1	Aquatic bacterial contamination associated with sugarplant sewage outfalls as a microbial
2	hazard for fish
3	
4	
5	Natalija Topić Popović* ¹ , Snježana P. Kazazić ² , Josip Barišić ¹ , Ivančica Strunjak-Perović ¹ ,
6	Sanja Babić ¹ , Maro Bujak ¹ , Jasenka Gajdoš Kljusurić ³ , Rozelindra Čož-Rakovac ¹
7	
8	¹ Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10000
9	Zagreb, Croatia
10	² Laboratory for Mass Spectrometry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb,
11	Croatia
12	³ Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000
13	Zagreb, Croatia
14	
15	*Corresponding author: <u>ntopic@irb.hr</u> ; tel. +38514571392
16	
17	Abstract
18	
19	The aim of the study was to compare bacterial composition and load in waters and fish related to
20	the wastewater treatment plant (WWTP), particularly waters and wild fish affected by sugarplant
21	processing (sugar cane and sugar beet). Aeromonads were the most frequently isolated group
22	from water and fish. A. hydrophila was a prevailing species in isolates from water, followed by
23	A. veronii, Rheinheimera soli and Ochrobactrum anthropi. Of indicator bacteria for aquatic

24	contamination from fish tissues, the most prominent were V. cholerae, Enterobacter cloacae and
25	E. sakazakii. Sugar cane processing contributed to high viable cell counts at 37 °C while sugar
26	beet processing contributed to high bacterial counts at 22 °C. Heterotrophs from gills of effluent
27	fish were highest during sugar cane processing. Counts retrieved from fish skin were more
28	uniform between effluent fish and fish from downstream waters. Antimicrobial resistance of
29	bacteria isolated from water was high against amoxicillin, sulfamethoxazole, flumequine,
30	norfloxacin and oxolinic acid in samples from the inflow of raw municipal wastewaters to
31	WWTP, while resistance found in bacteria from the inflow of sugarplant mostly related to
32	sulfamethoxazole and amoxicillin. The PCA analysis associated the occurrence of high
33	heterotroph counts, P. aeruginosa, and intestinal enterococci on skin and gills with sugar cane,
34	and yeasts and molds with sugar beet processing. Fish living in treated wastewaters and related
35	water bodies could pose a microbial hazard if fished for human consumption, possibly causing
36	infection when being handled and processed, as a risk of human pathogens penetrating fish
37	tissues.
38	
39	Keywords: Wastewater treatment plant \cdot Fish \cdot Bacteria \cdot Resistance \cdot Pollution
40	
41	INTRODUCTION
42	
43	Wastewater treatment plants (WWTPs) perform primary and secondary biological
44	treatment of municipal and related waters, and sometimes tertiary treatment for agricultural
45	irrigation and wetlands restoration. The complex microbial community found in the treated
46	effluent of WWTPs, although significantly reduced (particularly in fecal indicator bacteria),

47 might still contain pathogenic bacteria which present a threat to fish living downstream (Topić
48 Popović et al. 2015a). If used for human consumption, such fish may pose a potential public
49 health risk.

When reared in treated domestic wastewater, which is not a rare practice due to the 50 abundance of nutrients, silver carp (Hypophthalmichthys molitrix), common carp (Cyprinus 51 52 *carpio*) and tilapia (*Oreochromis niloticus*) show sensitiveness to the impaired environment (Buras et al. 1987). Bacteria can be retrieved from their internal organs and tissues up to 53 concentrations of 10⁹ g⁻¹. If rearing stocking juveniles in treated wastewaters, and transferring 54 55 them later to the regular fish farms, fish will likely reduce the numbers of bacteria, and the danger of pathogen transfer to humans would be avoided (Niewolak & Tucholski 2000). 56 However, wild fish living in treated wastewaters and related water bodies which are fished for 57 recreational purposes and human consumption, could pose a threat. The dominant fish species in 58 slowly running lowland watersheds in Europe and Asia is Prussian carp (*Carassius gibelio*) 59 (Lusk et al. 2010). It invaded European ponds, eutrophic lakes, canals, and small water reservoirs 60 (USFWS 2012) due to its ability to grow and reproduce rapidly. It tolerates well the impaired 61 environmental conditions, such as high organic loads or low levels of dissolved oxygen, and is a 62 63 highly possible catch of recreational fishermen.

There are number of potential bacterial pathogens that might be related with
contaminated waters from which representative bacterial indicators of human and (aquatic)
animal contamination are chosen for screening. They include total and fecal coliforms, *Escherichia coli*, fecal streptococci and enterococci, *Salmonella* sp., *Shigella* sp., and *Vibrio* sp.
(Naidoo & Olaniran 2014). However, indicator bacteria should always be assessed in the context
of the study, taking into account the natural microbial ecology, biotic and abiotic physical-

70 chemical factors which could influence microbial growth. Negative indicator tests cannot guarantee the absence of a microbial hazard (Tortorello 2003). Also, sugarplants are significant 71 contributors to the WWTP load, with high water demand and organic pollution (Ingaramo et al. 72 2009). For that reason, and in order to improve our understanding in assessing the biological 73 risks for the fish living in the WWTP effluent and waters related to the WWTP, it is important to 74 determine their bacterial community and diversity differences (Topić Popović et al. 2015a, b). 75 With this objective, bacteria were identified at two seasonal time points from: (i) wastewaters 76 from a Croatian municipal WWTP which also processes waters from a sugarplant, (ii) waters 77 78 further downstream, from a wider canal which drains into the river Drava; (iii) wild Prussian carp inhabiting effluent-receiving waters and further downstream waters, in spring and fall. The 79 hypothesis of the study was that both ubiquitous and pathogenic bacteria would be retrieved from 80 fish tissues, in relation to season and activity of the sugarplant. The aim was to compare bacterial 81 composition and load in different WWTP-related waters, and various fish tissues over seasons, 82 as well as the occurrence of resistance to eight antimicrobial drugs tested. 83 84 85 86 **MATERIALS AND METHODS** 87 88 Study site 89 The study was conducted in spring and fall throughout the treatment process of a 90 91 Croatian municipal WWTP, which also receives hospital and sugarplant wastewaters (Fig. 1). 92 Sugarplant was active in spring (pre-washed sugar cane processing) and fall (sugar beet

93	processing) with 15.94 % and 30.83 % of treated waters, respectively. The final treated effluent
94	outflows into a natural canal (location 1), which widens to enter a further downstream canal
95	(location 2) draining into the river Drava. Fish and water were sampled from locations 1 and 2.
96	Water was also sampled at the inflow of raw municipal wastewaters to the WWTP (location 3)
97	and the inflow of sugarplant wastewaters to the WWTP (location 4).
98	
99	Sample collection
100	
101	The study was carried out in accordance with the EC Directive 86/609/EEC for animal
102	experiments, and according to the Institute's directions for animal tests. Prussian carp (Carassius
103	<i>gibelio</i>) were caught by nets and angling: in spring ($n = 24$) mean weight (W) 498.80 g ± 232.04
104	SD, mean length (L) 213.46 mm \pm 66.94 SD; in fall ($n = 45$) W 127.80 g \pm 97.32 SD, L 170.22
105	mm \pm 45.32 SD. Fish were transported live to the laboratory and sacrificed by overdose of
106	tricaine methane-sulfonate (MS-222, Sigma, St. Louis, Missouri, USA). Tissues (gills, anterior
107	kidney) were fixed in 4 % neutral buffered formaldehyde, dehydrated through a graded ethanol-
108	xylene series, embedded in paraplast, and stained with hematoxylin/eosin.
109	
110	Analytical methods
111	
112	Physico-chemical characteristics of water were analyzed according to the international
113	standards as follows: determination of electrical conductivity, pH, suspended solids, dissolved
114	oxygen, permanganate index, chemical oxygen demand (COD), biochemical oxygen demand
115	after n days (BODn), dilution and seeding with allylthiourea, phosphorus with spectrometric

method, nitrite, total nitrogen by persulfate digestion method, cadmium reduction, and nitrate by
colorimetry (ISO 7888:1985, ISO 10523:2008, ISO 872:2005, ISO 5813:1983, ISO 8467:1993,
ISO 15705:2002, ISO 5815:1989, ISO 7150-1:1984, ISO 6878:2004, ISO 6777:1984, SM 4500NO3-E, respectively).

Methods for detection and enumeration of *Escherichia coli*, coliforms and enterococci 120 121 from water and sludge were used according to the Detection and enumeration of E. coli and coliform bacteria - Part 1: Membrane filtration method (ISO 9308-1:2000/Corr.1:2008) and 122 Detection and enumeration of intestinal enterococci – Part 2: Membrane filtration method (ISO 123 124 7899-2:2000). E. coli, coliforms and enterococci were also measured from fish tissues (skin and gill scrapings). All samples were inoculated on general purpose media and media for the 125 selective isolation of bacteria (all Oxoid Ltd, Basingstoke, England, UK). Samples of fish gills 126 127 and internal organs (kidney and liver) were streaked onto Tryptone Soya Agar, MacConkey Agar (Oxoid) and Blood Agar (Certifikat doo, Osijek, Croatia). Colonies were subjected to 128 morphological, physiological and biochemical tests. The taxonomic position of the isolates was 129 determined by the MALDI Biotyper using MALDI-TOF (Matrix Assisted Laser Desorption 130 Ionization-Time of Flight) Mass Spectrometry (Bruker Daltonik GmbH, Bremen, Germany). The 131 132 ethanol/formic acid extraction was applied for MALDI TOF MS sample preparation as described in Topić Popović et al. (2015a, b). Recorded mass spectra were processed with the MALDI 133 Biotyper 3.0 software package (Bruker Daltonik), using standard settings. 134 135 Antimicrobial susceptibility of the isolated strains was determined with Kirby-Bauer disk diffusion method on Mueller Hinton agar (all Oxoid). The following antimicrobials with 136

137 respective concentrations were used in the test: oxytetracycline (OTC, 30 µg), amoxicillin

138	(AMC, 30 µg), oxolinic acid (OA, 2 µg), erythromycin (E, 15 µg), sulfamethoxazole (SMX, 50
139	μg), florfenicol (FFC, 30 μg), norfloxacin (NOR, 10 μg), flumequine (UB, 30 μg).

141 Statistical analysis

142

Statistical analyses were performed using SigmaPlot and SigmaStat Statistical Software ver. 11.0 (Jandel Corp. San Rafael, CA). Bacterial counts data were subjected to logarithmic transformation. All data were analyzed by multivariate analysis in order to extract variables or important related information, to identify possible clusters, and to identify trends between samples and/or variables.

In order to examine the possibility of viewing data sets independently of sampling site and processed sugar cane/sugar beet, t-test was used. Although the test showed that there was no significant difference between the values in the different canals (p = 0.10), bacterial composition in each sampling site and material processed was a significant factor: (i) effluent-receiving canal (CE) beet *vs.* cane, p = 0.028 and (ii) downstream county canal (CC) beet *vs.* cane, p = 0.002. So, for the further analysis, the data set was divided by sampling site (CE and CC) and processed material (B = beet and C = beet).

Also, the Pearson correlation test was conducted on the complete data matrix (physicochemical parameters of water *vs.* bacteria, yeasts and molds on fish gills and skin, allowing the reduction of data. Analysis of possible data or dimension reduction is used in aquatic ecology as demonstrated by ter Braak and Verdonschot (1995).

Classification process was started with the Factor analysis (FA) which identified
 significant variables and assisted in reduction of the original data set. The Principal component

161	analysis (PCA) followed, using pattern recognition methods (Bosque-Sendra et al. 2012), in
162	order to effectively reduce redundant information (Sweidan et al. 2015). The Discriminant
163	analysis (DA) was used to evaluate the classification and to distinguish variables in relation to
164	season and location.
165	
166	
167	RESULTS
168	
169	Physico-chemical characteristics of water
170	
171	Many water quality parameters measured at both fish sampling sites were higher or lower
172	than reference guidelines for cyprinid fish (Stoskopf 1993, Billard 1999). Dissolved oxygen and
173	oxygen saturation in spring and fall in canal receiving the final treated effluent were significantly
174	below listed for carp tolerance levels (Table S1. of the Supplement). During the activity of the
175	sugarplant, extreme values were noted at the inflow of sugarplant wastewaters to the WWTP for
176	suspended solids, chemical oxygen demand (COD), COD-Mn, and biochemical oxygen demand
177	(BODn). Ammonium, nitrite, nitrate and total nitrogen values during sugarplant activity were not
178	favorable for carp propagation.
179	
180	Microbial counts and species retrieved from water
181	
182	Total viable cell counts and concentrations of bacteria, yeasts and molds from water at 4
183	sampling locations and three seasons are presented in Fig. S1 & S2 of the Supplement. Colony

184	counts at 22 °C were the highest at the inflow of sugarplant wastewaters to WWTP in fall (1.1 x
185	10 ⁸ CFU mL ⁻¹) and in spring (1.4 x 10 ⁷ CFU mL ⁻¹). Colony counts at 37 °C were the highest in
186	spring at the same location (3.1 x 10 ⁶ CFU mL ⁻¹), which also yielded the highest loads of yeasts
187	and molds (1.7 x 10^4 CFU mL ⁻¹ in fall, and 10^3 CFU mL ⁻¹ in spring, respectively). Fecal
188	coliforms, intestinal enterococci, and <i>Pseudomonas aeruginosa</i> reached 6.76 x 10 ⁶ CFU 100 mL ⁻
189	1 , 1.12 x 10 ⁷ CFU 100 mL ⁻¹ , and 1.7 x 10 ⁵ CFU 100 mL ⁻¹ , respectively, all in fall, at the inflow
190	of raw municipal wastewater to WWTP. Sulphite-reducing clostridia and E. coli reached 3.5 x
191	10^3 CFU 100 mL ⁻¹ , and 5.5 x 10^5 CFU 100 mL ⁻¹ in fall at the inflow of sugarplant wastewaters,
192	although the overall highest counts of E. coli were in fall at the inflow of raw municipal
193	wastewaters to WWTP (8.5 x 10 ⁵ CFU 100 mL ⁻¹). Listeria monocytogenes was not isolated from
194	any of the samples, but L. inocua, L. grayi, and L. ivanovii were retrieved in fall from the canal
195	receiving the final treated effluent. Overall distribution of bacterial genera isolated from all water
196	sampling locations is presented in Fig. S3. Aeromonads were the most frequently isolated group
197	from most samples.
198	
199	Microbial counts and species retrieved from fish tissues; tissue aberrations
200	
201	Bacterial counts and concentrations of bacteria, yeasts and molds from skin and gills of
202	fish are presented in Fig. S4 & S5. From gills, fecal coliforms and <i>E.coli</i> were not isolated, while
203	from skin, fecal coliforms, E.coli, P. aeruginosa, and sulphite-reducing clostridia were not
204	isolated. Colony counts from gills at 22 °C and 37 °C were highest in spring from effluent fish
205	(location 1) (3.28 x 10 ⁷ CFU mL ⁻¹ , and 2.22 x 10 ⁷ CFU mL ⁻¹ , respectively). In fall, these counts
206	did not reach over 7 x 10^5 CFU mL ⁻¹ , and 5.9 x 10^5 CFU mL ⁻¹ , respectively). The highest

207 measured yeasts, molds and *P. aeruginosa* concentrations on gills were in effluent fish in fall (832 CFU 100 mL⁻¹, 22 CFU 100 mL⁻¹, and 32 CFU 100 mL⁻¹, respectively). The same location 208 also yielded the highest loads of intestinal enterococci on gills (in spring), 78 CFU 100 mL⁻¹. In 209 210 all fish, the highest counts were in spring, at both temperatures, and the highest overall was from downstream canal (location 2) fish skin as 5.3 x 10⁶ CFU 100 mL⁻¹. The highest yeasts and 211 molds load from fish skin was in fall, from effluent fish (140 CFU mL⁻¹, and 17 CFU mL⁻¹, 212 respectively). The concentration of yeasts and molds were several folds lower in skin than in 213 gills, as well as bacterial counts at both temperatures. The highest intestinal enterococci 214 215 concentration was in spring from fish skin of both canals. Overall distribution of bacterial genera isolated from fish gills and internal organs are presented in Fig. S6. From all tissues, aeromonads 216 were the most prominent bacteria. The greatest diversity of bacterial species was found in fish 217 from the downstream canal (location 2), particularly in gills. A. hydrophila was a prevailing 218 species, followed by A. veronii, Rheinheimera soli, and Ochrobactrum anthropi. E. coli was not 219 isolated from any of the internal fish tissues. Of indicator bacteria for aquatic contamination 220 retrieved from internal tissues, the most prominent were V. cholerae (location 2 fish), 221 Enterobacter cloacae and Enterobacter sakazakii (effluent fish). 222 223 Gill histopathology alterations included an increased number of bacteria and lymphocyte cells in a mucous matrix encompassing area between primary lamellae in effluent fish. The 224 secondary lamellae in vicinity appear atrophic and necrotic (Fig. S7). Changes observed were 225 226 severe, excluding possibility of functional respiration. In kidney sections of effluent fish

227 epithelial necrosis of tubular lamina, exhibiting intratubular clumps were observed. These large

aggregates were composed of necrotic debris within tubules, inflammatory and bacterial cells

229 (Fig. S8).

231 Antimicrobial resistance of isolated strains

232

233	Antimicrobial resistance patterns of all bacterial strains isolated from water and fish
234	tissues are presented in Fig. S9 & S10. Of bacteria isolated from water, the most prevalent
235	resistance was observed in samples from the inflow of raw municipal wastewaters to WWTP
236	(location 3), in spring against AMC and SMX; in summer against SMX, UB, NOR, and OA; in
237	fall against AMC. Resistance against beta-lactam amoxicillin and sulfamethoxazole was
238	established with high prevalence in most of the water samples irrespective of the type of water,
239	and also for bacteria isolated from kidney and liver of effluent fish in spring (AMC) and from
240	gills of effluent fish in fall (AMC, SMX). Downstream (location 2) fish bacteria were mostly
241	intermediate or susceptible for tested antimicrobials.
242	Since aeromonads were the most represented of all bacterial genera, their resistance
243	patterns are of special concern. Almost 63 % of fish aeromonads showed resistance against
244	tested antimicrobials, and 50 % of them were resistant against SMX. All Aeromonas species
245	from fish were resistant towards AMC. Some were also resistant against other drugs (E or SMX).
246	Aeromonas species from water were also resistant against AMC, and 29 % of them showed
247	multiple resistances against OA, E, OTC, and SMX.
248	
249	PCA analyses
250	

The relation and grouping of samples based on the monitored microbiological parameters in fish gills and skin was investigated. PCA analyses were conducted separately for the data on

253 gills and skin. For each data set a separate data matrix was built. For gills the matrix included 7 parameters (Counts at 37 °C, Counts at 22 °C, yeasts, molds, Enterococci, P. aeruginosa, 254 sulphite-reducing clostridia) and 6 for the skin (same as for the gills except *P. aeruginosa*). The 255 factor analysis was applied first in order to investigate possible reduction of observed parameters 256 and identify significant microbiological parameters. The PCA was conducted to observe the 257 258 score demonstrating groupings according to season, with their additional loading of significant parameters (Fig. 2). The score plots show that the grouping was based on high percentage of the 259 explained variance in all cases (51.66 % for gills and 75.13 % for skin). The first principal 260 261 component (D1=29.87 %) for presented PCA of gills was under the influence of parameters Counts at 22 and 37 °C, while the leading parameters in the second principal component 262 263 (D2=21.79 %) were molds, inversely proportional with yeasts parameter. The PCA plot (Fig. 264 2A) showed two possible outliers for samples in the canal receiving the effluent (CE) measured in fall when sugar beet (B samples) was processed, and after processing of sugar cane (C 265 samples). The Grubbs test for outliers was applied on samples and outliers were confirmed. In 266 Figure 2B, the first and second principal components for the parameters isolated from fish skin 267 had the same leading parameters with addition of Enterococci in D1 (50.10 %) and in D2 (25.03 268 269 %), the inverted relationship belonging to molds, proportional to yeasts. PCA findings showed a 270 clear division of the samples depending on the processed material (beet or cane). All B samples were grouped in the second and third quadrant. 271

The most important conclusion which results from Figure 2 is the percentage of the explained variance for fish gills (51.66 %) and skin (75.13 %) which points to the fact that skin microbiological analysis can significantly correlate when observed with the multivariate system. Good grouping performance was an encouragement for testing if observed parameters allowed

276	discriminating the samples regarding the water sampling sites, so the discriminant analysis (DA)
277	was applied. When the DA was conducted on all samples for the skin parameters, the success of
278	classification based on the nine chosen parameters (dissolved oxygen, oxygen saturation,
279	suspended solids, COD, COD-Mn, BODn, ammonium, nitrite and total phosphorus) was 85 %.
280	However, when values for S-R clostridia were left out, the classification mounted to 99.25 $\%$
281	(Fig S11), particularly for waters after processed sugar cane. Fig. S11 thus confirms the high
282	classification in the DA analysis. Knowing that fish skin data gave the most informative
283	characteristic in this study, those values were related to physico-chemical characteristics of
284	water. To reduce the number of observed variables, Pearson correlation test was conducted to
285	identify the most important parameters (with a significance level α =0.05). For both processed
286	waters (cane and beet) seven significant characteristics of water were identified, and correlation
287	map revealed the significance of yeasts, enterococci and counts at 37 $^\circ$ C on fish skin. PCA
288	analysis conducted on these inputs resulted with a Biplot which explains 85.77 % of all
289	variations in the data set (Fig. 3).
290	
291	

292 DISCUSSION

293

The sugar processing industry is among those with the largest water demands and remains an important factor for the organic pollution (Ingaramo et al. 2009). Waters affected by the sugarplant processing in this assay, particularly the canal receiving the treated effluent as a fishbearing canal, displayed marked aberrations from guidelines for cyprinid fish (Billard 1999). Problems with toxic nitrogen-containing compounds such as ammonia, nitrite and nitrate were 299 particularly expressed during sugar beet processing. The most important physical factor of wastewater in sugar processing is the total suspended solid content (Sahu & Chaudhari 2015), 300 which was extremely high during sugar cane processing. It also contributed to the high viable 301 cell counts at 37 °C, while sugar beet processing contributed to high bacterial counts at 22 °C 302 and high concentrations of sulphite-reducing clostridia, E. coli, yeasts, molds, coliforms and 303 enterococci in water. High numbers of mesophiles and yeasts at levels > $6 \log \text{CFU g}^{-1}$ were 304 previously found for beet wastewaters (Robles-Gancedo et al. 2009), as well as enteric bacteria 305 (Mitchell & Funke 1982). Such a footprint of wastewaters has an impact on fish living in treated 306 307 waters and also in further downstream waters, particularly on their ability to cope with stress and susceptibility to diseases. 308

Yeasts and molds, often used for estimation of organic pollution in wastewaters 309 (Shimomura-Shimizu & Karube 2010), were found in high concentrations on effluent fish gills in 310 fall, during beet processing. Although it was not proven how the types of wastewater and 311 treatment processes influence yeast proliferation (Yang et al. 2011), it seems that higher 312 concentrations were retrieved from sugar-rich waters. During beet sugar extraction, yeasts, 313 mesophiles and thermophiles are the most numerous microbiota, while beet-washing water is an 314 315 important source of contamination (Robles-Gancedo et al. 2009). There is a likelihood of the presence of potentially pathogenic and toxicogenic fungi in fish from such waters, and when 316 317 fished out for human consumption, they might pose a health threat and remain in cooked tissues 318 in spite of the thermal treatment (Bien and Nowak 2014). Most waterborne fungi remain in spore form and are a particular risk to immunocompromised patients (Olaolu et al. 2014). 319 320 Passing immunological barriers, bacteria may penetrate and colonize various tissues in

polluted aquatic environments (Niewolak & Tucholski 2000). Interestingly, although retrieved in

high numbers in water, in neither of seasons were fecal coliforms and E.coli isolated from gills 322 and skin, nor *P. aeruginosa*, and sulphite-reducing clostridia from skin. That could be partially 323 explained by shedding of mucus from fish skin as a natural defense mechanism to prevent 324 colonization by bacteria (Suhalin et al. 2008). It was also demonstrated that E. coli is rarely 325 recovered from carp tissues if its water concentration stays below10⁴ CFU mL⁻¹ (Buras et al. 326 1985). In this work, sugar beet wastewaters inflowing to WWTP and treated effluent waters had 327 *E. coli* loads 10⁵ and 10⁴ CFU 100 mL⁻¹, respectively, which might explain its absence from fish 328 tissues. Although fecal coliforms were not isolated from gills and skin, their high water levels 329 330 could lead to contamination of internal organs and muscle tissue, posing a risk to consumers if exceeding 10³ CFU 100 mL⁻¹ (Harnisz & Tucholski 2010). Relatively low counts of intestinal 331 enterococci and *P. aeruginosa* were recovered from gills in this work. Yet, Guzman et al. (2004) 332 established that fish may carry fecal indicator bacteria to non-polluted waters for long retention 333 periods, causing infection when handling or consuming fish. The total heterotrophic plate counts 334 exceeding 10⁴ CFU mL⁻¹ of water could bring risk of human pathogens penetrating fish tissues 335 (Harnisz &Tucholski 2010). Although in this work they were reaching up to 10⁵ CFU mL⁻¹ in the 336 canal receiving the treated effluent in spring (sugar cane processing), counts on fish gills and 337 338 skin were on average much higher than in their bearing waters. Indeed, the spring counts on fish skin even multiplied in downstream canal fish when compared to effluent fish. Possible 339 explanation might be that fish tissues provide a good substrate for the growth of most 340 341 heterotrophic bacteria, with compositional attributes that affect bacterial growth. Heterotrophs thus multiply in the sub-environments provided by skin surfaces and gill areas (ICMSF 1998). If 342 343 fish from such waters were to be used for human consumption, care should be taken regarding

the limits for heterotrophs in fish eaten raw/cooked ($10^4/10^6$ CFU g⁻¹, respectively) (El-Shafai et al. 2004).

Both in the effluent and downstream fish, bacteria retrieved in both seasons were A. 346 hydrophila and A. veronii (internal organs). A. hydrophila has a worldwide distribution, and is 347 recognized as a primary pathogen of fish, causing a stress-mediated disease condition where 348 349 mortalities are influenced by elevated water temperatures (Austin & Austin 2007). Environmental strains of A. hydrophila produce less enterotoxins when cultured at 37 °C than at 350 28 °C, while clinical isolates behave *vice versa* (Igbinosa et al. 2012). Thus, strains producing 351 virulence factors at 37 °C have better odds as human pathogens. A. veronii is also a species 352 potentially very pathogenic to humans, having a broad aquatic host range. Along with A. 353 hydrophila, it has been recognized as the causal agent of fish mortalities in freshwater 354 355 ecosystems, causing epizootic ulcerative syndrome (Skwor et al. 2014). A. veronii was the most frequently isolated bacteria from internal tissues of effluent fish in this study, in both seasons, 356 which coincides with our previous work (Topić Popović et al. 2015a). The major public health 357 concern thus is the wound infection with aeromonads among individuals who capture and handle 358 359 the fish (El-Shafai et al. 2004). Internal organs of effluent fish yielded counts of Enterobacter 360 cloacae and E. sakazakii, while from downstream canal fish V. cholera was isolated, demonstrating that indicator bacteria for aquatic contamination were retrievable also from a 361 362 further downstream fish, and mostly during sugar beet processing (fall). Tissue aberrations in fall 363 included severe gill and kidney lesions with bacterial and inflammatory cell aggregates. Similar findings observed Declercq et al. (2015) when challenging trout and carp with highly virulent 364 365 *Flavobacterium columnare* isolates, which led to a high number of eosinophillic granular cells.

High bacterial loads in water may have led to increased bacterial cells in kidney, includinghematopoietic tissues and renal tubules, as in the work of Islam et al. (2008).

Bacteria resistant to antibiotics and antibiotic resistant genes in the aquatic environment 368 are an emerging contaminant issue (Sharma et al, 2016). Most bacteria form water and fish 369 revealed resistance against beta-lactams (amoxicillin, AMC) and sulfamethoxazole, SMX, 370 371 irrespective of the season/sugarplant activity, although multiple resistance was also noted. The AMC resistance could partially be explained by relatedness of AMC with ampicillin, towards 372 which aeromonads show intrinsic resistance (Harnisz & Tucholski 2010). The SMX resistance, 373 374 found in a high percentage of isolated aeromonads, could be due to its poor performance if not in combination with trimethoprim (Goni-Urriza et al. 2000). The overall resistance pattern is most 375 likely a consequence of previous exposure to antimicrobials and chemotherapeutics due to 376 municipal and hospital discharge waters processed by the WWTP, and cannot be directly 377 correlated with the sugarplant activity. The antimicrobial resistance in wastewater-related waters 378 is an important factor for emerging infectious diseases, as antibiotic resistance genes may be 379 easily disseminated and imposing selective pressures (Figueira et al. 2012; Pruden et al. 2012; 380 Sharma et al, 2016). 381

Previous studies demonstrating the use of PCA analysis investigated water quality based on fish biomarkers and water quality degree classification (Sweidan et al. 2015), the application of exploratory and unsupervised/supervised chemometric methods on chromatographic data, using the composition for the characterization and authentication (Bosque-Sendra et al. 2012), in monitoring of complex mixtures of toxicants found in aquatic ecosystems on fish species and their oxidative stress biomarkers (Dzul-Caamal et al. 2016), and in identifying the link between trophic ecology and metal accumulation in marine fish (Le Croizier et al. 2016). As the

application of multivariate tools proved very effective, we used PCA for the first time to 389 investigate the relation and grouping of samples based on the monitored microbiological 390 parameters in gills and skin. It was found that high heterotroph counts, *P. aeruginosa*, and 391 intestinal enterococci on both skin and gills can be associated with sugar cane processing, while 392 yeasts and moulds were proven to correlate predominantly with sugar beet parameters. 393 394 In conclusion, fish living under impaired conditions caused by sugar beet and sugar cane processing can become contaminated with bacterial pathogens, yeasts and molds. Although the 395 relation between water quality and contamination of fish tissues is frequently controversial 396 397 (WHO 2006), penetration of bacteria to fish tissues is a threat. Thus safety measures during handling and processing of fish, often fished out by recreational fishermen from downstream 398 waters, are highly needed to avoid cross-contamination. 399 400 Acknowledgements: The authors wish to thank Dr. Slavko Kepec from Virkom, Public Water 401

Supply and Wastewater Services, Virovitica, Croatia for sampling and outline of susceptibility
data. This study was supported by the Croatian MSES Grant No. 098-1782739-249.

404

405

406 LITERATURE CITED:

407

Austin B, Austin D (2007) Bacterial fish pathogens: Disease in farmed and wild fish. 4th Edition
Laird L (ed.) Springer-Praxis series in aquaculture and fisheries. Praxis Publishing Ltd,

410 Chichester UK

412	Bien J, Nowak D (2014) Biological composition of sewage sludge in the aspect of threats to the
413	natural environment. Arch Environ Prot 40 (4):79-86
414	
415	Billard R (1999) The Carp; Biology and Culture. Billard R. (ed) Springer-Verlag London
416	
417	Bosque-Sendra JM, Cuadros-Rodríguez L, Ruiz-Samblás C, de la Mata AP (2012) Combining
418	chromatography and chemometrics for the characterization and authentication of fats and oils
419	from triacylglycerol compositional data - A review. Anal Chem Acta 724:1-11
420	
421	Buras N, Duek L, Niv S (1985) Reaction of fish to microorganisms in wastewater. Appl Environ
422	Microbiol 50:989-995
423	
424	Buras N, Duek L, Niv S, Hepher B, Sandbank E (1987) Microbiological aspects of fish grown in
425	treated wastewater. Water Res 21(1):1-10
426	
427	ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related
428	multivariate methods in aquatic ecology. Aquat Sci 57 (3):255-289
429	Declercq AM, Chiers K, Van den Broeck W, Dewulf J, Eeckhaut V, Cornelissen M, Bossier P,
430	Haesebrouck F, Decostere A (2015) Interactions of highly and low virulent <i>Flavobacterium</i>
431	<i>columnare</i> isolates with gill tissue in carp and rainbow trout. Vet Res 46(25):1-16
432	
433	El-Shafai SA, Gijzen HJ, Nasr FA, El-Gohary FA (2004) Microbial quality of tilapia reared in
434	fecal-contaminated ponds. Environ Res 95:231-238
	-

436	Figueira V, Serra EA, Vaz-Moreira I, Brandão TRS, Manaia CM (2012) Comparison of
437	ubiquitous antibiotic-resistant Enterobacteriaceae populations isolated from wastewaters,
438	surface waters and drinking waters. J Water Health 10(1):1-10
439	
440	Goni-Urriza M, Pineau L, Capdepuy M, Roques C, Caumette P, Quentin C (2000) Antimicrobial
441	resistance of mesophilic Aeromonas spp. strains isolated from two European rivers. J Antimicrob
442	Chemother 46:297-301
443	
444	Guzman MC, Bistoni MA, Tamagnini LM, Gonzalez RD (2004) Recovery of Escherichia coli in
445	fresh water fish, Jenynsia multidentata and Bryconamericus iheringi. Water Res 38:2368-2374
446	
447	Harnisz M, Tucholski S (2010) Microbial quality of common carp and pikeperch fingerlings
448	cultured in a pond fed with treated wastewater. Ecol Eng 36:466-470
449	
450	Sweidan HA, El-Bendary N, Hegazy OM, Hassanien AE, Snasel V (2015) Water Pollution
451	Detection System Based on Fish Gills as a Biomarker. Procedia Comput Sci 65:601-611
452	
453	ICMSF International Commission on Microbiological Specifications for Foods of the IUMS
454	(1998) Microorganisms in Foods. Microbial Ecology of Food Commodities. Springer-Science +
455	Business Media BV. International Thompson Publishing, Frimley, Surrey
456	

457	Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh AI (2012) Emerging Aeromonas species
458	infections and their significance in public health. Sci World J article ID 625023:1-13
459	
460	Ingaramo A, Heluane H, Colombo M, Cesca M (2009) Water and wastewater eco-efficiency
461	indicators for the sugar cane industry. J Clean Prod 17:487-495
462	
463	Islam MT, Mostafa K, Rashid MM (2008) Histopathological studies of experimentally infected
464	shing, Heteropneustes fossilis with Aeromonas hydrophila bacteria. Progress Agric 19(1):89-96
465	
466	Le Croizier G, Schaal G, Gallon R, Fall M, Le Grand F, Munaron JM, Rouget ML, Machu E, Le
467	Loc'h F, Laë R, De Morais LT (2016) Trophic ecology influence on metal bioaccumulation in
468	marine fish: Inference from stable isotope and fatty acid analyses. Sci Total Environ 573:83-95
469	
470	Lusk MR, Luskova V, Hanel L (2010) Alien fish species in the Czech Republic and their impact
471	on the native fish fauna. Folia Zool 59:57-72
472	
473	Mitchell KR, Funke BR (1982) Enteric bacteria in sugarbeet refinery processing waste waters.
474	Environ Pollut A 28(2):81-88
475	
476	Naidoo S, Olaniran AO (2014) Treated wastewater effluent as a source of microbial pollution of
477	surface water resources. Int J Environ Res Public Health 11:249-270
478	

479	Niewolak S, Tucholski S (2000) Sanitary and bacteriological evaluation of common carp, tench
480	and crucian carp reared in a pond supplied with biologically treated sewage. Arch Pol Fisheries
481	8(1):35-48
482	
483	Olaolu TD, Akpor OB, Akor CO (2014) Pollution indicators and pathogenic microorganisms in
484	wastewater treatment: Implication on receiving water bodies. IJEPP 2(6):205-212
485	
486	Pruden A, Arabi M, Storteboom HN (2012) Correlation between upstream human activities and
487	riverine antibiotic resistance genes. Environ Sci Tech 46:11541-11549
488	
489	Robles-Gancedo S, López-Diaz TM, Otero A (2009) Microbiological counts during beet sugar
490	extraction. J Food Prot 72(6):1332-1337
491	
492	Sahu OP, Chaudhari PK (2015) The characteristics, effects, and treatment of wastewater in
493	sugarcane industry. Water Qual Expo Health 7:435-444
494	
495	Sharma VK, Johnson N, Cizmas L, McDonald TJ, Kim H (2016) A review of the influence of
496	treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere
497	150: 702-714
498	
499	Shimomura-Shimizu M, Karube I (2010) Yeast based sensors. Adv Biochem Engin/Biotechnol
500	117:1-19
501	

502	Skwor T, Shinko J, Augustyniak A, Gee C, Andraso G (2014) Aeromonas hydrophila and
503	Aeromonas veronii predominate among potentially pathogenic ciprofloxacin- and tetracycline-
504	resistant Aeromonas isolates from Lake Eerie. Appl Environ Microbiol 80(3):841-848
505	
506	Stoskopf MK (1993) Environmental Requirements and Diseases of Carp, Koi, and Goldfish. In:
507	Stoskopf MK (ed) Fish Medicine. WB Saunders Company, Philapelphia, USA, p 454-461
508	
509	Suhalin R, Huang YW, Burtle GJ (2008) Survival of Escherichia coli O157:H7 in channel catfish
510	pond and holding tank water. LWT – Food Sci Technol (41):1116-1121
511	
512	Topić Popović N, Kazazić S, Strunjak-Perović I, Barišić J, Sauerborn Klobučar R, Kepec S et al
513	(2015a) Detection and diversity of aeromonads from treated wastewater and fish inhabiting
514	effluent and downstream waters. Ecotoxicol Environ Saf 120:235-242
515	
516	Topić Popović N, Strunjak-Perović I, Sauerborn Klobučar R, Barišić J, Babić S, Jadan M, Kepec
517	S, Kazazić SP, Matijatko V, Beer Ljubić B, Car I, Repec S, Stipaničev D, Klobučar G, Čož-
518	Rakovac R (2015b) Impact of treated wastewater on organismic biosensors at various levels of
519	biological organization. Sci Total Environ 538:23-37
520	
521	Tortorello M (2003) Indicator organisms for safety and quality – uses and methods for detection:
522	Minireview. Microbiol Methods 86(6):1208-1217

- 524 USFWS U.S. Fish and Wildlife Service (2012) Prussian Carp (*Carassius gibelio*) Ecological
- 525 Risk Screening Summary. Web Version 8/14/2012, U.S. Fish and Wildlife Service.
- 526 http://www.fws.gov/injuriouswildlife/pdf_files/Carassius_gibelio_WEB_8-14-2012.pdf.
- 527 Accessed 27 April 2018
- 528
- 529 WHO World Health Organization (2006) Guidelines for the safe use of wastewater, excreta and
- 530 greywater. Volume 1, Policy and regulatory aspects. World Health Organization, WHO Library
- 531 Cataloguing-in-Publication Data ISBN 92 4 1546867
- 532
- 533 Yang Q, Angly FE, Wang Z, Zhang H (2011) Wastewater treatment systems harbor specific and
- diverse yeast communities. Biochem Eng J 58-59:168-176