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Abstract: Non-bilaterian animals consist of four phyla; Porifera, Cnidaria, Ctenophora, and Placozoa.
These early-diverging animals are crucial for understanding the evolution of the entire animal
lineage. The Rho family of proteins make up a major branch of the Ras superfamily of small
GTPases, which function as key molecular switches that play important roles in converting and
amplifying external signals into cellular responses. This review represents a compilation of the current
knowledge on Rho-family GTPases in non-bilaterian animals, the available experimental data about
their biochemical characteristics and functions, as well as original bioinformatics analysis, in order to
gain a general insight into the evolutionary history of Rho-family GTPases in simple animals.

Keywords: non-bilaterian animals; Rho GTPases; Cdc24; Rho; Rac; RhoBTB; Miro; Porifera;
Ctenophora; Placozoa; Cnidaria

1. Introduction

The development of multicellular organisms depends on the ability of cells to detect and
respond adequately to external signals, expressed by other cells. The intercellular signaling in
embryonic development mediated by adhesion molecules, extracellular matrix, cytokines, morphogens,
growth factors, or hormones has been extensively studied. Cell signaling is initiated by binding
of ligands to their specific cell surface receptors, which are conversely converted into responses
leading to gene transcription, cell shape modeling, adhesion, motility, and endo/exocytosis [1].
Although eukaryotic cells probably use hundreds of GTPases to control different processes, the members
of the Ras superfamily have emerged as key players in the regulation of many important biological
processes including growth and differentiation, morphogenesis, cell division and motility, cytokinesis,
and trafficking through the Golgi, nucleus, and endosomes [2]. Small GTPases are low-molecular-weight
(Mr of 20–25 kDa) monomeric guanine nucleotide-binding proteins. They display a conserved structural
backbone of 5 G-boxes involved in GTP-binding and GTPase activity [3]. The Ras-related small GTPases
are divided into five subfamilies: Ras, Rho, Arf, Rab, and Ran. Ras family members are activated by
diverse extracellular stimuli that trigger a series of intracellular signaling events. This cascade of events
eventually controls gene transcription, which leads to activation of fundamental cellular processes,
including cell growth and differentiation. Ras proteins, the first small GTPases discovered [4], regulate
cell growth, proliferation, and differentiation [5,6]. Rho proteins (Rho, Rac, and Cdc42) control the
assembly and organization of the actin cytoskeleton, which vastly influences cell morphology [7],
while Rab and Arf represent key regulators of secretory and endocytic pathways during vesicle
trafficking and microtubule dynamics [8,9]. Ran is the last discovered GTPase and has a central role
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in the translocation of RNA and proteins through the nuclear pore complex [10]. Numerous studies
suggest a very complex functional diversity of the Ras protein superfamily. Their conserved G-domain
structural backbone involved in GTP-binding and GTPase activity enables common biochemical
properties, while each of them recognizes its individual binding partners [6,11]. The diversity of the
Ras superfamily is demonstrated by the multiplicity of their upstream regulators and downstream
target proteins to which the Ras-related small GTPases bind [12,13].

1.1. The Rho Family of Proteins—Rho GTPases

Rho GTPases are small G proteins found in all eukaryotes [14]. Rho family members are divided
into nine subfamilies (Rho, Rac, Cdc42, RhoDF, Rnd, RhoUV, RhoH, RhoBTB, and Miro) according
to their similar but not identical properties, such as primary amino acid sequence, structural motifs
and biological functions. Similar to other Ras-like GTPases, Rho GTPases are active when bound to
GTP and inactive when bound to GDP. Once activated, they bind effectors that mediate the cellular
response [3]. The Rho signaling module is a complex regulatory network that includes over 240 proteins
in human [15]. The Rho-family members are defined by the presence of a Rho-specific insert located
between the G4 and the G5 boxes, involved in binding to effectors and regulators [16–18]. Typical Rho
proteins are usually low-molecular-weight proteins and consist only of the GTPase domain (conserved
structural backbone of 5 G-boxes) and short N- and C-terminal extensions (Figure 1).
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Figure 1. Schematic representation of Rho GTPases. Colored boxes represent characteristic structures:
the Rho GTPase domain (light blue), CAAX box (black), BTB (broad complex/tramtrack/bric-a-brac)
domain I and II (violet), EFH (EF-hand calcium binding) domain 1 and 2 (green), and the second
GTPase domain in Miro (orange).

Within their GTPase domains, Rho family members show approximately 30% amino acid identity
with other Ras proteins and 40–95% identity within the Rho family [7]. The human genome encodes
22 Rho GTPases (Table 1) [19]. The majority of the functional information on the Rho family came
from studies of typical Rho GTPases: RhoA, Rac1, and Cdc42 [7]. All three of them regulate actin
dynamics and cytoskeleton reorganization that effect cell shape and motility [20,21]. Members of the
Rho family power the reorganization of the actin cytoskeleton as a response to external stimuli, affecting
a broad array of cellular processes and characteristics such as adhesion, migration, proliferation, shape,
permeability, and polarity [15]. The members of the RhoBTB subfamily display additional atypical
features: they are much larger than the typical GTPases, and they have additional domains [22].
The RhoBTB has two so-called broad complex/tramtrack/bric-a-brac (BTB) domains found to mediate
homomeric or heteromeric protein–protein interactions (Figure 1). The RhoBTB functions as a tumor
suppressor [22]. The members of the Miro subfamily were, at first, grouped into the Rho family on the
basis of the similarity of their N-terminal GTPase domains (Figure 1) [23]. Later, they were found to be
closely related, but likely a distinct Ras-like family [14]. The Miro GTPases localize within mitochondria
and might promote apoptosis [23]. The presence of Rho family members in all eukaryotic supergroups
indicates that the genes encoding Rho GTPase were present in the last eukaryotic common ancestor
(around 1.4–1.8 billion years ago) [24,25]. Global evolutionary analyses of the Rho family indicate that
the phylogenetic relationships among Rho GTPases are not strongly supported [14,26]. Namely, the Rho
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GTPase subfamily is more closely related to Rac than to other Rho subfamilies. Unicellular eukaryotes,
fungi, and ancestral Metazoa contain only Rac, Cdc42, and RhoA GTPases (Table 1) [15]. The fact that
Rho genes are absent in sub-clades of Chlorophyta, Trypanosomatidae, Stramenopiles, and Alveolates
can be explained by multiple independent gene-loss events [27]. The Rho family expanded in Metazoa
(around 700 million years ago), probably as a result of duplication events and lateral gene transfers [15]
(Table 1 and Figure 2).
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Figure 2. Phylogenetic tree of Rho GTPases in Metazoa. The evolutionary history of Rho GTPases
from selected metazoan species (accession numbers are presented in Table S1.) was inferred using the
Maximum Likelihood (ML) method based on the JTT matrix-based model [28]. Evolutionary analyses
were conducted in MEGA7 [29]. The topological stability of the maximum likelihood (ML) tree was
evaluated by 1000 bootstrapping replications. The bootstrapping values higher than 50 are indicated
by numbers at the nodes. Rho GTPases from Cnidaria are marked in green, Porifera in black, Placozoa
in blue, and Ctenophora in red.



Cells 2020, 9, 2279 4 of 27

Table 1. Rho GTPases in Metazoa and close unicellular relative of Metazoa.

Taxonomic Groups Organism
RHO GTPases

Rho Rac Cdc42 Rnd RhoDF RhoUV RhoH RhoBTB Miro

B
il

at
er

ia

Mammalia Homo sapiens

HsRhoA
HsRhoB
HsRhoC
HsRhoG
HsRhoJ
HsRhoQ

HsRac1
HsRac2
HsRac3

HsCdc42
HsRnd1
HsRnd2
HsRnd3

Hsrhod
HsRhoF

HsRhoU
HsRhoV HsRhoH HsRhoBTB1

HsRhoBTB2
HsMiro1
HsMiro2

Aves G. galus

GgRhoA
GgRhoB
GgRhoC
GgRhoG
GgRhoJ
GgRhoQ

GgRac1
GgRac2
GgRac3

GgCdc42
GgRnd1
GgRnd2
GgRnd3

GgRhoD
GgRhoF

GgRhoU
GgRhoV GgRhoH GgRhoBTB1

GgRhoBTB2
GgMiro1
GgMiro2

Amphibia X. tropicallis

XtRhoA
XtRhoB
XtRhoC
XtRhoG
XtRhoJ
XtRhoQ

XtRac1
XtRac2
XtRac3

XtCdc42 XtRnd1
XtRnd3 XtRhoF XtRhoU

XtRhoV XtRhoH XtRhoBTB1
XtRhoBTB2

XtMiro1
XtMiro2

Chordata D. rerio

DrRhoA
DrRhoC
DrRhoG
DrRhoJ
DrRhoQ

DrRac1
DrRac2
DrRac3

DrCdc42
DrRnd1
DrRnd2
DrRnd3

DrRhoF DrRhoU
DrRhoV DrRhoH DrRhoBTB1

DrRhoBTB2
DrMiro1
DrMiro2

Cephalochordata B. floridae

BfRho1-1
BfRho1-2
BfTc10/RhoQ
BfTc10/RhoQ
BfRhoA
BfRhoC

BfRac1
BfRac2
BfRac3
BfRac4

BfCdc42 BfRnd BfRif BfRhoU BfRhoBTB BfMiro
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Table 1. Cont.

Taxonomic Groups Organism
RHO GTPases

Rho Rac Cdc42 Rnd RhoDF RhoUV RhoH RhoBTB Miro

Echinodermata S. purpuratus

SpRho1
RhoA-A
SpTc10/RhoQ
SpRhoASpRhoC

SpRac1
SpRacB
SpRac2
SpRac3
SpRac4

SpCdc42 SpRhoU SpRhoBTB SpMiro

Arthropoda D. melanogaster DmRho DmRac1
DmRac2 DmCdc42 DmRhoBTB DmMiro

Nematoda C. elegans CeRho1
CeRac
CeRac2
CeCed10

CeCdc42 CeMiro1
CeMiro2

Mollusca C. gigas

CgRho1
CgRho2
CgRhoJ
RhoQ

CgRac1
CgRac2 CgCdc42 CgRnd CgRhoU CgRhoBTB CgMiro

N
on

-B
il

at
er

ia

Cnidaria
N. vectensis NvRho

NvRho2 NvRac1 NvCdc42 NvRnd3 NvRhoU NvRhoBTB1 NvMiro

H. vulgaris
HvRho1
HvRho2
HvRho3

HvRac1 HvCdc42 HvRnd3 HvRhoBTB1 HvMiro

Placozoa T. adherens TaRhoA TaRac1 TaCdc42 TaMiro

Ctenophora M. leidyi MlRho MlCdc42

Porifera
S. domuncula

SdRho1
SdRhoA
SdRho3

SdRac SdCdc42

A. queenslandica AqRho
AqRhoA

AqRac1
AqRac2 AqCdc42

Protista M. brevicoliis MbRho MbRac MbCdc42
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1.2. Non-Bilaterian Animals

The non-bilaterians include four animal phyla: Porifera (sponges), Cnidaria, Ctenophora (comb
jellies), and Placozoa. These lineages branched off at the base of the animal tree of life before the origin
of Bilateria and are thus referred to as early-branching animals (also known as non-bilaterian animals,
“basal metazoans”, or “simple (early)” animals). These four phyla are crucial for understanding the
evolution of animals. Fossil findings from Ediacaran assemblages (580 million years (Myr) old) suggest
that the first metazoan organisms were diploblastic, similar to modern sponges and cnidarians [30].
Cnidaria and Ctenophora are primarily radially symmetric (Radiata) [31], which distinguishes them
from other metazoans with two body axes (Bilateria). According to paleontological records from the
Burgess Shale assemblages, the bilaterian diversification occurred within a short period in the lower
Cambrium [32]. Deep metazoan phylogeny is difficult to resolve and many questions regarding the origin
and early evolution of animals remain unanswered [33]. Major characteristics of all four basal metazoan
groups are generally the lack of bilateral symmetry in their adult body plans and different developmental
programs compared to other animals. Most sponges are asymmetrical or, less often, radially symmetrical.
Cnidarians are radially symmetrical, while placozoans lack symmetry. Most ctenophoran species have
modified radial (biradial) symmetry [34,35]. On the contrary, almost all Bilateria are triploblastic and
bilaterally symmetrical. The status of Porifera (sponges) is unclear, since some authors claim that they have
no germ layers. Sponges have been described as organisms devoid of true epithelia, lacking the gastrulation
stage during development [36,37]. The other three non-bilaterian phyla are diploblasts, their adult tissues
are derivatives of two primary germ layers: the ectoderm and the endoderm (endomesoderm) [34]. To this
date, genomes of few non-bilaterian species have been published: sponge Amphimedon queenslandica [38],
ctenophore Mnemiopsis leidyi [39], placozoan Trichoplax adhaerens [40], and cnidarians Hydra vulgaris [41] and
Nematostella vectensis [42]. In addition, a few draft genomes are available: cnidarians Actinia tenebrosa [43],
Montipora capitata [44], Actinia equine [45], Exaiptasia pallida [46], Pocillopora damicornis [47], Alatina alata [48],
Stylophora pistillata [49], Acropora digitifera [50], Dendronephthya gigantea [51], Acropora millepora [52],
and ctenophore Pleurobrachia bachei [53].

1.2.1. Sponges

Sponges (phylum Porifera) are ancient animals, one of the earliest branching animal phylum that
changed little in the last 800 million years [54]. Therefore, they are a remarkable model for studying
the origin and the early evolution of Metazoa. Sessile as adults, sponges lack true tissues and organs
as well as any recognizable sensory or nervous structures. They also lack a clear anterior–posterior
(AP) polarity as adults, but the larvae do swim directionally. Their body plan is adapted for filtering
water to enable feeding and respiration [36]. The sponge body is made of three layers. Polygonal cells
called pinacocytes cover the outside of the sponge. The inside layer is built of choanocytes—cells with
a flagellum surrounded by a collar. The middle layer called mesohyl is a matrix of glycoproteins
with several types of motile cells and skeletal elements (calcareous or siliceous spicules and/or protein
spongin). Bigger and more complex sponges usually have additional structural features, such as
specialized choanocyte chambers and a network of water channels, but the basic body structure is
always conserved. Sponge bodies are covered by numerous small openings (pores) called ostia and
have at least one big opening—osculum. Due to the coordinated action of choanocytes, water carrying
food and oxygen enters the sponge body through ostia, moves through the channels and chambers,
and exits the sponge through the osculum. Besides producing the water current, the choanocytes
filter food particles, which are subsequently digested by the cells in the mesohyl. Currently, there are
more than 9000 valid sponge species inhabiting diverse marine and freshwater habitats [35]. There are
four classes of sponges: Demospongia, Hexactinellinda, Calcarea, and Homnoscleromorpha. In contrast
to their simple morphology, sponges have strikingly complex genomes and many of their genes are
highly similar to their vertebrate homologs [38]. Therefore, they provide the best possible insight
into the metazoan last common ancestors’ genome and proteome features [38,55,56]. The main
poriferan evolutionary developmental biology models are the demosponge A. queenslandica and the
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calcarean Sycon ciliatum in which several steps of development have been investigated and genomes
and transcriptomes sequenced [34]. Sponges represent an important model for studying ancestral
metazoan homologs and their features before the diversification and specialization of these genes in
higher animals. Sponges possess most of the genes present in animals with true tissues (Eumetazoa),
numerous genes involved in early development, and carcinogenesis, as well as totipotent cells.

1.2.2. Placozoans

Placozoans are a group with the simplest morphology among the metazoans. Their embryology
is still unknown. Their disc-shaped bodies, without a gastric cavity, consist of two epithelial layers
with a third layer of loosely arranged fiber cells between them. The lower of the two layers, which is in
contact with the substrate, has specialized ciliated and gland cells used for adherence and feeding and
enables the animal to move by crawling [40]. The placozoans possess baso-apical polarity, they have
no mesenchymal tissues and are composed of six somatic cell types. Placozoans are tiny animals,
usually less than two millimeters in diameter, without specialized muscle or nervous structures [35].
For a long time, only a single placozoan species was known—Trichoplax adherens, but lately, it has
been discovered that the phylum is much more diverse [57,58]. The Trichoplax genome is compact,
but with many genes involved in complex cellular processes found in “higher” animals. The genome
contains 11,514 protein-coding genes that are closely related to those of cnidarians [40]. Placozoans and
sponges are the only animals that do not possess true tissues and are thus sometimes grouped together
into Parazoa [35].

1.2.3. Cnidarians

Cnidarians are characterized by an archetypal gastrula-shaped body plan. They possess the basic
three-layered body structure consisting of an outside and an inside epithelium with a gelatinous mesoglea
in the middle. The cnidarian body reveals crucial evolutionary innovations: basement membrane,
muscle cells, simple nervous system, and sensory organs. Cnidarians possess cnidocytes—specialized
explosive cells with harpoon-like structures and toxic content designated to capture prey and/or as a defense
mechanism against predators. Cnidarians appear in two significantly different forms: a free-swimming
medusa (jellyfish), or a sessile polyp, attached to the substrate, sometimes connected with others,
forming a colony. Both forms display radial symmetry with tentacles surrounding the mouth [35].
There are over 11,000 described species of cnidarians divided into five classes: Hydrozoa, Scyphozoa,
Cubozoa, Staurozoa, and Anthozoa. [59]. Cnidarians are well-known for their ability to regenerate lost parts.
Hydra has been used for decades as a model organism for studying regeneration processes in metazoans.
Regeneration in these organisms occurs by a mechanism that does not require either proliferation or
growth (morphalaxis) [60,61]. The genomes of cnidarians such as the sea anemone N. vectensis [42] or
the freshwater polyp Hydra [41] reveal a repertoire of about 18,000 protein-coding genes, indicating the
genomic complexity of the common bilaterian–cnidarian ancestor [41,42].

1.2.4. Ctenophores

The ctenophores or comb jellies have a body structure identical to cnidarians—an outside and an
inside epithelium with mesoglea between them. However, there are several important differences.
Ctenophores do not have cnidocytes, and their epithelia have two cell layers. The multiciliated cells
typical for this group usually form eight rows (combs) along the body, making ctenophores the largest
organisms that swim by ciliary motion. Same as cnidarians, ctenophores have muscle cells and a simple
nervous system with sensory organs. Ctenophores and cnidarians, as well as all Bilateria, developed
tissues and, therefore, belong to the supergroup Eumetazoa. Ctenophoran species are divided into two
classes: Nuda and Tentaculata, which have long tentacles with sticky cells used to capture pray [35].
Evolutionary analyses show that many of the ctenophoran orders, families, and even genera are not
monophyletic [62]. Analyses of 18S RNA and ITS1 + 5.8S + ITS2 sequences of several species of this
phylum suggest that today’s ctenophores have passed through a relatively recent radiation followed
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by a bottleneck [62,63]. The main ctenophore models used in evolutionary developmental biology
(evo–devo) are the invasive species Mnemiopsis leidyi [39] and Pleurobrachia pileus [64].

1.3. Phylogenetic Relationship of Non-Bilaterian Animals

One of the most disputed issues concerning the phylogeny of animals is the phylogenetic
relationships among non-bilaterian phyla (Porifera, Cnidaria, Ctenophora, and Placozoa) and their
relationship with Bilateria [65,66]. Understanding the relationships among phyla and the true topology
of the metazoan tree of life is crucial for answering questions concerning the emergence of metazoan
characteristics and their evolution during the last 700 million years [66,67]. The traditional view is
that sponges are the earliest-branching lineage, while placozoans are a sister group of Eumetazoa
(Figure 3A) [68].
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Figure 3. Phylogenetic relationships among non-bilaterian phyla and their relationship with
Bilateria. (A) Porifera sister to all other metazoan; (B) Ctenophora sister to all other metazoan;
(C) Porifera + Ctenophora clade sister to all other Metazoa.

Phylogenomic studies based on the genomic sequences of the sponge A. queenslandica, the placozoan
T. adherens, and the cnidarian N. vectensis are in agreement with this traditional view [38,40,42].
Other studies placed ctenophores at the base of the animal tree of life (Figure 3B), which was, in turn,
challenged by other studies.The criticism was addressed towards the phylogenetic methods used,
which could have influenced the results [31,69]. Another study placed Porifera + Ctenophora as the
earliest-branching animals (Figure 3C) [39]. This finding could have a huge impact on our understanding
of early metazoan evolution. It would mean that the last common ancestor of Metazoa was quite
complex, while sponges became simpler as an adaptation to their highly specialized lifestyle as sessile
water filterers. Even though the relationship of the basal metazoans is still controversial, multiple lines
of evidence suggest that early animals possessed a poriferan-like body plan, and thus, extant sponges
may provide key knowledge on the origins of complex animal bodies [70]. Although sponges are
structurally simple organisms, their molecular machinery is similar to the ones in other more complex
animals. Furthermore, they possess genes that may be used in pathways for crucial physiological events,
such as growth, differentiation, cell specialization, adhesion, and sensory functions [36]. In order to
resolve relationships within basal metazoan phyla, we need to increase the phylogenomic sampling,
improve the phylogenomic tree construction methods, and connect molecular methods with classical
biology. The exponential increase in research publications in the field of evo–devo biology has put
non-bilaterian animals again in the spotlight of investigation. The use of simple models contributed
especially to the identification of pathways highly conserved in most eukaryotes. The molecular studies
of simple (early branching) animals provide important information about the origin of the main signal
pathways common to all animals. Herein, we review the current knowledge on Rho-family GTPases
in non-bilaterian animals, the available experimental data about their biochemical characteristics
and functions as well as original bioinformatics analysis, in order to gain a general insight into the
evolutionary history of Rho-family GTPases in simple animals.
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2. The Rho Family of Proteins, Rho GTPases, in Non-Bilaterian Animals

The repertoire of Rho genes/proteins remains quite similar in terms of number and complexity
from unicellular eukaryotes to non-bilaterian animals [14]. Rho families mainly arose through the
duplication of Rho or Rac genes. Rho family members are divided into nine subfamilies; Rho, Rac,
Cdc42, RhoDF, Rnd, RhoUV, RhoH, RhoBTB, and Miro. The evolutionary analysis of the Rho family
indicate that Rac protein is probably the founder of the Rho family [14]. The ancestral Rac duplications
in metazoans were associated with early specialization, leading to Cdc42 in charge of controlling cell
polarity and Rho responsible for cytokinesis [71,72]. Rho, Cdc42, and RhoBTB probably emerged from
Rac within the 100–200 million years (Myr) period [73]. Rho, Rac, Cdc42, and RhoBTB are present in all
bilaterians, with the exception of RhoBTB, which is absent in C. elegans and O. dioica [14]. This confirms
the well-documented roles of Rho, Rac, and Cdc42 in basic cellular metabolism and supports the
data implicating RhoBTB2 in the control of proliferation, apoptosis, and membrane trafficking [74,75].
The time of emergence of Rnd and RhoUV is consistent with their roles in the acquisition of muscle
and nerve cells, while the Cdc42 isoforms, RhoJQ and RhoDF, probably emerged at the time of origin
of the vertebrate central nervous system [27]. A very important common characteristic of the entire
Rho family is its high evolutionary dynamics, visible through the high incidence of gain and loss of its
members in different animal lineages [14].

In this study, we systematically identified and characterized Rho family members from basal
Metazoa (Table 2).

Table 2. Rho GTPases from basal Metazoa: comparison with most related human proteins.

Basal Metazoa Homo Sapiens

Taxonomic Group Organism Name No. aa Name No. aa ident% simil%

Cnidaria N. vectensis

NvRho
NvRho2
NvRac1
NvCdc42
NvRhoBTB
NvMiro
NvRhoU
NvRnd3

192
214
194
191
660
662
211
163

RhoA
RhoA
Rac1
Cdc42
BTB1
Miro1
RhoV
Rnd3

193
193
192
191
696
618
236
244

89.1
43
89.2
91
37.7
53.7
54
35

94.3
60.7
93.3
95.3
54
70.1
59
50

H. vulgaris

HvRho1
HvRho2
HvRho3
HvRac1
HvuRnd3
HvCdc42
HvRhoBTB
HvMiro

192
192
211
192
194
191
679
622

RhoA
RhoA
RhoA
Rac1
Rnd3
Cdc42
BTB1
Miro1

193
193
193
192
244
191
696
618

88.1
87.6
54.5
89.1
28
89.5
33.8
45.6

94.3
92.2
71.1
92.2
46
94.8
51.7
65.8

Placozoa T. adherens

TaRhoA
TaRac1
TaCdc42
TaMiro

193
197
187
586

RhoA
Rac1
Cdc42
Miro1

193
192
191
618

88.1
79.7
86.4
50.2

93.8
87.3
92.7
66

Ctenophora M. leidyi MlRho
MlCdc42

192
192

RhoA
Cdc42

193
191

86.5
8.5

91.2
94.3

Porifera S. domuncula

SdRho1
SdRhoA
SdRho3
SdRac
SdCdc42

192
192
195
192
191

RhoA
RhoB
RhoA
Rac1
Cdc42

193
196
193
192
191

86
71.4
68.2
70.3
89.5

91.7
83.7
79
83.3
94.8

A. queenslandica

AqRho
AqRhoA
AqRac1
AqRac2
AqCdc42

192
193
192
201
191

RhoA
RhoA
Rac1
Rac1
Cdc42

193
193
192
192
191

85
34.9
88.5
68.7
90.6

90.7
53.9
94.3
81.6
94.8
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We searched the whole-genome sequences of basal Metazoa at the National Center for
Biotechnology Information database (NCBI) using blastp algorithm (https://blast.ncbi.nlm.nih.gov/Blast.
cgi) to identify Rho GTPase homologs in Porifera, Cnidaria, Ctenophora, and Placozoa, with bilaterian
Rho protein sequences from NCBI as queries (Table 1 and Table S1). We aligned Rho family
members from basal Metazoa and representatives of different bilaterian lineages using ClustalX [76].
Amino acid identity and similarity percentages matrices of metazoan Rho proteins were generated
using MatGAT2.01 with BLOSUM62 scores [77]. The summarized identities of metazoan Rho proteins
are illustrated using a heat map generated by Morpheus (https://software.broadinstitute.org/morpheus)
(Figure 4).
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Figure 4. The summarized amino acid similarity of metazoan Rho proteins (MatGAT2.01 (Scoring
Matrix BLOSUM62)) is presented using a heat map (red color indicates a high and blue a low percentage
of sequence identity/similarity) generated by Morpheus (https://software.broadinstitute.org/morpheus).
The detailed accession numbers of the protein sequences are shown in Table S1.

Conserved domains and motifs were identified by simple modular architecture research tool
prediction (SMART; http://smart.embl-heidelberg.de/) and further confirmed through sequence
alignment (ClustalX) with Rho proteins generated by ESPript (http://espript.ibcp.fr/ESPript/ESPript/)
(Figures 5–10). We used human Rho proteins with a completely resolved protein architecture as

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://software.broadinstitute.org/morpheus
https://software.broadinstitute.org/morpheus
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http://espript.ibcp.fr/ESPript/ESPript/
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reference sequences. In order to determine the phylogenetic relationships of the Rho homologs in the
basal Metazoa and known Rho proteins from Mammalia, Aves, Amphibia, Chordata, Cephalochordata,
Echinodermata, Arthropoda, Nematoda, and Mollusca, we constructed a phylogenetic tree using the
maximum likelihood algorithm in the MEGA 7 (Figure 2) [29]. Our phylogenetic analysis confirmed
that the Rho family of small GTPases can be divided into nine major subfamilies: Rho, Rac, Cdc42,
Rnd, RhoDF, RhoUV, RhoH, RhoBTB, and Miro. The members of these subfamilies in basal Metazoa
were categorized according to their phylogenetic clustering (Figure 2.).
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Figure 5. Sequence alignment of the Rho subfamily. The amino acid sequences of Rho GTPases were
aligned using ClustalX, the secondary structures predicted using ESPript. Regions of the Rho proteins
are indicated above the alignment; blue are the G domains, (G1, G2, G3, G4, and G5 with their respected
motifs), purple are switch 1 and switch 2 domains, red is the Rho insert, green is the polybasic region,
and black is the CAAX box. Blue frames are indicators of the conserved residues; white letters in red
boxes represent strict identity, red letters in white boxes represent similarity.
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Figure 6. Sequence alignment of the Cdc42 subfamily. The amino acid sequences of Cdc42 GTPases
were aligned using ClustalX, the secondary structures predicted using ESPript. Regions of the Cdc42
proteins are indicated above the alignment; blue are the G domains, (G1, G2, G3, G4, and G5 with
their respected motifs), purple are switch 1 and switch 2 domains, red is the Rho insert, green is the
polybasic region, and black is the CAAX box. Blue frames are indicators of the conserved residues;
white letters in red boxes represent identity, red letters in white boxes represent similarity.
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Figure 7. Sequence alignment of the Rac subfamily. The amino acid sequences of Rac GTPases were
aligned using ClustalX, the secondary structures predicted using ESPript. Regions of the Rac proteins
are indicated above the alignment; blue are the G domains, (G1, G2, G3, G4, and G5 with their respected
motifs), purple are switch 1 and switch 2 domains, red is the Rho insert, green is the polybasic region,
and black is the CAAX box. Blue frames are indicators of the conserved residues; white letters in red
boxes represent identity, red letters in white boxes represent similarity.
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Figure 8. Sequence alignment of the Rnd subfamily. The amino acid sequences of Rnd GTPases were
aligned using ClustalX, the secondary structures predicted using ESPript. Regions of the Rnd proteins
are indicated above the alignment; blue are the G domains, (G1, G2, G3, G4, and G5 with their respected
motifs), purple are switch 1 and switch 2 domains, red is the Rho insert, green is the core effector
domain, and black is the CAAX box. Blue frames are indicators of the conserved residues; white letters
in red boxes represent identity, and red letters in white boxes represent similarity.
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BflRhoU homolog (B. floridae) has amino acid C instead of N/T in the G4 domain. The NveRhoU 

homolog from the cnidarian N. vectensis shows 45%/59% identity/similarity with human HsaRhoV, 
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2.6. RhoBTB 

RhoBTB proteins are atypical Rho GTPases [7]. These GTPases are structurally different from 

other Rho-family members and possess considerable additional sequences after the Rho GTPase 

domain. In the G4 domain, the C amino acid is present instead of N/T, while in the G5 domain, the 

Figure 9. Sequence alignment of the RhoUV subfamily. The amino acid sequences of RhoUV GTPases
were aligned using ClustalX, the secondary structures predicted using ESPript. Regions of the RhoUV
proteins are indicated above the alignment; blue are the G domains, (G1, G2, G3, G4, and G5 with their
respected motifs), purple are switch 1 and switch 2 domains, red is the Rho insert, green is the core
effector domain, and black is the CAAX box. Blue frames are indicators of the conserved residues;
white letters in red boxes represent identity, and red letters in white boxes represent similarity.
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GTPases were aligned using ClustalX, the secondary structures predicted using ESPript. Regions of the
Rho proteins are indicated above the alignment; blue are the G domains, (G1, G2, G3, G4, and G5 with
their respected motifs), purple are switch 1 and switch 2 domains, orange the first BTB domain, gray the
second BTB domain, and red represents the C-terminus back domain. Blue frames are indicators
of the conserved residues; white letters in red boxes represent identity, red letters in white boxes
represent similarity.

2.1. Rho

Ćetković and coworkers [2] inspected 13,000 partial cDNA sequences (ESTs) from the marine
sponge Suberites domuncula and identified cDNA sequences coding for three homologs in Metazoa,
named SdRho1, SdRho2 (SdRhoA), SdRho3. All three proteins from S. domuncula have the Rho GTPase
domain characteristic for Rho subfamily members and are responsible for nucleotide binding and
hydrolysis (G1–5 boxes) and two regions that specifically bind regulators or effectors—the switch 1
and 2 regions. In addition, all of them have the Rho insert, the C-terminal CXXX motif (C: cysteine,
A: aliphatic, X: any amino acid), which undergoes post-translational lipid modifications responsible
for membrane targeting, and a polybasic region adjacent to the CAAX motif which contributes to
association to membranes, interaction with regulators, and subcellular localization (Figure 5) [2].

Boureux and coworkers [14] analyzed a draft genome of the sponge A. queenslandica (Reniera sp.
JGI-2005) and identified one Rho protein, while Fort states [27] that the genome of this sponge has
three Rho s.s. GTPases (stricto sensu, i.e., the ancestor to human RhoA-C). We have identified two Rho
proteins (AqRho and AqRhoA) in the genome of A. queenslandica. This is probably due to incomplete
and/or low-quality genome assembly and gene annotation. HvRho1, HvRho2, and HvRho3 Rho
GTPases are present in the cnidarian H. vulgaris, while NvRho and NvRho2 are present in N. vectensis
(Table 1 and Figure 2) [14,78]. A varying number of paralogs in cnidarians is probably a consequence
of lineage-specific duplications. We have identified a single Rho protein (TaRho) in the genome of the
placozoan T. adherens and in the genome of the ctenophore M. leidyi (MlRho) (Table 1 and Figure 2).

We aligned Rho homologs from basal Metazoa and representatives of different bilaterian lineages
(Figure 5), and analyzed protein sequence identity/similarity (Figure 4). The Rho domain (G1, G2 switch 1,
G3 switch 2, G4, and G5), the Rho insert (10–15 residue) important for the regulation of Rho GTPases
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activity, the polybasic site and CAAX box are present in all basal metazoan homologs of the human Rho
subfamily proteins. HsaRhoC does not possess the CAAX box, while in CgiRhoJ and CgiRho, the cysteine
is substituted with valine in the CAAX box (Figure 5). Rho subfamily homologs from basal Metazoa show
50.5–94.3% sequence similarity with the human Rho GTPases. The highest homology (identity/similarity)
with the human RhoA protein is as follows: NveRho homolog from the cnidarian N. vectensis 89%/94%,
TadRhoA homolog from the placozoan T. adherens 88%/93%, HvuRho1 homolog from the cnidarian
H. vulgaris 88%/94%, AquRho from the sponge A. queenslandica 85%/90%, and SdoRho1 from the sponge
S. domuncula 86%/91% (Table 2).

2.2. Cdc42

A single Cdc42 gene was found in the genome of the sponge A. queenslandica [14,27]. Analysis of
the cDNA sequences (ESTs) from the marine sponge Suberites domuncula identified only one Cdc42
protein, named SdCdc42 [2]. In addition, a single Cdc42 Rho GTPase is present in the cnidarians
H. vulagaris (HvCdc42) and N. vectensis (NvCdc42) (Table 1 and Figure 2) [78]. We identified only one
Cdc42 protein (TaCdc42) in the genome of the placozoan T. adherens as well as a single Cdc42 homolog
(MlCdc42) in the genome of the ctenophore M. leidyi (Table 1 and Figure 2). We aligned Cdc42 homologs
from basal Metazoa and representatives of different bilaterian lineages (Figure 6) and analyzed the
protein sequence identity/similarity (Figure 4).

As shown in Figure 6, all the protein domains (G1, G2 switch 1, G3 switch 2, G4, and G5), the Rho
insert, the polybasic site, and CAAX box are present in basal metazoan homologs of the human Cdc42
protein. Homologs of the Cdc42 subfamily from basal Metazoa display very high homology (92–95%
similarity) with the human Cdc42. The highest homology with the human Cdc42 protein display
the NveCdc42 homolog from the cnidarian N. vectensis (identity/similarity; 91%/95%) and AqCdc42
homolog from the sponge A. queenslandica (identity/similarity; 90%/95%). The TadCdc42 homolog from
Placozoa T. adherens shows 86%/92% and SdoCdc42 from S. domuncula 89%/94% identity/similarity
(Table 2).

2.3. Rac

Boureux and coworkers [14] analyzed the draft genome of the sponge A. queenslandica (Reniera
sp. JGI-2005) and identified five Rac proteins (RRac1–RRac5), while Fort states [27] that the sponge
genome possesses only one Rac gene/protein. We identified two Rac proteins (AqRac1 and AqRac2)
in the genome of A. queenslandica, while a single Rac protein, SdRac, was identified in the marine
sponge Suberites domuncula EST database (Table 1 and Figure 2) [2]. The same has been suggested for
cnidarians [27] although the genome of H. vulgaris has two Rac genes (HvRac1 and HvRac2) while
N. vectensis has only one (NvRac) [78]. A varying number of Rac paralogs in sponges and cnidarians is
probably a consequence of lineage-specific duplications. We identified only one Rac gene (HvRac1) in
the genome of H. vulgaris. We have also identified one Rac gene (TaRac) in the genome of the placozoan
T. adherens, while the genome of the ctenophoran M. leidyi seems to lack Rac subfamily Rho GTPase
members (Table 1 and Figure 2). We aligned Rac homologs from basal Metazoa and representatives of
different bilaterian lineages (Figure 7) and analyzed the protein sequence identity/similarity (Figure 4).

As shown in Figure 7, all the Rac protein domains (G1, G2 switch 1, G3 switch 2, G4, and G5),
the Rho insert, the polybasic site, and CAAX box are present in basal metazoan homologs of the human
Rac proteins. Rac subfamily homologs from basal Metazoa display high homology (80–94% similarity)
with human Rac proteins. The highest homology (identity/similarity) with the human Rac proteins are
as follows: TadRac homolog from Placozoa T. adherens 80%/87%, HvuRac1 homolog from the cnidarian
H. vulgaris 89%/92%, AquRac1 homolog from Porifera A. queenslandica 88%/94%, and SdoRac homolog
from Porifera S. domuncula 70%/83% with the human HsaRac1 protein. NveRac1 homolog from the
cnidarian N. vectensis shows the highest identity/similarity (89%/93%) with the human HsaRac2 protein
(Table 2).
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2.4. Rnd

The Rnd gene/protein most likely emerged before the divergence of Cnidaria [27]. Rnd genes have
been identified in several genomes of Anthozoa (the sea anemones N. vectensis, Acropora digitifera,
and Exaiptasia pallida) and Hydrozoa (H. vulgaris). Furthermore, the cnidarian Rnd protein has
substitutions in its G3 box and is, therefore, atypical compared to other Rnd subfamily protein members.
Consequently, the cnidarians Rnd is devoid of GTPase activity and remains active until it is degraded [27].
Cnidarians possess a neural net [34]. Rnd3 deficiency causes neuromuscular defects with a reduced
number of motor neurons in mice [79]. Therefore, it is possible that Rnd has a vital function in the
development of the neuronal network. Cnidaria could serve as a useful model for addressing the potential
ancestral Rnd function in connection to the development and evolution of the nervous system. The timing
of emergence of Rnd is consistent with its assigned role in the origin of nerve cells [27]. Several other
publications report that Rnd appears exclusively in chordates [14]. We confirm the presence of Rnd
subfamily homologs only in genomes of cnidarians H. vulgaris, N. vectensis (Table 1 and Figure 2), and the
draft genome of Actinia tenebrosa (Figures 4 and 8).

We aligned Rnd homologs from cnidarians and representatives of different bilaterian lineages
(Figure 8) and analyzed the protein sequences’ identity/similarity (Table 2 and Figure 4). As shown
in Figure 8, the members of the Rnd subfamily contain Rho the GTPase domain (G1, G2 switch 1,
G3 switch 2, G4, and G5), the Rho insert and the CAAX box. The G4 domain contains a C instead of
N/T in all Rnd proteins. The G5 domain is not conserved in many Rnd proteins. The G5 domain of the
CgiRnd3 homolog from C. gigas contains an I instead of (T/G/C). The NveRnd3 homolog from N. vectensis
contains a YYT motif instead of (T/G/C)(C/S)A in the G5 domain and an incomplete C-terminus. The G5
domain of the HsaRnd2 (H. sapiens), GgaRnd2 (G. gallus), DreRnd2 (D. rerio), CgiRnd3 (C. gigas),
HvuRnd3 (H. vulgaris), and AteRnd3 (A. tenebrosa) contains a Serine instead of Alanine (Figure 8).
The NveRnd homolog from the cnidarian N. vectensis shows 35%/50% identity/similarity and HvuRnd3
homolog from H. vulgaris 28%/46% with the human HsaRnd3. The AteRnd3 homolog from A. tenebrosa
shows 42%/64% identity/similarity with the human HsaRnd2 protein (Table 2).

2.5. RhoUV

The RhoUV gene/protein most likely emerged before the divergence of Cnidaria [27]. RhoUV genes
have been identified in genomes of the cnidarian N. vectensis and E. pallida [24]. Furthermore, the cnidarian
RhoUV protein has substitutions in the G3 box and, therefore, lacks the GTPase activity [27]. Cnidarians,
unlike Porifera, have smooth and striated muscles. In vertebrates, the RhoU protein is involved in
the development and function of the heart [80,81]. Therefore, the cnidarian RhoUV proteins could
be a good model for investigating the functions of the ancestral RhoUV GTPases related to muscle
biology. The time of origin of the RhoUV is consistent with its role in the acquisition of muscle cells [27].
Some other publications report that members of the RhoUV subfamily cannot be detected in genomes of
cnidarians [14,78]. We confirm the presence of RhoUV subfamily homologs only in genomes of cnidarians
N. vectensis (Table 1 and Figure 2) and E. pallida (Figures 4 and 9).

We aligned RhoUV homologs from cnidarians and representatives of different bilaterian lineages
(Figure 9) and analyzed protein sequence identity/similarity (Figure 4). As shown in Figure 9,
the members of the RhoUV subfamily contain the Rho GTPase domain (G1, G2 switch 1, G3 switch 2,
G4, and G5), the Rho insert, and CAAX box (Figure 9). The G4 domain of NvRhoUV from the cnidarian
N. vectensis and EpaRhoV from the cnidarian E. pallida contains the H amino acid instead of (K/Q)
(Figure 9). The EpaRhoV homolog from E. pallida contains an amino acids motif VXXXXVKI instead of
GXXXXGK(S/T) in the G1 domain, and an XRX motif instead of XTX in the G2 domain. The BflRhoU
homolog (B. floridae) has amino acid C instead of N/T in the G4 domain. The NveRhoU homolog from
the cnidarian N. vectensis shows 45%/59% identity/similarity with human HsaRhoV, while the EpaRhoV
homolog from E. pallida shows 30%/44% identity/similarity with the human HsaRhoU (Table 2).
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2.6. RhoBTB

RhoBTB proteins are atypical Rho GTPases [7]. These GTPases are structurally different from other
Rho-family members and possess considerable additional sequences after the Rho GTPase domain.
In the G4 domain, the C amino acid is present instead of N/T, while in the G5 domain, the (T/G/C)(C/S)A
motif is replaced with S(V/I/S)(F/V/Y/L) (Figures 1 and 7). The additional C-terminal sequences include
a tandem repeat of BTB domains and lack C-terminal CAAX prenylation signals [7]. According to
previous studies, cnidarians either have two RhoBTB proteins [27] or, in case of H. magnipapillata
(HmRhoBTB) and N. vectensis (NvRhoBTB), only one RhoBTB gene per genome [14,78]. We have also
identified only one RhoBTB homolog in genomes of cnidarians H. vulgaris (HvRhoBTB) and N. vectensis
(NvRhoBTB). Members of the RhoBTB subfamily of Rho GTPases were not found in genomes of sponges,
placozoans, and ctenophores. We aligned RhoBTB homologs from cnidarians and representatives of
different bilaterian lineages (Figure 10) and analyzed protein sequence identity/similarity (Figure 4).

The NvRhoBTB homolog from N. vectensis shows 37/54% identity/similarity, while the HvRhoBTB1
homolog from H. vulgaris 33%/51% identity/similarity with human RhoBTB proteins (Table 2).

2.7. Miro

The Miro (mitochondrial Rho) GTPases are sometimes placed in the Rho family. However, this seems
to be a separate, structurally unique, functionally specialized family of GTPases that most likely already
existed in the last common eukaryotic ancestor [23,82]. The members of the Miro subfamily contain
two putative GTPase domains and two EF-hand motifs but lack the Rho-specific insert sequence
(Figures 1 and 8). The N-terminus G3 domain and the C-terminus G-domains are not conserved.
The C-terminus Rho-GTPase domain of Miro GTPases was previously considered to be a “relic“, but some
studies observed its activity [83]. The first G3 domain contains the GXXE/A/I/S/E/Y motif instead of the
DXXG, whereas only the XtrMiro2 possesses the DXXG motif. The second G1 domain of TadMiro from
the placozoan T. adherens contains a Valine (V) instead of S/T. The second G2 domain is present only in the
human HsaMiro2. The second G3 and G5 domains are not conserved (Figure 11). Cnidarians H. vulgaris
(HvMiro) and N. vectensis (NvMiro) contain a single Miro subfamily member (Table 1 and Figure 2) [78].
Our searches did not find members of the Miro subfamily of Rho GTPases in sponge and ctenophore
genomes. We aligned Miro homologs from basal Metazoa and representatives of different bilaterian
lineages (Figure 11) and analyzed protein sequence identity/similarity (Figure 4). The NveMiro homolog
from the cnidarian N. vectensis shows 53/70% identity/similarity, while the HvuMiro homolog from
H. vulgaris shows 45%/65% identity/similarity with the human HsaMiro1 protein. The TadMiro from
Placozoa T. adherens shows 50%/66% identity/similarity with the human HsaMiro1 protein (Table 2).
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3. Rho GTPases in Non-Bilaterian Animals Participate in a Plethora of Signaling Pathways

3.1. Wnt Pathway

Rho GTPases function as molecular switches in a vast number of signaling pathways. Some of
those pathways can be found, usually in a simpler version, in basal metazoans as well. One of the
most investigated is the Wnt pathway. The Wnt family comprises of secreted glycosylated proteins
that influence cell growth, differentiation, and migration [84,85]. Wnt proteins act by binding to
Frizzled (Fzd) receptors and thus activate two different signal transduction cascades: the canonical
and the non-canonical (Figure 12). The canonical pathway includes the accumulation of β-catenin
in the cytoplasm and its translocation into the nucleus, where is acts as a coactivator of transcription
factors that belong to the Tcf/LEF (transcription factor/lymphoid enhancer-binding factor) family.
The Rho GTPases take part in the non-canonical cascades, which lead to the rearrangement of the cell
cytoskeleton causing changes in cell adhesion and migration properties (Figure 12) [86–88].
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Figure 12. A simplified representation of the canonical and non-canonical Wnt signaling pathway.
Small Rho GTPases are involved only in the non-canonical Wnt pathways. Wnt–Wnt family member;
Fzd—Fizzled class receptor; Dvl—disheveled segment polarity protein; Rac1—Rac family small
GTPase 1; Rho A—Ras homolog family member A; cdc42—cell division cycle 42; JNK—c-Jun
N-terminal kinase; ROCK—Rho-associated coiled-coil containing protein kinase; PKC—protein kinase
C; c-jun—Jun proto-oncogene; GSK3—glycogen synthase kinase 3; LRP—low-density-lipoprotein
(LDL) receptor-related protein; Tcf—transcription factor.

The non-canonical pathways include the planar cell polarity (PCP) pathway responsible for
cell shape and the Wnt/calcium pathway, which controls the calcium in the cell. Neither of them
include β-catenin. Contrary to the non-canonical Wnt pathways, the canonical Wnt signaling also
requires single-span transmembrane proteins that belong to a subfamily of low-density-lipoprotein
(LDL) receptor related proteins (LRPs): Lrp5 and Lrp6 in vertebrates, and their Drosophila ortholog
(Arrow) [89]. The Wnt signaling pathway is an innovation of first multicellular animals (Metazoa),
because a complete Wnt signaling pathway cannot be found in any of the single-cell organisms (protists).
A core set of Wnt genes (a basal set of Wnt ligands, receptors, and cytoplasmic transducers) was already
present in Porifera, Placozoa, and Ctenophora, while a complete functional repertoire of Wnt ligands is
present only in Cnidaria. Their Wnt gene repertoire is simple compared to other metazoans. All existing
Wnt genes are actively involved in gastrulation, pattern formation, and regeneration in non-bilaterian
animals, providing a basic panel of tools for understanding the interchange of the canonical and two
noncanonical pathways—the planar cell polarity (PCP) and the Wnt/calcium pathway [90].
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The genomes of cnidarians the sea anemone N. vectensis (Putnam et al., 2007) and the freshwater
polyp H. vulgaris [41] possess all bilaterian Wnt gene subfamilies, but some of the members within
subfamilies are missing [90,91]. For instance, Wnt-9 cannot be found in N. vectensis [92,93], whereas
H. vulgaris lacks Wnt4, -6, and -A. The cnidarians possessing the complete repertoire of Wnt gene
subfamilies suggests that the common (eumetazoan) ancestor of cnidarians and bilaterians already
possessed a full-scale repertoire of Wnt gene ligands [92]. Cnidarian Wnts act in the canonical and in
the planar cell polarity (PCP) pathways. Homologs of the PCP signaling pathway, including RhoA,
ROCK-2, and Rac1, are present in cnidarians [90,93,94].

Adell and coworkers [95] described a Wnt-related gene, Sd-Frizzled, from Porifera. They also
reported the isolation and phylogenetic characterization of several Wnt pathway-related genes
from the demosponge S. domuncula [96]. Furthermore, they have found sponge homologs of small
Rho GTPases, RhoA (SdRhoA) and Cdc42 (SdCdc42), and their effector, myosin regulatory light
chain (Sdmrlc). The isolation of a secreted frizzled related protein sFRP from another sponge
species (Lubomirskia baicalensis) is reported [96]. The first genome analysis of the demosponge
A. queenslandica [38] and the analysis of S. domuncula ESTs [56] enlightened the origin and evolution of
the Wnt signaling pathway [97,98]. The sponge genome shows substantial conservation of gene families
with cnidarians and bilaterian animals [40]. The main components of the canonical Wnt/β-catenin
pathway are present, but those of the noncanonical pathways are missing [97,98]. A. queenslandica
contains three, while the homoscleromorph sponge Oscarella has two Wnt genes, which are difficult
to classify [38,98]. The growing accumulation of genomic and transcriptomic databases of early
branched phyla has significantly increased our knowledge of the ancestral metazoan molecular toolkit.
However, their involvement and function in specific molecular pathways remain to be elucidated,
especially in Porifera. Adell et al. [96] analyzed the expression levels of small GTPases, Sd-RhoA
and Sd-Cdc42, and the effector, Sdmrlc, involved in the non-canonical Wnt signaling in sponge cell
cultures (sponge tissue, dissociated cells, adherent cells, and primmorphs (sponge cell aggregates)).
All three genes were overexpressed in cultured cells compared to sponge tissue and adherent aggregates
(primmorphs). These results suggest that the Wnt signaling in the sponge could be involved in the
establishment of cell–cell contacts, and it is probably important for the regulation of cell–cell and
cell–matrix interactions [96]. The placozoan T. adhaerens has three unclassified Wnt genes and the main
components of the canonical Wnt signaling (Dvl (disheveled), Fzd, GSK3 (GSK3—glycogen synthase
kinase 3), AXIN, β-catenin), but no Wnt antagonists [40]. In the ctenophore M. leidyi, orthologs of the
key components of Wnt signaling have also been described [99].

3.2. Rho/Rock Pathway

The Rho associated coiled-coil protein kinase (ROCK) plays several important roles in development
across bilaterian animal species. The Rho/ROCK signaling pathway affects cytoskeletal dynamics thus
affecting cell shape, cell adhesion, and migration (Figure 13).

It is also involved in non-canonical Wnt signaling in bilateral animals. Consequently, the Rho/ROCK
pathway is required for the induction of epithelial morphogenesis and establishing specific body
plans in bilaterians. This highly conserved signaling pathway is thus the key for understanding
molecular mechanisms that are probably involved in controlling early development of early-branching
metazoans [100,101]. Schenkelaars and coworkers [102] found that sponges possess crucial proteins of the
Rho/ROCK pathway, implying that these proteins were present in the last common ancestor of Metazoa.
The structural domain analyses of the sponge homologs suggest that protein interactions described
in bilaterians have likely already been present in sponges and conserved to vertebrates. Furthermore,
the same author found that the sponge Em-ROCK kinase domain shows Rho kinase activity in vitro
and that commercially available ROCK inhibitors target the sponge Em-ROCK protein. This finding
supports the hypothesis that the Rho/ROCK pathway is an evolutionarily conserved module in animals.
In vivo assays using ROCK inhibitors applied during early development of freshwater sponges provide
solid evidence that ROCK is important for inducing the processes of morphogenesis and setting up the



Cells 2020, 9, 2279 21 of 27

body plan [102]. Recently published data [103] suggest an essential role of FGFR (fibroblast growth
factor receptor) and Rho-ROCK-myosin II pathways in the control of cell shape changes required for bud
detachment in hydra. Using gene expression analysis and pharmacological inhibition, authors recognized
a candidate signaling pathway through Rho, ROCK, and myosin II, which controls rearrangement of
the actin cytoskeleton and bud base constriction. Inhibition of FGFR, Rho, ROCK, or myosin II kinase
activity is permissive for budding but represses myosin phosphorylation, rearrangement of F-actin,
and constriction. The young polyp remains permanently connected to the parent by a broad tissue
bridge [103].
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3.3. RhoGEFs and RhoGAPs

Rho proteins typically cycle between an inactive GDP-bound form and an active GTP-bound
form. Rho GTPases are controlled by more than a hundred guanine nucleotide exchange factors
(RhoGEFs) and GTPase-activating proteins (RhoGAPs). Their activity cycle is initiated by RhoGEFs and
terminated by RhoGAPs. A vast number of regulatory proteins, RhoGEFs and RhoGAPs, significantly
outnumber the 10 Rho family GTPase switch proteins they regulate, therefore enabling the precise
control of Rho signaling specificity [104]. However, it should be noted that some Rho family GTPases
do not behave like conventional Rho proteins in respect to their activation, e.g., Rnd. Rnds do not
catalyze GTP hydrolysis and, therefore, do not require GEFs for activation [105].

More than 70 different RhoGAPs have been characterized in eukaryotes. The human genome encodes
between 59 and 70 proteins containing the RhoGAP domain [106]. A comprehensive comparative analysis
on RhoGAPs that would include basal metazoans has not been done so far. A comparative analysis of
metastasis suppressors in Metazoa has revealed that homologs of Rho GTPase-activating protein DLC-1
(deleted in liver cancer 1) were present in all basal Metazoa (non-Bilateria) [107]. In another study, it was
shown that the homologs of Rho GTPase-activating protein RhoGAP, ARHGAP11A (named MP-GAP for
M Phase GAP) were present in Cnidaria and Placozoa [108].

The human genome encodes 82 different RhoGEFs. Dbl-like (diffuse B-cell lymphoma) members
of the RhoGEFs form the largest family. Comparative analysis performed by [15] showed that the
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human Dbl-like family is composed of 71 members (20 subfamilies). Nineteen of them are present in
Porifera and fourteen in Choanoflagelida and Filasteria (the closest unicellular relatives of animal).
The analysis supports the idea that Dbl-like RhoGEFs were present at the origin of eukaryotes and,
in the course of evolution, developed as very adaptive cell signaling mediators. In non-bilaterian
metazoans, Fort and Biangly identified 28, 22, and 26 RhoGEF members in the genomes of Cnidaria,
Placozoa, and Porifera, respectively [15]. Since Porifera is one of the earliest-branching metazoan
lineages, it is very likely that the ancestral Metazoa had at least 19 of 20 RhoGEF vertebrate subfamilies.
This implies that the molecular pathways controlled by RhoGEF subfamilies were already established
at the origin of Metazoa [15].

4. Conclusions

Based on current knowledge on Rho-family GTPases in non-bilaterian animals, the available
experimental data about their biochemical characteristics and functions as well as our bioinformatics
analysis, we confirmed the presence of Rho and Cdc42 homologs in the genomes of all basal Metazoa.
A member of the Rac family was found in the genomes of Porifera, Placozoa, and Cnidaria, while a
member of the Miro family is present in the genomes of Cnidaria and Placozoa. Members of Rnd,
RhoUV, and RhoBTB families are present in the genomes of Cnidaria. These findings support the
conclusion that the ancestor of all animals probably contained Rho, Rac, and Cdc42 homologs. We failed
to confirm the Rac gene in the currently available placozoan genome database. This could be due to
gene loss, incomplete and/or low quality genome assemblies, and/or gene annotation. RhoUV and
Rnd genes probably emerged before the divergence of Cnidaria. A varying number of paralogs
in early-branching animals is probably a consequence of lineage-specific duplications or gene loss.
Protein analysis revealed that Rho, Rac, Cdc42, RhoBTB, and Miro homologs present in basal Metazoa
show high similarity in primary and secondary structures with homologs in “higher” metazoans,
implying possible similar or identical biochemical and biological functions. Therefore, we believe
that basal metazoans represent an important model for studying the properties of ancestral metazoan
homologs before their diversification in higher animals. Moreover, the use of these animals as
experimental models is imperative for understanding the causes, biology, and prevention of human
diseases, especially cancer.
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