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Abstract

We employ a recent resummation method to deal with divergent series, based on the Meijer G-function, 
which gives access to the non-perturbative regime of any QFT from the first few known coefficients in the 
perturbative expansion. Using this technique, we consider in detail the φ4 model where we estimate the 
non-perturbative β-function and prove that its asymptotic behavior correctly reproduces instantonic effects 
calculated using semiclassical methods. After reviewing the emergence of the renormalons in this theory, we 
also speculate on how one can resum them. Finally, we resum the non-perturbative β-function of abelian and 
non-abelian gauge-fermion theories and analyze the behavior of these theories as a function of the number 
of fermion flavors. While in the former no fixed points are found, in the latter, a richer phase diagram is 
uncovered and illustrated by the regions of confinement, large-distance conformality, and asymptotic safety.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The perturbative expansion in QFT has zero radius of convergence [1] and the truncated series 
is strictly valid only for infinitesimal couplings. A resummation procedure is therefore required 
and the problem is usually approached through the so-called resurgent analysis [2]. Within this 
approach, one first applies the Borel-transform to the original power series by dividing the n-th 
term in the expansion by a n! and thus improving the convergence. Then this improved result 
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is analytically-continued and finally converted back to a convergent result via the Laplace trans-
form. Unfortunately, the Borel-transformed series may have poles anywhere in the complex plane 
that limits the radius of convergence and there are at least two known sources for these poles, 
namely:

i instantons, classical solutions of the equations of motion, which can be traced back to the n!
number of Feynman diagrams at the n-th order of perturbation theory;

ii renormalons, related to the Feynman diagrams of specific topology, for which the finite part
grows factorially with the order of perturbation theory.

A well-known method to perform the analytic continuation is through the Padé approximants
and the whole resummation approach is then often called Borel-Padé resummation. It should 
be stressed, however, that a number of alternatives exist, as for example the large-coupling-
expansion which builds a power series expansion in the inverse of the coupling (see [3,4] for 
reviews).

In this article, we focus on a recent method of Borel-hypergeometric resummation proposed in 
Ref. [5,6], in which the Padé approximants are replaced by the more sophisticated hypergeomet-
ric functions, and the resummed result admits a representation in terms of Meijer G-functions 
(MGs). The approach may be able to accurately resum divergent series with only a first few 
known coefficients even in the presence of instantons. Strictly speaking, also the Borel-Padé 
resummation can do it but with the replacement of branch cuts by a string of poles and the neces-
sity of knowing a large number of coefficients [6]. Furthermore, in this work we will argue that 
this MG algorithm might help even to resum the renormalon series, thus alleviating this tough 
non-perturbative issue. Altogether, the Borel-hypergeometric resummation provides a continua-
tion from perturbative to non-perturbative physics (see also Refs. [7]). Although it is a powerful 
mathematical tool, one still has to worry which non-perturbative effects are being resummed 
as genuine non-perturbative physics cannot probably be understood without a non-perturbative 
formulation (renormalization) of QFT.

The resummed series in terms of Meijer G-functions can shed light on another question in 
QFT, namely, the understanding of the renormalization group (RG) flow in the theory space 
of couplings. This is a fundamental task that is again obscured by a partial knowledge of the 
β-functions in the form of the divergent truncated series. Since the β-functions are obtained 
from the divergent part of the Feynman diagrams, they are free of renormalons. However, they 
still contain non-perturbative instantonic corrections. Using the MG method, we will estimate 
the β-functions non-perturbatively, showing that the method captures instantonic corrections that 
agree with the known theoretical predictions from semiclassical asymptotic expressions. There-
fore, the method allows making reliable predictions on the behavior of a theory at all energies. 
This is especially important for the ultraviolet (UV) completion of the theory, which is the crux 
of the definition of a fundamental theory [8,9], that is, the requirement that the RG flow is ana-
lytic at all energies. Specifically, we will search for possible non-trivial ultraviolet fixed points 
(UVFPs) of the non-perturbative β-function important for the notion of asymptotic safety. This 
notion was first introduced as a non-perturbative renormalizability condition for quantum grav-
ity [10] and is also central in the spontaneously-broken-local-conformal-invariance framework 
proposed in Ref. [11].

While recalling the main features of the Borel-hypergeometric resummation, in Sec. 2 we deal 
with the φ4 model and its β-function. The φ4 model is perhaps the most studied QFT and thus 
represents an ideal benchmark for the MG algorithm. In Subsection. 2.2, we exploit this model 
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to recall and stress about the emergence of renormalons and conjecture that the MG algorithm 
might be used to resum them. Then in Sec. 3 we turn our attention to the gauge theories, searching 
for a fixed point (FP) as a function of the number of massless fermion flavors. We draw our 
conclusions in Sec. 4, and finally a technical appendix A avails to recall the MG algorithm as 
well as to deepen the understanding of the whole approach.

2. The φ4 model

The usual resummation procedure [2] applied to a given divergent power series 
∑

n anx
n is 

formally sketched as∑
n

anx
n �→ (Borel transform ⇒analytic continuation in the Borel plane ⇒

Laplace transform) . (1)

Once a large enough number of terms of the divergent series are known, the conventional 
Borel-Padé resummation may be applied to cover the first two steps in Eq. (1). However, to 
be sufficiently accurate beyond the weak coupling regime, this method needs as an input many 
orders of the perturbative expansion and separate summation for different branches. Here we at-
tempt to resum the β-function in the φ4 model, by using the recent approach proposed in Ref. [6], 
in which the authors replace the Borel-Padé approximants with the hypergeometric and Meijer 
G-functions. Thanks to the flexibility of the special Meijer’s G-functions, i.e. the feature to con-
tain most of the known special functions as particular cases, one may be able to accurately resum 
divergent series from the knowledge of only the first few terms in the power expansion. There-
fore, the method is claimed to be fast and enables us to analytically continue the perturbative 
series to the non-perturbative regime. Hence, in the rest of this article we replace the procedure 
in (1) with

∑
n

anx
n �→ MG

(∑
n

anx
n

)
. (2)

where MG formally symbolizes the algorithm proposed in Ref. [6] and discussed in App. A.
The Borel-hypergeometric resummation is formidably tested in the 0-dimensional functional 

(or partition function) [6], a regular one dimensional integral that can be solved both exactly as 
a Bessel function and approximated perturbatively for small couplings (see for instance a nice 
discussion in Ref. [12]). In the latter approach, one finds that the perturbative series contains the 
instanton that causes the departure from the exact result. Remarkably, already in the leading ap-
proximation, the Borel-hypergeometric resummation manages to take into account this instanton 
divergence with a good precision. This is somehow related to the fact that the Bessel function is 
indeed a particular case of a Meijer G-function and therefore since the exact result belongs to the 
set containing the first approximants, the convergence is quick.

The 0-dimensional Green function considered in Ref. [6] is a sort of QFT in one point of 
space-time, thus it is natural to extend the approach to an infinite-dimension counterpart, namely 
the regular φ4 model in 4D space-time (in [6], the MG algorithm was also applied to the 3D Ising 
model, deeply related to φ4 in 3D). It is known that 4D φ4 model does not have fixed points [8]. 
This emerges partially from the perturbative computation of the β-function and, on a more gen-
eral ground, shown to be true at any order in Ref. [8] using the high-temperature expansion for 
a statistical mechanics model on a lattice. We reassess the issue within the framework of Meijer 
G-functions summation.
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Fig. 1. Resummed β-function as a function of g from 4-7 loops input in terms of the Meijer G-functions. The vertical 
dashed line signals the renormalon emerging form the finite part of the diagram in Fig. 3 and discussed in Subsec. 2.2.

2.1. Borel-hypergeometric resummation of the β function perturbative series

The β-function of the 4D φ4 model with Lint. = λ
4!φ

4 is known up to 7-loops and in 
MS-scheme reads [13]

β[g] ≡ dg

d lgμ
= 3g2 − 5.7g3 + 32.5g4 − (3)

271.6g5 + 2848.6g6 − 34776g7 + 474651g8 +O
(
g9) ,

with g ≡ λ/(16π2). We employ the algorithm described in detail in App. A to resum this 
β-function using as an input four, five, six and, finally, seven-loops terms known in the liter-
ature so far. From the most accurate 7-loops input, for example, we obtain:

β
(7)
MG[g] = 3g2

[
1 − 10−15g G

4,1
3,4

(
1.2

g
| 1,3.0,0.058
1,1,18.85,0.063

)]
(4)

and this function, together with the lower order results is illustrated in Fig. 1, in which the MG 
summed β-function is plotted as a function of g. As is clear from the figure, no fixed points 
emerge.

The convergence of the MG approximants in Fig. 1 is not as perfect as in the 0-dimensional 
case but still sufficient to capture the correct non-perturbative behavior. It is indeed known that 
in this model the β-function can be represented as an asymptotic series in the coupling λ (or g), 
with factorially growing coefficients [14,15]. For the MS scheme, the precise leading asymptotic 
behavior was first computed in [16] using 4 − 2ε dimensional instantons. Namely, if we denote 
the coefficients of the beta function by β(g) = ∑

n βas
n gn then [17]

βas
n ∼ (−1)nn! n7/2 × const as n → ∞ , (5)

where const ≈ 0.024. One can compare this asymptotic estimate with the MG summed predic-
tions which we reexpand back in the Taylor series. In Fig. 2 we plot the logarithm of the ratio of 
the large order beta function coefficients βn as predicted by the Meijer G-function (from n = 10
to n = 70 loop order) to their predicted asymptotic form βas

n . We notice that the result from 
the 7-loop MG algorithm is very close to the predicted asymptotic behavior which demonstrates 
that the Borel-hypergeometric resummation captures the non-perturbative instantonic effects, in-
visible in perturbation theory. It is worth noticing that qualitatively this is in full analogy with 
the 0-dimensional functional discussed above. This confirms the power of Borel-hypergeometric 
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Fig. 2. Large order β-function coefficients from Meijer-G at 4-7 loops normalized to their asymptotic values.

resummation to scan non-perturbative physics from perturbative inputs and shows the natural ap-
plicability of the method to reconstruct the non-perturbative β-function from its truncated power 
series.

2.2. Non-perturbativity vs. renormalons

So far the Reader may be induced to think that the Borel-hypergeometric resummation rep-
resents definitively a non-perturbative answer once one knows a sufficient number of terms of 
a truncated series. Although the method is powerful and enables us to get reliable insights on 
non-perturbative physics, this may not be the case when genuine non-perturbative effects emerge 
from non-perturbatively-renormalizable field theories.1 In principle, these effects would be well 
described by a fundamental non-perturbative formulation of a QFT, but probably they cannot 
be extrapolated by means of an analytic continuation from the perturbative regime. In other 
words, we argue that there may be a sort of qualitative discontinuity between perturbative and 
non-perturbative physics. Such discontinuity should be related with the failure of perturbative-
renormalizability in the strict sense and, in practice, might be signaled by the emergence of the 
renormalons [18–20], which are considered to be a pathology of perturbation theory.

Below, we will demonstrate how Borel-hypergeometric resummation may cure the renor-
malons, but how this result incorporates into the complete non-perturbative picture of, say, low 
energy QCD remains an open issue. Some insights shall be mentioned below and in Sec. 4, while 
now, for the sake of completeness, we go through a brief recap of the issue.

As already sketched in Eq. (1), the divergences of series in QFT [1] can be cured by resurgent 
analysis [2]. However, it may happen that even the Borel transform is divergent due to poles 
on the positive real axis in which case the Laplace’s transform is ambiguous. This is exactly 
the case with the perturbative series generated by a certain Feynman diagrams which, after the 
renormalization procedure, lead to Borel divergences called renormalons [18]. Following [21], 
consider for example the diagram in Fig. 3 and denote its value at the n-th order of perturbation 
theory as R̃n

R̃n =
∫

d4k

(2π)4

i

(p + k)2 − m2 + iε

1

(−iλ)n−1

[
B(k)

]n
, (6)

1 It is sufficient to think of realistic theory as QCD where the non-perturbativity is accompanied by chiral symmetry 
breaking and non-perturbative objects such as the quark condensate.
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Fig. 3. Skeleton diagram that gives rise to the renormalons described in (7)-(10). We borrow the graphics from [21].

B(k) ≡ (−iλ)2

2

∫
d4l

(2π)4

i

(k + l)2 − m2 + iε

i

l2 − m2 + iε
.

In the large Euclidean momentum (k) expansion and after having absorbed the divergences in 
the counterterms, the first finite term, denoted as Rn, behaves as [18]

Rn ∝ 1/λn−1

∞∫
0

[λ2β0/2 lg(k2/μ2)]n
k6

dk4 , (7)

where λ2β0/2 lg(k2/μ2) is the contribution from a single bubble of the diagram shown in Fig. 3
and β0 = 3

16π2 is the one-loop coefficient of the β-function defined as β = dλ/d lgμ. It is easy 
to show that defining a new variable x ≡ lg(k2/μ2) one can rewrite Eq. (7) as

Rn ∝ 1/λn−1

∞∫
0

(
λ2β0x/2

)n
e−xdx = λn+1

(
β0

2

)n

n! . (8)

Applying the Borel transform (B(λn+1) ≡ zn

n! ) and summing over n, to obtain the value for the 
whole infinite chain of bubbles, one obtains

B
(∑

n

Rn

)
∝

∑
n

(
β0

2
z

)n

≡
∑
n

Bn(z) = 1

1 − β0
2 z

, (9)

and therefore the Borel serie diverges at

zpole = 2/β0 . (10)

Since one made use of the large momentum expansion, this is called UV renormalon; simi-
lar discussion and result holds for the low momentum expansion, leading to the Infra-Red (IR) 
renormalon (see [22] for a general review) that is less relevant for our discussion. For positive β0, 
the pole in Eq. (10) lies on the positive real axis, making the Laplace’s transform ambiguous. As 
a result, there is no consistent way to perturbatively renormalize the theory when the coupling ap-
proaches the 2/β0 value. In other words, the usual QFT based on loop expansion ceases to make 
sense at fundamental level, even though one can still proceed in an effective way with effective 
operators [20] but this is not our aim, since we are interested in perturbatively renormalizable 
theories.

Also, it is evident by construction that considering the divergent part of the integral, thus a 
lower power of k in the denominator of Eq. (7), no n! contributions emerge because the e−x in 
Eq. (8) disappears. Therefore, the β-functions have nothing to do with the renormalons per se, 
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nevertheless one has to worry about them for finite contributions. In summary and coming back 
to the β-function of the φ4 model, Eq. (10) would impose an independent cut on the coupling 
values in Fig. 1 starting at gpole = 2/β0 = 2/3. Curiously, this is the point where the different 
resummed β-functions start to deviate from each other.

A comment is now in order. While the concept of renormalon can be revisited in terms of 
running coupling(s), and it is a powerful method that allowed recently to make a non-trivial 
generalization of renormalons to theories with multiple couplings [21], it is not a priori necessary 
at all to think in terms of RGEs to understand the divergence in Eq. (10). In order to estimate one 
bubble in Fig. 3, one deals with the φ4 “fish-diagram” relating it to the one-loop β-function, but 
this is somehow accidental in a sense that the finite part of Fig. 3, resulting from contributions of 
the infinite chain of bubbles, is completely independent of, say, a more accurate higher loop RGE 
functions describing the running. As a consequence, the notion of renormalon is independent of 
whether a theory has a fixed point or not and also of whether it is tuned to be at this conformal 
fixed point or not.

Can we go beyond the renormalon? While, as we reviewed, the usual resurgence procedure 
sketched in Eq. (1) leads to the renormalon issue for sufficiently large values of the coupling, 
it is worth asking whether the Borel-hypergeometric resummation can solve the problem. This 
is exactly what we try to outline here. From Eq. (8), let us write again the main object of the 
discussion here,

Rn ∝ gn+1
(

β0

2

)n

n! , (11)

where we use the coupling g so that β0 = 3. In the previous section, it was illustrated that this 
series is not Borel resumable due to the ambiguity at the pole zpole = 2/β0. Moreover, the 
conventional Borel-Padé resummation procedure cannot remove the ambiguity since the Padé 
approximant of the geometric series is again the geometric series and thus one does not manage 
to deal with the pole on the positive real axis. This is in contrast with the instanton divergence in 
the Borel plane, which can be resummed with a sufficient number of terms in the truncated series 
using Borel-Padé resummation procedure (e.g. see Ref. [6]).2 This is why when applying the 
Laplace transform within the Borel-Padé resummation procedure, the usual ambiguity appears 
for renormalons but not for instantons. In any case, both the instantons and renormalons come 
from n! divergent series and, although conceptually they are very different from each other, they 
represent the same kind of problem from the point of view of MG algorithm.

With this in mind, consider the perturbative asymptotic series in Eq. (11) and keep the first 
few orders in n. Such truncated series can be resummed, exactly as done throughout this paper 
and the resummed function has an asymptotic expansion precisely given by Eq. (11). The MG 
approximants are quickly convergent, in full analogy with the 0-dimensional functional recalled 
above and studied in Ref. [6]. More precisely, one obtains

MGN=3,4,5

(∑
n

Rn

)
= − 2

β0
e
− 2

β0λ �

(
0,− 2

β0λ

)
, (12)

2 In the presence of the Stokes phenomenon the real axis is segmented in branch-cuts, namely different regions sepa-
rated by singularities. In each of these regions, the Borel-Padé resummation has to be applied separately and often many 
orders in the perturbative expansion are needed to obtain a sensible result.
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where �(0, − 2
β0λ

) is the incomplete Gamma function. The expression in Eq. (12) is exact and 
thus is a representation, in terms of �-function, of the formal and exact result emerging from 
the standard resurgent procedure sketched in Eq. (1) (see for instance the discussion in Ref. [2]). 
However, the expression in Eq. (12) is complex, and the imaginary part is indeed known as the 
non-perturbative ambiguity. This is nothing but the renormalon itself emerging from Eq. (1). 
Nevertheless, the fundamental observation here is that only the real part of Eq. (12) might be 
meaningful as a feature of the algorithm itself. Let us clarify the meaning of this statement. 
Consider for example the self-interacting 0-dimensional QFT example studied in Ref. [6]. What 
emerges from the Borel-hypergeometric resummation is that the real part of the MG algorithm 
converges exactly to the exact result that is purely real, while, in addition, an imaginary part 
emerges as a sort of byproduct. However, it should be stressed that such an imaginary part can 
be consistently removed by first constructing a trans-series [23] from the original series and then 
resummating them via MG. This combined method of trans-series with MG on the top leaves the 
Re(MG) intact while removing the non-perturbative ambiguity and, at the end of the day, one is 
left with Re(MG) as the only relevant result.

In the light of this argument, we speculate that the real part of Eq. (12) is the relevant result. 
A fundamental requirement in support of the above conjecture is that there must be a match-
ing between the perturbative expansion and the full answer in the small coupling limit. When 
this is not the case, one is dealing with a genuine non-perturbative problem and the MG algo-
rithm fails to approximate the result. This situation is clearly exemplified by the 0-dimensional 
problem of degenerate-vacua in Ref. [6], in which the real part of the MG output fails to repro-
duce the exact result. Fortunately, this does not seem to be the case for the renormalon, which is 
nothing but some specific finite contributions to the pole mass (see Fig. 3) and can be described 
perturbatively. In other words, we are arguing that the renormalon would resemble the example 
of the self-interacting 0-dimensional QFT mentioned above, which indeed admits a perturbative 
description.

In summary, one would need an additional tool, such as the trans-series, together with the MG 
algorithm in order to prove our conjecture. Still, the 0-dimensional analogy gives an insight for 
considering the real part of the MG algorithm as the only meaningful object. Finally, even though 
the Borel-hypergeometric resummation is a powerful tool with a built-in self-consistency check 
provided by its convergence (see more details in App. A), it would be interesting to think about 
variations of the algorithm in such a way to obtain an independent external check. Obviously, for 
the 0-dimensional functional the external benchmark is the exact result, but clearly, the situation 
is different in a realistic QFT. Until the Borel-hypergeometricmethod is consolidated and the 
non-perturbative ambiguity is resolved, it is prudent to keep the renormalons as a sensitive mile-
stone in perturbation theory. Therefore in what follows we conservatively show the renormalon 
pole as a benchmark.

3. β-functions in gauge theories

We now go to the even more involved framework of gauge theories. We shall take advantage 
of the whole discussion presented in the previous section for φ4 model that we directly translate 
here. This is clearly possible because the mathematical construction based on Meijer-G func-
tion is generic, regardless of the underlying physics. Moreover, the concepts of instantons and 
renormalons are also generic in QFT.
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3.1. U(1) as a function of the number of flavors

Here our aim is to analyse U(1) gauge theory performing an analysis similar to the φ4

model above. The β-function of QED is known up to 5-loops and in MS scheme reads 
(ᾱ = e2/(4π)2) [24]

β
U(1)

MS
(ᾱ) = Nf

4 ᾱ2

3
+4Nf ᾱ3 − ᾱ4

[
2Nf + 44

9
N2

f

]

+
[
−46Nf + 760

27
N2

f − 832

9
ζ3 N2

f − 1232

243
N3

f

]
ᾱ5

+
(

Nf

[
4157

6
+ 128ζ3

]
+N2

f

[
−7462

9
− 992ζ3 + 2720ζ5

]

+ N3
f

[
−21758

81
+ 16000

27
ζ3 − 416

3
ζ4 − 1280

3
ζ5

]
+N4

f

[
856

243
+ 128

27
ζ3

])
ᾱ6 ,

(13)

where Nf is the number of Dirac fermions. In order to reach the 7-loop precision in analogy with 
the analysis done for the φ4 model, we take advantage of the large Nf expansion. We estimate 
the 6,7-loop contributions to the U(1) β-function by expanding the exact all-order leading 1/Nf

result [25] so that, for a large enough Nf , the 6,7-loop terms will be approximated as


β6,7 =ᾱ7N5
f

(
−11264ζ3

1215
+ 512π4

6075
+ 16064

3645

)
+

ᾱ8N6
f

(
−78848ζ3

6551
+ 4096ζ5

243
+ 4288

729
− 5632π4

32805

)
. (14)

With Eq. (13) and the extra terms in Eq. (14), we build the MG approximants on the same 
level as in φ4 model. Of course, these approximants will be trustable only above some critical 
Ncrit

f but such Ncrit
f certainly exists since the known parts of the 6 and 7 loop terms above nu-

merically are O(1) and do not have fine-tuned cancellations. Therefore, the larger Nf becomes, 
these terms will approximate the full 6 and 7 loop coefficients more and more accurately. We 
estimate Ncrit

f ≈ 160, by requiring that the terms with the highest power of Nf in 4- and 5-loop 
coefficients in Eq. (13) dominate over the terms with the lower power of Nf and assuming that 
this domination is also sufficient for 6- and 7-loop coefficients.

Our result is shown in Fig. 4, where we have selected from the table of the MG approximants, 
the ones that maximize the convergence. In particular, as we increase the loop order, there is a 
progressive convergence among the MG approximants of 4,6,7-loops. We should stress that the 
convergence is not as good as in φ4 model shown in Fig. 1, although it is sufficient to establish 
the fact that the 5-loop MG approximant is anomalous in the sense that it is not convergent with 
the others. Therefore, the corresponding FP predicted by it (the black line in Fig. 4) is not reliable 
and we conclude that the β-function of U(1) gauge theory does not have an FP for Ncrit

f . We 

have also checked that for the larger number of flavors Nf > Ncrit
f the FP does not develop.

Following the logic in Sec. 2, one has to also consider the (UV) renormalon (see especially 
the discussion in Subsection 2.2) and, with the normalization of β-function in Eq. (13), one has3

3 The UV renormalon is written as either 1/β0 or 2/β0 depending on the definition of β-function, respectively β =
dg/d lgμ2 or β = dg/d lgμ. In Subsec. 2.2 we used the latter, while in Eq. (13) we use the former.
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Fig. 4. Meijer G-function approximants of the β-function up to 7-loop order for U(1) gauge theory. Here Nf = Ncrit
f

=
160. The black line (zoomed) for 5-loop MG is non-convergent with the others and therefore the corresponding FP is not 
physical.

Fig. 5. Low Nf (Nf = 1, 3, 5, 10 from left to right) β-function of U(1) gauge theory: perturbative (red), 4-loop MG 
approximant (brown) and 5-loop MG approximant (black). (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

RUV

Ncrit
f

= 1

β0
= 3

4Ncrit
f

≈ 0.005 . (15)

From this equation it is clear that the first UV renormalon is approaching the origin as we in-
crease Nf and in the strict Nf → ∞ limit it occurs at zero coupling. For this reason, the 1/Nf

expansion has to be applied with care as Nf has to be large enough for the expansion to be valid 
and yet not too large so that the first UV renormalon does not occur too close to the origin. Also, 
it is interesting to notice that for U(1) gauge theory the topology of the diagrams leading to the 
renormalon is exactly the same as the one that provides the leading 1/Nf term of the β-function 
in the large Nf expansion [26]. The difference, as usual, is that while the renormalons come from 
the finite part of the diagram, as we discussed in detail in Subsec. 2.2, the β-function comes from 
the logarithmically divergent part.

As Nf decreases and in particular for Nf � Ncrit
f , the 1/Nf expansion is not valid anymore 

so that the 6- and 7- loop terms in Eq. (14) are not reliable. We therefore can build the MG 
approximants only up to 5-loops and we show our result in Fig. 5 for Nf = 1, 3, 5, 10. However, 
some useful information can be still extrapolated from the large Nf limit illustrated in Fig. 4. We 
notice that the behavior exhibited at large Nf by both 4 and 5-loop MG approximants is the same 
even for low Nf . Since we have shown that the 5-loop MG approximant is clearly a sham, one 
may extrapolate large Nf conclusions to a smaller number of flavors. Therefore, from Fig. 5 we 
conclude that no fixed points emerge in U(1) gauge theory from the present analysis. Finally, by 
reevaluating Eq. (15) for Nf = 1, 3, 5, 10, the position of respective UV renormalons is marked 
in Fig. 5 with the dashed gray vertical line.
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Fig. 6. SU(3) gauge theory behavior as a function of Nf .

3.2. SU(3) as a function of the number of flavors

We now turn our attention to the non-Abelian SU(N) gauge theories and analyse the exem-
plary SU(3) theory in our numerics. The 5-loop β-function for the SU(3) gauge theory reads 
(a = g2

gauge/(4π)2) [24]

β
SU(3)

MS
(a) = −a2

(
11 − 2Nf

3

)
− a3

(
102 − 38Nf

3

)
−

a4
(325N2

f

54
− 5033Nf

18
+ 2857

2

)
−

a5
[1093N3

f

729
+ N2

f

(
6472ζ3

81
+ 50065

162

)
+ Nf

(
−6508ζ3

27
− 1078361

162

)
+

3564ζ3 + 149753

6

]
−

a6
[
N4

f

(
1205

2916
− 152ζ3

81

)
+ N3

f

(
−48722ζ3

243
+ 460ζ5

9
− 630559

5832
+ 809π4

1215

)
+

N2
f

(
698531ζ3

81
− 381760ζ5

81
+ 25960913

1944
− 5263π4

405

)
+

Nf

(
−4811164ζ3

81
+ 1358995ζ5

27
− 336460813

1944
+ 6787π4

108

)
−

288090ζ5 + 621885ζ3

2
− 9801π4

20
+ 8157455

16

]
. (16)

The phase diagram of this theory as a function of Nf that emerges from our subsequent analysis 
is shown in Fig. 6. As the middle reference point, we use the value of Nf where asymptotic 
freedom is lost i.e. where the one-loop coefficient of the beta function β0 = 0. This value is 
NAF

f = 11N
2 and for the SU(3) gauge group is equal to 16.5. Decreasing Nf slightly below this 

value, one achieves the perturbative Banks-Zaks infrared fixed point (IRFP) [27], which to the 
two-loop level is simply given by a∗ = −β0/β1 and is guaranteed to be perturbative by tuning Nf

such that |β0| ≈ 0. Also, since β0 and β1 have different signs, the FP value is physical a∗ > 0.4

As we lower Nf further, this IRFP becomes more and more strongly coupled and at some value 
NIR

f disappears so that at the lower energy the theory is expected to confine and break chiral 
symmetry.

Going towards the larger values of Nf from the reference NAF
f value, the β0 changes sign 

and the potential non-trivial fixed point will be ultraviolet one. However, it was demonstrated 
long ago [29] that no ultraviolet FP emerges just above NAF

f and so, by continuity, there will 

4 For the most recent study of this perturbative IRFP based on the state-of-the-art 5-loop beta function see [28].
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Fig. 7. The β-function of SU(3) gauge theory for Nf = 25, 30, 50, 60 (from left to right): perturbative (red), 4-loop MG 
approximant (brown) and 5-loop MG approximant (black).

Fig. 8. Meijer G-function approximants of the β-function up to 7-loop order for SU(3) gauge theory. Here Nf = Ncrit
f

=
900. The brown 4-loop MG is non-convergent with the higher loop MG approximants which predict the UVFP.

be a segment in Nf where the theory will be in “non-abelian QED” phase with the Landau 
pole at high energies and free theory at low energy. Since the UV completion of such theory is 
unknown, the low energy theory can be viewed as an effective field theory (labeled in Fig. 6 as 
“EFT”) featuring free Gaussian infrared fixed point. Then we may expect that there is a critical 
value NUV

f above which the non-trivial UVFP might develop.

So, now our goal is to find the NIR
f and NUV

f values from the MG algorithm using the Meijer 

G-functions. We start with NUV
f and, analogously to the analysis of the U(1) gauge theory, we 

may resort to the large Nf limit [30] and from the 4- and 5-loop coefficients to estimate the value 
of Ncrit

f for which the leading-Nf terms dominate. We obtain Ncrit
f � 900. Above this value, the 

large-Nf expansion is valid and we may use the known leading 6- and 7-loop terms which are


β6,7 =a7N5
f

(
−1040ζ3

729
− 2069

10935
+ 304π4

18225

)
+

a8N6
f

(
−8744ζ3

19683
+ 1216ζ5

729
− 349

4374
− 260π4

19683

)
. (17)

In Fig. 8, we show the resummed β-functions at 4- and 5-loops, together with the estimate of 
the 6- and 7-loops contribution in the large Nf limit. We see that unlike the QED case shown 
in Fig. 4, there is a UV fixed point first appearing in the 5-loop approximation and consistently 
confirmed at 6 and 7 loops. Notice that the 4-loops Meijer G-function approximant cannot be 
trusted in this case, since its behavior is not converging at all to 5,6 and 7 loop estimates.

A remarkable thing is that the 5-loop MG β-function provides a meaningful result, and we 
argue that this approximant can be extrapolated to lower Nf where a 5-loop approximation is 
the best that one can do. In Fig. 7 we show the MG β-functions for 4 (brown) and 5 (black) 
loops for Nf = 25, 30, 50, 60. The dashed gray vertical line for Nf = 50 and 60 represents 
the position of the renormalon pole and beyond this point, standard perturbative quantization 
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Fig. 9. Low Nf (Nf = 1, 3, 9, 15 from left to right) β-function of SU(3) gauge theory: perturbative (red), 4-loop MG 
approximant (brown) and 5-loop MG approximant (black).

might not be adequate. Although we have shown in Subsection 2.2 that MG itself may resum 
the renormalon series, the relation of such summation with other non-perturbative effects is still 
not clear. Staying on the conservative side, we, therefore, learn that starting from Nf ≈ 58 the 
MG prediction should be interpreted with care, since additional non-perturbative methods may 
be needed to cast light on the ultimate ultraviolet completion of these theories – e.g. lattice 
quantization. In Fig. 6, the start of this region is colored in green and assigned the “?” sign. 
Instead, for Nf = 25 and 30 the renormalon pole is far to the right beyond the corresponding 
plots. For Nf ≈ 30 the ultraviolet fixed point appears for the last time and disappears as we 
lower Nf further. Interestingly, using a different method, this value of Nf was estimated in [25]
as the value where the 1/Nf expansion starts to be reliable and the UVFP is predicted. This 
confirms and justifies our extrapolation procedure from the large Nf to lower Nf based just on 
the 5-loop MG result. In summary, we estimate the extent of the “UV conformal window” [31]
at least as the line segment Nf ≈ (30, 58).

For low values of Nf , in Fig. 9 we show the behavior of the beta functions for Nf = 1, 3, 9, 15
using the 4- and 5-loop MG result. Remarkably for Nf < 9 we found that there is no infrared 
fixed point which fixes our final unknown on the phase diagram in Fig. 6, NIR

f ≈ 9. Below 
this value, in SU(3) gauge theory, a phase transition and spontaneous breaking of the chiral 
symmetry by the vacuum condensates is expected. Notice that for the values of Nf = 9, 15
shown in Fig. 9, the 4 and 5 loop MG results are in good agreement with each other and therefore 
all the fixed points found are presumably reliable. Also, for Nf = 15, both 4 and 5 loop MG 
predictions practically coincide with the perturbation theory, as expected, since the corrections 
to the perturbative expansion are small.

Variety of other approaches exist on the market to estimate the size of the IR conformal 
window among which are numerical lattice simulations [32], the analytic solutions to Schwinger-
Dyson equations [33], functional RG method [34], estimates based on the conjectured form of the 
all-order QCD beta function [35,36], and holographic models [37]. These approaches produced 
a variety of predictions for NIR

f ranging, between 7 and 12.

4. Conclusions

In this paper, we have made an attempt to approach the non-perturbative regime of a QFT us-
ing the state-of-the-art perturbative expressions. We used the recent method proposed in Ref. [6], 
which exploits the Meijer G-functions in order to resum divergent series knowing the first few 
terms of their perturbative power series expansion. Specifically, we focused on the β-functions 
of the φ4 model and U(1), SU(3) gauge theories assuming the β-functions of these QFTs to be 
analytic which is fundamental for the applicability of MG approach. For the singular functions, 
the usual Borel-Padé approximation is still better as stressed in Ref. [6] and, for example, this 
would be the case of supersymmetric gauge theories whose β-functions have simple poles [38].
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For the φ4 model, we used the MG method on the perturbative β-function up to 7-loop and 
found that no fixed point emerges for any value of the quartic coupling constant which is in 
agreement with the results known in the literature. Remarkably, we also found that precisely for 
MG on the 7-loop β-function, the result agrees with the asymptotic behavior computed using the 
semiclassical approach.

For the gauge theories, the β-function is known up to 5-loop and, to check the convergence of 
the MG approximants, we estimated higher order corrections from the large Nf expansion and 
then extrapolated to lower Nf . First of all, we noticed that the convergence of the MG algorithm 
is not very good, but still qualitatively sufficient to infer physical information. In particular, for 
U(1) case the algorithm established the non-existence of fixed points below the renormalon 
constraint and we argued that this conclusion holds for any value of the number of flavors Nf . 
For SU(3) gauge theory the situation is richer as the number of flavors varies. We found that from 
Nf = 0 up to Nf = 9, no fixed points exist using the known 5-loop beta function. Starting from 
Nf = 9 an IR, non-perturbative fixed point develops which becomes perturbative for Nf ≈ 16
and finally disappears for Nf = 16.5. For a larger number of flavors, a UV fixed point of the 
beta function was found which first develops for Nf ≈ 30 and which, for Nf ≈ 58, reaches the 
renormalon bound.

Furthermore, a possible consequence of this resummation method is that also the renormalon 
series might be resummable, even though a clarification of the non-perturbative ambiguity is still 
lacking. However, such an ambiguity is not specific to the problem of renormalons and affects 
the method per sé, depending on the series under consideration. In any case, it is interesting to 
inquire how this possible renormalon summation could affect the non-perturbative physics. Par-
tial answers may be extrapolated from the QCD literature, in which the renormalon divergence 
is used to estimate the non-perturbative power corrections to the heavy quark masses [39,40].

Another consequence is to see whether the MG algorithm can give some information about 
the non-perturbative mechanism for the quark confinement. To this aim, see for example 
Refs. [41–44], where the usual ambiguity in the Laplace transform is used to estimate the non-
perturbative power corrections to the quark anti-quark potential. It would be interesting to see 
whether the MG algorithm can give a more precise estimate on these issues. Another possi-
ble and intriguing question would be how to approach the multi-coupling resummation problem 
within this method, and even more specifically how to attack the generalized renormalons in 
multi-variables [21].
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Appendix A. The Borel-hypergeometric resummation procedure for divergent series

A.1. Constructing the algorithm

First of all, we recall the algorithm as proposed in [6], which we have used in the main 
text, and afterward we add further explanations on its subtle points. Finally, we also discuss 
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the convergence of the algorithm without pretending to perform a full analysis on the sub-
ject.

The algorithm Let us consider a partial sum of power series in variable g with coefficients 
a1, a2...aN and assume for the moment N to be odd-number. The algorithm goes as follows:

1. One computes the Borel-transformed coefficients bn = an/n! and makes the ansatz that the 
ratio of the consecutive Borel-transformed coefficients is a rational function of n

bn+1

bn

= rN(n) =
∑l

m=0 pmnm

1 + ∑l
m=1 qmnm

, (A.1)

with l = (N − 1)/2 and n ranges from 0 to N − 1. Thus, we have N unknowns pm, qm which 
are determined from N equations in (A.1).

2. The heart of the algorithm in [6] is to find the hypergeometric vectors x = (1, −x1, ..., −xl), 
y = (−y1, ..., −yl) via the equations

l∑
m=0

pmxm = 0 (A.2)

1 +
l∑

m=1

qmym = 0 ,

and then define the hypergeometric Borel approximant(s) through the generalized hypergeo-
metric function

BN(z) = l+1Fl

(
x, y,

pl

ql

z

)
. (A.3)

3. Finally, one has to go back to the original series in the variable g and remove the 1/n! via 
the Laplace transform of (A.3), ending up with the resummed series S(g), which can be 
represented in the form

S(g) =
∏l

i=1 �(−yi)∏l
i=1 �(−xi)

G
l+2,1
l+1,l+2

(
1,−y1, ...,−yl

1,1,−x1, ...,−xl

∣∣∣∣ − ql

plg

)
, (A.4)

where G stands for the Meijer G-function and � is the Euler’s Gamma function.

The generalization to an even N is straightforward. It is enough to subtract from the original 
series the constant term, then factor out the linear term and then apply the algorithm for odd N
as above. Finally, one has to re-multiply the result with the linear term and re-add the constant. 
An explicit example for N = 3 vs. N = 4 will be given below.

As discussed in Subsec. 2.2, in order for the MG algorithm to work, it is crucial that the 
perturbative expansion matches the full answer in the limit of very small coupling. In some 
cases, the exact answer might be known while in the others, such as QED, one simply assumes 
that such matching is justified based on the comparison with experimental measurements. In any 
case, upon this matching the real part of the output is meaningful and the possible appearance of 
an imaginary part cannot be understood in terms of MG alone. One needs, for example, to resum 
the trans-series built from the perturbative problem in terms of MG, to prove that the imaginary 
part vanishes while the real one of the original MG answer converges to the true result.
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More insights The above algorithm makes use of the Padé approximation in (A.1), the hyper-
geometric approximation [7] in (A.3) and in the final step approximation (A.4) via the Meijer 
G-function. The last two steps exploit the “flexibility” of the corresponding functions, i.e. the 
feature of containing most of the regular and special functions as a particular case. Perhaps a 
less clear step is the one in (A.2) so let us go through it in detail. The hypergeometric function 
in (A.3) can be Taylor expanded in terms of Pocchammer symbols and we denote with H(n) the 
n-th term of such series. The Eq. (A.2) are then exactly equivalent to solve

lim
n→∞

H(n + 1)

H(n)
= lim

n→∞ rN(n) (A.5)

H(n + 1)

H(n)
= rN(n) ∀n ∈ [0,N − 1] ,

which can be easily verified directly, for example for N = 3. Eq. (A.5) makes more manifest the 
meaning of (A.2): one imposes an asymptotic condition in the first equation of (A.5) plus the 
three further equations consistent with (A.1), for a total of four unknowns, completely determin-
ing the hypergeometric Borel approximant (for N = 3) as well as the final Meijer G-function 
approximant S(g).

A.2. Convergence

Since this resummation method based on Meijer G-function is new, we do not know about 
its convergence and this was also pointed out in Ref. [6]. In this subsection we focus on the 
convergence of the algorithm at order N = 3 vs. order N = 4. For this comparison, consider the 
partial sum

S̃(g) = 1 + rg + sg2 + wg3 + zg4 , (A.6)

with r, s, w, z being arbitrary coefficients. Since we want to compare the algorithm at orders 
N = 3, 4, first we apply the above algorithm for odd N = 3 truncating the S̃(g) at order g3. The 
result can be Taylor expanded as

1 + rg + sg2 + wg3 + 2g4w(8r2w − 3rs2 − 3sw)

9r2s + rw − 6s2 +O
(
g5) , (A.7)

thus one has a prediction for the coefficient z. On the other hand, one can employ the algorithm 
on the full S̃(g), now with even N = 4, by rewriting (A.6) as

S̃(g) = 1 + rg
(
s/rg + w/rg2 + z/rg3) , (A.8)

then applying the odd-N algorithm on (s/rg + w/rg2 + z/rg3), multiplying the result by rg
and, finally, adding the constant 1 to the final result. For consistency, the Taylor expansion of 
the latter up to g4 is trivially identical to (A.8). With both results for N = 3, 4 at hand, one can 
compare them to see when the N = 3 algorithm converges to the N = 4 one. Now the point is 
that assuming the predictivity of the leading algorithm to determine the coefficient z, one gets 
the condition on r, s, w, z

z = 2w(8r2w − 3rs2 − 3sw)

9r2s + rw − 6s2 . (A.9)

This condition is sufficient because, starting from a fewnominal order 3, through the algorithm 
order N = 3 one builds a fewnominal order 4 and thereby applies the algorithm for N = 4. This 
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Fig. A.10. Example of a comparison of the Meijer G-function approximant with N = 3, 4, with the coefficients r, s, w, z
satisfying (A.9).

is also a posteriori checked numerically in Fig. A.10 for a given solution of (A.9). Curiously, 
the condition in (A.9) is not necessary, albeit sufficient. This can be easily shown by a direct 
numerical counter-example, finding a combination of r, s, w, z that violates (A.9) but yields con-
vergence. The reason is that one can follow again the same logic leading to Eq. (A.9) and find 
similar conditions by considering higher coefficients coming from the Taylor expansions of the 
MG outputs for both N = 3, 4. Then, it might happen that even though Eq. (A.9) is violated, the 
conditions for convergence between N = 3 and N = 4 algorithms from the higher order terms 
are satisfied. As a qualitative recipe, it is worth noticing that condition (A.9) works roughly even 
perturbing the equality up to ≈ 50%.
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