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Abstract 17 

 18 

The aim of the study was to compare bacterial composition and load in waters and fish related to 19 

the wastewater treatment plant (WWTP), particularly waters and wild fish affected by sugarplant 20 

processing (sugar cane and sugar beet). Aeromonads were the most frequently isolated group 21 

from water and fish. A. hydrophila was a prevailing species in isolates from water, followed by 22 

A. veronii, Rheinheimera soli and Ochrobactrum anthropi. Of indicator bacteria for aquatic 23 
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contamination from fish tissues, the most prominent were V. cholerae, Enterobacter cloacae and 24 

E. sakazakii. Sugar cane processing contributed to high viable cell counts at 37 °C while sugar 25 

beet processing contributed to high bacterial counts at 22 °C. Heterotrophs from gills of effluent 26 

fish were highest during sugar cane processing. Counts retrieved from fish skin were more 27 

uniform between effluent fish and fish from downstream waters. Antimicrobial resistance of 28 

bacteria isolated from water was high against amoxicillin, sulfamethoxazole, flumequine, 29 

norfloxacin and oxolinic acid in samples from the inflow of raw municipal wastewaters to 30 

WWTP, while resistance found in bacteria from the inflow of sugarplant mostly related to 31 

sulfamethoxazole and amoxicillin. The PCA analysis associated the occurrence of high 32 

heterotroph counts, P. aeruginosa, and intestinal enterococci on skin and gills with sugar cane, 33 

and yeasts and molds with sugar beet processing. Fish living in treated wastewaters and related 34 

water bodies could pose a microbial hazard if fished for human consumption, possibly causing 35 

infection when being handled and processed, as a risk of human pathogens penetrating fish 36 

tissues. 37 

 38 

Keywords: Wastewater treatment plant · Fish · Bacteria · Resistance · Pollution 39 

 40 

INTRODUCTION 41 

 42 

Wastewater treatment plants (WWTPs) perform primary and secondary biological 43 

treatment of municipal and related waters, and sometimes tertiary treatment for agricultural 44 

irrigation and wetlands restoration. The complex microbial community found in the treated 45 

effluent of WWTPs, although significantly reduced (particularly in fecal indicator bacteria), 46 
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might still contain pathogenic bacteria which present a threat to fish living downstream (Topić 47 

Popović et al. 2015a). If used for human consumption, such fish may pose a potential public 48 

health risk.  49 

When reared in treated domestic wastewater, which is not a rare practice due to the 50 

abundance of nutrients, silver carp (Hypophthalmichthys molitrix), common carp (Cyprinus 51 

carpio) and tilapia (Oreochromis niloticus) show sensitiveness to the impaired environment 52 

(Buras et al. 1987). Bacteria can be retrieved from their internal organs and tissues up to 53 

concentrations of 109 g-1. If rearing stocking juveniles in treated wastewaters, and transferring 54 

them later to the regular fish farms, fish will likely reduce the numbers of bacteria, and the 55 

danger of pathogen transfer to humans would be avoided (Niewolak & Tucholski 2000). 56 

However, wild fish living in treated wastewaters and related water bodies which are fished for 57 

recreational purposes and human consumption, could pose a threat. The dominant fish species in 58 

slowly running lowland watersheds in Europe and Asia is Prussian carp (Carassius gibelio) 59 

(Lusk et al. 2010). It invaded European ponds, eutrophic lakes, canals, and small water reservoirs 60 

(USFWS 2012) due to its ability to grow and reproduce rapidly. It tolerates well the impaired 61 

environmental conditions, such as high organic loads or low levels of dissolved oxygen, and is a 62 

highly possible catch of recreational fishermen. 63 

There are number of potential bacterial pathogens that might be related with 64 

contaminated waters from which representative bacterial indicators of human and (aquatic) 65 

animal contamination are chosen for screening. They include total and fecal coliforms, 66 

Escherichia coli, fecal streptococci and enterococci, Salmonella sp., Shigella sp., and Vibrio sp. 67 

(Naidoo & Olaniran 2014). However, indicator bacteria should always be assessed in the context 68 

of the study, taking into account the natural microbial ecology, biotic and abiotic physical-69 
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chemical factors which could influence microbial growth. Negative indicator tests cannot 70 

guarantee the absence of a microbial hazard (Tortorello 2003). Also, sugarplants are significant 71 

contributors to the WWTP load, with high water demand and organic pollution (Ingaramo et al. 72 

2009). For that reason, and in order to improve our understanding in assessing the biological 73 

risks for the fish living in the WWTP effluent and waters related to the WWTP, it is important to 74 

determine their bacterial community and diversity differences (Topić Popović et al. 2015a, b). 75 

With this objective, bacteria were identified at two seasonal time points from: (i) wastewaters 76 

from a Croatian municipal WWTP which also processes waters from a sugarplant, (ii) waters 77 

further downstream, from a wider canal which drains into the river Drava; (iii) wild Prussian 78 

carp inhabiting effluent-receiving waters and further downstream waters, in spring and fall. The 79 

hypothesis of the study was that both ubiquitous and pathogenic bacteria would be retrieved from 80 

fish tissues, in relation to season and activity of the sugarplant. The aim was to compare bacterial 81 

composition and load in different WWTP-related waters, and various fish tissues over seasons, 82 

as well as the occurrence of resistance to eight antimicrobial drugs tested.  83 

 84 

 85 

MATERIALS AND METHODS  86 

 87 

Study site 88 

 89 

The study was conducted in spring and fall throughout the treatment process of a 90 

Croatian municipal WWTP, which also receives hospital and sugarplant wastewaters (Fig. 1). 91 

Sugarplant was active in spring (pre-washed sugar cane processing) and fall (sugar beet 92 
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processing) with 15.94 % and 30.83 % of treated waters, respectively. The final treated effluent 93 

outflows into a natural canal (location 1), which widens to enter a further downstream canal 94 

(location 2) draining into the river Drava. Fish and water were sampled from locations 1 and 2. 95 

Water was also sampled at the inflow of raw municipal wastewaters to the WWTP (location 3) 96 

and the inflow of sugarplant wastewaters to the WWTP (location 4). 97 

 98 

Sample collection 99 

 100 

The study was carried out in accordance with the EC Directive 86/609/EEC for animal 101 

experiments, and according to the Institute’s directions for animal tests. Prussian carp (Carassius 102 

gibelio) were caught by nets and angling: in spring (n = 24) mean weight (W) 498.80 g ± 232.04 103 

SD, mean length (L) 213.46 mm ± 66.94 SD; in fall (n = 45) W 127.80 g ± 97.32 SD, L 170.22 104 

mm ± 45.32 SD. Fish were transported live to the laboratory and sacrificed by overdose of 105 

tricaine methane-sulfonate (MS-222, Sigma, St. Louis, Missouri, USA). Tissues (gills, anterior 106 

kidney) were fixed in 4 % neutral buffered formaldehyde, dehydrated through a graded ethanol-107 

xylene series, embedded in paraplast, and stained with hematoxylin/eosin. 108 

 109 

Analytical methods 110 

 111 

Physico-chemical characteristics of water were analyzed according to the international 112 

standards as follows: determination of electrical conductivity, pH, suspended solids, dissolved 113 

oxygen, permanganate index, chemical oxygen demand (COD), biochemical oxygen demand 114 

after n days (BODn), dilution and seeding with allylthiourea, phosphorus with spectrometric 115 
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method, nitrite, total nitrogen by persulfate digestion method, cadmium reduction, and nitrate by 116 

colorimetry (ISO 7888:1985, ISO 10523:2008, ISO 872:2005, ISO 5813:1983, ISO 8467:1993, 117 

ISO 15705:2002, ISO 5815:1989, ISO 7150-1:1984, ISO 6878:2004, ISO 6777:1984, SM 4500-118 

NO3-E, respectively). 119 

Methods for detection and enumeration of Escherichia coli, coliforms and enterococci 120 

from water and sludge were used according to the Detection and enumeration of E. coli and 121 

coliform bacteria – Part 1: Membrane filtration method (ISO 9308-1:2000/Corr.1:2008) and 122 

Detection and enumeration of intestinal enterococci – Part 2: Membrane filtration method (ISO 123 

7899-2:2000). E. coli, coliforms and enterococci were also measured from fish tissues (skin and 124 

gill scrapings). All samples were inoculated on general purpose media and media for the 125 

selective isolation of bacteria (all Oxoid Ltd, Basingstoke, England, UK). Samples of fish gills 126 

and internal organs (kidney and liver) were streaked onto Tryptone Soya Agar, MacConkey Agar 127 

(Oxoid) and Blood Agar (Certifikat doo, Osijek, Croatia). Colonies were subjected to 128 

morphological, physiological and biochemical tests. The taxonomic position of the isolates was 129 

determined by the MALDI Biotyper using MALDI-TOF (Matrix Assisted Laser Desorption 130 

Ionization-Time of Flight) Mass Spectrometry (Bruker Daltonik GmbH, Bremen, Germany). The 131 

ethanol/formic acid extraction was applied for MALDI TOF MS sample preparation as described 132 

in Topić Popović et al. (2015a, b). Recorded mass spectra were processed with the MALDI 133 

Biotyper 3.0 software package (Bruker Daltonik), using standard settings.  134 

Antimicrobial susceptibility of the isolated strains was determined with Kirby-Bauer disk 135 

diffusion method on Mueller Hinton agar (all Oxoid). The following antimicrobials with 136 

respective concentrations were used in the test: oxytetracycline (OTC, 30 μg), amoxicillin 137 
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(AMC, 30 μg), oxolinic acid (OA, 2 μg), erythromycin (E, 15 μg), sulfamethoxazole (SMX, 50 138 

μg), florfenicol (FFC, 30 μg), norfloxacin (NOR, 10 μg), flumequine (UB, 30 μg). 139 

 140 

Statistical analysis 141 

 142 

Statistical analyses were performed using SigmaPlot and SigmaStat Statistical Software 143 

ver. 11.0 (Jandel Corp. San Rafael, CA). Bacterial counts data were subjected to logarithmic 144 

transformation. All data were analyzed by multivariate analysis in order to extract variables or 145 

important related information, to identify possible clusters, and to identify trends between 146 

samples and/or variables.  147 

In order to examine the possibility of viewing data sets independently of sampling site 148 

and processed sugar cane/sugar beet, t-test was used. Although the test showed that there was no 149 

significant difference between the values in the different canals (p = 0.10), bacterial composition 150 

in each sampling site and material processed was a significant factor: (i) effluent-receiving canal 151 

(CE) beet vs. cane, p = 0.028 and (ii) downstream county canal (CC) beet vs. cane, p = 0.002. So, 152 

for the further analysis, the data set was divided by sampling site (CE and CC) and processed 153 

material (B = beet and C = beet). 154 

Also, the Pearson correlation test was conducted on the complete data matrix (physico-155 

chemical parameters of water vs. bacteria, yeasts and molds on fish gills and skin, allowing the 156 

reduction of data. Analysis of possible data or dimension reduction is used in aquatic ecology as 157 

demonstrated by ter Braak and Verdonschot (1995). 158 

Classification process was started with the Factor analysis (FA) which identified 159 

significant variables and assisted in reduction of the original data set. The Principal component 160 
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analysis (PCA) followed, using pattern recognition methods (Bosque-Sendra et al. 2012), in 161 

order to effectively reduce redundant information (Sweidan et al. 2015). The Discriminant 162 

analysis (DA) was used to evaluate the classification and to distinguish variables in relation to 163 

season and location. 164 

 165 

 166 

RESULTS 167 

 168 

Physico-chemical characteristics of water 169 

 170 

Many water quality parameters measured at both fish sampling sites were higher or lower 171 

than reference guidelines for cyprinid fish (Stoskopf 1993, Billard 1999). Dissolved oxygen and 172 

oxygen saturation in spring and fall in canal receiving the final treated effluent were significantly 173 

below listed for carp tolerance levels (Table S1. of the Supplement). During the activity of the 174 

sugarplant, extreme values were noted at the inflow of sugarplant wastewaters to the WWTP for 175 

suspended solids, chemical oxygen demand (COD), COD-Mn, and biochemical oxygen demand 176 

(BODn). Ammonium, nitrite, nitrate and total nitrogen values during sugarplant activity were not 177 

favorable for carp propagation. 178 

 179 

Microbial counts and species retrieved from water  180 

 181 

Total viable cell counts and concentrations of bacteria, yeasts and molds from water at 4 182 

sampling locations and three seasons are presented in Fig. S1 & S2 of the Supplement. Colony 183 
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counts at 22 °C were the highest at the inflow of sugarplant wastewaters to WWTP in fall (1.1 x 184 

108 CFU mL-1) and in spring (1.4 x 107 CFU mL-1). Colony counts at 37 °C were the highest in 185 

spring at the same location (3.1 x 106 CFU mL-1), which also yielded the highest loads of yeasts 186 

and molds (1.7 x 104 CFU mL-1 in fall, and 103 CFU mL-1 in spring, respectively). Fecal 187 

coliforms, intestinal enterococci, and Pseudomonas aeruginosa reached 6.76 x 106 CFU 100 mL-188 

1, 1.12 x 107 CFU 100 mL-1, and 1.7 x 105 CFU 100 mL-1, respectively, all in fall, at the inflow 189 

of raw municipal wastewater to WWTP. Sulphite-reducing clostridia and E. coli reached 3.5 x 190 

103 CFU 100 mL-1, and 5.5 x 105 CFU 100 mL-1 in fall at the inflow of sugarplant wastewaters, 191 

although the overall highest counts of E. coli were in fall at the inflow of raw municipal 192 

wastewaters to WWTP (8.5 x 105 CFU 100 mL-1). Listeria monocytogenes was not isolated from 193 

any of the samples, but L. inocua, L. grayi, and L. ivanovii were retrieved in fall from the canal 194 

receiving the final treated effluent. Overall distribution of bacterial genera isolated from all water 195 

sampling locations is presented in Fig. S3. Aeromonads were the most frequently isolated group 196 

from most samples.  197 

 198 

Microbial counts and species retrieved from fish tissues; tissue aberrations 199 

 200 

Bacterial counts and concentrations of bacteria, yeasts and molds from skin and gills of 201 

fish are presented in Fig. S4 & S5. From gills, fecal coliforms and E.coli were not isolated, while 202 

from skin, fecal coliforms, E.coli, P. aeruginosa, and sulphite-reducing clostridia were not 203 

isolated. Colony counts from gills at 22 °C and 37 °C were highest in spring from effluent fish 204 

(location 1) (3.28 x 107 CFU mL-1, and 2.22 x 107 CFU mL-1, respectively). In fall, these counts 205 

did not reach over 7 x 105 CFU mL-1, and 5.9 x 105 CFU mL-1, respectively). The highest 206 
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measured yeasts, molds and P. aeruginosa concentrations on gills were in effluent fish in fall 207 

(832 CFU 100 mL-1, 22 CFU 100 mL-1, and 32 CFU 100 mL-1, respectively). The same location 208 

also yielded the highest loads of intestinal enterococci on gills (in spring), 78 CFU 100 mL-1. In 209 

all fish, the highest counts were in spring, at both temperatures, and the highest overall was from 210 

downstream canal (location 2) fish skin as 5.3 x 106 CFU 100 mL-1. The highest yeasts and 211 

molds load from fish skin was in fall, from effluent fish (140 CFU mL-1, and 17 CFU mL-1, 212 

respectively). The concentration of yeasts and molds were several folds lower in skin than in 213 

gills, as well as bacterial counts at both temperatures. The highest intestinal enterococci 214 

concentration was in spring from fish skin of both canals. Overall distribution of bacterial genera 215 

isolated from fish gills and internal organs are presented in Fig. S6. From all tissues, aeromonads 216 

were the most prominent bacteria. The greatest diversity of bacterial species was found in fish 217 

from the downstream canal (location 2), particularly in gills. A. hydrophila was a prevailing 218 

species, followed by A. veronii, Rheinheimera soli, and Ochrobactrum anthropi. E. coli was not 219 

isolated from any of the internal fish tissues. Of indicator bacteria for aquatic contamination 220 

retrieved from internal tissues, the most prominent were V. cholerae (location 2 fish), 221 

Enterobacter cloacae and Enterobacter sakazakii (effluent fish). 222 

Gill histopathology alterations included an increased number of bacteria and lymphocyte 223 

cells in a mucous matrix encompassing area between primary lamellae in effluent fish. The 224 

secondary lamellae in vicinity appear atrophic and necrotic (Fig. S7). Changes observed were 225 

severe, excluding possibility of functional respiration. In kidney sections of effluent fish 226 

epithelial necrosis of tubular lamina, exhibiting intratubular clumps were observed. These large 227 

aggregates were composed of necrotic debris within tubules, inflammatory and bacterial cells 228 

(Fig. S8). 229 
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 230 

Antimicrobial resistance of isolated strains 231 

 232 

Antimicrobial resistance patterns of all bacterial strains isolated from water and fish 233 

tissues are presented in Fig. S9 & S10. Of bacteria isolated from water, the most prevalent 234 

resistance was observed in samples from the inflow of raw municipal wastewaters to WWTP 235 

(location 3), in spring against AMC and SMX; in summer against SMX, UB, NOR, and OA; in 236 

fall against AMC. Resistance against beta-lactam amoxicillin and sulfamethoxazole was 237 

established with high prevalence in most of the water samples irrespective of the type of water, 238 

and also for bacteria isolated from kidney and liver of effluent fish in spring (AMC) and from 239 

gills of effluent fish in fall (AMC, SMX). Downstream (location 2) fish bacteria were mostly 240 

intermediate or susceptible for tested antimicrobials.  241 

Since aeromonads were the most represented of all bacterial genera, their resistance 242 

patterns are of special concern. Almost 63 % of fish aeromonads showed resistance against 243 

tested antimicrobials, and 50 % of them were resistant against SMX. All Aeromonas species 244 

from fish were resistant towards AMC. Some were also resistant against other drugs (E or SMX). 245 

Aeromonas species from water were also resistant against AMC, and 29 % of them showed 246 

multiple resistances against OA, E, OTC, and SMX. 247 

 248 

PCA analyses 249 

 250 

The relation and grouping of samples based on the monitored microbiological parameters 251 

in fish gills and skin was investigated. PCA analyses were conducted separately for the data on 252 
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gills and skin. For each data set a separate data matrix was built. For gills the matrix included 7 253 

parameters (Counts at 37 °C, Counts at 22 °C, yeasts, molds, Enterococci, P. aeruginosa, 254 

sulphite-reducing clostridia) and 6 for the skin (same as for the gills except P. aeruginosa). The 255 

factor analysis was applied first in order to investigate possible reduction of observed parameters 256 

and identify significant microbiological parameters. The PCA was conducted to observe the 257 

score demonstrating groupings according to season, with their additional loading of significant 258 

parameters (Fig. 2). The score plots show that the grouping was based on high percentage of the 259 

explained variance in all cases (51.66 % for gills and 75.13 % for skin). The first principal 260 

component (D1=29.87 %) for presented PCA of gills was under the influence of parameters 261 

Counts at 22 and 37 °C, while the leading parameters in the second principal component 262 

(D2=21.79 %) were molds, inversely proportional with yeasts parameter. The PCA plot (Fig. 263 

2A) showed two possible outliers for samples in the canal receiving the effluent (CE) measured 264 

in fall when sugar beet (B samples) was processed, and after processing of  sugar cane (C 265 

samples). The Grubbs test for outliers was applied on samples and outliers were confirmed. In 266 

Figure 2B, the first and second principal components for the parameters isolated from fish skin 267 

had the same leading parameters with addition of Enterococci in D1 (50.10 %) and in D2 (25.03 268 

%), the inverted relationship belonging to molds, proportional to yeasts. PCA findings showed a 269 

clear division of the samples depending on the processed material (beet or cane). All B samples 270 

were grouped in the second and third quadrant. 271 

The most important conclusion which results from Figure 2 is the percentage of the 272 

explained variance for fish gills (51.66 %) and skin (75.13 %) which points to the fact that skin 273 

microbiological analysis can significantly correlate when observed with the multivariate system. 274 

Good grouping performance was an encouragement for testing if observed parameters allowed 275 
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discriminating the samples regarding the water sampling sites, so the discriminant analysis (DA) 276 

was applied. When the DA was conducted on all samples for the skin parameters, the success of 277 

classification based on the nine chosen parameters (dissolved oxygen, oxygen saturation, 278 

suspended solids, COD, COD-Mn, BODn, ammonium, nitrite and total phosphorus) was 85 %. 279 

However, when values for S-R clostridia were left out, the classification mounted to 99.25 % 280 

(Fig S11), particularly for waters after processed sugar cane. Fig. S11 thus confirms the high 281 

classification in the DA analysis. Knowing that fish skin data gave the most informative 282 

characteristic in this study, those values were related to physico-chemical characteristics of 283 

water. To reduce the number of observed variables, Pearson correlation test was conducted to 284 

identify the most important parameters (with a significance level =0.05). For both processed 285 

waters (cane and beet) seven significant characteristics of water were identified, and correlation 286 

map revealed the significance of yeasts, enterococci and counts at 37 °C on fish skin. PCA 287 

analysis conducted on these inputs resulted with a Biplot which explains 85.77 % of all 288 

variations in the data set (Fig. 3).  289 

 290 

 291 

DISCUSSION 292 

 293 

The sugar processing industry is among those with the largest water demands and remains an 294 

important factor for the organic pollution (Ingaramo et al. 2009). Waters affected by the 295 

sugarplant processing in this assay, particularly the canal receiving the treated effluent as a fish-296 

bearing canal, displayed marked aberrations from guidelines for cyprinid fish (Billard 1999). 297 

Problems with toxic nitrogen-containing compounds such as ammonia, nitrite and nitrate were 298 
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particularly expressed during sugar beet processing. The most important physical factor of 299 

wastewater in sugar processing is the total suspended solid content (Sahu & Chaudhari 2015), 300 

which was extremely high during sugar cane processing. It also contributed to the high viable 301 

cell counts at 37 °C, while sugar beet processing contributed to high bacterial counts at 22 °C 302 

and high concentrations of sulphite-reducing clostridia, E. coli, yeasts, molds, coliforms and 303 

enterococci in water. High numbers of mesophiles and yeasts at levels > 6 log CFU g-1 were 304 

previously found for beet wastewaters (Robles-Gancedo et al. 2009), as well as enteric bacteria 305 

(Mitchell & Funke 1982). Such a footprint of wastewaters has an impact on fish living in treated 306 

waters and also in further downstream waters, particularly on their ability to cope with stress and 307 

susceptibility to diseases. 308 

Yeasts and molds, often used for estimation of organic pollution in wastewaters 309 

(Shimomura-Shimizu & Karube 2010), were found in high concentrations on effluent fish gills in 310 

fall, during beet processing. Although it was not proven how the types of wastewater and 311 

treatment processes influence yeast proliferation (Yang et al. 2011), it seems that higher 312 

concentrations were retrieved from sugar-rich waters. During beet sugar extraction, yeasts, 313 

mesophiles and thermophiles are the most numerous microbiota, while beet-washing water is an 314 

important source of contamination (Robles-Gancedo et al. 2009). There is a likelihood of the 315 

presence of potentially pathogenic and toxicogenic fungi in fish from such waters, and when 316 

fished out for human consumption, they might pose a health threat and remain in cooked tissues 317 

in spite of the thermal treatment (Bien and Nowak 2014). Most waterborne fungi remain in spore 318 

form and are a particular risk to immunocompromised patients (Olaolu et al. 2014). 319 

 Passing immunological barriers, bacteria may penetrate and colonize various tissues in 320 

polluted aquatic environments (Niewolak & Tucholski 2000). Interestingly, although retrieved in 321 



15 
 

high numbers in water, in neither of seasons were fecal coliforms and E.coli isolated from gills 322 

and skin, nor P. aeruginosa, and sulphite-reducing clostridia from skin. That could be partially 323 

explained by shedding of mucus from fish skin as a natural defense mechanism to prevent 324 

colonization by bacteria (Suhalin et al. 2008).  It was also demonstrated that E. coli is rarely 325 

recovered from carp tissues if its water concentration stays below104 CFU mL-1 (Buras et al. 326 

1985). In this work, sugar beet wastewaters inflowing to WWTP and treated effluent waters had 327 

E. coli loads 105 and 104 CFU 100 mL-1, respectively, which might explain its absence from fish 328 

tissues. Although fecal coliforms were not isolated from gills and skin, their high water levels 329 

could lead to contamination of internal organs and muscle tissue, posing a risk to consumers if 330 

exceeding 103 CFU 100 mL-1 (Harnisz & Tucholski 2010). Relatively low counts of intestinal 331 

enterococci and P. aeruginosa were recovered from gills in this work. Yet, Guzman et al. (2004) 332 

established that fish may carry fecal indicator bacteria to non-polluted waters for long retention 333 

periods, causing infection when handling or consuming fish. The total heterotrophic plate counts 334 

exceeding 104 CFU mL-1 of water could bring risk of human pathogens penetrating fish tissues 335 

(Harnisz &Tucholski 2010). Although in this work they were reaching up to 105 CFU mL-1 in the 336 

canal receiving the treated effluent in spring (sugar cane processing), counts on fish gills and 337 

skin were on average much higher than in their bearing waters. Indeed, the spring counts on fish 338 

skin even multiplied in downstream canal fish when compared to effluent fish. Possible 339 

explanation might be that fish tissues provide a good substrate for the growth of most 340 

heterotrophic bacteria, with compositional attributes that affect bacterial growth. Heterotrophs 341 

thus multiply in the sub-environments provided by skin surfaces and gill areas (ICMSF 1998). If 342 

fish from such waters were to be used for human consumption, care should be taken regarding 343 
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the limits for heterotrophs in fish eaten raw/cooked (104/106 CFU g-1, respectively) (El-Shafai et 344 

al. 2004). 345 

Both in the effluent and downstream fish, bacteria retrieved in both seasons were A. 346 

hydrophila and A. veronii (internal organs). A. hydrophila has a worldwide distribution, and is 347 

recognized as a primary pathogen of fish, causing a stress-mediated disease condition where 348 

mortalities are influenced by elevated water temperatures (Austin & Austin 2007). 349 

Environmental strains of A. hydrophila produce less enterotoxins when cultured at 37 °C than at 350 

28 °C, while clinical isolates behave vice versa (Igbinosa et al. 2012). Thus, strains producing 351 

virulence factors at 37 °C have better odds as human pathogens. A. veronii is also a species 352 

potentially very pathogenic to humans, having a broad aquatic host range. Along with A. 353 

hydrophila, it has been recognized as the causal agent of fish mortalities in freshwater 354 

ecosystems, causing epizootic ulcerative syndrome (Skwor et al. 2014). A. veronii was the most 355 

frequently isolated bacteria from internal tissues of effluent fish in this study, in both seasons, 356 

which coincides with our previous work (Topić Popović et al. 2015a).  The major public health 357 

concern thus is the wound infection with aeromonads among individuals who capture and handle 358 

the fish (El-Shafai et al. 2004). Internal organs of effluent fish yielded counts of Enterobacter 359 

cloacae and E. sakazakii, while from downstream canal fish V. cholera was isolated, 360 

demonstrating that indicator bacteria for aquatic contamination were retrievable also from a 361 

further downstream fish, and mostly during sugar beet processing (fall). Tissue aberrations in fall 362 

included severe gill and kidney lesions with bacterial and inflammatory cell aggregates. Similar 363 

findings observed Declercq et al. (2015) when challenging trout and carp with highly virulent 364 

Flavobacterium columnare isolates, which led to a high number of eosinophillic granular cells. 365 
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High bacterial loads in water may have led to increased bacterial cells in kidney, including 366 

hematopoietic tissues and renal tubules, as in the work of Islam et al. (2008).  367 

Bacteria resistant to antibiotics and antibiotic resistant genes in the aquatic environment 368 

are an emerging contaminant issue (Sharma et al, 2016). Most bacteria form water and fish 369 

revealed resistance against beta-lactams (amoxicillin, AMC) and sulfamethoxazole, SMX, 370 

irrespective of the season/sugarplant activity, although multiple resistance was also noted. The 371 

AMC resistance could partially be explained by relatedness of AMC with ampicillin, towards 372 

which aeromonads show intrinsic resistance (Harnisz & Tucholski 2010). The SMX resistance, 373 

found in a high percentage of isolated aeromonads, could be due to its poor performance if not in 374 

combination with trimethoprim (Goni-Urriza et al. 2000). The overall resistance pattern is most 375 

likely a consequence of previous exposure to antimicrobials and chemotherapeutics due to 376 

municipal and hospital discharge waters processed by the WWTP, and cannot be directly 377 

correlated with the sugarplant activity. The antimicrobial resistance in wastewater-related waters 378 

is an important factor for emerging infectious diseases, as antibiotic resistance genes may be 379 

easily disseminated and imposing selective pressures (Figueira et al. 2012; Pruden et al. 2012; 380 

Sharma et al, 2016). 381 

Previous studies demonstrating the use of PCA analysis investigated water quality based 382 

on fish biomarkers and water quality degree classification (Sweidan et al. 2015), the application 383 

of exploratory and unsupervised/supervised chemometric methods on chromatographic data, 384 

using the composition for the characterization and authentication (Bosque-Sendra et al. 2012),  in 385 

monitoring of complex mixtures of toxicants found in aquatic ecosystems on fish species and 386 

their oxidative stress biomarkers (Dzul-Caamal et al. 2016), and in identifying the link between 387 

trophic ecology and metal accumulation in marine fish (Le Croizier et al. 2016). As the 388 
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application of multivariate tools proved very effective, we used PCA for the first time to 389 

investigate the relation and grouping of samples based on the monitored microbiological 390 

parameters in gills and skin. It was found that high heterotroph counts, P. aeruginosa, and 391 

intestinal enterococci on both skin and gills can be associated with sugar cane processing, while 392 

yeasts and moulds were proven to correlate predominantly with sugar beet parameters. 393 

In conclusion, fish living under impaired conditions caused by sugar beet and sugar cane 394 

processing can become contaminated with bacterial pathogens, yeasts and molds. Although the 395 

relation between water quality and contamination of fish tissues is frequently controversial 396 

(WHO 2006), penetration of bacteria to fish tissues is a threat. Thus safety measures during 397 

handling and processing of fish, often fished out by recreational fishermen from downstream 398 

waters, are highly needed to avoid cross-contamination. 399 
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