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Abstract: Tufa sedimentary systems are sensitive fluvial landscapes subject to various external
disturbances. Tufa landscape degradation reflected in negative hydrological changes and a decrease
in the intensity of the tufa formation process have been detected in National Park Krka (Croatia).
The main causes were recognized in the uncontrolled spread of invasive vegetation (Ailanthus altissima)
and increased anthropogenic influence. Therefore, the Park administration launched the project,
Management and Maintenance of Macro-Vegetation at Skradinski Buk (SB)—Development of a
Multicriteria Model for Sustainable Management. The methodological framework was divided into
three scales of research. The macro-scale research comprised a set of activities aimed at selecting the
most suitable test surface within a wider area of the Skradinski Buk (SB) waterfall. The meso-scale
research involved mapping the reference and final state of the vegetation and hydrological network
after the removal of invasive vegetation and mitigation of negative anthropogenic impact. At the
micro-scale, a monitoring system was established to track the quality of the tufa sedimentary
system. Special emphasis was placed on the measurement of tufa formation dynamics (TFD) on
limestone plates using a new methodological approach based on structure from motion (SfM)
photogrammetry. Implementation of the proposed multiscale framework resulted in reactivation
of tufa-forming watercourses, prevention of invasive vegetation regeneration and achievement of
sustainable conditions for the tufa formation process. In reactivated watercourses, the average tufa
growth rate was 4.267 mm a−1 (n = 18). Potential users of this framework include local authorities
and administrators of protected areas.

Keywords: tufa landscape degradation; sustainable management; tufa-forming watercourses;
invasive vegetation; SfM photogrammetry; National Park “Krka”

1. Introduction and Background

Landscapes by their very nature necessitate a multiscale approach in their monitoring, modelling
and management [1,2]. One of the most complex, vulnerable and fragile systems in the world is
the karst landscape [3,4]. Due to the importance of natural resource preservation and the possibility
of their exploitation, interest in the management of karst landscapes is constantly growing [4,5].
One of the most spectacular depositional forms in karst landscapes are tufa [6] and travertine barrages
and cascades [7] developed within river and lake systems [8]. They are geomorphological forms of
universal scientific and aesthetic values [9] and are often included in the UNESCO World Heritage
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List. Many tufa and travertine depositional systems are popular tourist destinations (e.g., National
Nature Reserve Jiuzhaigou in China, National Park (NP) Krka (NPK) and NP Plitvice Lakes in Croatia,
Havasupai Canyon and Mono Lake in the USA, Namib-Naukluft NP in Namibia, Dunn’s River Falls in
Jamaica, Pamukkale NP in Turkey, Huanglong in China, Una NP in Bosnia and Herzegovina, Pieniny
Mountains and Ojców NP in Poland and the Barkly karst in Australia) [6,10–13]. However, tufa
and travertine depositional systems are under increasing threat by climate change [14,15], the rapid
expansion of tourism [16] and local anthropogenic activities [6]. Therefore, the occurrence of a
degraded tufa landscape has been reported in numerous cases [6,13,15,17–19]. Landscape degradation
can be defined as the phenomenon in which diversity relationships are ruptured or connectivity is
reduced among ecosystems within the landscape [20]. The degradation of the tufa landscape can
be manifested in the reduced intensity of tufa growth [13], absence of tufa-forming processes [21],
increased biomass of green algae [6] (p. 2) associated with nutrient enrichment [21,22], tufa dissolution
and tufa waterfall collapse [6,21]. This degradation can occur as a result of a complex interaction of
biohydrochemical factors. The occurrence of tufa landscape degradation is becoming a global concern
in the context of sustainable management and biodiversity conservation [23]. This can negatively
affect the environmental, economic and social development of the area surrounding the protected tufa
landscape. Therefore, the emergence of such threats must be fully taken into account while developing
new management and action plans to achieve sustainability. Although the need to introduce a series of
management measures has been recognized, degradation of the tufa landscape continues [13] in most
areas where tufa formations are major natural phenomena [6,24,25].

Tufa landscapes in the Mediterranean are particularly at risk. Specifically, the freshwater areas of
the Mediterranean have been recognized as a hot spot of biodiversity of global importance, influenced
by a wide range of pressure factors [26]. In this area, the Republic of Croatia (HR) is particularly
recognized for its tufa landscapes [7] (NP Plitvice Lakes, NPK and tufa cascades of the Zrmanja and
Mrežnica Rivers), some of which, such as Plitvice Lakes, are included in the UNESCO World Heritage
List. In the HR, tufa landscape degradation is becoming a pronounced problem [22,27–30]. In recent
years, the vulnerability of this tufa landscape has reached such a high level that the possible exclusion
of NP Plitvice Lakes from the UNESCO World Heritage Site has been mentioned [31,32].

In recent years, tufa landscape degradation has been detected at some sites in NPK, which belongs
to Category II of International union for conservation of nature (IUCN) protected areas [33]. It is the
second-highest-ranked NP in HR by tourist attendance, with over one million visitors per year and
a growing trend [34]. In the wider area of the Skradinski Buk (SB) waterfalls, negative hydrological
changes have been observed, with changes in the direction of the tufa-forming watercourses and a
trend in the decrease in the mean and minimum annual flows [35] with a decreased intensity of the
tufa formation process. SB is the most famous [36], most visited [37], most downstream and longest
tufa barrier with numerous waterfalls in the NPK. The main causes of tufa landscape degradation
were recognized in the uncontrolled growth and spread of invasive vegetation (Ailanthus altissima) and
anthropogenic impact (path construction and gravel accumulation). The Administration of NPK has
recognized the problems and launched the project, Management and Maintenance of Macro-Vegetation
at Skradinski Buk (SB)—Development of a Multicriteria Model for Sustainable Management. The main
objectives of the project are as follows:

(1) Reactivate dried-up tufa-forming watercourses, lakes and waterfalls within the test surface.
(2) Achieve sustainable tufa formation conditions at the selected test surface.
(3) Provide the administration of protected tufa landscape guidelines for sustainable management of

sensitive tufa area.

Therefore, due to the growing anthropogenic influence [34], the specificity of the institutional
model of NPK management [33] and the sensitivity of tufa formation to small changes in the
environment [9,15,38–40], a multiscale framework for the sustainable management of tufa-forming
watercourses was implemented. This research, which is a product of the abovementioned project, offers
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a methodological framework that gives the administrations of protected tufa landscape guidelines to
sustainably manage that sensitive area in the context of a recognized problem.

Case Study (Macro-Meso-Micro-Scale Research)

The case study follows a methodological framework which is divided into three levels of research
(macro-, meso- and micro-). The NPK is located in Šibenik-Knin County (Figure 1A). It stretches
approximately 50 km along the watercourse of the Krka River, covering an area of 109 km2 [41]
(Figure 1B). With the first proclamation on 24 January 1985 the NPK covered an area of 142 km2.
This area was reduced in 1997 by a decision of the Croatian Parliament due to the fact that in the
southwestern part of the Park it was not possible to implement an appropriate protection regime due
to the increased anthropogenic impact. The characteristics of the Krka River are clear seasonality in
the flow intensity and water level. Specifically, during summer, the average monthly water levels
are approximately half of those in December [41]. The most prominent features of the Krka River are
rapid flow and dispersion of water, rich in dissolved bicarbonates, with macro- and microbiological
communities that flourish on tufa barriers [42]. The formation of tufa in this area began in the
Pleistocene period and with occasional interruptions continues to this day.
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Figure 1. (A) Location of National Park (NP) Krka (NPK) in Croatia; (B) location of the wider area of
Skradinski Buk (SB) in NPK (macro-scale); (C,D) location of the test surface within the wider area of SB
(meso-scale); (E) example of a limestone plate (PL) location (micro-scale).

Tufa landscape degradation in NPK has been observed in the wider area of SB. Therefore,
the macro- level of research refers to the wider area (50 ha) of SB (Figure 1C). The SB waterfalls are
regarded as one of the most valuable and beautiful tufa waterfalls in Europe [36]. This area is influenced
by a moderately warm Mediterranean rainy climate (Csa) with dry and hot periods in summer. Most
of the annual precipitation (approximately 1200 mm) falls during October-February. At the meso- level
of research, the case study area refers to the selected, most suitable, test surface (0.8 ha) within the
wider are of SB. It is located on the northeast side near the Marasovića Lake (Figure 1D). The selection
of test surface was performed using multi-criteria GIS analyzes (MCDA-GIS). Finally, the micro- level
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of research refers to the previously active and reactivated tufa-forming watercourses, respectively a
specific limestone plates (PLs) installed in it.

2. Materials and Methods

2.1. General Structure of the Methodological Framework

The methodology is based on an interdisciplinary research. This implies the treatment of the
perceived problem (tufa landscape degradation) as a whole, taking into account the knowledge
from different disciplines. This methodological framework can be regarded as the result of the
project implementation. The methodology was divided into macro-, meso- and micro-scale of research
following the principle of multi-resolution (hierarchical) landscape modeling (Figure 2). Understanding
the changes in the tufa landscape system requires a multiscale approach because analyses over a
uniform scale are inapplicable in this case. Landscape hierarchy theory states that understanding of a
studied element comes from the lower hierarchical level and significance from a higher hierarchical
level [43]. Therefore, the dynamics of the focal element evolution (tufa formation) are influenced by the
sets of elements from lower (e.g., biohydrochemical parameters) and higher (e.g., vegetation density,
soil morphology) hierarchical levels. Thus, examining such phenomena requires studying the change
in elements at different scales [3,44,45].
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Figure 2. Basic scheme of landscape hierarchy theory in the context of tufa landscape
degradation problem.

Therefore, the first (macro-) scale of research includes a set of activities aimed at selecting the
most suitable smaller surface area within the wider area of Skradinski Buk (Figure 3), where specific
management measures could be implemented. The second (meso-) scale of research includes mapping
of the initial and final state of tufa-forming watercourses (active and dried up) and vegetation cover at
defined test surface (Figure 3). At that scale, the implementation of specific management measures
(selective removal of vegetation and mitigation of negative anthropogenic effects) were done with
the aim of dried-up watercourse reactivation. At the last (micro-) scale of research, a system for
monitoring the state of the tufa landscape was established. It consisted of four components. The first
included tufa formation dynamic (TFD) monitoring on the installed artificial limestone PLs (Figure 3).
The second component included systematic monitoring of the flow rate in initially active and reactivated
tufa-forming watercourses. The third referred to the interval measurement of key physico-chemical
parameters of water. The last, fourth component, included the monitoring of the invasive vegetation
regeneration using the cyclic photography method.
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2.2. Macro-Scale Research

At the macro-scale, the main research objective was to select the most suitable test surface within
the wider area of SB on which specific management measures would be implemented. The most
suitable test surface means that this area has a detected tufa landscape degradation problem or
that there exists a high probability of this occurrence. Furthermore, this area must be accessible for
performing various data acquisition methods (terrestrial LiDAR, UAV photogrammetry, installation of
PLs, etc.). Implementation of management measures on the entire SB area was not necessary because
tufa landscape degradation did not occur everywhere. Additionally, since these measures have not
been applied in other protected areas, it was necessary to test their effectiveness on a smaller test
surface. The logistical and financial capabilities of the project were also limiting factors.

2.2.1. Field Surveys

The first step involved a preliminary field survey conducted by an interdisciplinary science
team with the members of the Park administration. In the one-month period, several field surveys
were performed within the wider area of SB. Potential locations of tufa landscape degradation were
photographed and mapped using RTK-GPS the Stonex S10 (Paderno Dugnano, MI, Italy). The most
suitable test surface in the wider area of SB was initially identified. However, it was concluded that
due to the complex terrain morphometry, high vegetation density and available historical data, it was
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necessary to use GIS-based multicriteria decision analysis (GIS-MCDA) [46] to select the most suitable
test surface.

2.2.2. Aerial LiDAR Scanning

Aerial LiDAR scanning of the six waterfalls and both banks of the Krka River was performed for
the purposes of generating the criteria for GIS-MCDA, production of referent digital surface model
(DSM), mapping of high vegetation and other needs of the Park administration. Aerial LiDAR scanning
was performed using a full-waveform laser measuring system Riegl LMS-Q780. The system was
connected to a Eurocopter EC120B helicopter with an integrated Hasselblad H39 camera and a Novatel
OEV/OEM4 internal GPS receiver. Data were collected in the NW-SE direction of flight. The laser beam
stabilization or deviation accuracy was approximately 0.25 mrad, corresponding to a positional error of
approximately 25 cm in the field at a relative flight altitude of 1000 m. The flight altitude was 500–600 m,
while the flight speed was 112.12 km/h. The point density was 24.7 points/m2 (precision 20 mm). Data
processing was performed using the software packages Microstation (v2004) and Terrasolid, while
Grafnav and IGI Aerooffice were used to process the GPS data. The process involved input and point
classification, manual correction of automatic point classification (pulse time), data transformation and
ultimately the creation of a digital terrain model (DTM). The entire scanned area contained a total of
350 dense point clouds with more than 781 million ground points (last pulse). Classified data were
saved in las format (LAS format) and converted into the LAS Dataset structure from which detailed
statistics of a classified point cloud were generated. After point classification, the average sampling
density dropped to 10-15 points per m2, depending on the density of the vegetation cover. A DTM was
created using the LAS Dataset to Raster tool in ArcMap software (Figure 4).
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2.2.3. Application of GIS-MCDA in the Selection of the Test Surface

The GIS-MCDA was used for the selection of the most suitable test surface. Two concepts were
used: Boolean and continuous values [47]. The Boolean approach, which serves to limit the alternatives
under consideration, relies on the binary statement (true/false) of the criteria for a considered goal or
decision [48]. Four exclusionary criteria were used (Figure 5):

1. Water surfaces;
2. Built-up areas;
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3. Mountainous areas;
4. Range of a terrestrial laser scanner (TLS) (Z + F Imager5600i)
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excluded area.

Three criteria, which are recognized as key in the terrestrial laser scanning process, were used in
the continuous value approach:

1. Terrain ruggedness;
2. Slope;
3. Viewshed/visibility

Then, the standardization process was performed. Each criterion was ranked into (1–5) classes
using the Jenks classification method, where (5) represents very high convenience, (4) high, (3) medium,
(2) low and (1) very low convenience (Figure 6).
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Figure 6. (1–3) Criteria used in the GIS-MCDA continuous value approach.

Pairwise comparison of criteria using the analytical hierarchical process (AHP) was performed to
determine the criteria weights. Then, the consistency ratio (CR) was calculated. The determination of
weight coefficients is valid if the CR value is < 0.1 or if the error is less than 10%. In this case, the CR
was 0.01 (Table 1). This measure show how consistent the mutual comparisons of the criteria are.

Table 1. Derived weighting coefficients and consistency ratio (CR) using the analytical hierarchical
process (AHP).

Criteria Viewshed
Analysis

Terrain
Ruggedness Slope Total Weight

Coefficients
Consistency

Measure

Viewshed
Analysis 0.546 0.570 0.500 1.617 0.539 3.014

Terrain
Ruggedness 0.273 0.290 0.330 0.892 0.297 3.008

Slope 0.182 0.140 0.170 0.491 0.164 3.004

Total 1.000 1.000 1.000 1.000

CR (consistency ratio) 0.010
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2.2.4. Historical Data (Austro-Hungarian Topographic Map)

Analysis of historical data about tufa-forming watercourses on wider SB area may indicate the
intensity of hydrological and geomorphological changes. The Austro-Hungarian topographic map
of the wider area of SB was georeferenced and analyzed (Figure 7a). The map was created between
1881 and 1884 [49] at a scale of 1:720. The full name of the map was Situations-plan des Krkafall-gebietes
bei Scardona (Figure 7b). Tufa-forming watercourses on the map are represented by arrow symbols
(Figure 7c). They were mapped with a manual vectorization method (Figure 7c). The collected data
served as a basis for the detection of dried tufa-forming watercourses in the wider SB area.
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2.3. Meso-Scale Research

Meso-scale research was conducted on the test surface selected through the applied GIS-MCDA,
where the activities include:

1. Mapping the referent state of vegetation and tufa-forming watercourses using terrestrial LiDAR
scanning (Z + F Imager5600i), UAV photogrammetry (Phantom 4 Pro) and field survey (RTK-GPS
Stonex S10).

2. Manual and mechanical removal of invasive vegetation and implementation of management
measures to mitigate the negative anthropogenic impact on the selected test surface.

3. Mapping the final state of vegetation and reactivated tufa-forming watercourses using terrestrial
LiDAR scanning (Faro FOCUS M70), UAV photogrammetry (Phantom 4 Pro) and field survey
(RTK-GPS Stonex S10).

2.3.1. Terrestrial LiDAR Scanning

Terrestrial LiDAR scanning of the vegetation and tufa-forming watercourses referent state was
performed on 5–7 April 2016. Scanning was performed with the Z+F Imager 5010 TLS (Figure 8a).
The scanning resolution was set to high, while the quality was normal. A total of 244,736,910 points
(Figure 8) were recorded at 156 stops (over 1.5 million points per stop). The distribution of scanning
stops was the result of the test surface accessibility and its morphometric characteristics. In between
two scans, at least two marks were left at the same locations. The marks were placed within the
scanning range and moved through the scanning process. The coordinates of the six marks were
collected by the RTK-GPS Stonex S10 receiver and used for dense cloud georeferencing.
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Figure 8. (a) Z+F Imager 5010 on the test surface; (b) part of the dense point cloud of test surface
(c) example of one from 156 scanning stops on the test surface.

Terrestrial LiDAR scanning of the final state of vegetation and tufa-forming watercourses was
performed two years after the implementation of management measures. It was performed on 19
December 2019. Scanning was performed with the Faro Focus M70 TLS (Figure 9). There were a
total of 22 scanning stops in the final scan. The number of stops was lower than in the first scanning
since the Faro Focus M70 TLS was more advanced than the Z+F Imager 5010 and since the vegetation
density was lower after selective vegetation removal. In the scanning process, 1/4 resolution (with
a point distance of approximately 6 mm at 10 m distance) and 2× quality was used. Additionally,
the HDR texture parameter was set. The scanning per stop took 6–7 min.
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The collected scans were processed in Faro Scene software. The software allows automatic detection
of reference targets and register related scans when the targets are placed within the suggested range.
TLS scanning stops were set at a distance of 20–30 ms to enable target registration. Target registration
is the process of aligning multiple scans in a parent coordinate system using specific markers (spheres,
checker boards and manual targets) with reference positions common between scans.

2.3.2. Cyclic UAV Photogrammetry

The objective of cyclic UAV photogrammetry was to create digital orthophotos (DoPs) on which
changes in vegetation, watercourses and lakes before and after the conduction of specific management
measures would be visible. Cyclic UAV photogrammetry was performed using a UAV Phantom 4
(Figure 10a). The first aerial recording was performed in March 2017. The second was done in March
2018, shortly after the selective removal of vegetation and placement of the artificial substrates in
the reactivated watercourses. Before performing the flight, the IMU system and UAV compass were
calibrated (Figure 10b). Ground control points (GCPs) were collected using the RTK-GPS Stonex S10
(Figure 10c). The test surface was recorded with several Double Grid missions at different heights
using Pix4Dcapture software. The image workflow process was completed in Agisoft Metashape
1.5.1 software.Water 2020, 12, x FOR PEER REVIEW 11 of 36 

 

 
Figure 10. (a) Unmanned aerial vehicle (UAV) Phantom 4 used for cyclic UAV photogrammetry; (b) 
UAV compass calibration and (c) data acquisition of orientation points using the GPS Stonex S10. 

2.3.3. Mapping of Vegetation Cover and Tufa-Forming Watercourses 

In March 2017, a mapping of vegetation cover and tufa-forming watercourses referent state was 
carried out. The objective was to quantify these landscape elements to develop a plan for invasive 
vegetation removal and to track hydrological changes after the implementation of management 
measures. Registered and georeferenced dense point clouds of the test surface, acquired in initial and 
final terrestrial laser scanning, were used in the vegetation and watercourse mapping process (Figure 
11). Based on registered dense point clouds and acquired TLS images, it was possible to recognize each 
tree type and active watercourse on the test surface. Trees were manually mapped and classified from 
LAS dataset data in ArcScene software. The whole process was performed using three software 
packages: Cloud Compare, Faro Scene software and ArcScene. 

 
Figure 11. Simplified schematic representation of vegetation mapping from a registered dense point 
cloud (final scanning). 

The dried-up tufa-forming watercourses, whose stream beds were filled with invasive vegetation, 
could not be detected in this way. They were detected through several steps (Figure 12). In the ArcMap, 
a surface runoff network was generated based on hybrid DTM (aerial LiDAR data + terrestrial laser 
scanning data). Then, the surface runoff network was overlaid with tufa-forming watercourses mapped 
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2.3.3. Mapping of Vegetation Cover and Tufa-Forming Watercourses

In March 2017, a mapping of vegetation cover and tufa-forming watercourses referent state was
carried out. The objective was to quantify these landscape elements to develop a plan for invasive
vegetation removal and to track hydrological changes after the implementation of management
measures. Registered and georeferenced dense point clouds of the test surface, acquired in initial
and final terrestrial laser scanning, were used in the vegetation and watercourse mapping process
(Figure 11). Based on registered dense point clouds and acquired TLS images, it was possible to
recognize each tree type and active watercourse on the test surface. Trees were manually mapped and
classified from LAS dataset data in ArcScene software. The whole process was performed using three
software packages: Cloud Compare, Faro Scene software and ArcScene.

The dried-up tufa-forming watercourses, whose stream beds were filled with invasive vegetation,
could not be detected in this way. They were detected through several steps (Figure 12). In the ArcMap,
a surface runoff network was generated based on hybrid DTM (aerial LiDAR data + terrestrial laser
scanning data). Then, the surface runoff network was overlaid with tufa-forming watercourses mapped
on an Austro-Hungarian topographic map, providing good insight into where dried tufa-forming
watercourses could potentially be found. Ultimately, the derived data (referent state of watercourses
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and vegetation) were checked in the field. Field research was performed using RTK-GPS Stonex S10
and an analogue map (A0 format) divided into regular coded polygons. On the map, extracted surface
runoff network, tufa-forming watercourses mapped on an Austro-Hungarian topographic map and
vegetation cover were marked. Detection of dried watercourses was also facilitated by the discovery
of (old) “dead” tufa at locations of tufa-forming watercourses mapped on an Austro-Hungarian
topographic map. Then, the surface runoff network data were modified and an attribute (active or
inactive) was added for each watercourse (Figure 12). After the removal of the invasive vegetation
and mitigation of negative anthropogenic impact, the mapping of the vegetation and the tufa-forming
watercourses final state was performed following the same methodology.
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2.3.4. Development of a Plan for Invasive Vegetation Removal

Various methods of invasive vegetation removal have been applied in many protected areas [50–52].
Prior to the development of a plan, it was necessary to obtain a permit from the Ministry of the
Environment to experimentally remove the vegetation of the invasive A. altissima. This species
aggressively reduces habitat biodiversity, reducing the value of natural ecosystems and causing
immeasurable damage to karst ecosystems, nature parks and tourism [53]. Due to the sensitive and
protected tufa ecosystem of NPK, it was decided that a manual and mechanical method would be
applied in the removal of invasive vegetation. This type of manual and mechanical removal promotes
the growth of shoots from the trunk and root shoots. Research has shown that A. altissima cannot
withstand long-lived exposure to moist and flooded soils; however, once settled, it can survive on dry
soils and tolerate drought conditions [54,55]. With continuous removal of invasive vegetation and
reactivation of tufa-forming watercourses, unfavorable conditions for the regeneration and survival of
this resistant plant were sought.

2.4. Micro-Scale Research

At the micro-level of the research, a monitoring system was established to track the quality of the
reactivated tufa-forming watercourses. It consists of four components.

1. Measurement of TFD on artificial PLs using structure from motion (SfM) photogrammetry
(NIKON D5300 + macro lens LAOWA)

2. Measurement of water flow velocity in reactivated tufa-forming watercourses (current meter
digitizer, Rickly Hydrological Co., Columbus, OH, USA)

3. Measurement of physico-chemical parameters in reactivated tufa-forming watercourses (YSI
EXO2 multiparameter)

4. Monitoring of invasive vegetation regeneration after manual and mechanical removal on the test
surface (cyclic photography—interval camera).

2.4.1. Measurement of TFD

The TFD on the selected test surface was measured at 14 locations on 28 artificial PLs. The design
of PLs was explained in Reference [56]. Sixteen PLs at 8 locations (Figure 13) were installed in dried
tufa-forming watercourses that were reactivated after the execution of specific management measures
(removal of invasive vegetation and mitigation of negative anthropogenic impacts) at the meso scale
of research.
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Each location was given a name and a specific code engraved on each base of the plate.
The plates were placed in different fluvial environments. Table 2 gives detailed information about the
locations. Measurement of TFD based on SfM photogrammetry was performed with a newly designed
photogrammetric measurement system called the coordinate measuring macro-photogrammetry device
(CMD). A detailed description of the CMD construction, components of the device, data collection,
image workflow process and calculation of tufa growth and erosion rates are given in Reference [56].
However, TFD can be measured using others direct methods of measurement as modified micro-erosion
meter (MEM), mass increment method, accretion pins and so forth.

Table 2. Location of PLs and description of the fluvial environment conditions.

ID Location
Name

Plate (PL)
Code

Watercourses before
Implementation of

Management Measures

Fluvial
Environment

01 No name 03, 16 DRIED UP
(INACITVE)

Medium flow velocity (MFV) PLs at
depth 0.5 cm, no pronounced

turbulence and splashing

02 Hard tufa 02, 13 DRIED UP
(INACITVE)

Fast flow velocity (FFV) PLs at depth
>20 cm, pronounced turbulence, low

light condition

03 Near young ash 10, 12 DRIED UP
(INACITVE)

(FFV) PLs at depth <5 cm, moderate
turbulence and splashing

04 Tufa canyon 11, 27 DRIED UP
(INACITVE)

Spray zone (SZ) pronounced
splashing zone, similar inclination of

PLs

05 Near the
memorial 19, 24 DRIED UP

(INACITVE)
(MFV) PLs at depth <5 cm, the flow

dried up in the colder part of the year

06 Near the double
horbeam 04, 21 DRIED UP

(INACITVE)

(FFV) PLs at depth <10 cm,
pronounced turbulence and splashing,

low light condition

07 Lakes waterfall 05, 18 DRIED UP
(INACITVE) (SZ) pronounced splashing zone

08 In the ivy 06, 08 ACTIVE
(MFV) PLs at depth <5 cm, moderate

turbulence and splashing, similar
inclination.

09 Gentle moss 29, 14 ACTIVE Stepped cascade (SC) pronounced
turbulence, PL14 is closer to the moss

10 Twisted tree 28, 15 ACTIVE (SC) pronounced turbulence, PL15 is
closer to moss

11 Tufa wall 23, 30 ACTIVE
Slow flow velocity (SFV) depth

<50 cm, no turbulence or splashing,
plenty of light

12 Cascade 01, 26 ACTIVE (SW) PLs at depth <30 cm, no
turbulence or splashing

13 The lake of six
trees 09, 22 DRIED UP

(INACITVE)
Stagnant water (SW) PLs at depth

<120 cm, no turbulence or splashing.

14 Ducks waterfall 07, 25 ACTIVE

(SC) PLs at depth <5 cm, moderate
turbulence and splashing, PL07 is

closer to the moss, an abundance of
light

2.4.2. Measurement of Water Flow Velocity

After the implementation of management measures, the water flow velocity was measured at
seven locations. They were selected to cover all major water inflows to the test surface (P1–P4), key
surface water flows (P5-P6) and runoff water from the surface (P7) to the old water well at the dried
waterfall (Figure 14). Flow velocity was measured with a current meter digitizer, Rickly Hydrological
Co., Although it would be ideal to measure the water flow velocity rate at individual plate locations,
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device logistical limitations precluded this operation. Before the implementation of management
measures, there was no water at sites P1, P5, P6 and P7. These were dried-up tufa-forming watercourses.
The water flow velocity was measured several times a month.
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2.4.3. Measurement of Water Quality Using the YSI EXO2 Multiparameter Probe

Systematic monitoring of water quality helps in identifying specific natural processes (e.g., natural
eutrophication) and human impacts (e.g., the presence of pollutants or heavy metals) on this sensitive
ecosystem. Near the P2 location, a multiparameter YSI EXO2 probe was installed on 18 May 2018.
It is designed for water quality monitoring and characterized by high-precision sensors with built-in
memory, wireless connectivity and easy integration into marine, freshwater and groundwater systems.
The probe was positioned below the walkway and continuously measured the quality of the water
coming to the test surface. To reduce the risk of theft, the probe was placed in a metal cage of
non-oxidizing iron at a depth of approximately 40 cm at location P3 (Figure 15).
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The probe measurement interval was set to 15 min. Ninety-six data logs were collected daily. Data
processing was performed in three steps (Figure 16). First, the data were grouped by day and the mean,
maximum, minimum values and standard deviations (SDs) were calculated for each day. Then, derived
data by day (mean value) were grouped for a specific month. Then, the maximum, mean, minimum
values and SD of each parameter were calculated for each month. In the third step, the annual trends
of the mean values of the selected physico-chemical data, grouped by months, were determined.
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2.4.4. Monitoring of Invasive Vegetation Regeneration

An interval HD hunting camera was mounted on the test surface after the removal of invasive
vegetation and reactivation of the tufa-forming watercourses. The camera was hidden and fixed to
a tree. It was set up in a location that captures one of the reactivated tufa-forming watercourses
(Vrtnjak) and the area where the A. altissima was highly represented before invasive vegetation removal
(Figure 17). Interval image capture was set to a time resolution of 15 min for a period of one year. From
interval images, video was created with the aim of invasive vegetation regeneration monitoring.
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3. Results

3.1. Macro-Scale of Research

3.1.1. Field Survey Results

Field surveys conducted in the wider area of SB with the guidance of the official expert staff of
NPK have found that invasive vegetation, more specifically, A. altissima, has spread over a large area of
the NPK (Figure 18a,b). [57] were the first to mention this problem.
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Figure 18. (a) A. altissima blocks the view on the largest tufa waterfall in Europe—SB and (b) young
seeds of A. altissima in NPK; Source: (a) [57] (2014); (b) field survey.

Furthermore, the locations where the tufa formation process was stopped (old/dead tufa)
(Figure 19b) or its intensity was reduced, along with dried-up tufa-forming watercourses and waterfalls,
were detected. Additionally, locations with a change in direction and a slowdown in the flow velocity
were detected (Figure 19a).
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Figure 19. (a) Example of a direction change and slowdown in the flow velocity in tufa-forming
watercourses; (b) old (dead) tufa at a smaller waterfall in the wider area of SB; (c) potential natural
eutrophication process at a smaller lake in the wider area of SB.
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Additionally, many potential sites have been identified that may indicate a possible natural
eutrophication process (Figure 19c). In addition, a smaller number of trees were detected that fell into
the tufa-forming watercourses due to weather conditions (storms) partially blocking the water flow in
these watercourses (Figure 20).
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At some locations, negative hydrodynamic phenomena were also observed as a result of
anthropogenic impact (trail and resort construction, tourist influence, gravel accumulation under
trail/bridges) (Figure 21).
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3.1.2. Aerial LiDAR Scanning Results

Aerial scanning was performed with the Riegl LMS-Q780 full-wave laser measuring system.
The average point density was 24.7 points/m2. The process of data classification was performed based
on reflection time. The ground class included 350 dense point clouds for the entire NPK with a total of
just over 781 million points. The spatial resolution of the created DTM was 30 cm. From the DTM of
the whole NPK, a model of the wider SB area (approximately 50 ha) was extracted. The extracted DTM
served (Figure 22) as the basis for deriving the morphometric criteria used in the GIS-MCDA.
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3.1.3. Tufa-Forming Watercourses on the Austro-Hungarian Topographic Map

The Austro-Hungarian topographic map (Situations-plan des Krkafall-gebietes bei Scardon) was
georeferenced. Watercourses in the wider area of SB ten years prior to the construction of the
hydropower plant (HE) Jaruga were mapped. Figure 23 shows the georeferenced Austro-Hungarian
topographic map with mapped water bodies (watercourses and lakes). This area is characterized by a
very dense tufa-forming watercourse network that connects larger active lakes (Šupuk Lake, Golubinka,
Veliki vir, Veliko Lake, Draga, Dedinac, etc.).
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3.1.4. Selected Test Surface Using GIS-MCDA

The suitability index for test surface selection was generated using GIS-MCDA. The index value
ranged from 0 (least suitable area) to 1 (most suitable area). Values were classified by the equal interval
method in the 5 classes. For each class, the descriptive attribute was assigned as follows: (1) very low
suitability, (2) low, (3) medium, (4) high and (5) very high suitability. From the derived data, a potential
test surface was detected (Figure 24). The test surface was proposed for the following two reasons.
(1) The area was surrounded by a path that makes it easier to perform TLS and (2) the selected surface
(approximately 0.8 ha) fell almost entirely in classes of high (4) or very high suitability (5). In addition,
the vast majority of examples of the changes in tufa-forming watercourses due to the uncontrolled
growth of invasive vegetation and anthropogenic influences listed in Section 3.1.1 were located in
that area. However, after the selection of the test surface, further field surveys were conducted to
detect tufa-forming watercourses vectorized on the Austro-Hungarian topographic map. However, the
detected tufa-forming watercourses were inactive on the test surface. Therefore, taking into account
field surveys, GIS-MCDA and mapped tufa-forming watercourses on the Austro-Hungarian map,
a test surface north of Marasović Lake was selected as the most suitable for further activities (meso-
and micro-scale research).
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Figure 24. Derived suitability index; (A) selected test surface overlaid with tufa-forming watercourses
mapped on the Austro-Hungarian topographic map.

3.2. Meso-Scale of Research

3.2.1. Initial State of Vegetation Cover and Tufa-Forming Watercourses

The surface runoff model was generated using a hydrological analysis from hybrid DTM
(aeroLiDAR + TLS). It was then corrected and modified by field survey. Figure 25 shows the
reference state of the surface runoff model before the intervention (removal of invasive vegetation and
mitigation of the negative anthropogenic effects). The active flows are located mostly on the southeast
side of the test surface (Figure 25). Many inactive, dried-up tufa-forming watercourses were identified
as active streams on the Austro-Hungarian topographic map. However, in an interview with the expert
park’s staff, it was revealed that some of the tufa-forming watercourses and the waterfall below the NE
part of the test surface had dried up several years earlier.
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micromorphological changes on the test surface. Furthermore, the removal of artificially accumulated 

Figure 25. Initial state of tufa-forming watercourses and trees on test surface.

On the test surface, 358 trees were mapped from 15 different species (Figure 25). Along with
black hornbeam (Ostrya carpinifolia), the most represented species on the test surface was the tree
of heaven (A. altissima) with 20.11%. If all categories of the tree of heaven by age are considered,
this species becomes the most represented vegetation on the test surface. For the purpose of restoring
the sustainable tufa formation condition, it was necessary to implement specific management measures
(removal of invasive vegetation and mitigation of negative anthropogenic impact).

3.2.2. Removal of Invasive Vegetation and Mitigation of Anthropogenic Impact

The removal of invasive vegetation was carried out by the expert staff of NPK in June 2017,
which, along with July, represents the best period since root food reserves are used to grow shoots and
leaves [58]. The following approaches were used:

(1) Hand-picking (young seeds); (Figure 26)
(2) Manual cutting or twitching (young trees up to 1–1.5 m high);
(3) Manual cutting (trees that are not in the seed stage and mature trees that are inseminated)
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All young seeds and A. altissima trees were removed from the test surface. Specifically, 72 trees with
a diameter larger than 15 cm were removed from the test surface. The removal of invasive vegetation
and fallen accumulated plant fragments from the dried-up flows resulted in micromorphological
changes on the test surface. Furthermore, the removal of artificially accumulated gravel was performed
at those locations where its influence on the change in the flow outflow direction occurred (Figure 27).
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Figure 27. Water runoff below the path after removal of accumulated gravel.

Additionally, the path was raised in those locations where it slowed down the flow and influenced
the change in its direction (Figure 28). Given the small ruggedness of the terrain, these changes directly
influenced the alteration of the hydrological network.
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The combination of intense rainfall with increased water flow (gravel removed under the
trail/bridge) caused the process of washing away plant fragments and reactivating the dried tufa,
forming watercourses (Video S1) (Figure 29). These watercourses were initially mapped on the
19th-century Austro-Hungarian topographic map.
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Figure 29. Screen shot from Video S1, which shows reactivation of tufa-forming watercourses.

3.2.3. Final State of Vegetation Cover and Tufa-Forming Watercourses

After the implementation of management measures (removal of invasive vegetation, mitigation
of negative anthropogenic effects), a new mapping of vegetation and tufa-forming watercourses
was performed. Figure 30 shows the final state of vegetation cover and tufa-forming watercourses.
All watercourses (old-active and new-reactivated) were given names—Vrtnjak, Crni grab, Ivy, Matica
and Smokovik. On the test surface, one dried-up lake (Lake of six trees) was reactivated. During the
colder part of the year, water spills from reactivated tufa-forming watercourses and lakes, all over the
test surface, were recorded.

Water 2020, 12, x FOR PEER REVIEW 24 of 36 

 

The combination of intense rainfall with increased water flow (gravel removed under the 
trail/bridge) caused the process of washing away plant fragments and reactivating the dried tufa, 
forming watercourses (Video S1) (Figure 29). These watercourses were initially mapped on the 19th-
century Austro-Hungarian topographic map. 

 
Figure 29. Screen shot from Video S1, which shows reactivation of tufa-forming watercourses. 

3.2.3. Final State of Vegetation Cover and Tufa-Forming Watercourses 

After the implementation of management measures (removal of invasive vegetation, mitigation 
of negative anthropogenic effects), a new mapping of vegetation and tufa-forming watercourses was 
performed. Figure 30 shows the final state of vegetation cover and tufa-forming watercourses. All 
watercourses (old-active and new-reactivated) were given names—Vrtnjak, Crni grab, Ivy, Matica and 
Smokovik. On the test surface, one dried-up lake (Lake of six trees) was reactivated. During the colder 
part of the year, water spills from reactivated tufa-forming watercourses and lakes, all over the test 
surface, were recorded. 

 
Figure 30. Final state of tufa-forming watercourses and trees on the test surface. Figure 30. Final state of tufa-forming watercourses and trees on the test surface.



Water 2020, 12, 3096 23 of 34

3.3. Micro-Scale Research

3.3.1. Tufa Growth in Reactivated Tufa-Forming Watercourses

The production of digital submillimeter resolution (0.0236 mm) models of tufa surfaces is explained
in Reference [56]. On all PLs installed in reactivated tufa-forming watercourses during a one-year
period, the occurrence of tufa was measured (Figure 31).
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Figure 31. Example of PL18; (R) initial digital submillimeter resolution model; (6M) tufa formed after
six months and; (12M) after one-year period; the tufa growth rate (TGR) on PL18 was 3.399 mm a−1.

The tufa growth rate (TGR), as expected, varied significantly by location. The average TGR per PL
(n = 16) and by location (n = 8) was calculated. In both cases, the TGR was 4.267 mm a−1. The highest
TGR was recorded at location Near young ash (6.770 mm a−1) and on PL12 (6.790 mm a−1) (Figure 32).
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Figure 32. TGR per PL and location in reactivated tufa-forming watercourses.

The SDs of 2.076 mm a−1 by plates and 2.016 mm a−1 by locations were measured. As expected,
the lowest TGR was measured at the Lake of six trees (0.327 mm a−1). Prior to the implementation of
specific management measures, this was a smaller drained lake. According to the defined fluvial
classification, this was a location of stagnant water (SW) where plates were placed to a depth > 100 cm;
splashing and water turbulence was absent and thus no significant mechanical release of CO2 occurred.
In contrast, the largest TGR was recorded at the Near young ash (6.770 mm a−1) and Hard tufa (6.659 mm
a−1) sites. The sites were located in the reactivated tufa-forming stream Vrtnjak in fast-flowing water
(FFW), where significant water turbulence and splashing facilitated the mechanical release of CO2 and
led to CaCO3 precipitation. Furthermore, at measuring surface of PL13 (Hard tufa), large number of
tufa-forming organisms have been detected (Figure 33A,C). On the measuring surface of PL10 (Near
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young ash) incrusted leaf was detected which is probable reason for the higher tufa growth rate at that
PL (Figure 33B).
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Figure 33. (A,C) Example of tufa-forming organisms and plant fragments on the PL13; (B) Incrassated
leaf on the PL10.

The average difference in TGRs between adjacent PLs in reactivated tufa-forming watercourses
was 0.313 mm a−1.Furthermore, on all PLs placed in previously active tufa-forming watercourses
during a one-year period, the occurrence of tufa formation was measured (Figure 34). At these locations,
the TGR varied more than that measured in reactivated tufa-forming watercourses. Specifically, SDs of
8108 mm a−1 by plates and 6.198 mm a−1 by locations were measured. The highest TGR was recorded
at the location Ducks waterfall (19.302 mm a−1) and on PL07 (32.293 mm a−1) (Figure 34). As expected,
the lowest TGR was measured at the Cascade (1.474 mm a−1). This was the location of slow flow velocity
(SFW) where PLs were placed to a depth of approximately 30 cm, splashing and water turbulence was
absent and thus no significant mechanical release of CO2 occurred. The largest TGR was measured at
the Ducks waterfall site, where significant variability in TGR between adjacent PLs (25.981 mm a −1)
was found. The average difference in TGR between adjacent PLs in previously active tufa-forming
watercourses was 4.755 mm a−1.
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3.3.2. Regeneration of Invasive Vegetation

No regeneration of the invasive vegetation on the test surface was observed from the interval
photographs collected during one-year recording with a 15 min interval. Furthermore, no regeneration
was observed through regular monthly field surveys of the test surface. A likely reason for this is a
reactivation of the tufa-forming watercourses with an intensified inflow of water beneath the raised
path. This caused occasional flooding of larger areas within the test surface (Figure 35). Such a flooded
environment did not favor the regeneration of invasive vegetation since A. altissima, does not tolerate
long exposure to moist and flooded soils [54,55].

Water 2020, 12, x FOR PEER REVIEW 27 of 36 

 

 
Figure 34. TGR per PL and location in previously active tufa-forming watercourses. 

3.3.2. Regeneration of Invasive Vegetation 

No regeneration of the invasive vegetation on the test surface was observed from the interval 
photographs collected during one-year recording with a 15 min interval. Furthermore, no 
regeneration was observed through regular monthly field surveys of the test surface. A likely reason 
for this is a reactivation of the tufa-forming watercourses with an intensified inflow of water beneath 
the raised path. This caused occasional flooding of larger areas within the test surface (Figure 35). 
Such a flooded environment did not favor the regeneration of invasive vegetation since A. altissima, 
does not tolerate long exposure to moist and flooded soils [54,55]. 

 
Figure 35. Example of test surface flooding. 

3.3.3. Flow Velocity in Reactivated Tufa-Forming Watercourses 

The flow velocity of the test surface was monitored at seven locations (P1–P7) (Figure 36). Sites 
P1, P5, P6 and P7 before the intervention had no water (dried-up tufa-forming watercourses). In the 
one-year period, the fastest water flows were (P1) 0.897 m/s (major water inflow to the test surface) 
and (P7) 0.808 m/s (runoff water from the test surface). In October and December 2018, the flow 
velocity could not be measured due to device malfunction. During the one-year period, there was no 

Figure 35. Example of test surface flooding.

3.3.3. Flow Velocity in Reactivated Tufa-Forming Watercourses

The flow velocity of the test surface was monitored at seven locations (P1–P7) (Figure 36). Sites
P1, P5, P6 and P7 before the intervention had no water (dried-up tufa-forming watercourses). In the
one-year period, the fastest water flows were (P1) 0.897 m/s (major water inflow to the test surface) and
(P7) 0.808 m/s (runoff water from the test surface). In October and December 2018, the flow velocity
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could not be measured due to device malfunction. During the one-year period, there was no drying up
of measurement sites (P1, P5, P6 and P7). At site P1, the highest flow velocity was recorded (1.51 m/s)
in April 2018. The lowest values were recorded at sites P4 (0.103 m/s), P3 (0.128 m/s) and P2 (0.323
m/s), which are tufa-forming watercourses coming from Marasović Lake at the test surface. Note that
at the initial field surveys (in the macro-level research), it was already recognized that there is a real
danger of these streams drying out due to uncontrolled vegetation growth and consequently a change
in the direction of runoff (Figure 17a). As expected, at all locations, the lowest flow velocities were
measured in July and August.
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3.3.4. Physico-Chemical Characteristics of Tufa Forming Watercourses at Test Surface

Table 3 shows the grouped data for 14 parameters that were collected during a one-year period
(May 2018–May 2019). In the analysis, only four parameters were used (percentage of dissolved oxygen
at saturation, ODO%, in mg/L; temp in ◦C; pH; and oxidation-reduction potential, ORP, in mV). The
reason was tufa formation around the probe sensors, which resulted in a large variety of data for
the following parameters—SpCond in µS/cm, turbidity FNU, chlorophyll RFU, chlorophyll in µg/L,
BGA-PC RFU, BGA-PC in µg/L, fDOM RFU and fDOM QSU. To avoid possible errors that might have
occurred while interpreting the results, the mentioned parameters were not analyzed.

Table 3. Grouped data of measured parameters in one-year period.

M/Y
ODO

%
sat

ODO
mg/L

Temp
◦C

SpCond
µS/cm

Sal
ppt

Turbidity
FNU

Chloro.
RFU

Chloro.
µg/L

BGA−PC
RFU

BGA−PC
µg/L

fDOM
RFU

fDOM
QSU pH ORP

mV

05/18 94.38 8.80 18.68 517.27 0.25 0.76 0.25 1.01 0.44 0.55 1.36 4.09 8.37 206.7
06/18 90.08 8.10 20.50 459.50 0.22 2.15 0.38 1.53 −0.29 −0.29 1.70 5.11 8.38 345.1
07/18 86.68 7.34 23.69 376.06 0.18 4.31 0.56 2.23 −0.31 −0.31 1.65 4.95 8.42 357.3
08/18 82.44 6.73 25.59 253.15 0.12 8.84 0.72 2.86 −0.24 −0.24 1.52 4.56 8.40 368.0
09/18 74.68 6.49 22.30 165.56 0.08 6.98 0.60 2.41 −0.21 −0.21 1.77 5.30 8.51 374.3
10/18 72.80 6.96 17.52 88.03 0.04 7.24 0.86 3.43 −0.12 −0.12 2.34 7.01 8.57 390.5
11/18 72.86 7.44 14.42 43.38 0.02 6.37 1.16 4.64 −0.04 −0.04 2.53 7.60 8.65 414.2
12/18 73.08 8.23 10.13 10.39 0.00 5.23 0.38 1.51 −0.15 −0.15 3.28 9.85 8.65 438.7
01/19 76.00 9.21 7.06 10.76 0.00 183.73 4.11 16.44 1.07 1.07 8.05 24.14 8.77 450.9
02/19 91.57 10.53 9.17 288.94 0.14 53.21 1.91 7.66 0.24 0.24 4.86 14.59 8.79 363.3
03/19 92.16 10.28 10.45 349.98 0.17 3.16 0.69 2.76 −0.17 −0.17 2.15 6.46 8.80 349.4
04/19 93.31 9.75 13.36 400.54 0.19 2.71 0.61 2.42 −0.21 −0.21 1.50 4.50 8.79 325.0
05/19 94.24 9.40 15.46 482.70 0.23 1.46 0.31 1.25 −0.27 −0.27 1.54 4.62 8.94 322.4

MEAN 84.04 8.34 16.32 278.34 0.13 20.61 0.93 3.72 −0.04 −0.03 2.60 7.79 8.65 360.6
SD 8.42 1.28 5.59 177.12 0.09 47.01 0.97 3.89 0.37 0.38 1.76 5.27 0.21 56.94
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In the observed period, the ODO% averaged 84.04%. The maximum value was recorded in
May 2018 (94.38%) and the minimum in October (72.80%). Generally, a percentage of 80% to 120% is
considered very good, while higher (>125) and lower (<50) values can endanger the water biome [59].
The amount of dissolved oxygen (ODO, in mg/L) in a one-year period averaged 8.34 mg/L. The highest
level was recorded in February 2019 (10.53 mg/L) and the lowest in August and September of the same
year (6.49 mg/L). Compared to other streams in karst areas [60,61], slightly lower values of dissolved
oxygen concentration and saturation were recorded. These lower values can be associated with higher
organic matter content, which can cause eutrophic conditions. This is expected given the location of the
probe. Specifically, the probe was placed under the path into the Mjernik stream, which extends from
Marasovića Lake towards the test surface. This location was chosen for security and logistical reasons.
However, this location is characterized by extremely rich and dense aquatic vegetation, which is why
in the initial field surveys, it was recognized as a potential dried-up watercourse. Therefore, the lower
values measured during August and September may be due to slow and calm flow [62], dense aquatic
vegetation and fast metabolism of O2-consuming organisms. The concentration of dissolved oxygen is
inversely related to water temperature, so a negative Pearson correlation coefficient (−0.75) between
water temperatures and dissolved oxygen concentrations was expected.

The average annual water temperature at the selected location was 16.32 ◦C. The maximum water
temperature was measured in August 2018 (25.59 ◦C) and the minimum in January 2019 (7.06 ◦C).
The average pH measured at the selected location was 8.65. The measured pH values were similar in
other active tufa-forming systems [22,62–65]. No significant seasonal fluctuations in pH were observed.
Nevertheless, the analysis of pH values showed a clear upward trend (Table 3) as a result of the
abundant higher aquatic plants that surround this location. Specifically, underwater photosynthesis
during the day is expected to increase the pH because CO2 is extracted from the water. Then, at night,
photosynthesis eventually stops, the pH drops and respiring organisms add CO2 to the water [66].
However, when plants or algae are growing rapidly, more CO2 is removed each day by photosynthesis
than is added each night by respiration. As a result, potential alkalization can occur in natural waters
brought about by higher aquatic plants [67].

The average annual value of the ORP (mV) was 360.6. The highest value was recorded in January
2019 (450.9) and the lowest was recorded in May 2018 (206.7). Higher ORP values are an indicator of
the presence of a greater amount of dissolved O2 in water. The measured values meet the criterion that
the ORP ranges from 300 to 500 mV in healthy waters [68].

4. Discussion

The uncontrolled growth of invasive vegetation and anthropogenic influences (bridge construction,
gravel accumulation, etc.) have been recognized as a key problem causing negative hydrological changes
and thus endangering the sustainable conditions of tufa formation in the wider SB area. The park
management has recognized these threats and allowed the removal of invasive vegetation within the
selected test surface and mitigation of the detected anthropogenic impacts. The removal of A. altissima
and clusters of gravel underneath the path, which was raised, caused smaller micromorphological and
larger hydrological changes on the test surface. Increased water flow caused the accumulated plant
material to wash away, resulting in the reactivation of dried-up tufa-forming watercourses, lakes and
smaller waterfalls. Although, in a one-year period, no regeneration of A. altissima on the test surface
was observed, it is necessary to implement active and frequent control and mapping practices [69] as
a basic component of the NPK management measures. However, it is necessary to emphasize that
the removal of large amounts of macrophytes and invasive vegetation can lead to an increase in the
erosive effect of the flow for a short period of time.

The reactivation of the dried tufa-forming watercourses is supported by the following evidence.
First, the video was taken after the implementation of the abovementioned management measures.
It shows water flowing through previously inactive tufa-forming watercourses. Furthermore,
the reactivation is evidenced by the flow velocity data. Now, the flow velocity measured at the
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defined locations is in the range of values that are recognized as one of the basic conditions for tufa
formation (0.5–3.5 m/s) [61,70]. Furthermore, reactivated tufa-forming watercourses do not have
pronounced erosive properties, although minor erosive events have been measured [56], especially on
tufa-forming organisms. Specifically, some authors state that a flow velocity faster than 1.5 m/s [71] or
even 0.8 m/s can erode the tufa surface. However, flow velocities greater than 1.5 m/s were recorded
only in April 2018 at the P1 location. Nevertheless, the values of the flow velocity at P1 (average value
0.897 m/s) and P7 (average value 0.808 m/s) indicate that the Vrtnjak tufa-forming watercourses at some
locations had potential erosive properties. Although none of the sites of flow velocity measurement
dried up, it is important to point out an example of how the non-removal of naturally fallen vegetation
can influence the change in water runoff. Specifically, during the removal of the PLs in the colder part
of the year, a change in the direction of water runoff within tufa-forming watercourses Crni grab was
observed. This was the result of the fallen large tree and the accumulated plant material that created a
natural dam (Figure 37). After the removal of the fallen tree, the watercourse was reactivated.
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natural dam.

Therefore, the downstream part of the stream dried out and the PLs at the location Near the
memorial ran out of water. This resulted in a lower TGR (3.298 mm a−1) than in other locations (In the ivy
and No name) in the same fluvial environment (MFW) and a higher TGR in the warm period (2.832 mm
a−1) than in the cold period (0.209 mm a−1). This and other examples (Figure 38) clearly demonstrate
how non-maintenance of tufa-forming watercourses (removal of fallen and accumulated vegetation)
can compromise sustainable sedimentation conditions at some micro-locations.

The reactivation of tufa-forming watercourses is also evidenced from the results of the TGRs.
Specifically, on all PLs initially placed in inactive (dried-up) flows, the TGR was measured in the range
of from 0.327 to 6.770 mm a−1. The average TGR per PL in reactivated tufa-forming watercourses was
4.267 mm a−1, which is 3.440 mm a−1 lower than the average TGR per PL (7.707 mm a−1) measured in
previously active tufa-forming watercourses. Thus, in reactivated tufa-forming watercourses, a lower
TGR (by a factor of 1.8) was measured compared to PLs that were placed in watercourses before the
implementation of management measures. This was due to a combination of two factors. The first
involves the specific micro-location conditions of the PLs at the Duck waterfall location. Specifically,
PL07 lay in the immediate vicinity of the moss cluster, while the adjacent PL25 was farther away. The
moss cluster overgrew the measurement surface of PL07, which gradually increased the nucleation
surface and thus artefactually increased the TGR. This is expected. For example, Reference [72] stated
that certain mosses can form spongy layers with a growth rate of up to 140 mm a−1. If PL07 were
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excluded from the analyses, the average TGR on PLs placed in initially active tufa-forming watercourses
would be 5.471 mm a−1, which is only 1.28 times higher than the TGR in reactivated watercourses.
The second factor refers to lower periphyton abundance in reactivated tufa-forming watercourses
compared to initially active watercourses [25]. In other words, microfauna have just begun to colonize
reactivated tufa, forming watercourses. However, the periphyton community at these locations can
have higher diversity, presumably due to lower competition and predatory rates [73]. In conclusion,
the measured TGR, environmental data and protozoan assemblage patterns that were analyzed by
Reference [73] show that reactivated tufa-forming watercourses are now representing favorable habitats
for microfauna colonization.
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In future research, it is desirable that a complete monitoring system of the tufa landscape includes
additional components. These would include monitoring the dynamics of microfauna colonization,
that is, analyzing the periphyton community, measuring the sun intensity of each site at which the
dynamics of tufa formation are monitored and isotopically analyzing of newly formed tufa samples.
It would be desirable to measure all parameters within each component at the same X, Y and Z
locations. In other words, each site at which TFD is monitored should have specific data about flow
velocity, physico-chemical parameters, sun intensity, periphyton, isotope data and so forth. This would
allow the development of accurate prediction models of TFD and identify key criteria that influence
this process.

5. Conclusions

In this research, a multiscale framework for the sustainable management of tufa-forming
watercourses is proposed, with the main objective of achieving and maintaining sustainable conditions
for tufa formation. This can provide the administration of protected tufa landscape guidelines for
sustainable management of sensitive tufa area. The development of this methodological framework
featured a range of activities at different levels of research. Since these experimental measures has not
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yet been applied in other protected areas; their effectiveness was tested within smaller test surfaces.
Selective removal of invasive vegetation was performed on selected test surfaces. A system for
monitoring the quality of the tufa sedimentary environment with four components was established.
Implementation of the proposed methodological framework on the selected test surface suppressed the
proliferation of invasive vegetation and enabled reactivation of dried-up tufa-forming watercourses,
thus achieving sustainable tufa-forming conditions. This was confirmed with measured TGRs, the water
flow velocity at reactivated tufa-forming watercourses, physico-chemical parameters, the occurrence
of tufa-forming organisms at PLs and the absence of invasive vegetation regeneration. Potential
beneficiaries of the proposed methodological framework for this dissertation include national, regional
and local authorities, as well as governing boards of protected and endangered natural areas. The results
obtained in this study may be useful to scholars involved in studying the dynamics of tufa formation
through various aspects. The derived data serve as a reference state when conducting spatiotemporal
analyses in TFD research.
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29. Vurnek, M.; Brozinčević, A.; Čulinović, K.; Novosel, A. Challenges in the Management of Plitvice
Lakes National Park, Republic of Croatia. National Parks-Management and Conservation. In National
Parks—Management and Conservation; Suratman, M.N., Ed.; IntechOpen: London, UK, 2018.
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37. Brajković, I. Primjena Rezultata Ankete Posjetitelja u Javnoj Ustanovi Nacionalni Park Krka. Bachelor’s
Thesis, Polytechnic in Šibenik, Šibenik, Croatia, 14 July 2016.
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