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Abstract: Machines usually employ a guess-and-check strategy to analyze data: they take the data,
make a guess, check the answer, adjust it with regard to the correct one if necessary, and try again
on a new data set. An active learning environment guarantees better performance while training
on less, but carefully chosen, data which reduces the costs of both annotating and analyzing large
data sets. This issue becomes even more critical for deep learning applications. Human-like active
learning integrates a variety of strategies and instructional models chosen by a teacher to contribute
to learners’ knowledge, while machine active learning strategies lack versatile tools for shifting
the focus of instruction away from knowledge transmission to learners’ knowledge construction.
We approach this gap by considering an active learning environment in an educational setting.
We propose a new strategy that measures the information capacity of data using the information
function from the four-parameter logistic item response theory (4PL IRT). We compared the proposed
strategy with the most common active learning strategies—Least Confidence and Entropy Sampling.
The results of computational experiments showed that the Information Capacity strategy shares
similar behavior but provides a more flexible framework for building transparent knowledge models
in deep learning.

Keywords: item information; pool-based sampling; multiple-choice testing; item response theory;
active learning; deep learning

1. Introduction

The passive learning technique normally requires an enormous amount of labeled data that has
to provide the correct answers (see Figure 1). An active learning environment guarantees better
performance while training on less, but carefully chosen, data which reduces the costs of both
annotating and analyzing large data sets [1–10]. In uncertainty sampling, which has been reported to
be successful in numerous scenarios and settings [11,12], a machine requests instances which cause
uncertainty. This leads to the optimal leveraging of both new and existing data [13].

The process of querying the information imitates a classroom instructional method that
actively engages learners in the learning process [14–16]. They replace or adapt their knowledge
and understanding based on prior knowledge in response to learning opportunities provided by
a teacher. This contrasts with a model of instruction whereby knowledge is transmitted from the teacher
to learners, which typically presents passive learning. Active learning in an educational setting
integrates a variety of strategies and instructional models chosen by a teacher to contribute to learners’
knowledge [17].
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Figure 1. The concepts of learning environments: Passive vs. Active.

Hence, machine active learning strategies are still expected to be more versatile and self-sustaining.
In particular, deep neural networks demonstrate remarkable performance on particular supervised
learning tasks but are not good at telling when they are not sure while working in an active learning
environment. The output from the softmax layer usually tends to be overconfident. Besides, deep neural
networks have grown so complex that it seems practically impossible to follow their decision-making
process [18].

In this study, we intend to inspect humans and machines reasoning processes [19–23] in order
to understand how machines make predictions in an active learning environment. Rather than
improving performance, we explored whether we can explain how machines come to decisions by
imitating human-like reasoning in multiple-choice testing [24–29]. We suggest a new uncertainty
sampling strategy based on the four-parameter logistic item response theory (4PL IRT) [24] we
call Information Capacity. The strategy guarantees the performance similar to the most common
uncertainty sampling techniques—Least Confidence and Entropy Sampling—but allows creating more
transparent knowledge models in deep learning.

In deep neural networks, we have little visibility into the understanding of how models come to
conclusions. This happens because we do not know how learning is supposed to work. While training
a model, we iterate with better data, better configurations, better algorithms, and more computational
power, although we have little knowledge why that model converges slowly and generalizes poorly.
As a result, we do not have much control over rebuilding that model—it is not transparent [18,30,31].

Information Capacity brings with it a new interpretation of learning processes to enlighten
“black-box” models. In contrast to Least Confidence and Entropy Sampling, the proposed strategy
relies on neural network architectures to model learners’ behavior, where neurons or network weights
of network classifiers are considered to be a group of learners with different proficiency in classifying
learning items. Information Capacity ensures more flexible deep architectures with explainable
and controllable learning behavior, not restricted to connectionist models.

Related Work

• Deep active learning. Active learning of deep neural models has hardly been considered to date.
The prominent related studies report minimizing test errors and computational efforts [32–36],
taking some directions towards interpretability in deep learning [37]. This study approaches
another major issue within the context of transparency—a lack of reasoning in deep neural models.

• IRT-based deep learning. Item response theory has been successfully used in solving machine
and deep learning problems [38–41]. They mostly focus on improving generalization ability
through optimizing the parameters of IRT models. Rather than optimizing hyperparameters [42]
via IRT model-fitting, we aimed to find meaningful interpretations of deep networks reasoning
with learning behaviors.

• Meta active learning. The reported studies mostly focused on increasing the accuracy of
classification with adaptive optimization schemes [1,5,43]. Instead, we intend to simplify an active
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learning process by integrating a set of evolving learning behaviors into learning models while
improving their transparency.

2. Results

2.1. Design of Experiments

We built a SGD-based CNN classifier with two convolutional layers with a ReLU activation
and one dropout layer ending with a softmax layer in PyTorch. The first convolutional layer filters
the 1× 10 input image with the square kernel of size 5. The second convolutional layer takes as input
the pooled output of the first convolutional layer with a stride of 2 pixels and the square kernel of
size 5. An SGD optimizer with learning rate 0.01 and momentum 0.5 was trained on nepoch = 10 with
nbatch = 64 and tested with nbatch = 1000.

We tested the CNN model on the MNIST and Fashion MNIST datasets. From each dataset
we randomly took mtrain = 10,000 examples for training and mtest = 10,000 examples for testing.
The active learning environment was created with three labeled pool |L| = {100, 500, 1000} with fifty
rounds nround = 50 and hundred queried examples |LS| = 100.

The proposed Information Capacity strategy was implemented in line with the two baseline
algorithms—Least Confidence and Entropy Sampling. Each experiment was repeated nrun = 10 in
order to produce statistically significant estimates.

2.2. Analysis of Experiments

The parameters of the proposed strategy in training the model defined clearly interpretable
behavior of learners during multiple-choice testing. The learners (network weights) guessed correctly
with the probability ai = 0.1 on the item (labeled example) i of the difficulty βi = 4. We assumed
that there was no penalty for guessing announced. The item discrimination parameter αi = 0.25
reflects how well an item discriminates among the learners located at different points θj along
the continuum. These values for parameters are chosen to minimize the maximum of the information
capacity of the items in L but, at the same time, avoid possible inaccuracies caused by machine
precision when the informativeness measure values are approaching zero and become imperceptible
for different classes.

Implemented guessing behavior reflects “noise” in information. Therefore, a nonzero ai reduced
the amount information available for locating learners on the θ continuum. In addition, answering
the item i, the learners with locations at θj did not have a success probability equal to 1 but bi = 0.9
due to partial forgetting. The locations θj < βi present lower level learners, while the locations θj ≥ βi
describe higher level learners. The given values for the parameters αi, βi, ai, bi define the behavior
of learners responding to the items in accord with the item information function (see Section 3) that
presents the amount of information each item provides.

The experiments confirmed that Information Capacity with pre-defined learning behavior can
represent the baseline active learning strategies (see Figures 2 and 3). The values of accuracy on testing
over rounds mean± std are given in Tables 1 and 2.

The similarity in learning behavior for different subsets of the MNIST and Fashion MNIST datasets
pointed to the conclusion that Information Capacity relies on neural network architectures to model
learners’ behavior. It can be explained by the fact that decisions on classification tasks are made
at the output layer of a network, but depended on weights (learners) which were set at hidden layers.
With increasing amount of labeled pool |L| the similarities between the accuracy curves for different
strategies become stronger (see Tables 1 and 2).

We applied a one-sided Wilcoxon test [44] with Bonferroni correction [45,46] for each round
to confirm a lack of statistically significant differences between the three strategies in the accuracy
values on testing. Since the p-value for each round turned out to be close to 1, we have a sufficient
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reason to accept the null hypothesis. Consequently, the similarities between the accuracy curves in
Figures 2 and 3 are statistically significant.
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Figure 2. The accuracy curves on MNIST for different numbers of labeled pool: (a) |L| = 100.
(b) |L| = 500. (c) |L| = 1000.

10 20 30 40 50
round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

(a) The number of labeled pool = 100

Information capacity
Entropy sampling
Least Confidence

10 20 30 40 50
round

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

(b) The number of labeled pool = 500

Information capacity
Entropy sampling
Least Confidence

10 20 30 40 50
round

0.50

0.55

0.60

0.65

0.70

0.75

0.80

ac
cu

ra
cy

(c) The number of labeled pool = 1000

Information capacity
Entropy sampling
Least Confidence

Figure 3. The accuracy curves on Fashion MNIST for different numbers of labeled pool: (a) |L| = 100.
(b) |L| = 500. (c) |L| = 1000.

Table 1. The values of accuracy on testing over rounds mean± std on MNIST.

Strategy |L| = 100 |L| = 500 |L| = 1000

Information Capacity 0.8135± 0.0254 0.8714± 0.0279 0.9153± 0.0117
Entropy Sampling 0.8071± 0.0259 0.8688± 0.0264 0.9133± 0.0141
Least Confidence 0.8182± 0.0276 0.8727± 0.0275 0.9156± 0.0126

Table 2. The values of accuracy on testing over rounds mean± std on Fashion MNIST.

Strategy |L| = 100 |L| = 500 |L| = 1000

Information Capacity 0.5646± 0.0399 0.6279± 0.0397 0.6779± 0.0245
Entropy Sampling 0.5499± 0.0362 0.6252± 0.0401 0.678± 0.0254
Least Confidence 0.5615± 0.0387 0.6273± 0.04 0.677± 0.0255

2.3. Discussion

We took Least Confidence and Entropy Sampling for comparison for two reasons. First,
these active learning strategies are used as baseline sampling techniques for more complex approaches
adopted in deep active learning. Second, Information Capacity shares some similarity with
them—it finds yi which range over all possible labels (Entropy Sampling) with the least information
capacity (Least Confidence).

As progress on improving performance in deep learning has come at the cost of transparency,
we find this approach particularly beneficial. Information Capacity allows learners to exhibit different
learning behaviors with regard to the IRT hyperparameters. In the experiments, they were chosen
in a certain way to rule out the reasoning behind the Least Confidence and Entropy Sampling
strategies. In particular, we modeled uncertainty with a group of learners, who adopted both guessing
and forgetting strategies (ai > 0 and bi < 1) to classify “hard” items (βi > 2). In addition, it was
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difficult to assess how strong or weak the learners were (θj < βi or θj > βi) because the value of
discrimination factor was low αi < 0.5. No penalty for guessing p = 0 delivered less predictable
behavioral observations.

As we have seen, Least Confidence and Entropy Sampling can be interpreted by the scenario in
which each learner (neuron) in a neural network shares the same behavior. Considering the complexity
of deep networks, these backbone strategies seem limited. For increasing the transparency of deep
learning process, different combinations of the IRT parameters can be used to construct a variety
of educational scenarios and learning strategies with strong or weak learners including learning in
groups [47–49].

The analysis of different neural network architectures with regard to learning behaviors is beyond
the scope of this study. However, we hope that our presentation of neural networks will encourage
further research exploring novel neural networks building groups of learners with learning behavior
which is not limited to gradient-based methods and primitive connectionist models.

3. Materials and Methods

3.1. Problem Statement

Let X be a feature space and Y be a label space. Let P(X, Y) be an unknown underlying
distribution, where X ∈ X , Y ∈ Y . We use labeled training set Sm = (xi, yi) of m labeled
training samples to select a prediction function f ∈ F , f : X → Y so as to minimize the risk
R`( f ) = E(X,Y)[`( f (x), y)], where `(·) ∈ R+ is a given loss function. For any labeled set L (training
and testing), the empirical risk over L is given by:

r̂L( f ) =
1
|L|

|L|
∑
i=1

`( f (xi), yi).

In a pool-based setting [7,33], an active learner chooses examples from a set U = m − L of
unlabeled samples according to a query function S. Query functions often select points based on
information inferred from the current model fs, the existing training set |L|, and the current pool |U|.
The aim is to accurately train the model for a given number of labeled points |LS|.

We consider a class B of learning behaviors during testing, where each behavior B ∈ B represents
a hypothesis class containing all learners fs ∈ B, where s defines a set of parameters in a testing
framework for making behavioral observations.

3.2. Testing Framework

We are interested in measuring classification proficiencies of a group of learners (neurons
or network weights). Although it seems impossible to directly observe the level of proficiency (working
knowledge), we can infer its existence through behavioral observations in a classroom. The learners are
given an instrument containing several items (labeled examples) i.e., multiple-choice tests [27,28,50–52].
The responses to this instrument constitute the behavioral observations.

Item Response Theory [24,28,53–56] suggests a variety of models to assess the distance between
the learner and the item locations as it clearly defines the learner’s correct response. This means that
items located toward the right side have difficulty β. They require a learner to have greater proficiency
θ to correctly answer items located on the right side than items located on the left side. In general,
items located below 0 are “easy” while items above 0 are “hard”.

In this study, we focused on the four-parameter logistic item response theory (4PL IRT) model
which can be presented as [24]:

p(yij = 1|θj, αi, βi, ai, bi) = ai +
bi − ai

1 + exp(−αi(θj − βi))
, (1)
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where p(yij = 1|θj, αi, βi, ai, bi) is the probability of providing the correct response yij = 1 to an item i
by a learner j with the location (ability) θj. From the definition (1) we can see that the rate of success
mainly depends on the relationship between the item’s parameters and learners’ proficiency.

3.3. Information Capacity

So far, we considered the estimation of a learner’s location from its uncertainty. Let us now take
the opposite side and define a query strategy S.

The instrument’s items—labeled examples—contain a certain amount of information that can be
used for estimating the learner location parameters. We assume that each item contributes information
to reduce the uncertainty about a learner’s location independent of the other items of the instrument.
The amount of information items provide can be presented using the Fisher information as [24,57,58]:

S(θ) = −E
[

∂2

∂θ2 ln L
]
=

m

∑
i=1

p′2i
pi(1− pi)

=
1

σ2
e (θ̂|θ)

(2)

where σ2
e (θ̂|θ) is the asymptotic variance error of the estimate θ. The log likelihood function for

a learner j’s response vector is equal to:

ln L(yij|θj, αi, βi, ai, bi) =
m

∑
i=1

(yij ln(pi) + (1− yij) ln(1− pi)), (3)

where pi ≡ p(yij = 1|θj, αi, βi, ai, bi). The items’ capacity is defined as the maximum of the information
function S(θ)max.

The definition (2) can be rewritten with regard to (1) in the explicit form as:

S(θ; αi, βi, ai, bi) =
m

∑
i=1

α2
i (pi − ai)

2 ((1− pi)(bi − ai)− (pi − ai)(1− bi))
2

pi(1− pi)(bi − ai)2(1− ai)2 . (4)

The detailed derivation of the Equation (4) is given in Appendix A. Figure 4 illustrates
the projections of the information function with fixed values α = 0.25, β = 4, a = 0.1, b = 0.9
described in Section 2.2.
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A new pool-based strategy—we refer to as Information Capacity—suggests estimating
the information capacity for unlabelled instances based on the definition (4). Figure 5 depicts
the proposed pool-based strategy for measuring the items capacity S with regard to the items’ difficulty
βi, learners’ locations θj, strategies ai and bi, and penalty announcement p in a classroom. The strategy
is aimed at “moving” learners along the difficulty axis while keeping high values for the capacity axis.
The learners query the examples with the lowest information capacity. For clarity, the algorithm represents
the proposed pool-based active learning with the Information Capacity strategy (see Algorithm 1).
The differences in implementation in comparison with the traditional active learning framework are
highlighted in blue.
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learners
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higher level
learners

Classroomca
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Figure 5. The proposed “classroom” strategy.

Algorithm 1 Pool-based active learning with Information Capacity strategy

1: procedure INFORMATIONCAPACITY(mtrain, mtest)

2: Initialize a labeled training set L;

3: Initialize an unlabeled training pool U = mtrain − L;

4: Initialize a learning behavior of learners B with regard to a set of parameters α, β, a, b;

5: Train a group of learners on the labeled set L;

6: Measure performance of the group of learners on the test set mtest;

7: Initialize several rounds nround and several queried examples |LS|;
8: for round ∈ nround do

9: Estimate the probabilities with regard to (1) based on the learning behavior B;

10: Sort the unlabeled items in U according to (4) based on the probabilities from the step 9;

11: Query the items LS with the smallest of the maximum capacity S in a round;

12: L← L ∪ LS;

13: U ← U \ LS;

14: Retrain a group of learners on the labeled set L;

15: Measure performance of the group of learners on the test set mtest;

16: end for

17: return The performance of the learners with the interpretation of their learning behavior.
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4. Conclusions

We present Information Capacity, which is an uncertainty sampling strategy that effectively
integrates human- and machine-reasoning processes. The strategy allows embedding into the models
different learning behaviors with regard to the parameters of the 4PL IRT model. The experiments
on the MNIST and Fashion MNIST datasets with the same CNN model indicate that Information
Capacity performs similarly to Least Confidence and Entropy Sampling but brings more transparency
into a deep learning process.

We considered the neurons or network weights of the CNN classifier at the last hidden layer as
a group of learners with different proficiency in classifying learning items, i.e., images. The pre-defined
parameters of the Information Capacity strategy defined their learning behavior: the learners had
a success probability bi = 0.9 due to partial forgetting while they guessed correctly with the probability
ai = 0.1 on the item i of the difficulty βi = 4, which discriminated the learners with the factor αi = 0.25.

The equivalence of the parameters αi, βi, ai, bi for different subsets of the MNIST and Fashion
MNIST datasets revealed that the model architecture greatly influences learning behavior.
As a direction for further research, we suggest modeling learning behaviors with different network
architectures. While keeping equally good performance due to the similarity between different
strategies, it seems desirable to optimize neural network architectures and learning processes.

The code used for empirical evaluation is available at https://github.com/yukinoi/human-like-
active-learning.
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Appendix A. Derivation of the Equation (4)

Let us denote pi ≡ p(yij = 1|θj, αi, βi, ai, bi). The derivative of the model (1) can be defined as

p′i =
αi(bi − ai) exp(−αi(θj − βi))(

1 + exp(−αi(θj − βi))
)2 . (A1)

Extracting the definition (1) from (A1) gives

p′i = αi(pi − ai)
exp(−αi(θj − βi))

1 + exp(−αi(θj − βi))
. (A2)

Let us now define the probability of getting an incorrect response:

1− pi =
(1− ai) exp(−αi(θj − βi))

1 + exp(−αi(θj − βi))
− 1− bi

1 + exp(−αi(θj − βi))
. (A3)

From the Equation (A3), it follows that

exp(−αi(θj − βi))

1 + exp(−αi(θj − βi))
=

(1− pi)(bi − ai)− (pi − ai)(1− bi)

(bi − ai)(1− ai)
. (A4)

https://github.com/yukinoi/human-like-active-learning
https://github.com/yukinoi/human-like-active-learning
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Taking into account (A4), we can rewrite (A1) as follows:

p′i = αi(bi − ai)
(1− pi)(bi − ai)− (pi − ai)(1− bi)

(bi − ai)(1− ai)
. (A5)

Substituting (A5) into the definition (2) immediately gives (4).
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