicin interacts with neighboring residues via different 

501 types of non-covalent interactions (Fig. 8). Although several previous studies have shown induction of expression 

502 of GST transcripts by rifampicin in fish and human hepatocytes (Corcoran et al., 2012; Rae et al., 2001), and 

503 induction of GST activity in rats (Adachi et al., 1985), there are no reports describing rifampicin-dependent 

504 modulation of GSTs enzyme activity in fish. To the best of our knowledge, this is the first report describing 

505 interaction of rifampicin to GST enzyme. On the other hand, pharmaceuticals erythromycin, methotrexate and 

506 tetracycline competitively inhibit Gstr1 activity with calculated Ki values in a range of 17.5-36.5 μM (Table 1, Fig. 

507 4, Supplementary Data Fig. S3). Competitive type of inhibition categorizes these drugs as possible substrates which 

508 are metabolized by zebrafish Gstr1 enzyme. There is evidence that erythromycin, a macrolide antibiotic, inhibits 

509 GST activity in liver of crucian carp (Carassius auratus), where the inhibition rate decreased with exposure time 

510 and concentration. Among all tested xenobiotics, tetracycline expressed the most potent competitive inhibition 

511 (Ki = 17.5 μM) of Gstr1 enzyme activity (Table 1, Fig. 4). This polyketide antibiotic inhibits human recombinant 

512 GSTP1‐1 and GSTM3-3 enzymes with IC50 values of 13 μM and 47 μM, respectively (Mukanganyama et al., 2002).

513  

514 5. Conclusion

515 Our study provides the first functional characterization of a teleost-specific GST Rho member protein in zebrafish, 

516 Gstr1. Combining experimental data obtained using the described in vitro inhibition assays, insights based on the 

517 obtained 3D structure of zebrafish Gstr1, and finally molecular docking studies, we have shown that 

518 pregnenolone, progesterone, testosterone, DHEAS and corticosterone are probable physiological substrates of 

519 zebrafish Gstr1. Based on the obtained data we hypothesize that Gstr1 probably has an important role in 

520 steroidogenesis, metabolism and/or physiological actions of androgens, but not estrogens in fish. In addition, 

521 reversible inhibitors of fish Gstr1 were identified among environmental contaminants, and our results imply the 

522 role of Gstr1 in metabolism of xenobiotics and protection of fish against deleterious environmental contaminants 

523 such as organophosphate insecticides and pharmaceuticals.

524
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Figure S1. Inhibition of zebrafish Gstr1 activity by endogenous compounds (progesterone and DHEAS). 

Concentration dependence of Gstr1 mediated monochlorobimane (MCB) transformation is expressed in 

fluorescence units normalized to time and protein concentration (FU/min/mg proteins) over MCB 

concentration (μM) at 25 °C in presence of 1 mM GSH co-substrate. Inserted figures: Lineweaver-Burk 

plots that show the type of inhibition. Data were fitted in the GraphPad Prism 6. Mean, SEM and 

confidence interval (c.i.) were calculated from 4 replicates of two independent experiments.

Fig. S2. Inhibition of zebrafish Gstr1 activity by organophosphate insecticides (chlorpyrifos-methyl and 

malathion). Concentration dependence of Gstr1 mediated monochlorobimane (MCB) transformation is 

expressed in fluorescence units normalized to time and protein concentration (FU/min/mg proteins) over 

MCB concentration (μM) at 25 °C in presence of 1 mM GSH co-substrate. Inserted figures: Lineweaver-

Burk plots. Data were fitted in the GraphPad Prism 6. Mean, SEM and confidence interval (c.i.) were 

calculated from 4 replicates of two independent experiments.



Fig. S3. Inhibition of zebrafish Gstr1 activity by pharmaceuticals (erythromycin and methotrexate). 

Concentration dependence of Gstr1 mediated monochlorobimane (MCB) transformation is expressed in 

fluorescence units normalized to time and protein concentration (FU/min/mg proteins) over MCB 

concentration (μM) at 25 °C in presence of 1 mM GSH co-substrate. Inserted figures: Lineweaver-Burk 

plots that show the type of inhibition. Data were fitted in the GraphPad Prism 6. Mean, SEM and 

confidence interval (c.i.) were calculated from 4 replicates of two independent experiments.


