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Abstract 

Two microplastic sets, polystyrene (PS) and polymethyl methacrylate (PMMA), were tested 

for adverse effects on early life stages of Sphaerechinus granularis sea urchins. 

Microparticulate PS (10, 80 and 230 µm diameter) and PMMA (10 and 50 µm diameter) were 

tested on developing S. granularis embryos from 10 min post-fertilisation (p-f) to the pluteus 

larval stage (72 h p-f), at concentrations ranging from 0.1 to 5 mg L-1 . Both PS and PMMA 

exposures resulted in significant concentration-related increase of developmental defects 

and of microplastic uptake in plutei. Moreover, embryo exposures to PS and PMMA (5 and 50 

mg L-1) from 10 min to 5 h p-f resulted in a significant increase of cytogenetic abnormalities, 

expressed as significantly increased mitotic aberrations, while mitotoxicity (as % embryos 

lacking active mitoses) was observed in embryos exposed to PS, though not to PMMA. When 

S. granularis sperm suspensions were exposed for 10 min to PS or to PMMA (0.1 to 5 mg L-

1), a significant decrease of fertilisation success was observed following sperm exposure to 

0.1 mg L-1 PS, though not to higher PS concentrations nor to PMMA. Sperm pretreatment, 

however, resulted in significant offspring damage, as excess developmental defects in plutei, 

both following sperm exposure to PS and PMMA, thus suggesting transmissible damage from 

sperm pronuclei to the offspring. The overall results point to relevant developmental, 

cytogenetic and genotoxic effects of PS and PMMA microplastics to S. granularis early life 

stages, warranting further investigations of other microplastics and other target biota. 
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1. Introduction 

Plastics are ubiquitous in every facet of human life and there are few modern products 

that do not contain plastic components. In recent times the use of plastics, in the form of 

micro-scale particles, has even extended to personal care products such as creams, scrubs 

and toothpastes. This latter product represents a potentially direct ingestion route for 

humans although direct ingestion may also occur through the consumption of foods such as, 

for example, table salt which has been shown to be contaminated with microplastics (Yang 

et al., 2015). Thus, the increasing quantities of plastics entering the environment over the 

past number of decades through wastewater streams or by direct disposal has given 

increasing cause for concern, not only as an eyesore but due to their potentially deleterious 

effects on living organisms. The majority of plastics do not readily degrade in the 

environment but may, though weathering processes, gradually be broken down into 

increasingly smaller pieces. It is when the size of plastic particles reaches the micro-scale 

(microplastics, MPs) that their interaction with, and uptake by, organisms may become 

significant (Wright et al., 2013, and references therein). Further, it should be noted that MPs 

should not be regarded as a single compound but rather a complex combination of 

monomers, oligomers and additives such as plasticisers and dyes, and hence discernment of 

the roles of the individual components on environmental impact is not easily achieved 

(Rochman et al., 2019). Thus, rather than considering MPs as a single class of materials, it is 

vital that a broad range of different MPs, taking into consideration size, shape and chemical 

identity, are investigated in terms of their physicochemical properties in various 

environmental compartments and their impact in a wide selection of bioassays. 

Over the past number of years there has been an increasing quantity of research which 

has brought attention to MP-induced health effects in a number of aquatic biota, along with 

concern for adverse health effects in terrestrial biota and humans (reviewed by Andrady, 

2011; Alimi et al., 2018; Anbumani and Kakkar, 2018; de Souza Machado et al., 2018; Foley 

et al., 2018; Gallo et al., 2018).  
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However, consensus on the ability of MPs to induce adverse effects has yet to be 

reached as results remain equivocal since negative effects have not been reported in all 

bioassay models exposed to MPs, nor widely observed for different MP formulations. For 

example, several studies reported on a lack of MP-associated adverse effects on biota 

ranging from urchins to fish (Kaposi et al., 2014; Beiras et al., 2018; Jovanović et al., 2018; 

Santana et al., 2018; Weber et al., 2018; Beiras and Tato, 2019). However, negative effects 

were reported for various MPs by Lithner et al. (2012), Straub et al. (2017) and Zhu et al. 

(2019). Studies in a number of other bioassay models also revealed ingestion, although 

without considerable toxicity in exposed shrimp (Carreras-Colom et al., 2018; Kokalj et al., 

2018; Wang et al., 2019), in fish (Jovanović et al., 2018), in mice (Jin et al., 2019) or 

mussels (Santana et al., 2018). This has recently been reviewed by Foley et al. (2018). On 

the contrary, adverse effects after MP exposure were reported in several bioassay models, 

such as multiple biochemical biomarkers and metabolomic profiles in mice, suggesting MP-

induced disturbance of energy and lipid metabolism as well as oxidative stress (Deng et al., 

2017). Similar findings were reported by Espinosa et al. (2017) who observed the adverse 

effects of dietary polyvinyl chloride (PVC) MPs on immune status and expression of several 

stress-related genes in fish Sparus aurata. Leachates from virgin and beached plastic pellets 

(microPVC), or virgin polystyrene (PS) microbeads affected embryo development and 

modulated enzymatic activities in mussels (Gandara e Silva et al.; 2017; Magni et al., 2018) 

while the gut of fish and mice were affected by microbiota dysbiosis and inflammation 

following exposure to PS MPs (Lithner et al., 2012, Jin et al., 2018; 2019; Lei et al., 2018). A 

report by Martínez-Gómez et al. (2017) provided multi-parameter evidence for the adverse 

effects of virgin fluorescent PS microspheres and virgin high density polyethylene (PET) fluff 

both on embryogenesis and fertilisation in the sea urchin Paracentrotus lividus. 

Indeed, sea urchins have proven especially valuable in toxicity testing, particularly 

during the sensitive embryogenesis stage of life, and a range of bioassay protocols have 

been developed, focusing on testing the effects of xenobiotics or complex mixtures on 



 

 5 

embryogenesis, mitotic activity, sperm fertilisation success, and offspring quality following 

sperm exposure, and recently reviewed by Pagano et al. (2017). Previous studies reporting 

on MP-associated effects in sea urchin species such as P. lividus or Tripneustes gratilla only 

found minor, if any, effects on early life stages (Della Torre et al., 2014; Kaposi et al., 2014;  

Messinetti et al., 2017; Beiras et al., 2018; Gambardella et al., 2018), except for high-dose 

PVC (Oliviero et al., 2019), and embryotoxicity as reported by Nobre et al. (2015) in sea 

urchin Lytechinus variegatus.  

Even though PS-exposed P. lividus plutei showed ingestion of MPs (Martínez-Gómez et 

al., 2017), evidence remains scarce for developmental defects in terms of lack of occurrence 

of skeletal or gut malformations, or developmental arrest at blastula/gastrula stage. Similar 

results were subsequently noted (Beiras et al., 2018; Beiras and Tato, 2019) for mPET 

(polyethylene terephthalate) which was tested on P. lividus development. 

Considering the limited data available on the effects of a narrow selection of MPs on 

embryogenesis, the widely varying results reported in the literature and the fact that 

interspecies differences may be significant (Burić et al., 2015), the present study aimed at 

expanding the knowledge on MP-induced adverse effects by extending the testing of two 

MPs (PS and polymethyl methacrylate (PMMA)) to fertilisation, embryogenesis and mitotic 

activity in the sea urchin Sphaerechinus granularis. PS has been selected as it represents 

one of the most common and widely used polymers and hence is of particular concern as an 

environmental pollutant while PMMA, though widely used in applications such as paints, 

cosmetics and detergents in microparticulate form, has not received significant attention to 

date (European Commission, 2017). Further, PS and PMMA derive from high level hazardous 

monomers and incorporate reactive functional groups of high concern. Thus it is timely to 

investigate the behaviour of these microparticles in terms of impact upon biota, and in 

particular potentially deleterious effects on the sensitive early stages of embryogenesis. 
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2. Materials and methods 

2.1 Microplastics 

Synthetic, commercially produced PS and PMMA microparticles, with nominal sizes of 10, 

80 and 230 µm (PS) and 10 and 50 µm (PMMA), were acquired from Microbeads SA, Norway 

as dry solids and used without modification or washing. 

 

2.2 Sea urchins 

Sea urchins Sphaerechinus granularis were collected off the coast of Rovinj (Croatia, 

45°05′08″ N, 13°38′22″ E) at depths of 5-10 m by diver. Sperm and eggs were harvested 

from the gonads, with sperm being held ‘dry’ at 0 °C while eggs were kept in FSW until use. 

The gametes were checked for maturity by visually confirming motile sperm and spherical 

eggs. The egg suspension was diluted to approximately 1000 eggs mL-1 to which sperm was 

added at a 105 final dilution. At 10 min post-fertilisation (p-f) a 1 mL aliquot of the zygote 

suspension was added to 9 mL FSW containging PS or PMMA suspensions, at concentrations 

of 0.1, 1, 5 and 10 mg L-1, in polystyrene multi-well tissue culture plates. Embryos were thus 

reared in FSW (pH 8.0-8.2) at 18±1 °C for 72 h until they had reached the pluteus larval 

stage. All experiments were run with 6 replicates, while non-treated control samples were 

run trice in 6 replicates.  

 

2.3 Embryological analysis 

Embryological analysis was performed on living plutei immobilised in 10-4 M chromic 

(III) potassium sulfate dodecahydrate (Carl Roth, Germany) 10 min prior to observation, 

approximately 72 h p-f (Pagano et al., 1983). In each  replicate the first 100 plutei were 

scored for the percentages of: normal larvae (N); developmentally delayed larvae (R, size 

<½ N); malformed larvae (P1), mostly observed through damaged skeletal differentiation; 

embryos/larvae unable to attain the pluteus stage - i.e. abnormal blastulae or gastrulae 
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(P2); and dead (D) embryos or larvae. Total developmental defects (DD) were considered as 

the sum of P1 and P2. Reading was carried out blind on randomly-numbered replicates. 

 

2.4 Cytogenetic analysis 

Cytogenetic analysis was carried out on 30 cleaving S. granularis embryos exposed to 5 

and 50 mg L-1 MPs from 10 min p-f. Treatments were run in four replicates, and triplicate 

controls (each of which also in four replicates) amounting to a total of 12 control cultures. 

The embryos were fixed in Carnoy’s solution (60% ethanol, 30% chloroform and 10% glacial 

acetic acid) 5 h p-f, and stained by acetic carmine (Pagano et al., 2001). The cytogenetic 

endpoints allowed both for measurements of mitotic activity and morphological 

abnormalities. Mitotic activity endpoints included: a) mean number of mitoses per embryo 

(MPE), and b) percent interphase embryos (IE), i.e. lacking active mitoses. The frequencies 

of morphologic abnormalities were scored as: a) anaphase bridges; b) lagging 

chromosomes; c) acentric fragments; d) scattered chromosomes; e) multipolar spindles; f) 

total mitotic aberrations per embryo; and g) percent embryos having ≥1 mitotic aberration. 

 

2.5 Sperm bioassays 

To determine any effects on sperm and the resulting offspring after exposure to MP in 

comparison to MP-exposed embryos, a series of sperm bioassays was carried out. A 50 µL 

aliquot of sperm pellet (’dry’ sperm) from each of three males was diluted in 5 mL FSW, and 

0.5 mL of this solution was then added to 4.5 mL MP suspensions (final polymer 

concentrations of 0.1, 1 and 5 mg L-1) with periodic and gentle agitation. . After 10 min 

exposure to the MPs, 50 µL aliquots of these triplicate sperm suspensions were used to 

inseminate 10 mL of egg suspensions in polystyrene multi-well tissue culture plates (six 

replicates), resulting in a 200x dilution of MP-containing sperm suspension. Fertilisation 

success was measured as percent fertilised eggs (fertilisation rate),  i.e. as live cleaving 
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embryos 1 to 3 h p-f. Thereafter, the offspring embryos were cultured up to pluteus stage 

and scored for developmental defects as described above. 

 

2.6  Statistical analysis 

Results are given as the mean ± standard error. Differences between groups were 

determined through an unpaired two-tailed Student's t-test or with one-way ANOVA and 

post hoc Dunnett’s test after satisfying the requirements of normality of distribution and 

homogeneity of variance. The variables from cytogenetic analysis were evaluated by χ2 test 

and Mann–Whitney U test. Differences were considered significant at the *p<0.05, 

**p<0.01 and ***p<0.001 levels.  

 

3. Results 

3.1 Embryo exposure – Developmental toxicity 

During embryonal development of urchins that were exposed to PS and PMMA MPs a 

range of developmental morphological defects were noted, including the appearance of 

normal (N) plutei, as well as malformed (P1) plutei and pre-pluteus embryos in arrested 

development (P2) (Figure 1).  
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Figure 1.   Embryo/larval population of S. granularis including: (a) unexposed normal plutei, 
(b) MP-exposed malformed (P1) plutei, and (c) arrested pre-pluteus (P2) embryos. Scale bar 
= 10 μm 
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S. granularis embryos reared in MP suspensions at concentrations ranging from 0.1 to 

1 mg L-1, up to pluteus larval stage (72 h p-f), did not show a significantly greater number of 

developmental defects (DD) compared to the control plutei as shown in Figure 2. 

  

 

 

 
Figure 2.  Developmental defects in S. granularis embryos/larvae exposed to various 
concentrations of PS or PMMA microplastics. 
 

 

However, at the higher concentration of 5 mg L-1 there were significantly increased 

numbers of malformations, and developmental arrest at blastula-gastrula stage. At the 

highest concentration, all particle sizes of PS caused a greater number of developmental 

defects compared to the PMMA microplastics. 

 

3.2 Embryo exposure – Cytogenetic abnormalities 

As microplastic concentrations of 5 mg L-1 typically showed significantly increased 

developmental defects with respect to controls, this concentration was tested for inducing 

cytogenetic damage. A 10-times higher concentration was also tested to determine if there 

is a concentration-dependent increase in cytogenetic aberrations. Analysis of cleaving S. 

granularis embryos indicated induction of mitotoxicity that was greatest for PS10 and PS80, 
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expressed in terms of embryos lacking mitotic features (‘Interphase Embryos’), compared to 

the largest PS (PS230) and PMMA MPs, as shown in Figure 3.  

A significant increase of mitotic abnormalities was both observed both in PS- and in 

PMMA-exposed embryos (Figure 4), expressed as the percentage of embryos with ≥1 mitotic 

abnormality, indicating MP-induced genetic damage. 
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Figure 3.   Percent ‘Interphase Embryos’ lacking mitotic features following exposure to PS or 
PMMA microplastics. 
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Figure 4.   Percentage embryos with ≥1 Mitotic Aberration following exposure to PS or PMMA 
microplastics. 
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3.3 Sperm exposure – Fertilisation rate and offspring damage 

Exposure of S. granularis sperm to PMMA MPs (0.1 to 5 mg L-1) did not significantly 

affect their overall fertilisation rate (Figure 5). This was also the case for PS MPs for the 

higher concentrations of 1 and 5 mg L-1. However, the lowest concentration (0.1 mg/L), for 

PS10, PS80 and PS230 resulted in a statistically significant fertilization rate decrease. 

 

Figure 5.   Fertilisation success of S. granularis sperm after exposure to a range of PS and 
PMMA concentrations and sizes. 

 

 

In contrast to the overall broad absence of effect on fertilisation success, the offspring 

of MP-exposed sperm were significantly affected following both PS and PMMA exposures 

(Figure 6), and in particular after exposure to PMMA50, leading to a significant number of 

developmental defects encompassing larval malformations (P1) and pre-larval arrest (P2) as 

shown in Figure 7. Cells showing normal aspects of mitosis and those with cytogenetic 

aberrations including bridges, lagging chromosomes, and accentric chromosomes after 

exposure to PMMA50 are also shown in Figure 7. 
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Figure 6.  Developmental defects in offspring following sperm exposure to a range of PS and 
PMMA microplastic sizes and concentrations. 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.   Following sperm exposure to PMMA50, offspring showed a range of aberrations -  
(a) mixed embryo/larval population (b) interphase embryo, (c) normal metaphase and 
anaphase, and (d) cytogenetic aberrations - bridges (Br), lagging chromosome (LgC) and 
accentric chromosomes (AcC). 
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4. Discussion 

The present study reports on the clear adverse effects of two spherical MPs, PS and 

PMMA of different diameters, on the early life stages of the sea urchin S. granularis.  Three 

broad MP size classes were selected, i.e. small (10 μm), intermediate (50-80 μm) and large 

microparticles (230 μm) (in relation to the size of the plutei larvae), since attempting to 

resolve effects on a finer scale with particles closer in size would likely not yield data with 

sufficient resolution to clarify the effects on microplastics on embryonal development. Thus, 

by looking at three relatively different size classes, the focus was placed on giving a clear 

overview of the size effect of microplastics. 

The present study readily found evidence of developmental toxicity in terms of larval 

malformations and pre-larval arrest in MP-exposed S. granularis embryos, indicating the 

sensitivity of S. granularis embryos to these specific MPs. In constrast to other studies where  

only modest or no toxicity was found, this greater response of S. granularis embryos to 

microplastics compared to P. lividus embryos may indicate that the former is more sensitive 

to such materials. Indeed, this was the case in a previous comparative study of rare earth 

element toxicity across three sea urchin species (Trifuoggi et al. 2017). Thus, a comparative 

investigation of MP-induced effects on developing embryos of different species and across a 

range of materials may provide some useful insight in elucidating this possible difference in 

species sensitivity. 

The physical size of microplastics may play an important role in modulating their uptake, 

with subsequent disruption of feeding patterns and larval development (Messinetti et al., 

2018) although this would become evident only over time scales longer than the 72 h 

duration of experiments in the present work. For this reason quantification of uptake is not 

reported herein as data would be equivocal due to the likelihood that not all plutei had 

reached the phase of actively feeding by the end of the experiment, i.e. uptake of 

microplastics by plutei may be a function of development phase where more developed 

plutei take up microparticles while less developed plutei do not show any uptake. 
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The induction of developmental defects in MP-exposed embryos/larvae was not confined 

to MP gut ingestion as had been previously reported for P. lividus sea urchins or Aristeus 

antennatus shrimps (Beiras et al. 2018; Carreras-Colom et al. 2018). In fact additional and 

unique evidence for MP-associated adverse effects was provided by cytogenetic analysis of 

MP-exposed S. granularis embryos which displayed significant inhibition of mitotic activity in 

PS- though not in PMMA-exposed embryos. However, the embryos showed a significantly 

increased number of mitotic aberrations, thus pointing to an enhanced frequency of 

cytogenetic anomalies in embryos reared either in PS or in PMMA microparticle suspensions. 

Another finding of this study first showed that a 10-min exposure of S. granularis sperm 

to a range of concentrations of PS and PMMA MPs failed to affect fertilisation success, with a 

significant, though unexplained exception for sperm exposure to 0.1 mg L-1 PS for three 

different microparticle sizes (10, 80 and 230 μm). This unexpected observation is in contrast 

with a ‘canonical’ concentration-effect trend and may deserve future investigation. 

While it may be concluded that, overall, sperm exposure to either PS or PMMA did not show 

extensive negative effects on fertilisation success, it is partiularly noteworthy the significant 

induction of developmental defects and pre-larval arrest in the offspring of both PS- and 

PMMA-exposed sperm, as first observed in the present study. The induction of offspring 

damage or mortality following male gametes’ exposure to genotoxic agents is not new, both 

in sea urchin bioassays (reviewed by Pagano et al., 2017) and in other biota such as insects 

and mammals (reviewed by Sobels 1974; Storey, 2008), and points to transmissible damage 

to the offspring of sperm pronuclei exposed to genotoxins. Analogous effects were also 

noted in other studies such as significant reduction in sperm velocity, and larval yield and 

development in offspring of exposed parents, in oysters chronically exposed to low 

concentrations of 6 μm PS (Sussarellu et al., 2016). Interestingly, those authors noted the 

presence of molecular signatures of endocrine disruption though no endocrine disruptors 

were ultimately found in the biological samples. An earlier study in fish also found signals of 

endocrine disruption after exposure to polyethylene (Rochman et al., 2014). Thus, the 
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mechanism of microplastic toxicity might not be related wholly to its physical size but rather 

in significant part due to its potential to leach other chemicals such as plasticisers whose 

estrogenicity give rise to endocrine disruption (Kiyama and Wada-Kiyama, 2015). As 

endocrine disrupting chemicals are known to act at very low concentrations, quantifying 

them becomes equivocal since concentrations may be very near or below the limit of 

detection of various instruments. Similar to Sussarellu et al. (2016), in the present work an 

analysis of the leachate (microplastics aged in artificial seawater (S•38, pH=8) for 72 h 

followed by filtration through a 0.22 μm regenerated cellulose membrane) by high 

performance liquid chromatography tandem mass spectrometry (Agilent 1200 HPLC, Agilent 

6410 MS) was inconclusive in providing evidence of potential endocrine disrupting molecules. 

In this work  hydrophobic monomers which may potentially leach from the microplastics may 

be less important as they are relatively volatile (reviewed by Alexander, 1997) and may have 

short residence time such as the 1-3 h noted in the case of styrene monomers in lake waters 

(loss of up to 50% of 2-10 mg L-1 styrene; Fu and Alexander, 1992). In that laboratory 

study, while temperature and light parameters for the experiments were not explicitly stated, 

lake water was noted to have a pH value of 7.5 which was lower than the pH of seawater 

used herein (pH 8–8.2). As volatilisation of styrene occurs more slowly at lower pH (Fu and 

Alexander, 1992) it may be expected that loss of styrene from seawater may be a more 

rapid process than in other natural waters such as lake or riverine waters. The present study 

used a similar range of concentrations (0.1-5 mg L-1) to that study although these materials 

were in polymer form rather than unpolymerised mers. Thus, the far lower concentrations 

expected for styrene leached from the microplastics may display significantly different 

volatilisation kinetics over the 72 h duration of the embryotoxicity test. However, 

comprehensive studies on the influence of abiotic parameters such as temperature and light 

intensity, electrolyte concentration and the presence of natural organic matter on the 

behaviour of leached monomers in seawater represent important research yet to be carried 

out. The effect of leachate from 6 μm PS was investigated recently by Martínez-Gómez et al. 
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(2017). It was found that the leachate from virgin MPs had a greater impact on P. lividus 

embryos than the corresponding leachate from washed particles. A similar result was noted 

by Nobre et al. (2015) where virgin polyethylene (PE) MPs showed a far greater effect on 

the urchin Lytechinus variegatus than beached MPs, likely due to leachate from virgin 

particles being more toxic than that of the corresponding environmentally aged materials. 

Leachates from micronised plastic (PVC) toys also proved more toxic to developing P. lividus 

embryos than the ≤20 μm particles themselves (Oliviero et al., 2019) resulting in retarded 

growth, developmental defects and developmental arrest. The impact of 10 μm PS on P. 

lividus juveniles was also reported as delayed growth related to ingestion of dye-containing 

microparticles thus showing that the particles themselves, due to their physical size, may 

represent a threat to the early life stages of marine organisms (Messinetti et al., 2018). The 

effect of leachates from these coloured microparticles were not investigated in detail so any 

possible effects deriving from additives to the PS remains an interesting aspect to be tested. 

Sub-micron sized PS particles (0.1 μm) also showed interesting effects on P. lividus larvae, 

where statistically significant developmental defects and arrest was not found but an 

alteration in swimming pattern was noted, with greater swimming speed for the PS treated 

larvae (Gambardella et al., 2018). In the present work, in broad terms PMMA50 and PS80, 

as intermediate sized particles, showed similar behaviour, for example in terms of inducing 

developmental defects where only the 5 mg L-1 treatment for both polymers was significantly 

different from the control. While size effects, and hence chemical identity effects, were more 

likely expected for the 10 μm particles rather than for the larger particles, the data for the 

various endpoints for PS10 and PMMA10 are similar (as was the case for the 50-80 μm 

particles), suggesting that the actual primary polymer consituent might not be the most 

important factor in terms of toxicity. Thus, size may be a more important aspect, possibly as 

a larger surface area presents greater potential for more rapid leaching of molecules. 

Interestingly, unlike PS, reports on the impact of PMMA microparticles are scarce, in 

spite of the potential for such materials to reach the marine environment due to their 
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widespread use either as microparticles added to industrial or consumer products, or as 

degradation products from weathering of macro-scale PMMA (European Commission, 2017). 

One of those few reports is based on an investigation of PMMA impact on the freshwater 

amphipod Gammarus fossarum, with MPs in the size range 32-250 μm shown to affect 

assimilation efficiency and significantly lower weight gain compared to controls indicating 

MP-induced digestive constraints (Straub et al., 2017). Marine fish have been shown to have 

ingested PMMA microplastics, with a study on polar cod Boreogadus saida in Arctic waters 

finding only epoxy-based material and PMMA in the stomach of fish (Kühn et al, 2018). 

Similarly, in the North Sea, while microplastics in the stomachs of several species of fish 

was not commonly found, PMMA was noted as the only microplastic present (Hermsen, 

2017). Thus, while PMMA remains relatively unstudied, there are increasing reports that this 

may be a microplastic that is present in the environment in sufficient quantities to warrant 

investigation of any potentially negative effects on marine biota.  

Overall, this study both corroborates some previous evidence for MP-associated 

embryotoxic-teratogenic effects (Oliviero et al., 2019; Nobre et al., 2015; Pitt et al., 2018; 

Rainieri et al., 2018; Martins and Guilhermino, 2018) and provides the first evidence for MP-

induced genotoxic effects as assessed by cytogenetic analysis and by transmissible damage 

to the offspring of MP-exposed sperm. The likely analogous effects in other bioassay models 

may raise some environmental concerns and warrant further investigations. 
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