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ABSTRACT: Novel forms of black TiO2 nanotubes-based photocatalysts for water 

purification were prepared. Two features were combined: decoration of TiO2 nanotube arrays 

with Ag nanoparticles (sample TiO2-

(TiO2- -HA). Obtained photocatalysts show high efficiency for degradation of 

salicylic acid, a typical water-borne pollutant. The photocatalysts considerably exceed the 

photocatalytic properties of TiO2 nanotubes and commercial TiO2 P25 taken as a reference 

for modelling of the photocatalytic process. The comparison of photocatalytic activities 

between novel photocatalyst was based on a numerical approach supported by the complex 

kinetic model. This model allowed a separate study of different contributions on overall 

degradation rate. The contributions include: salicylic acid photolysis, photocatalysis in UVB, 

UVA and in the visible part of applied simulated solar irradiation. The superior photocatalytic 

performance of the photocatalyst TiO2- -HA, particularly under visible irradiation, 

was explained by the combined effect of a local surface plasmon resonance (LSPR) due to 

Ag nanoparticles and creation of additional energy levels in band-gap of TiO2 due to Ti3+ 

states at nanotube surfaces. The presence of Ag also positively influence charge separation of 

created electron-holes pairs. The synergy of several effects was quantified by a complex 
                                                      
* Corresponding author e-mail address: gajovic@irb.hr 



2 
 

kinetic model through the factor of synergy, fSyn. Stability testing indicated that the catalysts 

were stable for at least 20 hours. The novel design of catalysts, attached on Ti foils, presents a 

solid base for the development of more efficient photocatalytic reactors for large-scale with a 

long-term activity. 

 

KEYWORDS: black TiO2 nanotubes arrays, Ag decoration, salicylic acid photodegradation, 

solar irradiation, kinetic model 
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1. INTRODUCTION 

 

The TiO2 based materials are one of the most studied materials in the last 40 years, 

with the applications in various fields such as: solar cells [1], photocatalysis [2], water 

splitting [3], batteries [4], for bone and dental implants due to biocompatibility [5], gas 

sensing due to change in electrical and optical properties [6]. On the other hand, TiO2 

nanotubes are widely investigated from its beginnings in 2001, when Grimes and co-workers 

for the first time synthesized TiO2 nanotube arrays by electrochemical oxidation of Ti-foil 

[7]. It is a relatively simple process and it is possible to apply the same procedure on the large 

scale to grow uniform array of TiO2 nanotubes. Advantages of obtained TiO2 nanotubes are 

temperature and chemical stability, relatively low cost of production, film flexibility, and 

high specific surface area [8]. The anodization process enables to precisely control the 

morphological parameters of thin film growth: film thickness, nanotubes diameter, wall 

thickness, surface roughness [8]. Those parameters can be controlled by variation of: applied 

DC voltage, type of electrolyte, the concentration of water and fluoride ions, reaction time 

[8]. The anodization parameters also influence the adhesion of the TiO2 nanotube arrays to Ti 

substrate, so the adhesion can be enhanced by two-step anodization process described by Yu 

et al. [9]. Advantages of TiO2 nanotube arrays compared to other TiO2 morphologies are a 

high specific area (many reaction centers at the nanotube surface), good carrier mobility due 

to the wire like morphology, and environmental stability [10]. The photocatalytic activity of 

pure TiO2 nanotubes is limited due to the relatively large band gap of 3.2 eV for anatase and 

3.02 eV for rutile (bulk materials) [11]. In order to increase activity, it is essentially to modify 

the surface; to dope or to decorate the nanotubes with the aim to tune band gap in the desired 

range of solar irradiation absorption (visible and near infrared, NIR) [12]. 
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In the last 30 years there were many different approaches and attempts to increase photo 

catalytic activity of TiO2 by doping with non-metal and metal atoms [13-23], depositing or 

decorating the surface of TiO2 nanostructure (nanoparticles, nanowire, nanotubes, nanobelts) 

by noble metal nanoparticles (Pt, Pd, Au, Ag) or metal oxide nanoparticles (WO3, Cu2O, 

CeO2, Fe2O3) [23-33]. The electron trapping in the junction between noble metal 

nanoparticles and TiO2 is determined by the work function of the metal, which is usually 

larger than in TiO2. The electron-hole pair can be formed by photon absorption at the surface 

of TiO2, formed electron would be transferred from conduction band (CB) of TiO2 to metal 

nanoparticles. Schottky barrier, which is formed at the junction, leads to efficient charge 

separation due to the existence of an internal electric field between TiO2 and metal 

nanoparticles and acts as a trap for the generated charge carriers. 

The photocatalytic materials decorated by noble metals are classified as plasmonic 

photocatalyst [34]. The noble metal nanoparticles can be uniformly deposited (Au, Ag, Pd, 

Pt) by one of the chemical methods with the particles size in the range of a few nanometers 

up to several 100 nm. The aim of deposit nanoparticles at the surface of the nanotubes is to 

increase UV and visible light absorption, to ensure better charge carrier separation, an 

increase of local electric field and localized surface plasmon resonance (LSPR). By the 

variation of the nanoparticles size, it is possible to tune the wavelength of absorption 

maximum [34]. The embedding of the noble metal nanoparticles at the surface of the 

semiconductor provide several beneficial effects. In the plasmonic photocatalysis, there are 

two distinct features which contribute to better performances of the plasmonic photocatalysts 

in comparison to conventional ones. Those are: (i) Schottky junction and (ii) localized surface 

plasmon resonance (LSPR). There is forced electron-hole separation close to the interface 

and fast lane charge transfer due to the first feature. While LSPR induced several more 

effects: visible light response, enhanced UV-vis absorption, reduced electron-hole diffusion 
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length, enhanced local electric field, LSPR electron-hole generation, local heating effects and 

molecule polarization effect [34]. Yu et al. [35] prepared a new metal semiconductor 

nanocomposite plasmonic photocatalyst by depositing AgCl nanoparticles into the self-

organized TiO2 nanotubes, followed by partial reduction of Ag+ ions in the surface region of 

AgCl particles. Such photocatalyst showed a high visible-light photocatalytic activity for the 

photocatalytic degradation of methyl orange. Different authors studied the influence of the 

particle size of noble-metal elements (Ag, Au) that decorate the TiO2 nanostructures on the 

intensity and red shift of the absorbance in visible region [36, 37]. 

2 nanostructures obtained by annealing in the reductive atmospheres (H2, 

Ar/H2, CO, NO) has drawn a lot of attention recently. Reduced TiO2 nanostructures have 

better properties for applications in DSSC cells, water splitting and photocatalysis compared 

to non-reduced TiO2 [38, 39]. One of the reasons is narrowed band gap (< 3 eV), which 

allows the photocatalytic activity of TiO2 in the visible range of solar irradiation. The 

narrower band gap could result in a higher efficiency in the photocatalytic reactions [40]. 

Recent studies gave an explanation in terms of creation of Ti3+ states during thermal 

treatment of TiO2 nanotubes in the reductive atmosphere [41, 42]. High-temperature 

annealing in the inert oxygen-free atmosphere, in a vacuum or reductive atmosphere lead to 

the release of O2 molecules and formation of Ti3+ ions, usually at the nanotubes surfaces. 

Reduced nanotubes showed absorption in the visible part of solar spectra and better 

conductivity. These effects can be explained through the appearance of the high density of 

localized donor states which are created in forbidden gap of TiO2 due to the formation of 

Ti3+, which actually represents electron donor state closely to the bottom of the conduction 

band of TiO2. The high-pressure H2 treatment of TiO2 nanotubes lead to anatase-

titania  showing a high open-circuit photocatalytic hydrogen production rate without the 

presence of a co-catalyst. Through these processes, it is possible to create the most of 1% Ti3+ 
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from Ti4+, before crystal structure collapsed. This process is reversible till some point, 

because exposure to air or O2 atmosphere leads to oxidation. Similar as Ti3+, the oxygen 

vacancies also increase absorption in the visible part of solar spectra. Chen and co-workers 

firstly reported on the synthesis of black  TiO2 nanoparticles by annealing in the reductive 

atmosphere (H2 atmosphere at 200 C for 5 days and pressure 20 Bar) [38]. The 

nanoparticles had a core-shell structure with crystalline TiO2 inner part of nanoparticles and 

outer amorphous shell. Naldoni et al. synthesized TiO2 nanocomposites with core-shell 

structure, with crystalline core and amorphous 2 nm thick shell [43]. They explained 

narrowing of the bandgap by the existence of defects such as Ti3+ and oxygen vacancies 

which create energy states inside the bandgap. These states allowed the absorption and 

intraband transition in the energy region smaller than 3.2 eV. Tao et al. applied a different 

approach to obtain narrowed bandgap of 2.1 eV. They obtained TiO2 phase forms on the 

surface of rutile TiO2 (011) by oxidation of bulk titanium interstitials [44], which resulted in 

the similar photocatalytic activity due to TiO2 self-doping with Ti3+ during annealing process 

in a reductive atmosphere of CO or NO [45]. Wang et al. proposed that H-doped amorphous 

shell plays the same role as Ag or Pt loading on TiO2 nanocrystals, which induces the 

localized surface plasmon resonance and black coloration, resulting in enhanced 

photocatalytic activity [46]. Wu et al. [47] applied the electrochemical hydrogenation doping 

for the introduction of interstitial hydrogen ions and oxygen vacancies. Similar process was 

used by Zhao et al. [48] to reduce Ti4+to Ti3+, that is approved by XPS measurements. In our 

previous work [49], powder of titanate (H2Ti3O7) nanotubes decorated by Ag was studied for 

photocatalytic properties. We have shown that annealing of the protonated type of titanate 

nanotubes in Ar/H2 induce a transition to TiO2 anatase phase nanoparticles can be used as 

efficient powder catalyst. Moreover, H2Ti3O7 nanotubes decorated with Ag nanoparticles 
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after annealing in the reductive atmosphere (Ar/H2) had two times higher photocatalytic 

activity than those which were annealed in Ar/H2 but not decorated with Ag 

With the aim to prepare the efficient easy-handling photocatalyst for purification of waste 

water from the industry, we studied the modification and decoration of titanium oxide 

nanotube arrays (TiO2- pletely attached on titanium foil. In that manner, 

there are no nanoparticles left in purified water as in the case of the use of suspended powder 

catalyst (e.g. P25 TiO2). To increase the efficiency of the TiO2-

LSPR, titanium oxide nanotubes arrays were decorated by Ag nanoparticles (sample TiO2-

- -HA) with 

the aim to narrow band gap of titania. The photocatalysts were evaluated by photodegradation 

of salicylic acid (SA) in aqueous solution. SA was chosen as a model pollutant due to its 

widespread use in dyestuff, resins and aspirin production, which results in its release to the 

environment through various waste streams. SA was listed as a pollutant in precipitation, 

surface waters (approx. 0.1 g L-1) and as a constituent of humic material in drinking waters. 

It may be released to the aquatic environment in wastewater discharges from industry and 

even sewage treatment facilities [50]. 

The TiO2-

research [49]. In this work it was shown that TiO2 nanotubes formed by anodization process 

on Ti foil decorated with Ag nanoparticles after annealing in the reductive atmosphere 

(TiO2@Ag-HA) have the best overall photocatalytic performance, even 1.53 times larger than 

commercial P25. The increase in the efficiency is explained by the combined effect of 

localized surface plasmon resonance (LSPR) of the silver nanoparticles and the increased 

absorption of visible light and NIR due to the reduction of TiO2 in hydrogen and formation of 

defects such as Ti3+ and oxygen vacancies. These defects create energy states inside the 
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bandgap that allow an interband transition in the energy region smaller than 3.2 eV that can 

be achieved by visible light. 

The kinetic study presented in this work resulted in a complex kinetic model which 

allowed a separate study of the photochemical degradation of salicylic acid and photon 

absorption effects in UVB, UVA and visible part of applied simulated solar irradiation. These 

discrete photon absorption study supported detailed analysis and quantification of 

fundamental photocatalytic phenomena. Moreover, the absorption in UVB and UVA part of 

applied irradiation was described with relative coefficients with TiO2 P25 as a reference. 

Contribution from the absorption terms was accounted in the overall degradation rate 

equations, along with the factor of synergy, fSyn. Introduction of fSyn. in the model, resulted in 

quantification of the influence of underlying phenomena on the activity, other than pure 

absorption of incoming irradiation, e.g., surface defects as Ti3+ and LSPR. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Materials 

The following materials were used: titanium foil (10x10 cm, purity 99.5 %, Sigma 

Aldrich), Ethanol (Fluka, 98%), deionized water, AgNO3(Kemika, purity 99.8%), gas 

mixture Ar/H2 (95% Argon,5% hydrogen, Messer, purity 5.0). Salicylic acid (SA) p.a. the 

grade was obtained as a free-of-charge sample from Pliva, Croatia and used without further 

purification. A model solution of 0.2 mmol L-1 of SA was prepared (pH 4). The degradation 

of SA in the samples was evaluated in terms of SA concentration decrease and mineralization 

degree. The concentration of SA was determined using HPLC, Shimadzu, with SUPELCO 

C18 column, length 250 mm, internal diameter 4.6 mm and UV (diode array) detection 
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(DAD) at 303 nm. The analyses were carried out by binary flow elution with mobile phase 

solvents A and B at a flow rate of 0.6 and 0.4 mL min 1, respectively. Solvent A consisted of 

0.5:99.5 (v/v) methanol: 0.1 M phosphoric acid and solvent B was 100% methanol. This 

method allows simultaneous determination of SA and its degradation by-products: 2,5-

dihydroxybenzoic acid (gentinsic acid), 2,3-dihydroxybenzoic acid, 3,4,5-trihydroxybenzoic 

acid (gallic acid), hydroquinone, catechol and resorcinol using multi-wavelength DAD. The 

sum of their concentration expressed through the C atom balance was used to evaluate the 

conversion of aromatics to lumped short-chain carboxylic acids. The mineralization degree 

was determined by measuring the total organic content of model wastewater by Total Organic 

Carbon analyzer, TOC-VCPN, Shimadzu, Japan. 

 

2.2 Synthesis 

The TiO2 nanotube arrays were obtained by anodizing a titanium metal foil (purity 99.7%, 

size 1.5x1.5 cm and thickness 0.25 mm). The anodization was carried out at room 

temperature in a conventional two-electrode cell using a direct current (DC) power supply A 

Pt foil was used as the counter electrode and a Ti-foil served as the anode. The electrolyte 

was ethylene glycol containing 0.3 wt.% NH4F and 2 vol.% distilled water. The self-

organized and well-aligned TiO2 nanotube arrays were fabricated at 60 V for 3 h. As a result 

of the anodization process, the TiO2 nanotubes were etched of in the titanium foil. The details 

of chemical reactions and phenomena acting during formation of a nanotubes by anodization 

are described in our previous work [51]. Following anodization, the specimens were rinsed in 

deionized water and ethanol, and dried in a cool air stream. The anodized specimens were, 

then, thermally treated in a tube furnace at 500 C (heating/cooling rate of 2 C/min) for 2 

h. The anodization parameters stated above were found by optimization of the anodization 
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process to obtain samples with TiO2 layers that were attached to the Ti surface strong enough 

to resist all the future treatment. 

The photo-reduction process was used for decoration of TiO2 nanotubes with Ag 

nanoparticles, similar to one explained in our previous work [46]. Precisely, the Ti-foils with 

thin film TiO2 nanotubes arrays (TiO2 3; 

the solution was continuously stirred under UV light for 3h at 80 C. After the decoration of 

TiO2 nanotubes with Ag nanoparticles (TiO2  

deionized water and dried for 1 h at 80 C in air. TiO2 2 

were annealed in a reductive atmosphere (Ar/H2) for 3h at 500 C, temperature rate was 5 

°C/min. Obtained samples were assigned as TiO2 -HA and TiO2 -HA. 

 

2.3 Characterization 

The Raman spectroscopy (RS) measurements were performed using Horiba, Jobin Yvon 

T64000 spectrometer with argon-ion laser Coherent, Innova 400 operating at 514.5 nm for 

the excitation. The Raman spectra were collected in micro- Raman mode with a multi-

channel CCD detector. A laser power of 20 mW at the sample and an objective with a 50 

magnification were used. 

The morphology, surface and chemical composition of modified samples were studied by 

the scanning electron microscopy (SEM) using a Hitachi S-4800 with a cold FEG (Field 

Emission Gun). The images were taken in secondary electron (SE) mode with an acceleration 

voltage of 15 kV. The energy dispersive spectroscopy (EDS) analysis was also done at 15 

kV. 

For the transmission electron microscopy (TEM) analysis modified samples were prepared 

in the cross-section by Gatan precision ion polishing system (PIPS) and ion beam etching 

system. The TEM, high-resolution TEM (HRTEM) and high angle annular dark field 
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scanning transmission electron microscopy (HAADF STEM) imaging were performed on the 

TEM Philips CM200F and FEI TITAN 80-300 kV. 

For the EELS data acquisition, double Cs aberration corrected (TEM and STEM) JEOL-

ARM 200CF equipped with GIF Quantum Energy Filters spectrometer for the high resolution 

and DualEELS spectra acquisition was used. Measurements were performed under following 

conditions: dispersion 0.1 eV/channel and integration time for each pixel on EELS maps of 2 

seconds. The pixel size was 1.5 nm. Afterwards, the collected spectra were corrected for dark 

current and channel-to-channel gain variation. The samples of EELS measurements were 

prepared in  form by the FEI-Helios Dual-beam system. 

The UV vis-NiR diffuse-reflectance spectroscopy was utilized for the optical reflectance 

characterization and band-gap calculation of the pure and Ag-decorated synthesized TiO2 

nanotubes before and after annealing in the hydrogen atmosphere. The optical absorption 

spectra were measured with a UV vis-NiR Perkin Elmer Lambda 650 high-performance 

spectrophotometer a wavelength range from 300 nm to 900 nm, with a step size 1nm. The 

samples were mounted by the scotch tape at the sample holder and analyzed in reflective 

mode with the aperture 0.5 x 1.0 cm. 

 

2.4 Photocatalytic activity 

Photocatalytic experiments were performed in a flow cell (4.5 cm in diameter, 2 cm in 

height) working in total recirculation using a peristaltic pump (Vtotal = 40 mL, flow rate Q = 

67 mL min-1). Plates with the photocatalytic film were put on the cell bottom, whereby 

directly irradiated [52], so the catalysts were positioned perpendicular to the light irradiation. 

Prior to experiments, SA solutions (C0, SA = 0.5, 0.2, 0.1 mmol dm-3) were recirculated in the 

dark over the plates to achieve the sorption equilibrium. The sources of irradiation were: (i) 

full-spectrum compact fluorescent bulb simulating solar spectra with high UVB; high colour 
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rendering Ra98/Class 1A with colour temperature of 6500K (Exo Terra, 20W), and (ii) 

incandescent bulb emitting only visible light (Osram Daylight, 100W). The UVB and UVA 

intensities were measured by UVP UVX radiometer, fitted with the corresponding UVB and 

UVA sensors. For the incandescent bulb, both UVA and UVB intensities were measured as 

0.0 mW cm-2, indicating a complete absence of UV radiation in the spectrum of this bulb. For 

the full-spectrum bulb, given intensities on the cell top (at free water surface) were: IUVB,0 = 

2.92 mW cm-2 and IUVA,0= 3.43 mW cm-2. Intensities at film surface which were accounted 

for the incident photon flux at photocatalysts surface were: IUVB,f = 0.18 mW cm-2 and IUVA,f 

= 2.65 mW cm-2. Note that is much lower than IUVB,0, due to the absorption of light by SA. 

The IUVB,f was obtained from radiometric readings from the bottom of the cell filled with the 

SA solution. Experiments were performed in triplicates to discard possible experimental error 

and to check the reusability of the photocatalysts. With the aim to study the stability of the 

catalysts additional ten consecutive cycles of photocatalytic experiments were done using 

full-spectrum compact fluorescent bulb simulating solar spectra. 

 

 

3. NUMERICAL APPROACH FOR QUANTIFICATION OF PHOTOCATALYTIC 

ACTIVITY 

 

The novelty presented in this work is the quantification of the photocatalytic activity of 

prepared materials, compared to a reference, TiO2 P25. The latter was used as a reference 

since it is the most common commercial photocatalysts with an appropriate activity. The the 

main hypothesis in this study was the achievement of advantageous photocatalytic properties 

of TiO2 2 -HA compared to anatase film. Tentatively, the 

photocatalytic properties of these films would also exceed the properties of the efficient 
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commercial TiO2, i.e., TiO2 P25 in the case when the same was prepared in the form of thin 

film. Having in mind the specific form of novel photocatalyst and inability to produce the 

film having only pure TiO2 P25 with similar morphological characteristics, the comparative 

quantification was done using the numerical method according to the algorithm presented as 

follows. 

The detailed kinetic model was developed to include the contribution from direct 

photolysis as well as the contribution from UVB, UVA and visible light to photocatalytic 

degradation of SA. 

The total rate of SA degradation (rSA, T, kmol m-3 s-1) can be described as follows: 

       (1) 

In Eq. (1), rp is the rate of direct photolysis of SA under UVB irradiation, rph is the rate of 

photocatalytic degradation where superscripts UVB, UVA and vis denominate contributing 

term. Note that pseudo-monochromatic irradiation (310 and 365 nm) was assumed for UVB 

and UVA part of irradiation in further calculations. This simplification can be found in 

literature as well [53]. 

To define the rate of photolysis, near-surface light absorption by SA was assumed. First-order 

photolysis rate constant kp (s
-1) was given, Eq. (2) [54]; 

       (2) 

SA is the photochemical quantum yield for SA photolysis, SA is the molar extinction 

coefficient (L mol-1 cm-1), W is the incident light intensity (Einstein cm-2 s-1), A, V and l are 

the surface of the reaction cell, total volume and solution depth, respectively. The  stands for 

the wavelength of concern, which in this case is exactly 310 nm, taking into account the 

assumed monochromatic irradiation over UVB region. The photochemical quantum yield can 

ph photocatalysis

UVB UVA vis
SA,T p ph ph ph

- r

r r r r r

p SA SA2 3
A

k . W l
V
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be calculated using the observed rate of SA photolysis. The latter will be reported in the 

Results and Discussion section. 

      (3) 

The molar extinction coefficient was obtained from spectrophotometric analysis of SA 

solutions of different concentration (data not shown). The SA, 310 nm was found to be 2710 L 

mol-1 cm-1. The incident light intensity was obtained from Eq. (4). 

         (4) 

The IUVB, 0 (Wm-2) is the irradiation intensity at the free water surface determined by 

radiometric measurements, NA, h and c 

speed of light, respectively. Resultant incident light intensity at 310 nm was 7.562 × 10-5 

Einstein cm-2 s-1.  

SA, 310 nm = 8.59 × 10-8. Note that calculation was made per unit 

of the reaction cell, meaning that reported quantum yield can be used for calculation of 

photolytic rates in other reactor configurations. 

The rate of photocatalytic reaction can be written as follows: 

  (5) 

In Eq. (5). kSA, int (m s-1 W-0.5) represent the intrinsic reaction rate constant for SA degradation 

over irradiated photocatalytic films. Contributing terms: 310nmIUVB,f, 365nmIUVA,f and Pph
vis 

represent the rate of photon absorption in UVB, UVA and visible part of simulated solar 

spectra, respectively, which are proportional to the rate of reaction [55,56]. The exponents 

m1, m2 and m3 represent the order of the reaction with respect to the rate of photon absorption 

p, obs
SA, 310nm

SA, 310 nm UVB2 3

k

. W A V l/

UVB,0
UVB

A

I
W

hc
N

31 2
ph SA, int 310nm UVB, f 365nm UVA, f SAph

mm m visr k I I P C
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in related part of solar spectra. The half-order dependence in well-irradiated system was 

assumed (m = m1 = m2 = m3 = 0.5). 

To estimate the relative precedence of studied films compared to the reference, the rate 

equation was modified to Eq. (6). It needs to be noted that well-mixed, lump reaction system 

with a uniform distribution of incident irradiation on the film surface was considered. 

ph SA, int app,310nm P25,310nm UVB, f app,365nm P25,365nm UVA, f SAph

mvisr k ' I ' I P C
 

 (6) 

Herein, app,310nm and app,365nm are the apparent relative absorption coefficient of the film 

(= film/ P25). Those numbers simply suggest how many times the studied film absorb more 

irradiation than the referent TiO2 P25. The P25, 310 nm and P25, 365 nm are referent absorption 

coefficients calculated from the specific absorption coefficient for TiO2 and its mass per 

square meter of the film (= *mcat/Af). The specific absorption coefficients ( *) for TiO2 P25 

can be found in the literature [57-59]. Used values are summarized in Table 1. Mass of the 

photocatalytic film per area of the film was estimated at 5.66 × 10-5 kg m-2. Finally, the term 

Pph
vis (in W m-2) represent the overall rate of photon absorption in the visible part of 

simulated solar spectra. This term was determined experimentally from the experiments 

where only the visible light was used, Eq. (7). 

        (7) 

Note that kvis
SA, obs are observed pseudo-first order reaction rate constants for photocatalytic 

degradation of SA over TiO2 2 2 -HA under visible 

light (presented in the following section), while the intrinsic reaction rate constant was 

reported in our previous work [57], where it was expressed as 4 × 10-7 min-1 W-0.5 m1.5. In this 

study, the surface rates are used and the kSA, int was recalculated to 1.4 × 10-8 s-1 W-0.5 m. 

SA,obs

2

ph
SA, int

vis
vis

k
P

k
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Resultant photon absorption in the visible part of the spectra, Pph
vis, values are shown in 

Table 1. The presented modelling approach is however incomplete. By expressing the total 

photocatalytic rates with Eq. (6), one can assume that only the absorption of light in a visible 

part of solar spectra and the enhanced absorption in UVB and UVA were responsible for the 

enhancement of the overall SA degradation rates. The absurd values of app,310nm and 

app,365nm, approaching several thousands and millions (Table 1), suggest the incorrect 

assumptions. Having in mind previously mentioned the influence of the combined effect of 

local surface plasmon resonance of Ag and creation of amorphous layer with Ti3+ and oxygen 

vacancies states at nanotubes surfaces, the rate can be written as follows; introducing the 

overall factor of synergy (fSyn) into equation (Eq. (8)).  

ph SA, int app,310nm P25,310nm UVB, f app,365nm P25,365nm UVA, f Syn SAph

mvisr k " I " I P f C

  (8) 

Hereby, app,310nm and app,365nm are the apparent relative absorption coefficient of the film 

(= film/ P25). For simplification purpose, the apparent relative absorption coefficient for TiO2 

properties between TiO2 2 P25 in the range from 300  400 nm (Fig. 7). 

Namely, for both photocatalysts, absorption is almost uniform in UVB part, while reduces 

approaching longer wavelengths in UVA part of spectrum (data from Figure 7. compared to 

reported data [60-62]). The average values of absorbances in the UV-vis absorbance spectra 

of TiO2 2 -HA compared to the average values for TiO2 

were used to determine app,310nm and app,365nm. All calculated values are reported in Table 

1.  

 

 

4. RESULTS AND DISCUSSION 
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4.1 Structural and optical characterization of TiO2  

 

Raman spectroscopy was applied as a method of choice to study the influence of the 

decoration with Ag and hydrogenation on the structure of the obtained TiO2 nanotubes array. 

Raman spectra of TiO2 2 2 -HA were shown in Figure 

1. The spectra of all the samples contained the observed bands assigned to five bands 

characteristics for anatase crystalline phase (144, 199, 396, 514 and 636 cm-1) [63]. In the 

case of TiO2 -HA sample, the additional band at 246 cm-1 (black arrow, Figure 1) 

was observed due to annealing in a reductive atmosphere. The appearance of this band can be 

explained by the existence of structural defects at the surface of nanotubes as results of 

annealing in the reductive atmosphere [40, 64]. 

The scanning electron microscopy was applied to study the morphology of the samples 

and influence of the modification and the decoration with Ag,. The SEM images show that 

TiO2 the range of 55-

60 nm and an outer diameter in the range of 70-75 nm (Figure 2). It can also be observed that 

Ag nanoparticles were uniformly deposited on the TiO2 nanotubes and the size distribution 

are broad, which is preferable to improve efficiency due to the LSPR effect. Larger particles 

(size up to 100 nm) were seen at the surface of TiO2 

at the surface and inside the tubes as was additionally confirmed by TEM techniques (as will 

be shown later). It could be noticed that the surface of TiO2 -HA appeared cleaner 

than the surface of TiO2 2) 

during which the adsorbed hydrocarbons and other impurities at the surface were removed. 

The HAADF-STEM images of cross-section performed on the TiO2 

shown in the Figure 3 a) and 3 b), indicate that TiO2 nanotubes have a length around 2100 nm 
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and wall thickness between 14 and 20 nm. The specimens were anodized for 3 h and grew to 

less than 3 µm in Fig. 3a. However, by using different electrolyte, nanotubes can grow to 

more than 5 µm within 30 min of anodization [65, 66]. 

It was shown that Ag nanoparticles are uniformly distributed through the whole length of 

nanotubes (Figure 3 a) and b)) in the average size of 5.7 nm for the Ag nanoparticles inside 

the tubes (Figure 3 f)). The HRTEM analysis showed that nanotubes are in the anatase crystal 

phase (Figure 3 c) and 3 d)) which is in agreement with Raman results (Figure 1). It could 

also be observed in Figure 3 e) that Ag nanoparticles during photo deposition were embedded 

into nanotube surface. 

The TiO2 nanotube arrays were activated by the high-temperature annealing in the 

reductive atmosphere, which results with partial amorphization and surface disorder of the 

nanotubes surfaces (Figure 4) similar as in a case described in previous work [67]. The 

amorphous layer on the TiO2 nanoparticles surface obtained by treatment of titanate 

nanotubes (in form of powder) in hydrogen were also observed in our previous work [46] and 

in previous studies with thermal treatment of titania nanostructures in the reduced atmosphere 

[38-49]. Here, it can be observed typical core-shell structure (crystalline core and thin 

amorphous shell) of TiO2 nanotube from nanotubes array of sample TiO2 -HA. It is 

expected that this layer would contain defects as oxygen vacancies and Ti3+ states. 

In order to confirm the presence of Ti3+ in nanotubes amorphous shell after reduction, we 

performed EELS spectroscopy measurements on nanotubes separated from the array by FIB. 

The analysis of energy-loss near-edge fine structure (ELNES) of Ti-L2,3 edge and O k-edge 

were carried out. As is known from the literature that Ti L-edge in case of anatase and rutile 

core-loss EELS spectra consists of four major peaks (two doublets, t2g and eg) which 

represent L3 and L2 edge, and splitted p orbitals, 2p3/2 and 2p1/2 states. It can be observed on 
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the Figure 5 in ELNES of the Ti-L2,3 edge and the O-k edge of the TiO2 -HA and TiO2 

-HA. 

The spectra of both samples were recorder over the whole thickness of nanotube wall, and at 

the surface of the nanotube. Comparing the spectra of the nanotube in core region and 

surface, the EELS spectra of a Ti-L2,3 edge obtained at nanotube surface of both samples is 

slightly shifted to lower energy loss values (Figure 5a and 5c) which imply the existence of 

Ti3+ electronic states on the nanotubes surface. Also, the EELS spectra obtained at nanotubes 

surface looks similar to the spectra of amorphous TiO2 what is in agreement with previous 

observations of order-disorder core-shell structure in the literature after high-temperature 

treatment in the reductive atmosphere [67, 68]. On the Figure 5b and 5d are shown the EELS 

spectra of O k-edge. It could be observed that there is almost no difference between spectra at 

the core of nanotubes wall and surface. 

The EELS spectra of pristine TiO2 

TiO2 -HA and TiO2 -HA, were compared in Figure 6. The spectra of TiO2 

the anatase phase. For the reduced samples 

similar behaviour was observed (Figure 5). The splitting of Ti L2 and L3-edge was less 

pronounced in reduced samples. Additionally, spectra are slightly shifted to lower energy loss 

due to creation of Ti3+ states. 

As reported recently [69], Pd nanoparticles can catalyse the reduction of TiO2 rutile in H2 

at room temperature through the generation of highly active hydrogen species which interact 

with TiO2 lattice and creates Ti3+, oxygen vacancies and even influencing the surface 

disorder. Without the Pd, several days are necessary for the hydrogenation of the TiO2, under 

high pressure (20.0 bar) or temperature up to 700 °C. Surprisingly, the treatment of TiO2 

matrix decorated with Ag nanoparticles did not improve the reduction. However, we 

observed a successful reduction of TiO2 nanotube array with and without decoration with Ag, 
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already after the samples were annealed for 3h at 500 C using even less reductive 

atmosphere (Ar/H2). Our observation of successful TiO2 hydrogenation can be explained by 

nanotubular form of samples (which guarantee large surface of the material), but also by 

anatase form of TiO2 nanotubes. 

With the aim to study the influence of the decoration with Ag and hydrogenation on 

broadening of the spectral region of the light absorption and narrowing of the TiO2 nanotubes 

band gap, UV-vis measurements were performed. The results of UV-vis spectroscopy of the 

TiO2 2 -HA and TiO2 -HA, the 

absorbance is shifted to the visible and NiR region of spectra (Figure 7a and 7b). The 

bandgap of all studied samples was shown by the dashed line in the Figure 7c. As could be 

observed the samples TiO2 2 -HA have similar main bandgap around 3.1 

eV, but sample TiO2 -HA have additional transition around 1.6 eV. In the case of 

samples TiO2 2 s@Ag-HA there are following band gap 2.7 and 2.3 

eV, respectively. The deposition of small Ag nanoparticles at the surface of nanotubes 

significantly increase the absorption in the visible region of spectra. As it was already 

mentioned in the introduction, in the case of plasmonic photocatalyst there is a strong 

increase of absorption in the visible part of the spectra and partially in the UV region. The 

same behaviour of absorption enhancement we observed in our measurements (Figure 7). 

Annealing of TiO2 nanotubes decorated with Ag nanoparticles in the reductive atmosphere 

Ar/H2 additionally influenced the structure and optical properties of materials. The annealing 

in the reductive atmosphere created additional states in the gap between the conductive and 

valence band of TiO2, as is schematically shown in Figure 8, thus improving the absorption in 

the visible region. During reduction process the structural defects are created, such as Ti3+, as 

was proven by EELS measurements. Those defects influenced the electronic structure of 

TiO2 nanotubes, which resulted in a macroscopic effect as narrowing of the bandgap. The 
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created defects could be the traps for the recombination of created electron-holes pairs, but 

due to the silver nanoparticles, this effect is suppressed. 

In Figure 8, the schematic view of the influence of the silver on the optical and electrical 

properties of TiO2 nanotubes are shown. On the Ag - TiO2 interface there is a creation of 

Schottky barrier, which suppresses the recombination of light-induced charge carriers (e-h) 

due to the internal local electric field at the Ag/TiO2 NTs interfaces. On the other hand, the 

Ag nanoparticles induced LSPR effect which contributed to the final concentration of free 

electron in the conduction band of TiO2 which can participate in the photocatalytic reaction. 

The LSPR is size dependent effect so different sizes of the Ag nanoparticles obtained in our 

work absorbed different Vis and NIR wavelengths. Therefore, if the LSPR electrons have 

enough energy to overcome the Schottky barrier at the interface, the electrons would directly 

transport into the conduction band of TiO2. W. Hou and S. B. Cronin [70] in the review paper 

state that for the better combined effect of TiO2 and noble metal nanoparticles (Ag, Au) and 

higher photocatalytic efficiency there is a requirement for doping of TiO2 to create lower 

energy states inside the bandgap of TiO2. They said that crucial factor to achieve a maximum 

of plasmon enhancement is that spectral enhancement of the metal nanoparticles overlap with 

the spectral absorption of the semiconductor photocatalyst and with the spectrum of the 

illumination source. They also said that most of the electron which is created due to LSPR 

effect don't have enough high energy to overcome the Schottky barrier due to low Fermi level 

in the noble metal nanoparticles. Noble metal nanoparticles (Ag) due to the LSPR effect 

creates intense local electric fields and previous simulation in the literature shown that 

incident electromagnetic field [71, 72]. 

electron-hole pairs generation 1000 higher than in the case of an incident electromagnetic 

field. Thus, enhancement in the amount of photo-induced charge generation is happening 



22 
 

locally in the TiO2. This enhancement will be possible only if there are additional lower 

energy states are created inside the bandgap of TiO2 [70-73]. In our case additional energy 

states are formed due to the defects such as: Ti3+ and oxygen vacancies in the TiO2 which 

enables the light absorption below the bandgap of TiO2 Due to previously mentioned reasons, 

which were proved theoretically and experimentally, one can conclude that combined effect 

of noble metal nanoparticles at the surface of TiO2 s state inside of bandgap 

TiO2 NT created by subsequently annealing in the reduced atmosphere leads to highest 

phocatalytic performances as will be shown and highest absorption as it was already shown in 

the Figure 7. 

 

4.2 Photocatalytic properties of TiO2  

Results for the photocatalytic oxidation of salicylic acid using full-spectrum solar 

simulation irradiation source and only visible light are given in Fig. 9. The photocatalytic 

activity is observed in the following range: TiO2 -HA > TiO2 2 

The significantly higher photocatalytic activity of TiNT@Ag-HA under 

visible irradiation compared to the other studied catalysts can be ascribed to its significant 

absorption in the visible regions of solar irradiation due to the effects explained previously. 

Some authors show that the nonmetal doping of TiO2 with elements such as nitrogen and fluorine 

are responsible for the nanotubes' photoactivity under visible light [74, 75], but EELS measurements 

(not shown) of our samples indicated that neither nitrogen nor fluorine were inbuilt during the 

nonotubes' fabrication process. Given experimental data points are the mean results of three 

series of experiments. The photocatalytic activities of studied photocatalysts did not vary 

during repeated experiments suggesting the reusability and photocatalytic stability of as-

prepared samples. 
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Kinetics of photocatalytic degradation of salicylic acid under simulated solar irradiation 

and visible light, are shown in Fig. 9a and 9b, respectively. Under simulated solar irradiation, 

photochemical degradation of salicylic acid was observed (Fig. 9a), which was expected 

since SA contains chromophores that absorb at wavelengths 290-315 nm making it 

susceptible to direct photolysis [76]. The photocatalytic degradation of SA is much faster 

when TiO2 2 -HA were used as photocatalysts, disregarding the 

source of irradiation (Fig. 9). TiO2 -HA film seems to be an efficient photocatalyst 

even only under visible irradiation. 

Regarding SA degradation intermediates and overall mineralization estimated based on 

TOC measurements, results are given in Figure 10a. Results were compared using the C atom 

balance. The theoretical value of TOC ascribed to the aromatic compounds i detected by 

HPLC were calculated from Eq. (9), using a number of C atoms in aromatic compounds 

Ni(C), molar masses (Mi) and mass concentration (ci,m) for each compound. 

       (9) 

The conversion of aromatic intermediates was higher than the achieved mineralization 

extent. Expected aliphatic intermediates, i.e. short-chain carboxylic acids cannot be readily 

degraded towards CO2 which accounts for higher residual TOC values. The mineralization 

efficiency was highest when TiO2 -HA film was applied, for both irradiation 

sources. Mineralization under visible light is negligible, however the percentage of residual 

aromatics is lower after 120 min of photocatalytic reaction, pointing at the slow ongoing 

conversion of aromatics towards aliphatic compounds. 

In the preliminary analysis, kinetics of SA photocatalytic degradation was evaluated 

according to the pseudo-first order reaction rate model in batch reaction system (Eq. (10)): 
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where cSA is a concentration of salicylic acid, while kSA, obs is the pseudo-first order rate 

constant in min-1, and it was evaluated through the linear regression of ln(cSA/cSA,0) vs. time 

(Eq. (11)). 

         (11) 

Corresponding values of kSA, obs, degradation half-time, t1/2 and determination coefficient 

R2 are given in Table 2. Based on experimental results, adsorption of SA on films was 

insignificant. The pseudo-first order rate constant for the direct photolysis under simulated 

-3 min-1. The obtained 

value corresponds well with the reported value of < 3 × 10-4 min-1 (0.02 hr-1) [68] having in 

mind that the peak intensity of applied irradiation in UVB region (310 nm) is almost 10 times 

higher than the average intensity of UVB irradiation accounted for natural sunlight . 

Repeated experiments were done in a row to test the stability of prepared photocatalytic 

films: TiO2 2 2 -HA under simulated solar irradiation. 

The resulting kSA, obs of sets of 10 experiments (cycles) are shown in Fig. 10b . The uniformity 

of the pseudo-first order rate constant for SA degradation (kSA, obs, min-1) is observed when 

using TiO2 2 2 -HA as photocatalysts, leading to a 

conclusion that prepared films are equally active and thus stable for at least 20 hours. 

The preliminary kinetics study based on pseudo-first order reaction rate constant was 

insufficient to describe underlying phenomena. The detailed kinetic model was developed to 

include the contribution from direct photolysis as well as the contribution from UVB, UVA 

and visible light to photocatalytic degradation of SA (see section 3.; Eq. (1)). 

The main hypothesis in this study was the achievement of advantageous photocatalytic 

properties of TiO2 2 -HA compared to anatase film. Tentatively, 

the photocatalytic properties of these films would exceed the properties of the efficient 

commercial TiO2, i.e. TiO2 P25 in the case when the same would be prepared in a form of 
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thin film, hypothetically, as described in Section 3. Calculated values of model parameters 

are reported in Table 1. Comparison of kinetic models and experimental results are shown in 

Fig. 11. A simple model (Eq. (10)) is in accordance with the developed complex model (Eqs. 

(1), (2) and (8)). 

The novelty within this work is the overall factor of synergy (fSyn). This factor summarized 

the influences of the combined effect of local surface plasmon resonance of Ag and creation 

of amorphous layer with Ti3+ and oxygen vacancies states at nanotubes surfaces (responsible 

for the decrease of Eg and absorption in the visible part of the spectrum). The fSyn includes all 

underlying phenomena which resulted in higher rates of radical species generation on active 

2
- etc. The fSyn were given for all studied photocatalytic films (Table 1). 

The value of 1.13 was obtained for TiO2 le it was 2.56 for TiO2 -

HA. Such difference suggests that the film obtained by annealing in reductive atmosphere 

indeed poses additional states in the gap between the conductive and valence band which is 

also confirmed by determined Pph
vis, and the structural defects are created, such as Ti3+ and 

oxygen vacancies, which influence on the electronic structure of TiO2 nanotubes and account 

for overall synergy. Using the presented kinetic modeling approach (Eq. (8)) meaningful 

values of apparent relative absorption coefficients are presented (

absorption throughout the solar spectra can be concluded form the following: (i) the 

app,310nm and app,365nm calculated for TiO2 2 -HA are higher 

than those assumed for anatase film and TiO2 P25, (ii) the Pph
vis values significantly increased 

in the following order: TiO2 2 2 -HA. The results from 

kinetic modeling supported by presented experimental results confirmed the conclusions 

made entirely based on the structural and optical characterization of the film samples. 
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5. CONCLUSIONS 

 

The influence of high-temperature annealing of TiO2 nanotube arrays decorated with silver 

nanoparticles in the reductive Ar/H2 atmosphere on the photocatalytic activity was studied. 

Three different samples of TiO2 nanotubes were prepared and studied: pure TiO2 nanotube 

arrays, TiO2 nanotubes array where interior and exterior of all the nanotubes are decorated by 

silver nanoparticles (TiO2 2 

atmosphere (TiO2 -HA). The synthesis of nanotubes by anodization of Ti foils is 

simple, fast and inexpensive as well as further deposition of Ag and treatment in hydrogen. 

The absorbance of solar irradiation was extended into the visible region for the samples 

TiO2 2 -HA. Surface plasmon resonance of deposited Ag 

nanoparticles was responsible for the increase of absorption in the case of TiO2 

sample TiO2 -HA, in addition to surface plasmon resonance, the defects created by 

hydrogen treatment generate additional transition state inside the bandgap of TiO2 and further 

increase absorbance. 

The efficiency of photocatalysis was tested on salicylic acid, recognized as a typical 

environmental pollutant. The obtained results show much better photocatalytic performance 

of TiO2 2 P25, while the best performance was observed for 

TiO2 -HA. 

The detailed kinetic study showed the contribution from photon absorption effects in 

UVB, UVA and visible part of the simulated solar spectrum. Results showed the enhanced 

absorption of irradiation through the spectrum, in comparison with P25. The Pph
vis values 

indicate the well-enhanced absorption rates in the following range TiO2 2 

2 -HA. The results from kinetic modeling supported the 

understanding of the influence of a visible part of the solar spectrum to overall photocatalytic 
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performances. The photocatalytic effect is enlarged by the synergy of absorbance in UV part 

(in bulk of TiO2 NTs) and visible part of solar irradiation (explained by combined effects of 

surface plasmon resonance of Ag and creation of amorphous layer with Ti3+ on the surface of 

TiO2 NTs). The determined factors of synergy (fSyn) for TiO2 2 -

HA were 1.36 and 2.71, respectively. 

The additional substantial advantage of studied photo-catalysts compared to the TiO2 

nanoparticles based materials (as P25) is easy handling. They are formed and completely 

attached on titanium plates that can be easily removed from the solution after the 

photocatalytic reaction. Since the rate of photocatalytic degradation of model pollutant is 

quite high when solar simulation was applied (less than 2 h is needed for its half-degradation 

if TiO2 -HA film was used), this gives a certain merit to a possible use of this type 

of photocatalysts on a larger scale. Obtained results are promising in the way of designing 

efficient reactors for the future application in the field of waste-water purification using TiO2 

membranes or by constructing reactor walls made of TiO2 nanotubes array decorated by Ag 

nanoparticles and reduced in the Ar/H2 atmosphere. 
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Figure captions: 

Figure 1. Raman spectra of:  a) TiO2 2 2 -HA  

Figure 2. Scanning electron microscopy images with different magnification:  a), b) and c) TiO2 

2 -HA 

Figure 3. HAADF STEM images of cross-section TiO2 

and b) higher magnification, c) and d) HRTEM micrographs of TiO2 

lattice distances, e) HRTEM micrograph of embedded Ag nanoparticles into TiO2 nanotubes surface, 

f) Size distribution of silver nanoparticles 

Figure 4.  HRTEM of nanotube outer walls on both sides a) and b) of sample TiO2 -HA. The 

amorphous layers are separated by the line. 

Figure 5. EELS spectra of bulk and surface: a) core-loss Ti-L2,3 and b) O- -HA, 

c) core-loss Ti-L2,3 and d) O- -HA. Insets in Figure a) and c) show STEM-

HAADF images with squares which represent area at the nanotube wall where spectra were acquired. 

- -HA: 

a) core-loss Ti-L2,3 and b) O-k edges. STEM-HAADF images and squares in represent area of the 

nanotube walls where EELS maps were acquired. Each spectrum represents sum of EELS map 20x20 

pixels.  

Figure 7. UV-Visibe spectroscopy results: a) Diffuse reflectance (% R ) spectra of pristine TiO2 

and TiO2 -Munk absorption curves. c) 

Determination of band gap of 1/2 =0. Inset in the Fig. 8c 

-HA in energy range 1.5-2 eV.  

Figure 8. Schematic view of Ag local plasmon resonance effect and band position at the interface of 

Ag and TiO2. 

Figure 9: Kinetics of photolysis and photocatalytic degradation of SA: a) under full-spectrum solar 

irradiation and b) visible irradiation (photolysis was negligible), using TiO2 2 

and TiO2 -HA as photocatalysts (C0, SA = 0.2 mmol dm-3, pH 4) . 
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Figure 10. Results of photocatalytic tests: a) Comparison of mineralization and aromatic cleavage 

efficiencies achieved by photocatalysis under simulated solar and visible irradiation using Ag-doped 

TiNTs (irradiation time was 120 min); b) Stability of the photocatalytic films under full-spectrum 

solar irradiation expressed as the observed reaction rate constant per cycle. 

Figure 11. Kinetics of photocatalytic degradation of SA under full-spectrum solar irradiation and 

visible irradiation using TiO2 2 -HA as photocatalysts (C0, SA = 0.2 mmol 

dm-3, pH 4); experimental results vs. model. 





Highlights: 

 Black TiO2 with Ag nanoparticles for photocatalytic degradation of salicylic acid. 
 Better than P25 due to combined effect of Ti3+ and local surface plasmon resonance. 
 Completely attached to the surface - easy handling and removal from purified water. 
 Enhancement in the photocatalytic efficiency under visible light irradiation. 
 Complex kinetic model of catalysis for quantification of different effects. 



Table 1. The pseudo-first order rate constant (kSA, obs) for the degradation of SA in the flow 
cell using TiO2 2 2 -HA as photocatalysts irradiated with 
simulated solar and visible irradiation. 

sample Full-spectrum solar irradiation Visible irradiation 

kSA,obs × 
103, min-1 

t1/2, h R2 kvisSA,obs × 
103, min-1 

t1/2, h R2 

TiO2  2.19 ± 0.07 4.6 0.9718 0.09 125.2 0.9655 

TiO2 
@Ag 

2.98 ± 0.14 3.7 0.9966 0.56 20.0 0.8269 

TiO2 
Ag-HA 

5.81 ± 0.13 1.9 0.9966 1.29 8.5 0.9371 

photolysis kp, obs = (1.99 ± 0.06) × 10-3  min-1 kp, obs  

 
  



Table 2. Intrinsic reaction rate constant, absorption terms and factors of synergy for the 
degradation of SA in the flow cell over TiO2 2 2 -HA 
irradiated with simulated solar irradiation. 

term TiO2  TiO2  TiO2 -
HA 

kSA, int, s
-1 W-0.5 m 1.4 × 10-8 

*P25, 310 nm, m2 kg-1 508 [58] 

*P25, 365 nm, m2 kg-1 187 [56,57] 

'app,310nm  1050 91 000 15 000 000 

'app,365nm 1350 130 000 20 500 000 

app,310nm 1 1.24 1.47 

app,365nm 1 1.29 1.53 

Pph
vis, 105 W m-2 0.12 4.71 25.94 

fSyn (1.08 ± 0.05)* 1.36 ± 0.25 ± 0.14 

* Error was determined based on experimentally determined kSA, obs in experiments 
with different CSA,0 

 
























