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Abstract: Oxidative stress plays a role in carcinogenesis, but it also contributes to the modulation of
tumor cells and microenvironment caused by chemotherapeutics. One of the consequences of oxidative
stress is lipid peroxidation, which can, through reactive aldehydes such as 4-hydroxy-2-nonenal
(HNE), affect cell signaling pathways. On the other hand, cancer stem cells (CSC) are now recognized
as a major factor of malignancy by causing metastasis, relapse, and therapy resistance. Here, we
evaluated whether oxidative stress and HNE modulation of the microenvironment can influence CSC
growth, modifications of the epithelial to mesenchymal transition (EMT) markers, the antioxidant
system, and the frequency of breast cancer stem cells (BCSC). Our results showed that oxidative
changes in the microenvironment of BCSC and particularly chronic oxidative stress caused changes
in the proliferation and growth of breast cancer cells. In addition, changes associated with EMT,
increase in glutathione (GSH) and Nuclear factor erythroid 2-related factor 2 (NRF2) were observed in
breast cancer cells grown on HNE pretreated collagen and under chronic oxidative stress. Our results
suggest that chronic oxidative stress can be a bidirectional modulator of BCSC fate. Low levels of
HNE can increase differentiation markers in BCSC, while higher levels increased GSH and NRF2 as
well as certain EMT markers, thereby increasing therapy resistance.

Keywords: breast cancer stem cells; 4-hydroxy-2-nonenal; extracellular matrix; NRF2

1. Introduction

Tumor cell heterogeneity has been a known fact for a long time, but evidence increasingly suggests
that heterogeneity of tumors may be associated with a subpopulation of tumor-initiating cells, also
called cancer stem cells (CSCs), as a subpopulation driving tumorigenesis and cancer progression [1].
These cells represent only a small proportion of tumor mass, but seem to have the capability of
dissemination and may, for still unknown reasons, reactivate from the quiescent state and cause
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recurrence of the disease [2,3]. The fate of CSC seems to be highly dependent on their niche and
state, either activating or quiescent, which may be determined by their microenvironment. This
concept of the tumor being dependent on its microenvironment has been postulated early by Stephen
Paget [4], and by clinical trials demonstrating that therapeutic interventions with bisphosphonates
positively impact the clinical outcome of breast cancer patients, and confirmed the importance of these
interactions [5,6]. Today, a wide array of evidence suggests that the network of interactions between
the tumor, the microenvironment with the stroma, the extracellular matrix and the inflammatory cells
bidirectionally modulate their tumorigenicity [7,8]. Despite recent advances, interactions between CSC
and the microenvironment are difficult to study due to a lack of optimal methods for the isolation of CSC
and efficient functional assays, as well as due to a variety of proteins, enzymes, and growth/inhibition
factors forming the extracellular matrix (ECM) of the tumor and the CSC niche. In vitro sphere
formation assays have been shown to be suitable surrogate models to study CSC biology [9,10].

Numerous factors govern cell growth to generate CSC, and epithelial to mesenchymal transition
(EMT) is the process that strongly supports and/or generates the CSC phenotype [11]. EMT is a process
normally occurring in embryological development, but if awakened latter in the adult organism, it
becomes pathological and generates mesenchymal cells with the ability to migrate [11]. This process is
reversible, but in the means of cancer, it is highly undesirable, and EMT and back to mesenchymal to
epithelial transition (MET) is the process that causes metastasis [12]. EMT is accompanied by changes
in many signaling pathways, which result in differential expression of EMT transcription factors such
as snail family transcriptional repressor 1 (SNAIL), snail family transcriptional repressor 2 (SLUG),
twist family bHLH transcription factor 1 (TWIST1) [13], but also Nanog homeobox (NANOG), POU
class 5 homeobox 1 (OCT4), and SRY-box transcription factor 2 (SOX2) [14]. Studies suggest that these
transcription factors, especially TWIST1, can translocate to the nucleus upon increased stiffness of
ECM, represented by collagen I [15], which indicates that ECM has a role in this process.

Oxidative stress, a state of increased reactive oxygen species (ROS) production, affects all
cell systems. It also represents an important factor contributing to the modulation of tumor cell
and microenvironment reactions to chemotherapeutics. Increased ROS may lead to numerous
consequences, such as genetic instability, one of the major characteristics of cancer, and the
modification of lipids by peroxidation [16]. Lipid peroxidation (LPO) with its end-products—reactive
aldehydes—have been increasingly recognized as a biomarker of different diseases, particularly
cancer, where mitochondrial HNE plays an important role [17]. In addition, these reactive aldehydes,
especially 4-hydroxy-2-nonenal (HNE), are involved in different signaling pathways influencing the
cells’ fate (e.g., differentiation, proliferation, or apoptosis) [18,19]. One of the signaling pathways
affected by HNE is NRF2/KEAP1(Nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated
protein 1) [20]. NRF2 is an antioxidant transcription factor that is bound to KEAP1 in its inactive state.
HNE binds to KEAP1 cysteines and thereby releases its inhibition of NRF2. The release of NRF2 causes
its translocation to the nucleus and activation of antioxidant genes’ transcription and consequently
enabling cells to survive oxidative challenge [20].

The present study aimed to elucidate if oxidative stress and HNE-modified collagen I, as a
representative protein of ECM, in combination with HNE-induced chronic stress influence BCSC.
The changes in the frequency of BCSC, antioxidative defense system, and transcriptional and
protein expression of EMT markers were evaluated. These changes indicated that different surface
modifications and chronic stress may bidirectionally modulate BCSC, supporting either differentiation
or stress adaptation.

2. Materials and Methods

2.1. Cell Line and Medium

SUM159 cells (Asterand, Royston, Hertfordshire, UK), estrogen receptor, progesterone receptor,
and Her2negative cell line, with the potential of generating stem-like subpopulation were cultured as
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mammospheres, according to previous publications [1,2]. Briefly, cells were cultured in Mammary
Epithelial Basal Medium (MEBM; Lonza, Basel, Switzerland) supplemented with 10 ng/mL basic
fibroblast growth factor (bFGF), 20 ng/mL epidermal growth factor (EGF, both from Peprotech, Rocky
Hill, Hartford County, CT, USA), 5000 U/mL heparin (Sigma Aldrich, St Louis, MO, USA) and
20 µL/mL B27 supplement (Gibco/Invitrogen, Waltham, MA, USA) at 37 ◦C in a 5% CO2 humidified
atmosphere. Mammospheres larger than 40 µm were collected with 40 µm nylon cell strainers (Corning
Incorporated-Life sciences, Durham, N.C., USA) and used for experiments.

2.2. Collagen Coating

To test cell growth characteristics on an extracellular matrix (ECM), collagen I was used as an ECM
representative protein. Collagen I (Sigma Aldrich, St Louis, MO, USA) was dissolved in acetic acid
(50 mM, Kemika, Zagreb, Croatia), diluted in redistilled sterile water in a final concentration of 2 mg/mL
and used in the native state or modified by 1 or 10 µM HNE (Enzo Life Sciences, Lausen, Switzerland).
Depending on the type of analysis, different formats of cell culture dishes were used with the same
coating conditions: Native or modified collagen to its final concentration of 5 µg/cm2. Thus, coated
cell culture dishes were left to dry in a laminar flow cabinet overnight at room temperature (RT) and
subsequently sterilized under UV light for 20 min. Dot-blot analysis with HNE-histidine monoclonal
antibody was applied to confirm the binding of HNE to collagen I had occurred (Supplementary
Figure S1). After confirmation that HNE did bind to histidine residues of collagen, we proceeded with
evaluating the influence of collagen on measured parameters. Cells were also seeded on uncoated
surfaces, further referred to as polystyrene (PS).

2.3. Cell Seeding and HNE Treatment

Mammospheres were dissociated to a single cell suspension by TrypLE (Gibco/Invitrogen Paisley,
UK), and 10,000 cells/100 µL were plated in pre-coated or uncoated cell culture dishes and left to
adhere for 3 h. Regardless of the cell culture dish format used, the experimental stoichiometry was
maintained in all analyses. The formats of the cell culture dishes were as follows: 96-well microplates
(cell viability and proliferation; TPP, Techno Plastic Products AG, Trasadingen, Switzerland); 6-well
microplates (qRT-PCR, Western blot; Falcon, BD Biosciences, Franklin Lakes, NJ, USA); 8-well glass
chamber slide (immunocytochemical analyses of hormone receptors; Nalgen Nunc Int, Naperville, IL,
USA). Cells were then treated with different concentrations of HNE once, for a single treatment, or
every 2nd day for 10 days, for multiple treatments. For cell viability and cell proliferation assays, these
HNE concentrations varied from physiological (1 to 10 µM) to supraphysiological and pathological (25
to 100 µM). Controls of each growth surface were cultured without HNE. Analyses were performed
after 48 h for single HNE treatments and 10 days for multiple HNE treatments as described for
each analysis below. After the analysis of cell proliferation and cell viability, 10 µM HNE was
selected for further analyses of putative breast cancer stem cell phenotypes, EMT marker expression,
and immunocytochemical analyses of hormone receptors and antioxidative defense system. Untreated
cells of each coating condition served as controls. All the mentioned analyses are described in more
detail below.

2.4. Cell Viability—MTT Assay

The cell viability was determined by an MTT-based assay, EZ4U, following the manufacturer’s
recommendations (Biomedica, Vienna, Austria). Briefly after the treatment, 48 and 10 days after
the seeding, cells were incubated with the MTT dye for an hour, and the absorbance was measured
on a plate reader at 450 nm with a reference wavelength at 620 nm (Easy-Reader 400 FW; SLT Lab
Instruments, GmbH, Salzburg, Austria).
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2.5. Cell Proliferation—3H-thymidine Incorporation Assay (3HT)

The assay was based on the incorporation of radioactively labeled thymidine to the replicating
DNA. The assay was performed as described previously [3]. Briefly, cells were treated as described in
the previous chapter. 3H-thymidine (1 µCi/well) was added to each well 24 h or 9 days after HNE
treatment(s) and left for 24 h to allow thymidine incorporation into the DNA. Cells were then harvested,
and the rate of 3H-thymidine incorporation was measured on a Wallac 1904 DSA liquid scintillation
counter (Perkin Elmer, Waltham, MA, USA).

2.6. Flow Cytometry Analyses of Putative Breast Cancer Stem Cell Phenotypes

For analyses of putative breast cancer stem cell markers, cells were treated as described above.
After 10 days, cells were collected from culture dishes with accutase (PAA Laboratories GmbH, Pasching,
Austria). Cells were then incubated for 5 min at 37 ◦C and rinsed twice with phosphate-buffered
saline (PBS). Cells forming mammospheres during the experiments were singularized with TrypLE
and finally resuspended in MEBM with supplementation for further analyses.

For the Aldefluor assay, cells were washed, counted, and finally resuspended in Aldefluor
buffer [21]. To measure aldehyde dehydrogenase (ALDH) activity, the Aldefluor assay (STEMCELL
Technologies, Grenoble, France) was performed according to the manufacturer’s instructions
and as previously published [21,22]. Briefly, 2 sets of samples with the Aldefluor substrate
BODIPY-aminoacetaldehyde (BAAA) were prepared: (a) control: With diethylaminobenzaldehyde
(DEAB, the specific inhibitor of ALDH) and (b) sample: Without DEAB. Controls were used for
establishing the background fluorescence of these cells and defining the ALDH-positive region on the
Fluorescence Channel 1 (FL1*) vs. the SSC dot plot. The absence of DEAB in the sample group converted
BAAA to its fluorescent product, BODIPY-aminoacetate (BAA), defining the ALDH-positive population.

For analyses of CD44 and CD24 expression, cells were incubated with horse serum dilute 1:20 in
6% bovine serum albumin (BSA)/PBS for 30 min. Aliquots of antibodies anti-CD44 Allophycocyanin
and anti-CD24 Fluorescein isothiocyanate (BD Bioscience, Schwechat, Austria) at a dilution of 1:40 in a
final concentration of 0.08 µg/mL and 5 µg/mL, respectively, were then added and the samples were
incubated at 4 ◦C for 30 min. The cells were washed and stored at 4 ◦C in the dark until the acquisition
on the flow cytometer was performed. The protocol was performed as previously published [2,21].
Cells without staining and isotype controls, all from BD Bioscience, were integrated as controls in
all experiments.

All samples were assayed on an LSRII flow cytometer (BD Bioscience), and the data were
analyzed with the DIVA software version 8.0.1 (BD Bioscience Concorde Business Park 1/E/1/7,
Schwechat, Austria).

2.7. Immunocytochemical Analyses of Hormone Receptors

For immunocytochemical analyses, cells were treated as described above. After 10 days, cells
were fixed in ice-cold methanol for 20 min, dried, and stored until the staining. Cells were subjected to
the antigen retrieval using Tris-EDTA solution, pH 9.0, by heating at 85 ◦C for 10 min to enable correct
epitope folding. The monoclonal mouse anti-human estrogen receptor α (M7047, clone 1D5, DAKO,
Glostrup, Denmark) and monoclonal mouse anti-human progesterone receptor (M3569, clone PgR636,
DAKO, Glostrup, Denmark), both diluted to 1:50 in 1% BSA/PBS, were used. The secondary antibody
EnVision (DAKO, Glostrup, Denmark), was used as recommended by the manufacturer. Finally, the
reaction was visualized by DAB (3,3-diaminobenzidine tetrahydrochloride in organic solvent). Nuclei
were counterstained by hematoxylin. The positive reaction was evaluated and scored by a trained
pathologist (S.Š.) in a blinded manner.



Antioxidants 2019, 8, 633 5 of 18

2.8. Real-Time Quantitative PCR (qRT-PCR) Analyses of EMT Markers

After the cell treatment for 10 days, total RNA was extracted using a TRIzol Reagent (Invitrogen,
Carlsbad, CA, USA) in accordance with the recommendation provided by the manufacturer. Nanodrop
was used to quantify and asses the assay for purity (ThermoScientific, Waltham, MA, USA).
The reverse transcription of one microgram of total RNA was performed using the QuantiTect
Reverse Transcription Kit (Qiagen, Hilden, Germany) following the instructions of the manufacturer.
LightCycler 480 (Roche) was used to perform qRT-PCR. Reactions were performed in 20 µL of
total volume, consisting of 1× SYBR Green I Master Mix (Roche), 20 nanograms of cDNA as
well as 25 µM of each primer (final concentration). All qRT-PCR reactions were conducted in
duplicate, and afterward, the values of the quantification cycle were averaged. The comparative Ct
method was utilized in the calculation of gene expression. Beta-2-microglobulin (B2M) and lactate
dehydrogenase A (LDHA) were used as reference genes with the following primer sequences: B2M
forward 5′TGCTGTCTCCATGTTTGATGTATCT 3′, B2M reverse 5′ TCTCTGCTCCCCACCTCTAAGT
3′ (NM_004048.3), LDHA forward 5′ TGTAGCAGATTTGGCAGAGAG 3′, LDHA reverse 5′

CATCATCCTTTATTCCGTAAAGAC 3′ (NM_005566.4). Primer sequences for fibronectin (FN),
vimentin (VIM), N-cadherin (N CAD), SNAIL, SLUG, and TWIST were previously published [23].

2.9. ROS and Antioxidant Measurements

For ROS and antioxidant measurements, cells were treated as described above. On the 10th day of
experiments, cells were incubated with 2′,7′–dichlorofluorescin diacetate (DCFDA) to allow the dye to
overload the cells. Excess DCFDA was removed after 60 min when the cells were either incubated with
medium alone (control) or with 10 µM HNE. ROS were measured with a Cary Eclipse Fluorescence
Spectrophotometer (Varian Australia Pty Ltd., Mulgrave, Victoria, Australia) at λex 500 nm and λem

529 nm.
For antioxidant measurements, cells were detached from the surface by TrypLE, and pelleted by

centrifugation at the end of the 10-day treatment. Mammospheres were pelleted and dry pellets of all
the experimental groups were stored till analyses. Prior to analyses, cells were lysed by 4 freeze/thaw
cycles and afterward were centrifuged to remove cellular debris. Protein levels were then determined
according to Bradford [24]. The catalase activity was measured according to the method by Goth with
some modifications [25,26]. The activity of catalase was expressed as units per milligram of proteins in
cell lysate (U mg–1).

For the total GSH content, samples were diluted to 0.03 mg/mL and assayed using a modification
of the Tietze method [26,27]. Concentrations of total GSH were expressed as µM of GSH per milligram
of total protein (nmol mg–1).

2.10. Western Blot

In order to perform Western blot analyses, cells were treated for 10 days, as described above. After
10 days, the cells were lysed in RIPA buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% Triton X,
0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS)) containing protease inhibitors (Roche
Diagnostics GmbH, Mannheim, Germany). The protein concentration of the thus obtained supernatant
was quantified according to the Bradford method [24] by measuring absorbance at 595 nm using the
microplate reader Multiskan EX (Thermo Electron Corporation, Shanghai, China) and interpolating
from the standard curve. Protein samples were mixed with Laemmli buffer, boiled for 5 min at
95 ◦C and 40 µg of total proteins were resolved on the Tris-glycine SDS-PAGE gels (9% or 10%) and
transferred to nitrocellulose membranes (Roti®-NC, Carl Roth, Karlsruhe, Germany). Membranes
were stained with Ponceau S solution (Sigma Aldrich, St. Louis, MI, USA) for evaluation of transfer
efficacy and scanned. Following blocking with 5% nonfat milk (Cell Signaling Technology (CST),
Danvers, MA, USA) in Tris-buffered saline (TBS; 50 mM Tris-Cl, 150 mM NaCl, pH 7.6) containing 0.1%
Tween-20 for 1 h, membranes were incubated with primary antibodies overnight at +4 ◦C. The primary
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antibodies used were: Rabbit monoclonal antibodies for NRF2 (CST:#12721), SLUG (CST:#9585), SNAIL
(CST:#3879), NANOG (CST:#4903), OCT4 (CST:#2840), GAPDH (CST:#5174); rabbit polyclonal antibody
for TWIST (Santa Cruz Biotechnology, sc-15393); mouse monoclonal antibody for Vimentin (Dako,
M0725, Glostrup, Denmark). After incubation with horseradish peroxidase-conjugated secondary
species-specific antibodies, immunoreactive bands were visualized using the SuperSignal™West Pico
PLUS Chemiluminescent Substrate (Thermo Scientific, Rockford, IL, USA) and Alliance 4.7 (UVITEC,
Cambridge, UK). The analysis software Image Studio Lite (LI-COR, Lincoln, NE, USA) was used for
quantification of levels of protein expression. Normalization was made with total proteins (Ponceau S
staining) and with GAPDH as a loading control. Results are expressed as relative expression according
to non-treated mammospheres (PS 0).

2.11. Statistical Analysis

All experiments were performed in at least 2 independent experiments with technical
quadruplicates. For both single and multiple HNE treatments, inhibitory concentrations of 50%
(IC50) were calculated using non-linear regression curve fitting log (inhibitor) vs. response and
variable slope with a least square (ordinary) fit, using GraphPadPrism 5 software (GraphPad Software,
San Diego, CA, USA). Statistical analyses were performed using two-way ANOVA with Tukey’s post
hoc test. Values of p < 0.05 were considered significant.

3. Results

3.1. Effects of Single and Multiple Treatments of HNE on SUM159 Cells Growth

We have investigated the effects of single and multiple treatments of HNE as well as the
influence of ECM represented by collagen type I, on the SUM159 growth. SUM159 cells grown in
mammosphere-inducing conditions formed spheres on PS, in contrast to the adherent spread-like
pattern observed on collagen-coated surfaces (Figure 1).
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Figure 1. SUM159 cell growth morphology on different growth surfaces. (A) SUM159 cells in sphere
inducing medium on low attaching growth surface (polystyrene (PS)) and (B) SUM159 cells growth in
sphere inducing medium on the collagen I coated surface.

The MTT assay showed that SUM159 cell growth in mammosphere inducing conditions on
PS had significantly lower viability regardless of HNE concentration used in comparison to coated
surfaces and regardless of the time spent in the culture (3 and 10 days) (p < 0.05; Figure 2A,B). There
was no difference in viability between cells grown on native or HNE-treated collagen when cells
were treated with a range of HNE concentrations. The difference was observed in the concentrations
causing inhibition, while 100 µM HNE showed inhibition between 50% to 60% after a single treatment,
the viability was diminished at 50 µM HNE.
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Figure 2. Effects of 4-hydroxy-2-nonenal (HNE) on SUM159 cell growth. SUM159 were exposed to
single (A,C) and multiple HNE treatments (B,D). Their viability was evaluated by MTT (A,B), and their
proliferation was evaluated by 3H-thymidine incorporation assay (C,D).

Next, the proliferation of SUM159 cells with the 3HT incorporation assay was assessed
(Figure 2C,D). While the viability assay distinguished growth on PS and collagen, native, and
HNE treated, the proliferation assay did not show any difference in proliferation rates on these surfaces.
Inhibition of cell proliferation occurred at similar concentrations of HNE for all growth surfaces (IC50

valued presented in Table 1). Multiple HNE treatment did not show differences in proliferation rate
on different surfaces. Total growth inhibition was observed at 50 µM HNE and above. Interestingly,
25 µM HNE, which was IC50 for single HNE treatment, was stimulating for multiple HNE treatments
regardless of the growth surface, reaching more than 200% of the control value. Based on these results,
10 µM HNE was selected, as it did not alter the growth of mammospheres in either single or multiple
treatments but did promote cell growth on native and HNE-modified collagen-coated surfaces.

In summary, the basic difference between different growth surfaces was observed by 50% inhibitory
concentration (IC50) measured by MTT and 3H-thymidine assay (Table 1). In single HNE treatment,
the IC50 could not be determined in MTT assay as there was no total inhibitory concentration applied.
In the 3HT assay, a slight protective effect was observed for native collagen, and collagen treated with
1 µM HNE (24.05 µM for PS, and 25.54 and 24.83, respectively), while a slight decrease was observed
on collagen with 10 µM HNE (23.60 µM). Multiple HNE treatments assayed by MTT sensitized the
cells and decreased the IC50 to 44.42 µM HNE on PS and to 28.78 µM, 27.74 µM and 26.48 µM for
collagen-coated surfaces, native and treated with 1 µM and 10 µM HNE, respectively, while 3HT assay
showed no difference.
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Table 1. Concentrations of HNE being inhibitory for 50% of the treated cells (IC50).

Growth Surface MTT IC50 (µM HNE) 3HT IC50 (µM HNE)

Single HNE treatment

PS n.a. 24.05
Collagen I n.a. 25.54

Collagen I + 1 µM HNE n.a. 24.83
Collagen I + 10 µM HNE n.a. 23.60

Multiple HNE treatments

PS 44.42 44.59
Collagen I 28.78 45.04

Collagen I + 1 µM HNE 27.74 44.61
Collagen I + 10 µM HNE 26.48 44.64

n.a.—not applicable, concentrations used in the MTT assay did not cause total inhibition. PS—polystyrene.

3.2. Flow Cytometry Analyses for Putative Breast Cancer Stem Cell Phenotypes

In order to study possible changes in putative cancer stem cell markers due to HNE-pretreated
collagen and due to multiple HNE treatments, the expression of CD44, CD24, and ALDH was
assessed. The percentage of CD44+CD24–/low (results not shown) was concordant with our previous
results [21]. There were no significant changes in this phenotype during the treatment. On the other
hand, the expression of ALDH-positive cells was different in regard to different growth surfaces and
treatment conditions. As presented in Figure 3, untreated cells grown as a mammosphere culture
showed the highest proportion of ALDH+ cells (10.5%). Growth on collagen decreased ALDH+ cells
to 2.7%, and treatment of collagen with 1µM and 10 µM HNE additionally decreased ALDH+ cells to
0.2% and 0.1%, respectively. Next, HNE treatment was performed in order to assess ALDH activity
under stress conditions. There was a decrease observed in the ALDH activity (2.9%) in mammospheres
treated with HNE every second day for 10 days. When cells were grown on native collagen, there were
small differences between the untreated and HNE-treated cells (2.7% vs. 2.4%). However, in the cells
grown on HNE-pretreated collagen and treated with HNE every second day, an increase in ALDH
activity was observed compared to the untreated cells on the same growth surface (untreated 0.2% vs.
treated 0.9%), with even more pronounced difference of collagen pretreated with 10 µM HNE (0.1% vs.
3.8%). Therefore, our results indicated that HNE-modified collagen, in combination with chronic HNE
treatment, caused concentration-dependent responses in ALDH positivity.

3.3. Expression of Hormone Receptors

As HNE caused concentration-dependent ALDH level changes, we wanted to asses if HNE
collagen could induce differentiation. Therefore, we have determined estrogen and progesterone
markers (ER and PR) by immunocytochemistry (Figure 4). The ER and PR positivity were validated by
an experienced pathologist (S.Š.) by blindfold analysis. Mammospheres were completely negative
for ER, while there was some insignificant positivity for PR, regardless of HNE treatment. On the
other hand, cells grown on all collagen coatings had ER positivity. The highest ER positivity was
observed on native collagen and pretreatment with HNE decreased the number of ER-positive cells
in a concentration-dependent manner (40% for 1 µM HNE and 11.4% for 10 µM HNE, respectively).
Moreover, treatment with 10 µM HNE did not change already-observed patterns with the exception of
collagen pretreated with 1 µM HNE, where the treatment additionally increased the percentage of
positive cells (40% vs. 80.2%). PR positivity was similar to ER, very low on PS. Growth on collagen
increased PR positivity, with the highest levels on collagen pretreated with 1 µM HNE, and the lowest
for 10 µM HNE. HNE treatment showed different trends, which were surface-specific: Increased
PR positivity on PS and collagen pretreated with 1 µM HNE, decreased on native collagen, while it
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did not affect PR positivity on collagen pretreated with 10 µM HNE. These results are in line with
ALDH results.
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Figure 3. Effects of multiple HNE treatments on the expression of stem cell marker aldehyde
dehydrogenase (ALDH) in SUM159 cells. SUM159 cells were cultured for 10 days on different growth
surfaces: Polystyrene, PS (A), native collagen (B), collagen pretreated with 1 µM HNE (C), and on
collagen pretreated with 10 µM HNE (D). Chronic stress was stimulated by the addition of 10 µM HNE
every 2 days for 10 days in total on different growth surfaces: Polystyrene, PS (E), native collagen (F),
collagen pretreated with 1 µM HNE (G) and on collagen pretreated with 10 µM HNE (H). For each
panel, both the control and test samples are presented. Control is performed with the addition of
diethylaminobenzaldehyde (DEAB), which is an inhibitor of ALDH.

3.4. Antioxidants and ROS

Further, as cells can adapt to the low level of stress, we have examined parts of the antioxidant
defense system, particularly the levels of GSH and the activity of catalase (Figure 5). Catalase activity
was the highest in mammospheres, and HNE treatment significantly reduced its activity. In cells
grown on collagen, native HNE-pretreated ones had significantly lower catalase activity than in
mammospheres (p < 0.001). HNE treatment reduced the catalase activity on native collagen while
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increasing the activity on collagen pretreated with 1µM HNE. Treatment with HNE decreased catalase
activity in mammospheres and cells grown on native collagen.
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Figure 4. The presence of estrogen (ER) and progesterone (PR) receptors on SUM159 after multiple
HNE treatments. After 10 days of treatment with 10 µM HNE every two days, positivity for ER (A)
and PR (B) was evaluated on 1000 cells by the experienced pathologist (S.Š.). All results are expressed
as percentages on a 1000 cell count, a—significantly different compared to the control on PS, at least
p < 0.05, specified in the text; b—significantly different compared to HNE-treated PS at least p < 0.05,
specified in the text; *** p < 0.001 control vs. HNE-treatment on the same growth surface.
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Figure 5. Effects of multiple HNE treatments on the catalase activity (A), Glutathione (GSH) levels (B),
and (C) reactive oxygen species (ROS) in SUM159 cells grown on different surfaces. a—significantly
different compared to the control on PS, at least p < 0.05, specified in the text; b—significantly
different compared to HNE-treated PS at least p < 0.05, specified in the text; *** p < 0.001 control vs.
HNE-treatment on the same growth surface.
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Total GSH levels followed completely different patterns in comparison to catalase, which was
expected as HNE is metabolized through the GSH system by binding to GSH [28]. Interestingly,
the total GSH levels were the lowest in control mammospheres on PS. Growth on collagen, native, or
HNE pretreated, increased GSH levels significantly (p < 0.001). HNE treatment decreased total GSH
levels on native collagen, and this level was decreased when compared to mammospheres treated
with HNE. Interestingly, the two tested antioxidants did not show similar patterns. As the main HNE
scavenger GSH was increased with HNE treatment, but also with growth on collagen, native or HNE
pretreated, indicating the need for this part of the antioxidant system.

Although both catalase activity and GSH levels varied on different growth surfaces, ROS levels
were not changed on different surfaces. HNE addition to cultures significantly increased levels of ROS
on all surfaces, with a more pronounced concentration-dependent increase on HNE-pretreated collagen.

3.5. EMT Markers

Changes in the expression of the selected EMT markers were assessed by qPCR, and the results
are presented in Figure 6. Among the tested markers, fibronectin, and SLUG did not show any
significant changes. The expression of N CAD was significantly increased only in HNE-treated SUM159
cells grown on native collagen (p = 0.0096) and collagen pretreated with 10 µM HNE (p = 0.0185)
when compared to PS. Opposite patterns were observed for vimentin depending on the growth
surface conditions and HNE treatment. Repeated HNE-treatment significantly decreased vimentin in
mammospheres (p = 0.0277). When comparing different growth surfaces/conditions to PS, there was a
slight decline within non-treated cells in vimentin levels with increasing HNE concentration, while
in HNE-treated cells, surface pretreatments increased vimentin levels especially in cells grown on
collagen pretreated with 10 µM HNE (p = 0.0416). Similar patterns were observed for NANOG, SNAIL,
and TWIST. While multiple HNE-treatments significantly decreased levels of NANOG (p = 0.0108),
SNAIL (p = 0.033), and TWIST (p = 0.0004) in mammospheres and NANOG (p = 0.0219) and TWIST
(p < 0.0001) in cells grown on collagen, a slight increase can be observed for all three proteins in cells
grown on collagen pretreated with 10 µM HNE. In addition, HNE pretreatment of collagen adversely
affected the levels of NANOG, SNAIL, and TWIST in non-treated and HNE-treated cells when growth
surfaces were compared to PS. Thus, in cells grown on collagen pretreated with 1 µM HNE, NANOG
(p = 0.0433) and TWIST (p = 0.0027) significantly decreased in non-treated SUM159 cells. The growth
on collagen pretreated with 10 µM HNE additionally decreased the levels of NANOG (p = 0.006),
SNAIL (p = 0.0313), and TWIST (p = 0.0002) while in HNE-treated cells, the same growth surface
increased the levels of these proteins, especially NANOG (p = 0.0435) and SNAIL (p = 0.0063). Similarly,
multiple HNE treatment decreased the expression of OCT4 in cells grown on PS (p = 0.011) and on
native collagen (p = 0.047). Depending on the different growth surface conditions to PS, the levels of
OCT4, while revealing similar patterns to NANOG, SNAIL, and TWIST in non-treated cells, differed
when cells were exposed to multiple HNE treatments.

As expected, EMT markers were the highest in mammospheres, and HNE treatment either caused
no changes or caused a high decrease. Further, collagen and its pretreatment with HNE changed EMT
markers, but combinations of HNE treatments and collagen pretreated with 10 µM HNE increased
some of the markers to the levels found in mammospheres.
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 Figure 6. Expression of epithelial to mesenchymal transition (EMT) genes, including N-cadherin (N
CAD), vimentin (VIM), fibronectin (FN), NANOG, OCT4, SLUG, SNAIL, and TWIST. The relative
mRNA expression was analyzed by qRT-PCR. Bars represent mean +/–SEM of two biological replicates.
a—significantly different compared to the control on PS, at least p < 0.05, specified in the text;
b—significantly different compared to HNE-treated PS at least p < 0.05, specified in the text; * p < 0.05,
*** p < 0.001, **** p < 0.0001 both control vs. HNE-treatment on the same growth surface.

3.6. Western Blot

In order to assess if multiple treatments with HNE caused an increase in antioxidant transcription
factor NRF2 levels and to validate mRNA analysis of EMT markers, we performed Western blot
analyses of these proteins (Figure 7). For NRF2, it was shown that HNE did not affect its levels when
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SUM159 cells were grown as mammospheres on PS. In contrast to PS, on collagen, native, or HNE
treated, SUM159 cells significantly increased NRF2 levels regardless of HNE treatment (p < 0.02 and
p < 0.0001, for non-treated and HNE-treated, respectively). Multiple HNE treatments additionally
increased NRF2 levels in SUM159 cells grown on native collagen and collagen pretreated with 10 µM
HNE (p < 0.0001 and p = 0.0083). In the case of EMT markers, their reaction patterns differed. SLUG
and SNAIL did not show any differences regardless of growth surface and HNE treatment. Vimentin
was significantly increased in non-treated SUM159 cells grown on native collagen (p = 0.0003) and
collagen pretreated with 1µM HNE (p = 0.001) and in HNE-treated cells grown on native collagen
(p = 0.0293) and collagen pretreated with 10 µM HNE (p = 0.0307) when compared to PS. NANOG
showed a similar pattern as vimentin when observing the differences between mammospheres (PS)
and different cultivating surfaces. Significant increase of NANOG was observed for both non-treated
and HNE-treated cells grown on native collagen (p = 0.0055 and p = 0.0102) and collagen pretreated
with 1 µM HNE (p = 0.0029 and p = 0.0009), but also without differences between non-treated and
HNE-treated cells grown on the same growth surface. HNE seems to be important in regulating the
levels of TWIST, regardless of HNE treatment. A significant HNE concentration-dependent increase
of TWIST was observed for non-treated cells grown on collagen pretreated with 1 and 10 µM HNE
(p = 0.0437 and p < 0.0001). In the group of multiple HNE treatments, TWIST was increased on all
collagen surfaces when compared to PS (p < 0.001). Interestingly, multiple HNE treatments increased
TWIST levels in cells grown on native collagen (p = 0.0003) but decreased them significantly on
collagen pretreated with 10 µM HNE (p = 0.0014). Among all assayed proteins, OCT4 was the only
one significantly increased by multiple HNE treatments on PS (p = 0.0128). Additionally, growth on
pretreated surfaces increases the levels of OCT4. While in non-treated cells, its levels were increased
for all growth surfaces (p < 0.0005) in comparison to PS, in HNE-treated cells, OCT4 levels were
significantly increased when cells were grown on collagen (p = 0.0102) and collagen pretreated with
10 µM HNE (p = 0.0013). Surprisingly, HNE treatment significantly decreased OCT4 on collagen
pretreated with 1 µM HNE, but both of these levels were higher than on PS.
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Figure 7. Western blot analyses. Representative blots and relative expression of different proteins:
NRF2, VIM, TWIST, SLUG, SNAIL, NANOG, OCT4 are shown. Two-way ANOVA with Tukey’s post
hoc test was used to test the differences between groups: a—significantly different compared to the
control on PS, at least p < 0.05, specified in the text; b—significantly different compared to HNE-treated
PS at least p < 0.05, specified in the text; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 all control vs.
HNE-treatment on the same growth surface.

4. Discussion

Cells can, to a certain extent, adapt to numerous stress conditions, and, therefore, the aim of this
study was to evaluate whether oxidative stress caused by lipid peroxidation representative end-product
HNE has the capability to cause specific molecular changes of tumor cells and impact the frequency of
BCSC. Numerous factors may affect tumors, such as oxidative stress, which is a risk factor in tumor
initiation and proliferation but can modify tumor microenvironment components, such as proteins
and cells, which can further affect tumors. Additionally, a subpopulation of tumor cells, CSC, are
increasingly recognized as the main factor of tumor growth and recurrence. Until now, these factors
were studied separately. Our findings suggest that HNE modifications of collagen I, in combination
with chronic exposure to HNE, may cause changes in the distribution of putative BCSC. Oxidative
stress may cause either cell differentiation or, when chronic, an increase of BCSC population and
up-regulation of EMT markers.

We have studied the influence of oxidative stress and lipid peroxidation on breast cancer cell
line SUM159, modeling both the direct influence of HNE and combinations with modifications of
collagen I. The microenvironment of each tumor is unique and the changes in this environment
due to inflammation and oxidation processes are complex. Therefore, it is challenging to model
these modifications. Oxidative stress is involved in mutagenesis, which is a driving force of (breast)
cancer initiation and progression, especially in hereditary breast cancer, where the mere loss of
BRCA1 increases ROS [29]. Therefore, it is not surprising that oxidative stress and lipid peroxidation
biomarkers are changed in breast cancer patients [30]. HNE is also recognized as a biomarker of
oxidative stress, and as such, is involved in (breast) cancer progression [31–33]. In accordance with its
role are concentrations found in human plasma, where concentrations ranging from 0.1 µM to 1 µM
are considered physiological, while 1 µM to 10 µM are considered as ”where pathology begins” [34].
Taken that hereditary mutations in breast cancer, as well as conventional cancer treatment strategies,
such as chemo- and radiotherapy, cause increases in ROS, which can, in turn, cause lipid peroxidation
and HNE formation, these oxidative processes may affect numerous signaling molecules such as HNE
activation of NRF2 transcription factor. In order to study the influence of ECM, we have chosen
collagen I, as it can influence some of the EMT markers [15]. We show in our study that collagen may
act as a protective agent on SUM159 cell viability, regardless of previous HNE modifications of the
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collagen. In acute HNE treatment, cell viability was affected at rather higher HNE concentrations (IC50

about 100 µM HNE), whereas proliferation was inhibited already at lower HNE concentrations (25 µM),
thereby indicating modulation of cell growth and survival. Previously, we observed similar effects
of HNE with collagen oxidized by hydroxyl radical instead of HNE [35], indicating that oxidative
modifications of collagen I are an important factor when studying cell responses to different stimuli or
inhibition factors.

As expected, chronic HNE treatment had a higher impact on cells. Interestingly, proliferation was
generally lower in tested cultures than in acute stress, with the exception of 25 µM HNE. This decrease
in the proliferation rate after 10 days could be a consequence of increased cell density. In support of this
conclusion is the proliferation burst with 25 µM HNE, indicating that these cells adapted and survived
the treatment, and, due to the initial decrease in proliferation, now were not spatially limited to grow.
Notably, 1 µM HNE, which was considered the physiological concentration, caused differentiation,
observed by a decrease in BCSC markers and an increase in hormone receptors, effects that have been
described for colon cancer cells and HL-60 cells as well [36,37]. Interestingly, the BCSC marker that we
show here, ALDH activity, is the enzyme that can detoxify HNE, particularly ALDH2, which is located
in the mitochondrial matrix [17].

Next, we aimed to investigate the influence of chronic stress and HNE modifications of collagen
on the expression and protein levels of EMT markers as well as antioxidant parameters measured by
catalase activity, GSH levels, and NRF2 antioxidant transcription factor level. Interestingly, although
collagen itself, regardless of HNE pretreatment, lowered ALDH, it did not influence EMT markers in
the same manner. For example, fibronectin expression was unaffected by different growth surfaces
nor by HNE treatment. A similar pattern of expression and protein levels was observed for vimentin,
which was increasing with HNE pretreatment concentrations. SLUG was not affected by both mRNA
and protein levels. Similarly, SNAIL expression pattern changes were not followed by changes in
protein level. Interestingly, expression patterns of TWIST and OCT4 were not followed by protein levels,
which were higher in cells on collagen, native, or HNE-pretreated, than on PS. EMT was recognized as
an important factor in cancer progression because it represented a conversion between differentiated
epithelial cells into migratory mesenchymal cancer cells [38]. The plasticity of CSC enabled them to
follow transition traits between EMT and MET, thereby contributing to the metastatic potential of
the primary tumor [39]. While many studies link EMT and cancer development and malignancy [40],
the influence of oxidative stress/ROS and reactive aldehydes are simply not investigated enough [41].
Numerous factors can stimulate these transitions, and, as shown here, one of them may be chronic
oxidative stress.

It was shown previously that EMT might be abolished by the addition of antioxidant curcumin,
underscoring the possible role of redox signaling in this process [42]. Therefore, in addition to EMT
markers, the levels of GSH, catalase activity, and ROS were measured after HNE treatment and the
antioxidant transcription factor NRF2. Interestingly, while catalase activity was the highest in control
mammospheres on PS, and decreased by growth on collagen, native or HNE pretreated, GSH levels
were significantly increased by both HNE treatment and growth on collagen. It is not surprising that
GSH levels were increased by HNE as this is the major scavenger of HNE, and the first step in HNE
detoxification [43], while the thioredoxin system is inhibited by HNE and does not contribute to its
detoxification [44]. Finally, and in support of GSH increase, were the levels of ROS and NRF2. In all
control groups, ROS were at the same level, while the addition of HNE increased ROS, which was
additionally increased by HNE pretreated collagen. Following the ROS pattern, growth on collagen
increased NRF2 levels, and HNE treatments additionally increased NRF2 on native collagen and
collagen pretreated with 10 µM of HNE. HNE is known to activate NRF2 by releasing it from KEAP1
inhibition, and once NRF2 is freed, it translocates to the nucleus [20]. In the nucleus, NRF2 activates
transcription of antioxidant genes, among which are glutamate-cysteine ligase, catalytic subunit,
and glutamate-cysteine ligase, a modifier subunit, and an enzyme which catalyzes the first step in
GSH synthesis [20].



Antioxidants 2019, 8, 633 16 of 18

Finally, a recent study indicated that EMT is not the limiting factor for metastasis, but contributes
greatly to chemoresistance [45]. Taking all the results into account, our findings indicate that under
chronic stress, EMT markers remain elevated and in combination with elevated antioxidant factors
such as GSH and NRF2, which can contribute to the maintenance of the BCSC phenotype and
therapy resistance.

5. Conclusions

Our results suggest that chronic oxidative stress acts as a double-edged sword in supporting the
BCSC phenotype. Low levels of HNE can increase differentiation markers in BCSC. In contrast, higher
levels and chronic HNE presence increased GSH and NRF2, thereby increasing antioxidative protection.
Concurrently, some protein EMT markers are increased, and hormone levels were decreased, thereby
supporting the BCSC phenotype and its resistance to oxidative stress. Finally, a better understanding
of the role of chronic oxidative stress in the modulation of the breast cancer microenvironment and its
impact on breast cancer differentiation may eventually allow for the development of more effective
therapeutic strategies.
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