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Abstract: Several signaling pathways are aberrantly activated in head and neck squamous cell
carcinoma (HNSCC), including the Hedgehog-Gli (HH-GLI), WNT, EGFR, and NOTCH pathways.
The HH-GLI pathway has mostly been investigated in the context of canonical signal transduction
and the inhibition of the membrane components of the pathway. In this work we investigated the
role of downstream inhibitors GANT61 and lithium chloride (LiCl) on cell viability, wound closure,
and colony forming ability of HNSCC cell lines. Five HNSCC cell lines were treated with HH-GLI
pathway inhibitors affecting different levels of signal transduction. GANT61 and LiCl reduce the
proliferation and colony formation capabilities of HNSCC cell lines, and LiCl has an additional effect
on wound closure. The major effector of the HH-GLI signaling pathway in HNSCC is the GLI3 protein,
which is expressed in its full-length form and is functionally regulated by GSK3β. LiCl treatment
increases the inhibitory Ser9 phosphorylation of the GSK3β protein, leading to increased processing
of GLI3 from full-length to repressor form, thus inhibiting HH-GLI pathway activity. Therefore,
downstream inhibition of HH-GLI signaling may be a promising therapeutic strategy for HNSCC.
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) encompasses tumors arising in the oral cavity,
larynx, nasopharynx, oropharynx, hypopharynx, and salivary glands, with an annual incidence of
around 880,000 new cases worldwide and around 450,000 deaths [1]. HNSCC has high mortality,
since it is usually diagnosed when the disease is locally advanced [2]. Major risk factors are tobacco
and alcohol consumption and occupational risks (exposure to wood dust, acid mist, asbestos or
solvents in the textile and wood industry) [3]. Infection with human papilloma virus 16 (HPV16) has
been determined as an independent risk factor, and the affected individuals are usually younger and
non-smokers [4]. Recently, the incidence of tobacco- and alcohol-associated HNSCC has decreased,
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but HPV-associated HNSCC has increased in developed countries [5]. In Croatia, the majority of
HNSCC cases are still HPV-negative and are associated with tobacco and alcohol consumption [6,7].
In HNSCC, cancer stem cells (CSC) are considered to be responsible for tumor initiation, progression,
and metastasis, but also for drug resistance and recurrence. Signaling pathways often activated in CSC
include the Hedgehog-Gli (HH-GLI), WNT, EGFR, and NOTCH pathways [8]. Treatment of the early
stages of HNSCC includes surgery or radiotherapy, while advanced stages are resected surgically and
treated with adjuvant radio- or chemoradiotherapy. Immunotherapy has also been implemented for
therapy of recurrent or metastatic disease; however, the efficacy is limited due to primary or acquired
tumor resistance [9,10]. To bypass potential tumor resistance, other potential molecular targets are
being investigated, such as the phosphoinositol 3 kinase (PI3K) pathway, human growth hormone
(HGF) pathway, NOTCH signaling pathway, HH-GLI signaling pathway, and angiogenesis regulated
by vascular endothelial growth factor (VEGF) signaling [10].

The HH-GLI signaling pathway is a developmental pathway, mostly inactive in the adult organism
except in stem cell maintenance and wound healing. The main components are the hedgehog (HH)
ligands (Sonic hedgehog, SHH, Indian hedgehog, IHH, and Desert hedgehog, DHH). They bind to
the transmembrane receptor patched (PTCH1), which releases its inhibitory effect on the co-receptor
smoothened (SMO). This triggers a phosphorylation and ubiquitination cascade in the cytoplasm
through several proteins, including beta-transducin repeat containing protein 1 (βTrCP1), glycogen
synthase kinase 3 beta (GSK3β), protein kinase A (PKA), casein kinase 1 (CK1), and suppressor of
fused (SUFU), which ultimately regulate the processing of glioma-associated oncogene homolog (GLI)
proteins. The full-length versions of GLI1-3 proteins are transcriptional activators, while the truncated
versions of GLI2-3 are transcriptional repressors. GLI proteins regulate the transcription of many
genes involved in proliferation, differentiation, cell cycle regulation, stemness, epithelial-mesenchymal
transition (EMT), angiogenesis, and invasiveness, as well as pathway autoregulation through PTCH1
and GLI1 [11].

Most of the studies dealing with the role of the HH-GLI pathway in HNSCC used
immunohistochemical staining as the method of choice. In most of them, only GLI1 of the three GLI
proteins was stained, and its nuclear localization was associated with metastasis, poor survival, tumor
size, and recurrence [12–15]. GLI1 nuclear expression was also shown to be a predictive biomarker
for response to chemoradiation in esophageal cancer [16]. Staining of other proteins of the pathway,
namely, PTCH1, SMO, GLI2, and SHH, has also been reported [7,17–20], and one study demonstrated
that HH-GLI pathway proteins show a progressive increase in expression from healthy mucosa,
through dysplastic tissue, to carcinoma [21].

In vitro studies on HNSCC cell lines focus mostly on the inhibition of the membrane part of the
pathway, protein SMO. Cyclopamine, an SMO inhibitor, can inhibit the growth of esophageal cancer
In vitro [22], and it can sensitize HNSCC cells to cisplatin and docetaxel [23]. Vismodegib, another
SMO inhibitor, sensitizes HNSCC cells to radiation therapy [24].

Almost all studies examine the role of GLI1 as the main marker of the HH-GLI pathway
activity, with only a few examining the roles of GLI2 and GLI3. HNSCC spheroid cultures
demonstrate EMT, CSC-like phenotype, and upregulation of GLI1 and GLI2 genes [25]. Rodrigues et al.
recently demonstrated that GLI3 is important in the CSC population of oral squamous cell carcinoma
(OSCC) and is involved in cell proliferation, invasion, and stemness of these cells [26]. It is known
that GLI proteins can be activated by non-canonical signaling and can bypass this upstream inhibition.
Therefore, we decided to investigate downstream inhibitors in several HNSCC cell lines. We focused
our research on two inhibitors, a direct GLI inhibitor GANT61, and lithium chloride (LiCl), a GSK3β
inhibitor. GSK3β can have a stimulatory or inhibitory effect on GLI proteins, depending on its
phosphorylation status. In non-stimulated cells, GSK3β (phosphorylated at Tyr216) is constitutively
active and phosphorylates a range of targets to keep them in an off-state [27]. LiCl promotes
phosphorylation of GSK3β at the Ser9 position, leading to the phosphorylation of GLI proteins and
their processing into repressor forms and/or degradation [28].
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2. Results

2.1. The HH-GLI Signaling Pathway Is Active in HNSCC Cell Lines

HH-GLI signaling pathway genes PTCH1, GLI1, GLI2, and GLI3 are expressed in all analyzed
HNSCC cell lines. Out of the three GLI genes, GLI3 shows the strongest expression in all analyzed
cell lines (Figure 1A). The same expression pattern is visible at the protein level. The full-length GLI3
protein (GLI3FL) shows the strongest expression of all GLI proteins (Figure 1B). The calculated mass of
the GLI1 protein is 118 kDa [29], However, the full-length size of GLI1 has been shown to migrate to
160 kDa [30], and we detected a signal at this size only in the A253 line, while it is very faint in other
lines. For GLI2, we could not detect the protein in its full-length form of 185 kDa nor the repressor
form at 80 kDa, but only a non-specific band around 100 kDa. The PTCH1 protein was detected in all
cell lines, in some more strongly than others (Figure 1B). Therefore, we can conclude that the HH-GLI
signaling pathway is active in all studied HNSCC cell lines.
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inhibits GLI proteins. In four out of five cell lines, GANT61 has the strongest inhibitory effect on cell 
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Figure S1). The only exception is the hypopharyngeal squamous cell carcinoma cell line FaDu, which 
is the most responsive to LiCl inhibition, followed by cyclopamine, while GANT61 shows the weakest 
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Figure 1. Gene and protein expression of HH-GLI pathway components in HNSCC. (A) Relative gene
expression of PTCH1, GLI1, GLI2, and GLI3 determined by quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR). Gene expression is shown relative to the level of the housekeeping gene RPLP0.
(B) Protein expression determined by Western blot. FL refers to the full-length protein (activator form),
while R refers to the repressor form.

2.2. HNSCC Cell Lines Respond to Downstream Inhibition More Efficiently Than to Upstream Inhibition

To determine if the HH-GLI pathway activity can be modified in these lines, the cell lines
were treated with three different HH-GLI pathway inhibitors: cyclopamine (1.25–10 mM), GANT61
(5–25 µM), and lithium chloride (LiCl) (5–40 mM). Cyclopamine acts on the membrane part of the
HH-GLI pathway, LiCl modifies the activity of a cytoplasmatic regulatory kinase GSK3β, while
GANT61 inhibits GLI proteins. In four out of five cell lines, GANT61 has the strongest inhibitory
effect on cell proliferation, followed by LiCl, while cyclopamine shows the weakest or no effect
(Supplementary Figure S1). The only exception is the hypopharyngeal squamous cell carcinoma cell
line FaDu, which is the most responsive to LiCl inhibition, followed by cyclopamine, while GANT61
shows the weakest effect. Median lethal dose (LD50) values were determined for all tested cell lines
using the Prism 8 program (GraphPad Software, San Diego, CA, USA), and the summary results are
presented in Table 1. Based on these results, 5 and 10 µM GANT61 and 10 and 20 mM LiCl were used
in the subsequent experiments for all cell lines. Cyclopamine was not tested further as its effects were
very weak for these cell lines compared to GANT61 and LiCl. The doses of cyclopamine that would
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be required to achieve the LD50 values were close to the concentrations that induce the non-specific
toxicity independent of the HH-GLI pathway [31].

Table 1. Median lethal dose (LD50). LD50 values for each of the tested compounds.

Line Tissue Cyclopamine (µM) LiCl (mM) GANT61 (µM)

SCC9 Tongue >10 11.45 >25
SCC25 Tongue 9.51 15.24 6.83
A253 Salivary gland 6.48 14.56 8.36

DETROIT562 Pharynx >10 11.4 9.54
FADU Hypopharynx >10 5.53 19.7

To check if the pathway activity is functionally inhibited by these treatments, target gene
PTCH1 expression was determined with qRT-PCR. GANT61 treatment significantly downregulates
the expression of the PTCH1 gene in three HNSCC cell lines (SCC9, SCC25, A253). LiCl treatment
downregulates the expression of PTCH1 in all lines except Detroit562 (Figure 2).
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Figure 2. Relative gene expression of PTCH1. PTCH1, the target gene of the HH-GLI signaling pathway,
24h after GANT61 or LiCl treatment. LiCl downregulates PTCH1 expression in 4/5 HNSCC cell lines,
and GANT61 in 3/5 lines. * denotes a statistically significant difference from non-treated (NT) cells
(p < 0.05).

2.3. GANT61 and LiCl Regulate GLI3 Protein Levels in HNSCC

The levels of GLI1 and GLI3 expression were determined after inhibition with GANT61 or LiCl to
determine the effect of inhibition on the balance of GLI activators and repressors. The GLI3 protein
was the most consistently expressed of all three GLI proteins. To our knowledge, there are no reported
isoforms of GLI3 in the literature apart from the full length (GLI3FL) at 190 kDa, and the repressor
form (GLI3R) at 83 kDa. The GLI3 protein was present in the full-length form in all examined cell lines,
suggesting it acts as the pathway activator in HNSCC cell lines. GLI3R was found strongly expressed
in two HNSCC lines, and weakly expressed in three HNSCC lines. In SCC9, SCC25, and Detroit562
cell lines, GLI3FL was downregulated after GANT61 and LiCl treatment. Interestingly, an additional,
yet unidentified band around 120 kDa was detected in all five HNSCC cell lines after GANT61 treatment.
In the untreated cells, the band is not detected in two lines, weakly detected in one, and strongly in
two lines. Upon GANT61 treatment, it is upregulated in all cell lines, and in the case of SCC9 and
A253 by LiCl treatment as well (Figure 3A). The GLI1 protein was continuously poorly expressed and
barely detectable in all tested HNSCC cell lines (Figure 3B). To determine if the unidentified GLI3 band
was specific, we performed immunoprecipitation of GANT61-treated lines A253 and FaDu with a
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different GLI3 antibody (AF-3690, R&D) followed by direct gel staining with Coomassie. This specific
antibody is not validated for Western blot application, only for immunoprecipitation, so to avoid
possible non-specific staining during Western blot, the detection of the proteins was done directly in
the gel. The band was not as strong as in the Western blot, but a faint line of the unidentified GLI3
band could be detected in both cell lines (Figure 3C). Immunoprecipitation also detected GLI3FL very
clearly, and GLI3R faintly, corresponding to the Western blot results.
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Figure 3. The effect of GANT61 and LiCl treatment on the expression of GLI proteins. (A) GLI3
and (B) GLI1 protein expression after treatment with HH-GLI pathway inhibitors GANT61 and LiCl
(G5—5 µM GANT61, G10—10 µM GANT61, LI10—10 mM LiCl, LI20—20 mM LiCl). (C) Coomassie gel
stain of immunoprecipitation with GLI3 antibody (AF-3690, R&D) for two HNSCC cell lines treated with
GANT61. In both cell lines, the IP successfully detects the GLI3FL and GLI3R bands. The unidentified
GLI3 band is also faintly detected in both tested cell lines.

2.4. The Effect of LiCl Inhibition Is Mediated by GLI3 Processing by GSK3β

To test the effect of LiCl on the HH-GLI signaling pathway, phosphorylation of GSK3β
was investigated by Western blot. It is known that LiCl treatment increases the inhibitory Ser9
phosphorylation of GSK3β. In all HNSCC cell lines, LiCl increased the Ser9 phosphorylated form of
the GSK3β protein, while the total GSK3β levels remained unchanged. This phosphorylation affects
GSK3β activity, leading to increased processing of GLI3 from full length to repressor form. This effect
can be seen as reduced GLI3FL levels in all HNSCC cell lines, but the increase of GLI3R is detected only
in some lines (Figure 4). GANT61 treatment acts directly on the level of the GLI3 protein, also shifting
the balance of activator/repressor forms toward the repressor, thus inhibiting pathway activity.
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Figure 4. The role of GSK3β phosphorylation in GLI3 protein activity. Western blot showing
phosphorylation of GSK3β (pGSK) compared to total GSK levels in non-treated (NT) or GANT61
(10 µM) or LiCL (20 mM) treatment. All HNSCC cell lines show an increase in GSK3β phosphorylation
with LiCl, and three of the lines also with GANT61 treatment. This effect is closely followed by the
downregulation of GLI3FL.

2.5. Downstream Inhibition Affects Colony Forming and Wound Closure Capabilities of HNSCC Cell Lines

To test the colony forming ability of HNSCC cell lines after GANT61 or LiCl treatment, 1000 cells
were plated in a 6-well and maintained for 14 days in medium containing different concentrations of
GANT61 and LiCl. All the cell lines showed a dose-dependent decrease in colony forming ability after
treatment with either compound. In most cell lines GANT61 was more effective, but in Detroit562 and
FaDu lines, LiCl was more effective (Figure 5).
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Figure 5. Colony forming assay on HNSCC cell lines. All cell lines show a dose-dependent decrease in
colony forming ability with both GANT61 and LiCl. EtOH – vehicle control.

Wound healing assay was used to examine the proliferative and migratory ability of cells
(Figure 6A). In all tested HNSCC cell lines, wound closure was inhibited by LiCl, while GANT61
treatment slightly enhanced wound closure only in Detroit562 and FaDu cells (Figure 6B). As both
compounds inhibit the proliferation of these cells, but the wound closure is inhibited only with LiCl,
it is likely that this effect is due to the change in the migratory ability of cells, but this would need to
be confirmed by other assays, such as the Transwell assay. This suggests that in HNSCC cell lines,
GLI proteins generally do not affect the migration of cells. Migratory ability of cells is not regulated
by the HH-GLI signaling pathway, but rather by a different GSK3β-triggered mechanism, since LiCl
treatment affects the migratory potential of these cells.
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Figure 6. The wound healing assay. (A) Digital photographs of wound healing processes (scale
bar = 200 µm). (B) Quantification of wound closure. GANT61 inhibition has almost no effect on the
wound closure compared to the non-treated cells (NT), with the exception of a slight increase in wound
closure for the Detroit562 and FaDu cell lines. LiCl treatment inhibits wound closure capability in all
cell lines. EtOH—vehicle control. * denotes statistically significant difference from non-treated (NT)
cells (p < 0.05).

3. Discussion

In this work we demonstrate for the first time the effect of downstream HH-GLI pathway
inhibitors GANT61 and LiCl on HNSCC cell lines. It has been demonstrated previously that the
HH-GLI signaling pathway is upregulated and activated in HNSCC [12–14,18,20]. The majority of
these studies, however, focused only on the GLI1 transcription factor, with few of them examining
GLI2, and none of them testing for GLI3 staining. Similarly, in vitro studies on HNSCC cell lines
focused mostly on SMO inhibition, with no studies examining potential non-canonical downstream
activation of GLI transcription factors and downstream inhibition.

In our set of five HNSCC cell lines, the most uniformly expressed GLI protein is GLI3, while GLI2
is undetectable, and GLI1 is poorly detectable at both mRNA and protein levels. In this study we have
demonstrated by the MTT assay that GANT61 and LiCl show much stronger growth inhibition of
HNSCC cells than previously used cyclopamine. Different cell lines respond slightly differently, with
most of them showing stronger sensitivity to GANT61 and only one line, FaDu, to LiCl. The colony
forming ability of HNSCC cell lines is reduced after GANT61 or LiCl treatment, but the wound closure
is affected only by LiCl and not by GANT61 treatment. Since LiCl regulates GSK3β activity, and
this protein regulates many other targets except GLI (e.g., β-catenin, p53, AP-2, NF-κB) [27], it is
likely that the effect on wound closure is mediated by a different mechanism and not by GLI proteins.
Both GANT61 and LiCl treatment downregulate the levels of the GLI3FL protein and upregulate the
GLI3R form, suggesting proteolytic processing and inhibition of the HH-GLI pathway through GLI3
activator/repressor balance. GLI1 remained mostly unaffected by either treatment, again confirming
GLI3 as the pathway regulator. Our findings are supported by a recent paper by Rodrigues et al.,
who demonstrated a crucial role of GLI3 in cell proliferation and invasion of the OSCC cancer stem cell
(CD44high) population [26]. To determine the effect of LiCl on GLI3 levels, the ratios of GSK3β and Ser9
phosphorylated GSK3β (pGSK3β) were examined after GANT61 and LiCl treatment. LiCl generally
increases GSK3β phosphorylation, resulting in downregulation of GLI3FL and upregulation of GLI3R.
This mechanism has been demonstrated previously in colon cancer cell lines, and it occurs in tumors
where the GSK3β activator (Tyr216 pGSK3β) and inhibitor (Ser9 pGSK3β) are in disbalance, with Tyr216
pGSK3β acting as an oncogene [28]. Recently, Nayak et al. showed the effect of nanoquinacrine (NQC)
on GSK3β in CSC isolated from the SCC25 line: upon NQC treatment, total GSK3β levels are increased,
while pGSK3β levels are decreased, as are GLI1 levels [32]. The effect we detected for LiCl treatments
seems to work in the opposite manner: LiCl leads to phosphorylation of GSK3β at Ser9, leading to
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increased processing of GLI3FL to GLIR. The difference observed between the two studies may be due
to the pre-selection of the CSC population in the case of the NQC study. This may have selected for
cells with different levels of GSK3β and GLI proteins than the levels we observed in the unselected
population of the same cell line. In the CSC population, the Ser9 pGSK3β is far more expressed than the
total GSK3β, while in this case the distribution is the opposite. Interestingly, GANT61 treatment, and in
some cases LiCl treatment, induced an unidentified GLI3 band on Western blots. We could confirm this
by immunoprecipitation with an IP-specific antibody followed by Coomassie stain, but the intensity of
the band was not sufficient for fragment identification by mass spectrometry. Therefore, we cannot
speculate on the nature or role of the detected GLI3 band, but only demonstrate its upregulation
after GANT61 treatment. Taken together, all these results show that the HH-GLI signaling pathway
is affected by inhibitors acting downstream of SMO. The major pathway effector in these cell lines
was shown to be GLI3, which is present in the full-length form in proliferating cells, but is processed
into the repressor form when cells are treated with GANT61 or LiCl. This suggests that downstream
pathway inhibitors may be more effective in potential future clinical use for treatment of HNSCC,
especially in combination with other signaling pathways often found upregulated in HNSCC.

4. Materials and Methods

4.1. Cell Culture and Cell Assays

HNSSC cell lines SCC9, SCC25, A253, Detroit562, and FaDu were purchased from the ATCC (no.
TCP-1012, Manassas, VA, USA) and maintained in the recommended media. A-253 was maintained in
McCoy’s 5A medium (Merck KGaA, Darmstadt, Germany), SCC9 and SCC25 in DMEM:HAM’S=1:1
(Dulbecco’s Modified Eagle Medium: Ham’s F12) medium (Merck KGaA, Darmstadt, Germany),
and FaDu and Detroit562 in EMEM (Eagle’s Minimum Essential Medium) medium (Merck KGaA,
Darmstadt, Germany), all supplemented with 10% FBS (Fetal Bovine Serum, Merck KGaA, Darmstadt,
Germany). The cell lines are derived from different anatomical sites: SCC9 and SCC25 originate from
the oral cavity (tongue), FaDu from the hypopharynx, Detroit562 from the metastatic site (pleural
effusion of pharyngeal cancer), and A253 from the salivary gland. All the cell lines are established and
frequently used models of HNSCC, and were purchased as an HNSCC panel designed by the ATCC.
According to the available data, all these lines are HPV-negative.

For MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assays, cells were plated
at 2 × 103 cells/well in 96-well plates and treated with a range of concentrations of different HH-GLI
pathway inhibitors: cyclopamine 1.25–10µM (Selleck Chemicals, Houston, TX, USA), GANT61 5–25µM
(Selleck Chemicals, Houston, TX, USA), and LiCl 5–40 mM (Kemika, Zagreb, Croatia) for 24–72 h,
and cell viability was measured on LabsSystems Multiskan MS microplate reader (Thermo Fisher
Scientific, Waltham, MA, USA) after incubation with MTT. The treatment was done in quadruplicate
for each dose, and the experiment was repeated twice.

For colony forming assay, 1000 cells/well were plated in a 6-well plate, left to attach for 24 h,
and then treated with 1–5 µM GANT61 or 1–10 mM LiCl. Cells were kept in culture for 2 weeks to
allow for colony formation, with media with compounds changed twice per week. Cells were then
washed with PBS, fixed with 4% paraformaldehyde, and stained with crystal violet to visualize the
colonies. The experiments were performed in triplicate.

For wound healing assay, 105 cells/well were plated in 24-well plates and left for 24 h to attach.
Two scratches per well were made with a 10 µL pipette tip; cells were washed with PBS (Phosphate
Buffered Saline) to remove floating cells and were treated with GANT61 or LiCl. Images of the scratch
were taken immediately after washing with PBS and 24 h later at the same location. Eight images were
taken for each treatment, and the images were processed using the MRI Wound Healing Tool plugin
for FIJI [33] to calculate the wound area. The experiments were done in triplicate.
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For gene/protein extraction, cells were treated with 5 and 10 µM GANT61, or 10 and 20 mM LiCl
for 24 h. Cells were collected by scraping with the cell scraper, washing in PBS, and collecting the cell
pellet, which was used for either RNA or protein extraction.

4.2. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

RNA was extracted from cell pellets with TRIzol reagent (Invitrogen, Carlsbad, CA, USA) per the
manufacturer’s instructions. One microgram of RNA was reverse transcribed into cDNA using the
High Capacity cDNA synthesis kit (Thermo Fisher Scientific, Waltham, MA, USA), and qRT-PCR was
performed on the CFX-96 instrument (Bio-Rad Laboratories, Hercules, CA, USA) using SsoAdvanced
SYBR Green (Bio-Rad Laboratories, Hercules, CA, USA). The expression of PTCH1, GLI1, GLI2, and GLI3
genes was measured as described previously [7], and the fold change was calculated relative to the
RPLP0 housekeeping gene.

4.3. Western Blotting

Total proteins were extracted by sonication in RIPA (Radioimmunoprecipitation assay buffer)
buffer containing protease and phosphatase inhibitors, and the protein concentration was measured
using the BCA (Bicinchonic Acid) kit (Thermo Fisher Scientific, Waltham, MA, USA); 40 µg of protein
was loaded on 7% PAA (Polyacrylamide) gel. After electrophoresis, they were transferred to a
nitrocellulose membrane (Amersham BioSciences, Little Chalfont, England, UK), blocked with 5%
milk and incubated with primary antibodies overnight. Antibodies used for detection were as follows:
rabbit anti-GLI1 (Cell Signaling Technology, V812, 1:200, Danvers, MA, USA), mouse anti-GLI2 (Santa
Cruz Biotechnology, sc-271786, 1:200, Dallas, TX, USA), rabbit anti-GLI3 (GeneTex GTX104362, 1:1000,
Irvine, CA, USA). Actin (60008-1-Ig, ProteinTech, 1:4000, Rosemont, IL, USA) was used as a loading
control. After washing in TBST (Tris-Buffered Saline, 0.1% Tween®20 Detergent), secondary antibodies
HRP (Horseradish Peroxidase)-conjugated anti-rabbit (BD Pharmingen, 554021, 1:6000, San Jose, CA,
USA) and anti-mouse (BD Pharmingen, 554002, 1:8000, San Jose, CA, USA) were applied for 1h at
room temperature, washed, and visualized using SuperWest Signal Pico and Femto reagents (Thermo
Fisher Scientific, Waltham, MA, USA) on Uvitec Image Alliance 4.7 instrument (UVItec, Cambridge,
England, UK).

4.4. Immunoprecipitation and Coomassie Staining

For immunoprecipitation (IP), proteins were extracted from GANT61-treated FaDu and A253 cell
lines using TENN buffer (50 mM Tris, 5 mM EDTA, 150 mM NaCl, 0.5% NP-40, pH 8.0) supplemented
with protease inhibitors (Roche, Basel, Switzerland). Protein concentration was determined using the
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). Immunoprecipitation was
performed using Protein G-coated Dynabeads (Life Technologies, Carlsbad, CA, USA) according to the
manufacturer’s instructions (Invitrogen, Rev. 005, Carlsbad, CA, USA). For Gli3 immunoprecipitation,
1000 µg of proteins and 5 µg of Gli3 antibody (AF-3690, R&D Systems, Minneapolis, MN, USA) were
used for each IP sample. Samples were incubated with the Dynabead–antibody complex overnight at
+4 ◦C. Samples were eluted with 1× loading buffer and heated for 5 min at 95 ◦C before electrophoresis
in 7% PAA gel. After gel electrophoresis, the proteins were fixed in 50% (v/v) ethanol and 10% (v/v)
acetic acid for 1 h at room temperature followed by further fixation in 50% (v/v) methanol and 10% (v/v)
acetic acid overnight at +4 ◦C. The gels were stained in Coomassie Blue R250 (LKB Bromma, Bromma,
Sweden) staining solution (3g/L Coomassie Blue R250, 45% (v/v) methanol, 10% (v/v) acetic acid in
water) for 4 h with gentle agitation, and afterwards destained in 50% (v/v) methanol and 10% (v/v)
acetic acid. The destaining solution was changed several times until the protein bands were completely
visible. The gels were stored in 5% (v/v) acetic acid at +4 ◦C.
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4.5. Statistical Analysis

Normality of data distribution was tested using the D’Agostino-Pearson test. An independent
samples t-test was used for comparing wound healing and gene expression between non-treated and
treated cells. Two-tailed p values < 0.05 were considered statistically significant. Statistical analysis
was performed using MedCalc v19.1.6 (MedCalc Software Ltd., Ostend, Belgium).

5. Conclusions

GANT61 and LiCl, downstream HH-GLI pathway inhibitors, inhibit the proliferation and
colony forming capability of HNSCC cells. The upstream inhibitor cyclopamine, on the other hand,
requires high doses to produce an effect on HNSCC cell lines. This suggests that the downstream
components of HH-GLI signaling are activated at least partly non-canonically in HNSCC. Wound closure
of HNSCC cells is not affected by GANT61 but it is reduced after LiCl treatment, suggesting that
the effect of LiCl on wound closure is mediated through another pathway independent of HH-GLI.
The main effector of HH-GLI signaling in HNSCC is the GLI3 protein, which is the most expressed of
all three GLI proteins and is responsive to GANT61 and LiCl inhibition. LiCl increases the inhibitory
Ser9 phosphorylation of GSK3β, leading to increased processing of GLI3 from the full-length form to
the repressor form, and inhibiting the pathway. Therefore, downstream inhibition of HH-GLI signaling
in HNSCC may be a promising therapeutic strategy.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/17/6410/s1,
Figure S1: Results of the MTT assay.
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HH-GLI Hedgehog-Gli
LiCl Lithium chloride
HNSCC Head and neck squamous cell carcinoma
HPV16 Human papilloma virus 16
CSC Cancer stem cells
EGFR Epidermal growth factor receptor
PI3K Phosphoinositol 3 kinase
VEGF Vascular endothelial growth factor
PTCH1 Patched 1
HH Hedgehog
SMO Smoothened
βTrCP1 Beta-transducin repeat containing protein 1
GSK3β Glycogen synthase 3 beta
PKA Protein kinase A
SUFU Suppressor of fused
CK1 Casein kinase 1
GLI Glioma-associated oncogene homolog
EMT Epithelial-mesenchymal transition
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NQC Nanoquinacrine
DMEM:HAM’S Dulbecco’s Modified Eagle Medium: Ham’s F12
EMEM Eagle’s Minimum Essential Medium
FBS Fetal bovine Serum
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide
PBS Phosphate Buffered Saline
RIPA Radioimmunoprecipitation assay buffer
BCA Bicinchonic Acid
PAA Polyacrylamide
TBST Tris-Buffered Saline, 0.1% Tween®20 Detergent
HRP Horseradish Peroxidase
TENN 50 mM Tris, 5 mM EDTA, 150 mM NaCl, 0.5% NP-40, pH 8.0
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7. Leović, D.; Sabol, M.; Ozretic, P.; Musani, V.; Car, D.; Marjanovic, K.; Zubcic, V.; Sabol, I.; Sikora, M.; Grce, M.;
et al. Hh-Gli signaling pathway activity in oral and oropharyngeal squamous cell carcinoma. Head Neck
2011, 34, 104–112. [CrossRef]

8. Chen, D.; Wang, C.-Y. Targeting cancer stem cells in squamous cell carcinoma. Precis. Clin. Med. 2019, 2,
152–165. [CrossRef]

9. Cristina, V.; Herrera-Gómez, R.G.; Szturz, P.; Espeli, V.; Siano, M. Immunotherapies and Future Combination
Strategies for Head and Neck Squamous Cell Carcinoma. Int. J. Mol. Sci. 2019, 20, 5399. [CrossRef]

10. Bowles, D.W.; McDermott, J.D.; Jimeno, A. Novel treatments for head and neck squamous cell carcinoma:
Preclinical identification and clinical investigation. Future Oncol. 2014, 10, 1065–1080. [CrossRef]

11. Sabol, M.; Trnski, D.; Musani, V.; Ozretic, P.; Levanat, S. Role of GLI Transcription Factors in Pathogenesis
and Their Potential as New Therapeutic Targets. Int. J. Mol. Sci. 2018, 19, 2562. [CrossRef] [PubMed]

12. Chung, C.H.; Dignam, J.J.; Hammond, M.E.; Klimowicz, A.C.; Petrillo, S.K.; Magliocco, A.; Jordan, R.;
Trotti, A.; Spencer, S.; Cooper, J.S.; et al. Glioma-Associated Oncogene Family Zinc Finger 1 Expression and
Metastasis in Patients With Head and Neck Squamous Cell Carcinoma Treated With Radiation Therapy
(RTOG 9003). J. Clin. Oncol. 2011, 29, 1326–1334. [CrossRef] [PubMed]

13. Fan, H.-X.; Wang, S.; Zhao, H.; Liu, N.; Chen, D.; Sun, M.; Zheng, J. Sonic hedgehog signaling may promote
invasion and metastasis of oral squamous cell carcinoma by activating MMP-9 and E-cadherin expression.
Med. Oncol. 2014, 31, 1–8. [CrossRef] [PubMed]

14. Wang, Y.-F.; Chang, C.-J.; Lin, C.-P.; Chang, S.-Y.; Chu, P.-Y.; Tai, S.-K.; Li, W.-Y.; Chao, K.C.; Chen, Y.-J.
Expression of hedgehog signaling molecules as a prognostic indicator of oral squamous cell carcinoma. Head
Neck 2012, 34, 1556–1561. [CrossRef] [PubMed]

http://dx.doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://dx.doi.org/10.1159/000477127
http://www.ncbi.nlm.nih.gov/pubmed/28531899
http://dx.doi.org/10.1016/j.sdentj.2019.05.010
http://www.ncbi.nlm.nih.gov/pubmed/31700218
http://dx.doi.org/10.1093/jnci/djn025
http://dx.doi.org/10.1200/JCO.2011.36.4596
http://dx.doi.org/10.1371/journal.pone.0211577
http://dx.doi.org/10.1002/hed.21696
http://dx.doi.org/10.1093/pcmedi/pbz016
http://dx.doi.org/10.3390/ijms20215399
http://dx.doi.org/10.2217/fon.14.18
http://dx.doi.org/10.3390/ijms19092562
http://www.ncbi.nlm.nih.gov/pubmed/30158435
http://dx.doi.org/10.1200/JCO.2010.32.3295
http://www.ncbi.nlm.nih.gov/pubmed/21357786
http://dx.doi.org/10.1007/s12032-014-0041-5
http://www.ncbi.nlm.nih.gov/pubmed/24915900
http://dx.doi.org/10.1002/hed.21958
http://www.ncbi.nlm.nih.gov/pubmed/22287313


Int. J. Mol. Sci. 2020, 21, 6410 12 of 13

15. Yang, Z.; Cui, Y.; Ni, W.; Kim, S.-H.; Xuan, Y. Gli1, a potential regulator of esophageal cancer stem cell,
is identified as an independent adverse prognostic factor in esophageal squamous cell carcinoma. J. Cancer
Res. Clin. Oncol. 2016, 143, 243–254. [CrossRef] [PubMed]

16. Wadhwa, R.; Wang, X.; Baladandayuthapani, V.; Liu, B.; Shiozaki, H.; Shimodaira, Y.; Lin, Q.; Elimova, E.;
Hofstetter, W.L.; Swisher, S.G.; et al. Nuclear expression of Gli-1 is predictive of pathologic complete response
to chemoradiation in trimodality treated oesophageal cancer patients. Br. J. Cancer 2017, 117, 648–655.
[CrossRef] [PubMed]

17. Chen, G.; Yan, M.; Li, R.R.; Chen, W.T. Sonic Hedgehog Signalling Activation Contributes to ALCAM
Over-Expression and Poor Clinical Outcome in Patients with Oral Squamous Cell Carcinoma. Chin. J.
Dent. Res. 2018, 21, 31–40.

18. Dimitrova, K.; Stoehr, M.; Dehghani, F.; Dietz, A.; Wichmann, G.; Bertolini, J.; Mozet, C. Overexpression
of the Hedgehog Signalling Pathway in Head and Neck Squamous Cell Carcinoma. Onkologie 2013, 36, 1.
[CrossRef]

19. Richtig, G.; Aigelsreiter, A.M.; Asslaber, M.; Weiland, T.; Pichler, M.; Eberhard, K.; Sygulla, S.; Schauer, S.;
Hoefler, G.; Aigelsreiter, A. Hedgehog pathway proteins SMO and GLI expression as prognostic markers in
head and neck squamous cell carcinoma. Histopathology 2019, 75, 118–127. [CrossRef]

20. Schneider, S.; Thurnher, D.; Kloimstein, P.; Leitner, V.; Petzelbauer, P.; Pammer, J.; Brunner, M.; Erovic, B.M.
Expression of the Sonic hedgehog pathway in squamous cell carcinoma of the skin and the mucosa of the
head and neck. Head Neck 2011, 33, 244–250. [CrossRef]

21. Gonzalez, A.C.; Ferreira, M.; Ariel, T.; Reis, S.R.A.; Andrade, Z.; Medrado, A.P. Immunohistochemical
evaluation of hedgehog signalling in epithelial/mesenchymal interactions in squamous cell carcinoma
transformation: A pilot study. J. Oral Pathol. Med. 2015, 45, 173–179. [CrossRef]

22. Yu, J.; Wu, R.; Wang, Z.; Chen, S.; Chen, S.; Guo, G.; Liu, Z. Cyclopamine Suppresses Human Esophageal
Carcinoma Cell Growth by Inhibiting Glioma-Associated Oncogene Protein-1, a Marker of Human Esophageal
Carcinoma Progression. Med Sci. Monit. 2019, 25, 1518–1525. [CrossRef]

23. Mozet, C.; Stoehr, M.; Dimitrova, K.; Dietz, A.; Wichmann, G. Hedgehog targeting by cyclopamine suppresses
head and neck squamous cell carcinoma and enhances chemotherapeutic effects. Anticancer. Res. 2013, 33,
2415–2424. [PubMed]

24. Hehlgans, S.; Booms, P.; Güllülü, Ö.; Sader, R.; Rödel, C.; Balermpas, P.; Rödel, F.; Ghanaati, S. Radiation
Sensitization of Basal Cell and Head and Neck Squamous Cell Carcinoma by the Hedgehog Pathway Inhibitor
Vismodegib. Int. J. Mol. Sci. 2018, 19, 2485. [CrossRef]

25. Essid, N.; Chambard, J.C.; Elgaaïed, A.B. Induction of epithelial-mesenchymal transition (EMT) and Gli1
expression in head and neck squamous cell carcinoma (HNSCC) spheroid cultures. Bosn. J. Basic Med Sci.
2018, 18, 336–346. [CrossRef] [PubMed]

26. Rodrigues, M.F.S.D.; Miguita, L.; De Andrade, N.P.; Heguedusch, D.; Rodini, C.O.; Moyses, R.A.;
Toporcov, T.N.; Gama, R.R.; Tajara, E.E.; Nunes, F.D. GLI3 knockdown decreases stemness, cell proliferation
and invasion in oral squamous cell carcinoma. Int. J. Oncol. 2018, 53, 2458–2472. [CrossRef] [PubMed]

27. Luo, J. Glycogen synthase kinase 3β (GSK3β) in tumorigenesis and cancer chemotherapy. Cancer Lett. 2009,
273, 194–200. [CrossRef]
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