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ABSTRACT

A multidimensional semiclassical method for calculating tunneling splittings in vibrationally excited states of molecules using Cartesian
coordinates is developed. It is an extension of the theory by Mil'nikov and Nakamura [J. Chem. Phys. 122, 124311 (2005)] to asymmetric
paths that are necessary for calculating tunneling splitting patterns in multi-well systems, such as water clusters. Additionally, new terms
are introduced in the description of the semiclassical wavefunction that drastically improves the splitting estimates for certain systems. The
method is based on the instanton theory and builds the semiclassical wavefunction of the vibrationally excited states from the ground-state
instanton wavefunction along the minimum action path and its harmonic neighborhood. The splittings of excited states are thus obtained at
a negligible added numerical effort. The cost is concentrated, as for the ground-state splittings, in the instanton path optimization and the
hessian evaluation along the path. The method can thus be applied without modification to many mid-sized molecules in full dimensionality
and in combination with on-the-fly evaluation of electronic potentials. The tests were performed on several model potentials and on the water

dimer.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0024210

I. INTRODUCTION

Tunneling splittings of molecular energy levels are spectro-
scopic signatures of rearrangements that take place between degen-
erate symmetric wells via tunneling motion.'~ These splittings can
be detected in high-precision spectroscopic measurements™ and
carry information about the molecular structure and dynamics along
the accessible tunneling paths."® Dynamical theories, in combina-
tion with potential energy surfaces (PESs) or first principles elec-
tronic structure calculations, aim to reach an agreement with the
measurements and provide a physical interpretation."”’

Computational studies of tunneling splittings concentrated ini-
tially on the symmetric tunneling systems. Proton transfer in mal-
onaldehyde,” collective migration of hydrogen atoms in ammo-
nia,” or concerted monomer motion in the HF dimer'’ are some
examples of extensively studied systems. More recently, the split-
ting patterns in water clusters’ have also come into focus, moti-
vated by the development of a universal water model that is
capable of predicting properties of liquid water from first princi-
ples.'”"? Water clusters are multi-well systems and exhibit multiple
tunneling pathways. These tunneling paths are often asymmetric,

whereby tunneling atoms take on different roles in the minima they
connect.’

The splittings vary over many orders of magnitude even in a
single system. In water dimer, for instance, they vary over three
orders of magnitude'* depending on which of the five tunneling
pathways is taken, all of which reflect on the appearance of the split-
ting pattern in the spectrum. Likewise, the experiments on water
trimer'” and pentamer'® show that the splittings of vibrationally
excited states differ by up to three orders of magnitude in com-
parison to the ground-state splittings, depending on which normal
mode is excited. The interplay of different rearrangement path-
ways can lead to an increase in the width of a vibrational mani-
fold and a reduction in another'*'” as contributions from differ-
ent pathways enter the splitting pattern with the same or opposite
signs, respectively. Qualitatively different tunneling splitting pat-
terns in the water hexamer spectrum distinguish the prism and
cage structures'®'” of almost equal energy. The contributions of
different tunneling pathways can be disentangled, by computa-
tion, to reveal the experimental evidence of unexpected mecha-
nisms, such as the simultaneous double hydrogen-bond breaking”’
in the water hexamer prism. The investigations of tunneling splitting
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patterns thus provide a sensitive test of both the dynamical theories
and the potentials at geometries along which the hydrogen bonds
rearrange.

Tunneling splittings can be determined by solving the
Schrédinger equation. Variational methods have been used to deter-
mine the tunneling splittings, e.g., in HF dimer,'’ ammonia,”’"*
vinyl radical,” malonaldehyde,l ""and water dimer,”>° using time-
independent methods, and, e.g., in malonaldehyde,‘\"r ? using time-
dependent methods. Both, ground- and excited-state splittings are
obtained in this way; however, the cost of these methods scales pro-
hibitively with the basis set size, and a different approach is needed
for larger systems. Diffusion Monte Carlo in combination with the
projection operator techniques has been used to calculate tunnel-
ing splittings in water trimer’’ and malonaldehyde.”""* The recently
developed path-integral molecular dynamics method has been used
to obtain the splittings in water trimer and hexamer”” in full dimen-
sionality. However, the tunneling splittings of vibrationally excited
states, which are the topic of our investigations here, cannot be
obtained using these approaches. The remaining options include
resorting to dynamical approximations,”*”” reduced-dimensionality
approaches,” * or semiclassical methods.” *

The development in this paper belongs to the class of semiclas-
sical methods based on the instanton theory."* *° In the standard
instanton formulation,” tunneling splitting is calculated from the
zero-temperature limit of the quantum partition function in the
path-integral formalism. The dominant contribution to the parti-
tion function comes from the minimum action path (MAP) that
connects the symmetry-related minima. The contribution from all
other paths is estimated analytically using the parameters in a har-
monic expansion of the potential in the directions perpendicular to
the MAP. Instanton theories of tunneling splittings come in several
variants. Some approaches use approximate MAPs,"** determined
from the stationary points on the PES, and approximate Hamiltoni-
ans,”””" in which analytic expressions for vibrational couplings are
fitted to the PES. The present contribution belongs to the category
that is based on the numerically exact MAPs. Mil’nikov and Naka-
mura’””’ used the exact MAP and Hessians along the MAP to obtain
splittings via the integration of Jacobi fields (henceforth referred
to as the JFI method). They employ internal coordinates in their
treatment in order to separate the overall rotational motion. The
ring-polymer instanton (RPI) method'*™* likewise uses the numer-
ically exact MAP and evaluates the splitting from the eigenvalues of
the discretized functional determinant of the action Hessian. This
approach is therefore computationally more demanding than the
JFI method,’” and recovering the rotational dependence of the split-
tings, when it is significant, becomes elaborate.” Its advantage is that
it can be applied without modification to any molecule of interest
as it works in Cartesian coordinates, and it can be readily applied
to systems that exhibit asymmetric MAPs. The RPI method fea-
tured prominently in the recent calculations of tunneling splitting
patterns in water clusters. It was used to obtain the ground-state
tunneling splitting pattern and reveal mechanisms responsible for its
formation in asymmetric systems such as the water dimer, trimer,"*
hexamer,”’ and octamer™® in full dimensionality.

Standard instanton approaches for calculating tunneling split-
tings suffer from the same drawback as the Monte Carlo and path-
integral based method mentioned above in that they cannot provide
the splittings of vibrationally excited states from the outset. It is
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well known though that the instanton expression for the ground-
state tunneling splitting can be obtained using a variant of the WKB
theory’” and Herring formula.”®”* This link thus provides a consis-
tent route for calculating tunneling splittings of vibrationally excited
states,””” """ where this paper aims to contribute. In fact, the semi-
classical methods based on the wavefunction along the classical tra-
jectory that connects the minima on the inverted PES, i.e., along the
MAP, are regularly referred to as the instanton methods in the liter-
ature.””*""* Tunneling splittings of vibrationally excited states have
been obtained using the related methods in symmetric systems such
as malonaldehyde,“ tropolone,““' 9—hydroxyphenalenone,M HO,,”
formic acid dimer,”” and vinyl radical.”

In our recent work,” we generalized the JFI approach of
Mil'nikov and Nakamura™ to obtain the ground-state tunnel-
ing splittings for asymmetric paths in Cartesian coordinates. We
obtained an almost perfect agreement between the JFI and RPI split-
tings”’ for systems in which rotations do not couple strongly to the
internal degrees of freedom, such as water trimer or malonaldehyde.
The development enabled us to treat large asymmetric systems that
exhibit slow motion of a heavy-atom skeleton, such as the water
pentamer,'” in full dimensionality. We were able to calculate the
320-level ground-state splitting pattern of the pentamer, including
the state symmetries, and to identify rearrangement motions respon-
sible for its formation, in a treatment that would become extremely
cumbersome in the RPI approach due to the large imaginary time
periods involved.

Motivated by the effectiveness of our JFI approach, the present
work aims to derive the tunneling splittings of vibrationally excited
states for general symmetric and asymmetric paths in a consis-
tent approach. This is accomplished by a WKB construction of
wavefunction that reproduces our JFI result in the ground state.
In essence, our approach below follows the work of Mil'nikov and
Nakamura’” in which they extend their ground-state instanton
theory of Ref. 52 to treat the low-lying vibrationally excited states.
Distinctly, in our approach, we can readily treat asymmetric paths,
which are regularly encountered in the studies of clusters, and we
again work in Cartesian coordinates in order to make our approach
general. Unlike Ref. 53, we treat the “longitudinal” modes, which
are parallel to the MAP at minima, and “transversal” modes, which
are perpendicular to the MAP at minima, on an equal footing. We
achieve this by using a different form of the matching wavefunc-
tion near minima, which allows for a displacement of the wave-
function node away from the MAP. In particular, this means that
we can treat the asymmetric paths in which the excited mode is
the longitudinal mode at one minimum and is a transversal mode
near the other end of the MAP. The straightforward generaliza-
tion of Ref. 53 to asymmetric paths would give a zero splitting
in that case. The theory thus includes newly added terms that
for certain cases dramatically improve the splitting estimates even
in symmetric systems. It is applicable to low vibrationally excited
states.

The instanton method evaluates the splittings with a modest
number of potential evaluations (on the order of a thousand) in
comparison with the exact methods.””***” This means that the com-
putations can be performed on larger systems or using more accu-
rate electronic potentials. In certain circumstances, it can probably
provide the best possible splittings in a compromise between the
accuracy of the dynamical theory and the level of electronic structure
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theory that the dynamical treatment allows. Numerical effort is con-
centrated in the MAP optimization and the Hessian evaluation along
the MAP.* Since the calculations of splittings in vibrationally
excited states do not require any additional information about the
molecular system, they too enjoy the same advantages over the exact
methods.

This paper is organized as follows: In Sec. 11, we use a semiclas-
sical expansion to approximate the wavefunction about the MAP.
The wavefunctions that start from the “left” and from the “right”
symmetry-connected minima along the MAP are constructed and
used in the Herring formula at the dividing surface to obtain the
ground-state tunneling splitting, which is identical in form to the
JFI instanton expression from our previous work.”” The derivation
follows Ref. 52 but does not assume the mirror symmetry of the
potential along the MAP. We prove explicitly that the expression for
the splitting does not depend on the position of the connection point
between the left- and right-localized wavefunctions along the MAP.
Section 11 thus lays the groundwork for constructing the wavefunc-
tions of the excited states in Sec. III. Section III follows the work
of Ref. 53 but arrives at a different expression for the tunneling split-
tings of vibrationally excited states. As stated above, our formulation
treats longitudinal and transversal excitations in a unified approach.
In certain cases, as the numerical exercises on symmetric and asym-
metric model potentials in Sec. IV show, the contribution from
the newly added terms can dominate the splittings. The deuterated
water dimer provides a real-life test system that exhibits asymmet-
ric paths, including the path featuring the longitudinal-transversal
excitation mode and the vibrational modes that do not line up in
either parallel or perpendicular direction with respect to the MAP
near minima. The importance of different terms in the semiclassical
expansion is discussed in terms of the accuracy improvements that
they bring to the splittings and the stability with regards to the posi-
tion of the dividing surface. Conclusions and outlook are given in
Sec. V. Atomic units (A = 1) are used throughout unless indicated
otherwise.

Il. GROUND-STATE TUNNELING SPLITTING

Tunneling splittings in molecular systems with multiple
symmetry-related minima can be expressed as the eigenvalues of a
tunneling matrix'* in which rows and columns are numbered by
the indices of the minima, using group theoretic arguments. The
tunneling matrix element /4 connecting two minima, termed L and
R for convenience, is the transition amplitude between the degen-
erate states ¢ and ¢, localized in their respective wells, which
neglect the presence of tunneling motion. The tunneling splitting of
the isolated double-well system connecting minima L and R is thus
A = -2h, the difference between the tunneling matrix eigenvalues.
The tunneling matrix eigenvectors are comprised of the coefficients
of the energy eigenstates in the ¢/® basis. For a double-well system,
they form the symmetric and antisymmetric linear combinations of
¢(L) and ¢(R).

In our previous work,”” we derived the tunneling matrix ele-
ment h, or equivalently the tunneling splitting A, using the JFI the-
ory. The splitting is dominated by the Euclidean action of the MAP,
while the contributions from all other paths in the harmonic neigh-
borhood of the MAP are collected into the fluctuation prefactor.
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The fluctuation prefactor is then evaluated via integration of Jacobi
fields.”””" We now proceed along the lines of Refs. 53, 57, and 71 to
derive an identical expression using the semiclassical WKB approach
to construct the localized states ¢'“'®).

Whenever the energy eigenstates are well approximated by the
symmetric and antisymmetric combinations of the localized state
functions, ¢!, the tunneling splitting can be calculated using the
Herring formula,”®”’

N f(¢(L)%¢(R) _ gb(R)%(p(L))(S(f(x))dx "

where x is the molecular geometry in mass-scaled Cartesian coor-
dinates and f(x) = 0 is an implicit equation of an arbitrary dividing
plane, which separates the two minima. The variable S corresponds

to the position on a local normal to the dividing plane.
$LR

We now construct the localized states in the familiar
WKB form as

g = n (Mo, 2)

where we drop the labels (L/R) from this point onward as the equa-
tions are valid in both wells. In Eq. (2), Wy satisfies the Hamilton-
Jacobi equation
OWy OW,
6xi 8)(1'

=2V (%), 3)

where V(x) is the PES, and W satisfies the transport equation

OWy W1 1 8*Wy

8xi 8x,~

2 9%, +E=0. (4)
We note here that E is approximated by the ground-state energy of
the quantum harmonic oscillator and is of the order A'. The whole
energy dependence is moved to the transport equation [Eq. (4)]
following Refs. 52 and 57.

The Hamilton-Jacobi equation [Eq. (3)] can be solved using the
method of characteristics that we briefly describe in Appendix A.
The characteristics of the Hamilton-Jacobi equation are given by

x(1) = VV(x(1)), (5)

with 7 as a parameter. The form of Eq. (5) suggests that the charac-
teristics represent classical trajectories on the inverted PES and that
7 represents time. As shown in Appendix A, these trajectories must
have zero energy in order to satisfy Eq. (3). On a characteristic, Wy
can be obtained by a simple integration,

Wo(x(r2)) = Wo(x(r)) + [~ pi(r)dr, (6)

7

where py = \/2V corresponds to the mass-scaled momentum on
the classical trajectory. It is convenient to choose one point to cor-
respond to the minimum of the PES and define Wo(Xmin) = 0. The
reason behind this choice is that in the vicinity of the minimum, the
wavefunction can then be matched to that of the harmonic oscillator,
which will be used later on to determine its norm. With that choice,
since the minimum on the PES is a maximum on the inverted PES,
all other points along the characteristic correspond to times 7 > Tmin
and the integral in Eq. (6) remains positive. However, by choosing
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the first point at the minimum, the time to any other point will be
infinite, since it takes infinite time to move away from the minimum
with zero energy. This presents a problem in a numerical imple-
mentation, which can conveniently be fixed by reparametrizing the
characteristics using the arc length distance S from the minimum
along the characteristic,

ds [ dx; dx; B
E = EE = po. (7)

Using this transformation, Eq. (6) reduces to

S(x)
Wo(x) = /0 po(8))dS". ®)

We observe that W equals Jacobi action between the minimum and
the point S on the characteristic. The characteristic between the min-
imum and a point x, as well as Wy, can both be determined by a
Jacobi action minimization. The gradient of Wy is therefore parallel
to the characteristic.

In order to describe Wy in the vicinity of a given characteristic,
we assume that the Hessian of the potential, H(S), along the charac-
D2W,
0x;0x;°
along a characteristic is then obtained, by differentiating Eq. (3)
twice, as

teristic is known. The equation for the Hessian of Wy, A;; =

Po 8SA(S) H(S) - A*(S). 9)
The Riccati equation in Eq (9) is identical to the equation that
emerges in the JFI method™™"’ as the equation for the log-derivative
of a Jacobi field. The initial condition for Eq. (9) at the minimum,
where po =0, is Ag = H(0 )1/ 2 This identification later serves to match
the semiclassical wavefunction ¢ in Eq. (2) to that of the harmonic
oscillator at the minimum.
We can now expand Wy around the characteristic as

S
Wg(S,AX):/O po(S')dS'+%AxTAAx, (10)

where {S, Ax;} is a set of local coordinates™ for an arbitrary point
x. The coordinate S corresponds to the position of the point xo on
the characteristic that satisfies (x; — x0i)poi = 0. The coordinates
Ax; define an orthogonal shift from x¢ to x so that Ax; = x; — xoi.
The Jacobian of the transformation is derived in Appendix A. The
first term in the expansion is missing since VW, is tangent to the
classical trajectory. Equation (10) serves to describe Wy in the neigh-
borhood of the characteristic without the need to compute new
characteristics.

The transport equation in Eq. (4) can be solved on a character-
istic by a simple integration,

Wi (S) = ds’, (11)

1 fs Tr(A(S) - Ao)
2 Jo Po

where we inserted the energy of the harmonic oscillator E = %Ter
into the expression. Using Eqs. (10) and (11), the localized wave-

functions in Eq. (2) take the following forms in their respective
wells:

ARTICLE scitation.org/journalljcp

r(a(l) (L)
s Mds’—%A{A(L) Ax

Po >

L) o Jo P (8~
¢( ( S) — o Fo 0
< < Tr(a®) (57)-a(R)y (12)
¢(R)(S) e fo po(8)dS' =1 [P %ds’—;mn“‘)m,

where S is the distance from the left minimum along the charac-
teristic, while S denotes the corresponding distance from the right
minimum. In the harmonic regions near minima, these wavefunc-
tions are matched to that of the quantum harmonic oscillator, as we
describe in Appendix B. From that identification, we obtain their

norm as
/|¢| V detA (13)

Having obtained the localized wavefunctions in Eqgs. (12)
and (13), we are ready to compute the tunneling splitting via the
Herring formula in Eq. (1). One could take an arbitrary dividing
surface and compute the surface integral in Eq. (1) numerically.
However, this requires computing the characteristics that connect
the minima with every point at which the integrand is evaluated on
the dividing surface. An economical way to compute the integral is to
choose one point on the dividing surface and use the Taylor expan-
sion of Wy around it to evaluate the integrand at other points. If the
dividing surface is chosen to be a hyperplane and the gradient of W
is taken to be constant, the integral can be computed analytically.
Since the integrand in the Herring formula is proportional to the
product $¢®) the integral will be best approximated if the point
on the dividing surface is chosen so that it maximizes this product.
This is equivalent to the minimization of

RO §®
[ ePshas s [ p
0 0

which is accomplished when the point lies on the classical trajec-
tory that connects the two minima. In that case, the characteristics
that originate at two minima are smoothly joined at the connec-
tion point S = S¢p and § = Siot — Scp, Where St is the total length
of the MAP that connects the two minima. The two joined charac-

teristics coincide with the instanton trajectory.”””* The sum of WéL)

() (3148, (14)

and W(R) then becomes the Jacobi action of the instanton trajec-

tory, W, (L) + W(R) /‘g“" podS. The dividing surface is taken to be
orthogonal to the trajectory at the connection point, and the Herring
formula gives the ground-state tunneling splitting as

A = [ det I\?o o 5ot pods—-w®B —w®
7
8w(L) aw(R) (L)+ (R)
X f(ag—ag e M TS (£(x))dx, (15)

oW (R) aW(R)
where —5¢— = ——%— evaluates to po at the connection point and is
kept constant in the surface integral.

In order to solve the integral in Eq. (15), we note that the matrix

AW L A®)
A= T2 (16)
2
possesses a zero eigenvalue, which corresponds to the tangent vec-

tor. This is easily proved by differentiating the Hamilton-Jacobi
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equation [Eq. (3)], which yields AW R)pSL/ B yv. Subtracting
these two equations and using the fact that p((,L) = —péR), it fol-

lows that (A® + A(R))p(()L) = 0. The eigenvectors of A that corre-
spond to its non-zero eigenvalues A; then span the dividing surface.
Transforming to the eigenvector basis reduces this integral to

O L A IR
Vs
det AO _ fS(ot ds—w® _w®
=2 —e 0 Po 1 1 , 17
P 0\/; 17)

where det’ denotes the product of non-zero A;’s, and WI(L/R) at S =
Sep are calculated using Eq. (11). The ground-state tunneling split-
ting formula in Eq. (17) is identical to the instanton formula in Eq.
(33) of Ref. 67. The splitting in Eq. (17) does not depend on the
position of the connection point on the instanton trajectory. This
is evident from the derivation of Ref. 67, but the present treatment
does not guarantee it, and we prove it in Appendix D.

lll. EXCITED-STATE TUNNELING SPLITTING

The calculation of tunneling splittings in vibrationally excited
states is approached in a consistent manner, following Ref. 53. We
assume one quantum of vibrational excitation in the mode with
frequency w. and construct the WKB wavefunctions in Eq. (2)
by solving the Hamilton-Jacobi and transport equations [Egs. (3)
and (4)] and finally insert them into the Herring formula [Eq. (1)],
which remains valid for the excited states.

Only the transport equation depends on the energy and is
different for the excited state. We decompose W in the form

Wy = W 4w, (18)

where Wl(o) is the ground-state function given by Eq. (11), and insert
Eq. (18) in Eq. (4). We then find that w satisfies

OWy Ow
e = U. 1
Ox Ox +we =0 (19)

In a crucial difference from Ref. 53, we seek the solution of Eq. (19)
along the characteristic in the following form:

w=-In(UTAx+F). (20)

The above form, when used in Eq. (2), allows the matching to a har-
monic oscillator wavefunction in the neighborhood of minima for
both the longitudinally and transversally excited modes with respect
to the MAP in a unified approach. We insert Eq. (20) into Eq. (19),
multiply through with UTAx + F, and equate the terms of order Ax”
and Ax' to obtain equations for F and U as

d
pOISF = (UeF, (21)
A
podiU: U~ AU +2(UTp, - w.F) 0. (22)
§ Py

Equation (22) can be simplified by noting that, by definition, com-
ponents of U equal to
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0 _, O
U,‘ = aix,-e = aTc,-F’ (23)

where the second equality is due to the fact that the partial derivative
is taken on the characteristic. This means that the projection of U
onto the tangent is

_orowy_ 4
T Ox; Ox; _pOdS

U'p, F = w.F, (24)
where Eq. (21) was used. Combining Egs. (22) and (24) reduces the
equation for U to

d
poggU=weU - AU. (25)
This is the same equation that Mil'nikov and Nakamura’ obtained
in their treatment of transversal excitations. Here, however, we
use it for both longitudinal and transversal excitations. As our test
calculations below demonstrate, it is important to propagate both
components of U simultaneously for best accuracy.

Equations (21) and (25) have singularities at the minima of PES.
In order to avoid them, we need to start the propagation a small
distance ¢ away from the minimum along the characteristic. If this
distance is sufficiently small to fall into the harmonic region around
the minimum, the initial conditions at & can be taken in the form

F(e) = Ug (x0(e) = %0(0)), (26)
as justified in Appendix B, and
U(S) = Uo, (27)

where Uj is the excited normal mode at the minimum.

Alternatively, we can solve Eq. (25) in the region [0, ¢] using the
same procedure that was used for solving Eq. (9) in Refs. 52 and 67.
We expand po, A, and U around minimum as

1
po=pi"s,
A= A() + A]S, (28)
(i) oi
U=) CVS.
>

We then insert Eq. (28) into Eq. (25) and equate the terms of the
same order in ' to obtain the recurrence relation for C('),

A()C(O) — weC(O) ,

. . (29)
(A0 + (ip§" - w)1)C? = —A, Y.

Once U has been determined, F can be obtained from Eq. (24) as

.
F(S) = fs U ()(s)ds' = D IPS), (30)
0 We

where t = po/po is the tangent vector at the instanton trajectory. In
this way, the anharmonicity of the PES near minima is accounted for
by A;. Having obtained U(e), Eq. (25) is readily solved by a simple
integrator, such as the Runge-Kutta method.”

At the dividing plane, the wavefunction of the excited state in
Eq. (2) takes the form
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s TraD) (S’)—Al()D)

¢(L) _ (U(L)TAX + F(L))e—fospo(s’)ds’—gjo o ds'-1Ax"AM Ax

>

(a® (¢)-aM)

p™ = <U<R)TAx + F(R))eff”sp‘](sl)ds"%/f %

d¥ -1 AxTAM Ax
2
(31)

By matching the above wavefunction to that of the harmonic oscil-
lator at a minimum, one obtains the norm as

2 _ 7TN 1
/w dx = V detAg 2w’ (32)

The wavefunctions in Eq. (31) are then inserted into the Herring for-
mula, and the surface integral is evaluated in a similar manner to the
ground-state case. This gives the tunneling splitting of vibrationally
excited states as

1.1y se
A = AO(ZwE)(F(L)F(R) + EU(L’A 1U(R)). (33)

Since A possesses a zero eigenvalue, A in Eq. (33) denotes a pseu-
doinverse of A, defined by AA™' = A"'A = P, where P =1 — tt"
is a projector onto the orthogonal plane. The pseudoinverse has the
same eigenvectors as A, while its nonzero eigenvalues are reciprocals
of the eigenvalues of A.

It turns out that the tunneling splitting formula in Eq. (33)
is dependent on the position of the connection point at which the
dividing surface and the instanton trajectory cross. This undesir-
able behavior, which was not present in the ground-state formula in
Eq. (17), arises from the U(L)AAU(R) term, as shown in Appendix
D. It can further be shown, by a similar analysis, that the terms that
cause this dependency cancel out if the next order term is included
in the Taylor expansion of exp(-w),

1
w = —ln(F+ UiAxi + EZiijiAx,-). (34)

However, the inclusion of Z in Eq. (34) brings new terms that again
do depend on the connection point, and to eliminate their depen-
dence on S, it would be necessary to include higher order terms
in the wavefunction expansion in Eq. (2), such as the W5 term. The
root of the problem is that the expansion of exp(—w) is inconsistent
with the expansion of W as it gives rise to terms of all orders in
Ax in the expansion of w. Excluding the higher order terms of w in
Eq. (34), on the other hand, would degrade the quality of matching
with the harmonic oscillator near minima.

In fact, any improvement of the accuracy of the WKB wave-
function through the inclusion of extra terms in Wo and W neces-
sarily requires the calculation of higher order derivatives of poten-
tial along the path. Calculation of the tensor of third derivatives of
potential along the path allows us to expand Wy in Eq. (10) up to

the Ax® term and Wl(o) in Eq. (11) up to Ax!, and to include the
Ax* term in Eq. (34). The tensor of fourth derivatives of potential
allows for the correction of the vibrational energy and the inclusion
of the Ax’ term of W, and the higher order terms in Wy, Wl(o),
and w. The calculation of higher order derivatives of the potential
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quickly becomes computationally unfeasible for realistic potential
energy functions and, in most cases, does not improve the results
significantly.

In order to study the effect of anharmonicity that originates
from the inclusion of third derivatives of potential on the tunnel-
ing splittings in numerical tests below, we derive the equation for Z
along a characteristic in Appendix C. It turns out that from all terms
that can be computed using the third derivatives of potential, this is
the only term that is meaningful to include in the tunneling splitting
formula of Eq. (C14). The inclusion of V Wl(o) does not appreciably
influence the results, whereas the inclusion of the Ax’ term in W,
in Eq. (10) does not result in convergent integrals on the dividing
surface.

It can be shown, by using the Z contribution to the splitting,
derived in Appendix C, that the connection point is best placed in
the middle of the instanton path for symmetric systems, i.e., at the
top of the barrier, because, at this place, the Z contribution is the
smallest. We found no such justification for the placement of the
connection point in asymmetric systems, so the safest place to set it
is at the barrier maximum as well.

Alternatively, we can discard the terms that are responsible for
the connection point dependence of the splittings in order to obtain
an unambiguous formulation. For this purpose, we decompose the
vector U into longitudinal and transversal parts as

U=U, +F't, (35)

where U, is the component of U that is perpendicular to the path.
Since only the U, components contribute to the splitting in the

UMA'UM term in Eq. (33), due to the fact that the tangent vector

is an eigenvector of A" with zero eigenvalue, it can be used instead
of the vector U. We carry out the separation in Eq. (35) at S = ¢
and propagate U, and F independently toward the connection point
from both minima. It can be shown that U, satisfies the following
equation:

pO%UL :weUL—AUl—Za)eF%. (36)
If we neglect the last term in Eq. (36), U, satisfies the same equation
as U. The vector U, remains perpendicular to the instanton path,”
when it is propagated using Eq. (25), and as shown in Appendix D,
the splitting becomes independent of the position of the connec-
tion point. Since the neglected term is proportional to the curva-
ture of the instanton path, it can safely be neglected for paths with
small curvatures. For paths with a large curvature, it turns out (see
Sec. 1V) that it is better to work with the full vector U as the devia-
tions in the splittings, when the connection point is moved along the
instanton path, are smaller than the error introduced by the above
approximation.

IV. NUMERICAL TESTS

We now perform tests of the above theory on a two-
dimensional (2D) symmetric system, a 2D asymmetric system,
and the deuterated water dimer. Each calculation of the tunneling
splitting in a vibrationally excited state is preceded by a calculation of
the ground-state tunneling splitting using the JFI method of Ref. 67.
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A JFI calculation starts by an action minimization, using the string
or quadratic string method,”*” followed by the evaluation of Hes-
sians along the MAP, and finally, it ends with the computation of A
by solving the Riccati equation in Eq. (9) along the MAP. Excited-
state calculations additionally require a propagation of U along the
MAP using Eq. (25) for each vibrationally excited state of inter-
est. In our tests below, we also evaluate Z along the MAP in order
to check the accuracy and convergence of the obtained results. To
accomplish this, we first compute the tensor of third derivatives of
potential along the MAP, we then use it to propagate Eq. (C2), and
finally, we use B, as well as A and U, to propagate Z along the MAP
using Eq. (C11). The splittings are evaluated using Egs. (17), (33),
and (C14).

In the tests, we discretized all instanton paths using 600 equally
spaced beads (or points) in mass-scaled Cartesian coordinates and
used the string method of Ref. 68 for the optimization of MAP. In
the tests on water dimer, the orientations of end beads were adjusted
during optimization by minimizing the distance to the first neigh-
bor bead at every iteration.”” The convergence criterion was taken
to be the maximum value of the action gradient orthogonal to the
string as max{Sf} < 107%a.u.. A large number of beads and a tight
convergence criterion were used to ensure that the results do not
depend on the accuracy of the MAP. Hessians and third-derivative
tensors were computed at all beads using the fourth-order finite dif-
ference method with the grid spacing of 107 a.u. In water dimer
calculations, we projected out the overall translations and rotations,
as described in Ref. 73. Molecular geometries, potential, Hessian
matrix elements, and third derivative tensor elements were all inter-
polated with respect to the mass-scaled arc length distance S along
the MAP using natural cubic splines. Equations (17), (33), and (C14)
were solved on the interval [0, €] by linearization, as described pre-
viously in Refs. 52 and 67 and in Appendix C, while on the interval
[e, Scp), they were integrated using the Runge-Kutta method ” with

the fixed step length of 10 m’*ay. The parameter ¢ was taken as
B 12 .
€ =0.1m, "ap in all test systems.

The normal modes were calculated at one minimum and
obtained at the other minimum by utilizing the symmetry operation
that connects them in order to avoid sign ambiguity. Equation (25)
was then solved on the interval [0, ¢] using the recurrence relation of
Eq. (29). The Taylor series of U in Eq. (28) was cut when the change
in the norm of U(e) fell below the threshold value of 1072, On the
interval [¢, S¢p], we used the exponential propagator to solve Eq. (25),

e(weI—A)i

U(S+h) = wU(s), (37)

with a fixed step length h = 107> mi?ag. F values were computed
from the tangent projection of the U vector using Eq. (24). That pro-
cedure was found to be less sensitive to the value of F(¢) than the
direct integration of Eq. (21) in Eq. (39).

A. Symmetric double-well 2D potential

We first test the theory on a model 2D double-well system.
We call the system symmetric since the potential along the MAP
connecting two minima has a left-right mirror symmetry with the
maximum of the potential in the middle of the path. The potential is
given by the following equations:
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V(x) = VVI V2
1+ WV
v = 3= 0T ur(e-x)
1 =S \xX- 1 B ’
2 0o &) "
2
0
Va(x) = Lix—x® "o, Ul (x-x?),
2
0 253 (38)

Ul - cosf —sin
""\sing  cos@)

U, - —cosf sinf
> \sing  cosd)

x(") = (0,£B)7,

where x are not mass scaled. It has two minima, located at x'"?, with
normal modes given by matrices U} ,. The parameters were set to 3
=2, a1 = 1.265, &y = 2, and m = 27. Changing the angle 6 changes
the angle between the normal modes of the two minima, as shown in
Fig. 1. With 6 = 0, the instanton path is a straight line that connects
the two minima, and near minima, the path direction coincides with
the lowest normal mode. As values of 6 increase and normal modes
rotate, the instanton path does not rotate as quickly near minima.
Instead, it picks up a non-zero displacement along the higher nor-
mal mode. It turns out that this small displacement can significantly
affect the splitting. Combining Eqs. (21) and (26), we obtain F at the
dividing plane in the form

L g’

F(Sep) = UT (x(e) = x(0))e“ " 7 (39)

The exponential growth of the F term in Eq. (39) is responsible for
this behavior. Even small displacements along the excited mode near

3 -2 -1 0 1

FIG. 1. Potential energy surfaces for the model potential in Eq. (38) («q = 1.265,
ap =2, B =2) for angles 6 of, left to right and top to bottom, 0, 7/12, /6, and
/4. Superposed on each potential energy surface are the corresponding instanton
pathways.
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TABLE |. Displacement # in Eq. (40) at e = 0.1 for the two normal modes (1,0)
and (0,1) of the 2D symmetric potential in Eq. (38). The fractional contribution of the
FUOFR) term to the tunneling splitting in Eq. (33), when the mode is excited, is given
in parentheses.

0 n(1,0) 7(0, 1)

0 1.000 00 (1.000) 0.000 00 (0.000)
/12 0.999 98 (0.999) 0.006 64 (0.681)
6 0.999 89 (0.995) 0.014 88 (0.919)
/4 0.999 62 (0.987) 0.027 74 (0.976)

minima can be magnified and result in an important contribution to
the splitting. A useful parameter for quantifying the displacement
near minima is

n=Ug (x(¢) - x(0)) /e, (40)

where the division with ¢ is made to cancel out the dependence on
the step length &, where it is observed. The dependence of the dis-
placement 7 on the angle 0 is given in Table I. It can be seen that the
displacement is predominantly along the lower mode for all angles 0
in Table I.

Table II shows the tunneling splittings in the ground state and
in the first two excited states, with the lower (1, 0) and the higher
(0, 1) mode excited with one quantum of vibration. The conver-
gence of the excited-state splittings with the addition of F, U, and Z

TABLE II. Tunneling splittings in the ground and first two vibrationally excited states
for the potential in Eq. (38) at various angles 6 obtained using instanton theory. The
excited-state splittings are, top to bottom, obtained using the expansion of exp(—w)
to F, F+ U;Ax;, and F + U;Ax; + %Z,-ij,-ij terms. The exact quantum-mechanical
results are given in parentheses.

0 Ao Ai(1,0) A1(0, 1)

0 1.830(—8) 0.000
2.630(—10) 1.830(—8) 5.026(—10)
(2.639(—10)) 1.838(—8) 5.026(—10)

(1.811(—8)) (5.155(—10))

m/12 9.870(—9) 5.492(—10)
1.463(—10) 9.882(—9) 8.066(—10)
(1.472(—10)) 9.927(—9) 8.062(—10)

(9.858(—9)) (8.089(—10))

/6 1.563(—9) 4.029(—10)
2.573(—11) 1.571(—9) 4.383(—10)
(2.599(—11)) 1.578(—9) 4.390(—10)

(1.583(—9)) (4.477(—10))

n/4 7.729(—11) 5.932(—11)
1.606(—12) 7.827(—11) 6.077(—11)
(1.620(—12)) 7.863(—11) 6.097(—11)

(7.879(—11))

(6.224(—11))
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terms in the exp(—w) expansion is also shown. The exact quantum-
mechanical results are obtained by the diagonalization of Hamilto-
nian in the sine DVR basis’* with grid boundaries at [-6.0, 6.0] in
both coordinates and 150 basis functions for each degree of freedom.
They are given in Table II in parentheses for comparison. It can be
seen that the Z term contribution is small for all the test cases. The
contribution of the F term is dominant for the longitudinal excita-
tion of the mode (1, 0). On the other hand, when the higher mode (0,
1) is excited, the relative contribution of F and U terms changes with
angle 0. Displacement 7 suggests that the excitation of (0, 1) is in the
transversal mode. Indeed, at 6 = 0, the F term does not contribute
and the U term determines the splitting, as in the theory of Ref. 53.
However, with an increase in 0, the F contribution quickly rises to
account for more than 90% of the splitting at 6 = /6, while the dis-
placement remains small at 7 = 0.015. This demonstrates that it is
crucial to include the F term in the expansion of exp(—w) even when
the excited mode appears to be transversal. The contribution from a
small displacement can exponentially grow and finally dominate the
splitting.

The tunneling splittings are invariant with respect to the posi-
tion of the dividing plane when only F terms are considered, in
accord with the analysis of Appendix D. The same is true for the
splitting obtained with the inclusion of the U terms at 6 = 0. In this
case, the instanton path is a straight line and the vector U remains
perpendicular to the path. We can see that in Eq. (36), the last term
disappears in that case since the path curvature is zero. However, we
observed in all other cases that the splittings decrease as the position
of the dividing plane changes from 0.5So¢ to 0.25S. This decrease
varies from 0.02% to 0.2% for the excitation in the lower, longitu-
dinal, mode and from 3% to 2% for the excitation in the higher,
transversal, mode. This variation can be eliminated by using U,
instead of U, in other words, by ignoring the last term in Eq. (36).
In this approach, the F term is still included, e.g., by using Eq. (39),
while the UM A™'U® contribution in Eq. (33) is computed with
U,. This approach thus eliminates the dependence of the splitting on
the position of the dividing plane, as discussed in Appendix D. How-
ever, we noticed an increase in all computed splittings by as much
as 8%, which resulted in an overestimation of quantum-mechanical
results. Since the error introduced is larger than the variation of
splitting with the connection point position, using the full expression
seems to be the preferable option.

In Table III, we studied the dependence of splittings on the
reduction in the mass of the system. The convergence of the excited-
state splittings with the addition of F, U, and Z terms in the exp(-w)
expansion is again shown, as well as the exact quantum-mechanical
results in parentheses. The reduction in mass causes an increase in
the energy of vibrational states, which provides an insight into the
limits of theory as the energy approaches the barrier height. In the
ground state, the effective barrier height can be computed as

1
Ve(f%o) = Vo + E(Az — w1 — w2), (41)

where V) is the potential energy and A, is the nonnegative eigenvalue
of matrix A at the position of the barrier, whereas w; and w, are
vibrational frequencies at the minimum. If the lower, longitudinal
mode is excited, the effective barrier is lowered by w; and becomes

(1,0) _ 1,(0,0)
Vg = Ve~ — @1 (42)
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TABLE Ill. Tunneling splittings in the ground (Ag) and first two vibrationally excited
states (A4) for the potential in Eq. (38) at 8 = 7/12 and various masses m obtained
using instanton theory. The excited-state splittings are, top to bottom, obtained using
the expansion of exp(—w) to F, F + UjAx;, and F + U;Ax; + %Ziijiij terms,
respectively. The exact quantum-mechanical results are given in parentheses. For
each excitation, the effective barrier heights V¢ on the instanton path are also given.

m Ao Mo VvEY a0 vEY

27.0 9.870(—9) 5.492(—10)
1.463(—10)  9.882(—9) 8.066(—10)
(1.472(—10)) 9.927(—9) 1273 8.062(—10) 1.428

(9.858(—9)) (8.089(—10))

5.0 4.156(—3) 2.312(—4)
1.431(—4)  4.168(—3) 4.831(—4)
(1.435(—4))  4212(—3) 0731 4.827(—4) 1.091

(3.921(—3)) (4.979(—4))

1.7 0.214 1.191(—2)
1.264(—2) 0215 3.416(—2)
(1.231(—2)) 0219 0.051 3.413(—2)  0.668

(0.146) (3.080(—2))

1.5 0.297 1.649(—2)
1.865(—2)  0.298 4.932(—2)
(1.802(—2))  0.304 —0.055 4.927(—2)  0.603

(0.188) (4.157(—2))

1.0 0.740 0.041
5.696(—2) 0.745 0.141
(5.300(—2))  0.763 —0.445  0.141 0.360

(0.361) (0.102)

while if the higher, transversal mode is excited, the effective barrier
changes as

VD Z yO0 ) 41, (43)
As we reduce the effective barrier height, by varying the mass in
Table III, the instanton method starts to overestimate the tun-
neling splittings. When Vs ~ 0, the excited-state splitting is
overestimated by about a factor of 2, similar to the earlier observa-
tions in the ground state.” This is mainly caused by the overesti-
mation of the state energy in the harmonic approximation, which is
then used in the transport equation. Furthermore, a significant effect
comes from the underestimation of the norm of the localized wave-
function in the harmonic approximation as it extends further on the
other side of the barrier. Therefore, in the case of a “shallow” split-
ting or the “over-the-barrier” splitting, the estimates obtained using
the instanton method should only serve as an upper limit.

B. Asymmetric double-well 2D potential

We next perform tests on an asymmetric model 2D system.
The potential profile along the MAP connecting any two minima
does not have the left-right symmetry, and the maximum does not,
in general, lie at the midpoint. The MAP can approach two min-
ima along different normal modes in an asymmetric system. The
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asymmetric potential that we use in our tests is given by the follow-
ing equations:

Vi

1 1

Eocf(xl +[3)2 + Eoc%(xz +/5)2,
1 1

Va = E“%(xl _ﬂ)z + E“%(JQ +ﬂ)2’

V3

%«x%(xl —ﬁ)z + %oc%(xz - [3)2, (44)

1 1
Vs = E(x%(xl +B) + Eoc%(xz -B)%,
Ve ViVaViVy
- V1V2V3 + V1V2V4 + V1V3V4 + V2V3V4’

where x; are not mass scaled. The potential parameters in Eq. (44) are
taken as f =2, a1 = 1.265, a; = 2, and m = 27. The potential has four
minima and possesses a C4 symmetry axis, as shown in Fig. 2. Instan-
ton paths connect the neighboring minima as indicated in the figure.
The “diagonal” instanton paths have large actions and are negligi-
ble. Energy levels split due to tunneling into a triplet, in which the
middle level is doubly degenerate. The tunneling splitting pattern
consists of energy levels E; = Ey — A, E; = E3 = Eg, and Eq = Eg + A,
where A corresponds to the tunneling splitting between the neigh-
boring minima and Ep is the harmonic energy. We now label the
minimum at (-, —f3) as “left” and the minimum at (3, —f3) as “right.”
Each instanton path is almost a straight line between two minima;
however, because of the anharmonicity, the path is slightly deflected
near minima. As a result of this deflection, it enters the left mini-
mum along the lower mode, instead of the higher one, as explained
in Appendix B. However, it also possesses a large displacement #
in Eq. (40) along the higher mode. The higher mode is therefore
longitudinal at the left minimum, while the lower mode is longitu-
dinal near the right minimum. As a result, when either of the modes
is excited, it cannot be described as a longitudinal or a transver-
sal excitation with respect to the instanton path. It represents the
case of longitudinal-transversal excitation, where the excited mode
is longitudinal at one minimum and transversal to the path at the
other minimum. This case cannot be treated with the method of

-4

432101234
X1

FIG. 2. Potential energy surface for the model potential in Eq. (44) (a4 = 1.265, ap

=2, $=2). Superposed on the potential energy surface are the instanton pathways
that are responsible for the formation of the tunneling splitting pattern.
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TABLE IV. Tunneling splittings in first two vibrationally excited states (A1) for the
potential in Eq. (44) obtained using instanton theory. Displacements, # in Eq. (40),
are given for the left (—f3, —f3) and the right (5, —f) minimum. QM labels the exact
quantum-mechanical results. The ground-state splitting is Ag = 9.129(—12), using
the JFI method. The exact result is Ay = 8.887(—12).

A(1,0) A1(0,1)

Instanton 1.304(—11) 2.979(—11)

1.340(—11) 3.058(—11)

1.387(—11) 3.261(—11)

QM 1.775(—11) 6.531(—11)
7 0.13442 0.990 92
n® 1.000 00 0.00008

Ref. 53. The localized wavefunction that corresponds to the longi-
tudinal excitation is of the form py exp(~1/2Ax" AAx), which means
that it is even in the dividing plane. On the other hand, the wave-
function that corresponds to the transversal excitation is of the form
(U" Ax) exp(-1/2Ax" AAx), which is odd in the dividing plane. As a
result, the surface integral in the Herring formula is odd and iden-
tically equal to zero. It is clear, however, from quantum-mechanical
computations that the splitting is not zero but can, in fact, even be
larger than the splitting in the ground state, as given in Table IV,

In our treatment, the addition of the F term breaks the sym-
metry of the wavefunction in the dividing plane, and it moves the
node away from the instanton trajectory, while the maximum of
the Gaussian part in Eq. (31) stays on the trajectory, as shown in
Fig. 3. As a result, the integral in the Herring formula does not van-
ish. The results obtained using our approach are given in Table V.
From the # values in the left minimum, it is clear that, in its vicin-
ity, the instanton trajectory rapidly turns toward the direction of the
second (higher) normal mode, while it has to enter the minimum
along the first (lower) mode. As a result of this sharp turn, the F
value for the left minimum is not zero and, in the end, gives rise
to the non-zero tunneling splitting. Contribution of the Z term in
both excited states is quite large compared to its contribution in the

2

15}

1l
05F

® 0
-05 L
-1 \ f

P 6 4 2 0 2 4 6 8

AX

FIG. 3. Comparison of the wavefunctions in the dividing plane (line) obtained by
using U, only (dotted line) and by using F + U;Ax; (full line) in the preexponential
factor of the localized wavefunction in Eq. (31).
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symmetric test case above. This is indicative of the presence of non-
negligible anharmonic effects in this system. The anharmonicity is
also a probable reason for the relatively large discrepancies between
the instanton and the exact quantum-mechanical results (obtained
on the same grid as for the symmetric potential above), where the
latter are 28% and 100% higher for the excitation of the first and
second vibrational modes, respectively. A larger discrepancy in the
higher mode could be attributed to its larger energy and the larger
spread of its wavefunction into the regions away from the instanton
path where anharmonicity is significant.

C. Water dimer

The tunneling splitting pattern of water dimer has been exten-
sively studied both experimentally and theoretically,”**** which
makes it a good benchmark system to test our method. We chose
the fully deuterated dimer over the non-deuterated one because its
vibrational energies are lower. As a consequence, there are more
vibrational excitations that do not exceed the barrier height and
can be treated with the instanton method. The analytical potential
energy surface MB-pol'”">"® was used in all calculations.

Water dimer, shown labeled in Fig. 4, has 8 equivalent
symmetry-related and accessible minima, which correspond to the
permutations of hydrogen and oxygen atoms that do not break the
covalent H-O bonds. Permutations that do break the covalent bonds
are considered unfeasible. These minima are connected by tunneling
rearrangement pathways,”” five of which are believed to be responsi-
ble for the dimer splitting pattern.”'*’¥ The acceptor tunneling (AT)
path corresponds to permutation (34). In the ground state, its effec-
tive barrier is relatively low, Vg = 77 cm™}, so it gives rise to the
largest tunneling matrix element. This matrix element is responsi-
ble for the splitting of energy levels into two groups, whose energy
difference is called the acceptor splitting A(A) = 4|h(AT)|. As seen
in Table V, the displacements # for the AT path lie predominantly
along the lowest mode at both minima. The next contribution to
the splitting pattern arises from the donor-acceptor interchange via
Ci and C, symmetry transition states or, alternatively, the geared
(GI) and anti-geared (AI) interchange pathways, which correspond
to the (AB)(1324) and (AB)(14)(23) permutations, respectively.
These pathways have larger effective barriers in the ground state,
Ver = 188 cm™! and Vg = 227 cm™', respectively. They cause the

3

FIG. 4. The minimum energy geometry of the water dimer labeled to represent the
reference version.
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TABLE V. Left and right displacements # in Eq. (40) in deuterated water dimer for
five instanton pathways and excitations into lowest five vibrational modes. Pathways
are acceptor tunneling (AT), geared interchange (Gl), antigeared interchange (Al),
bifurcation tunneling (BT), and donor exchange (DE).

Mode AT GI Al BT DE

1 0.99408 0.73315 0.976 61 0.00363 0.068 34
0.99413 0.73091 0.976 89 0.002 05 0.97470

2 0.08292 0.63492 0.14969 0.00263 0.709 57
0.08307 0.63780 0.14916 0.00070 0.22343

3 0.07001 0.24363 0.154 34 0.99927 0.70112
0.069 20 0.242 84 0.15302 0.99927 0.00373

4 0.004 41 0.00276 0.00135 0.03795 0.01621
0.004 49 0.002 69 0.00127 0.03792 0.003 62

5 0.00143 0.00163 0.003 14 0.00135 0.00032
0.00145 0.00168 0.00307 0.00122 0.00276

energy levels in both groups, formed by acceptor tunneling, to split
into triplets, with the energy width of the lower group called the
lower interchange A(LI) = 4|h(GI) + h(AI)|, while the upper group
energy width is called the upper interchange A(UI) = 4|h(GI) -
h(AI)|. The AI path is mostly displaced along the lowest mode near
minima as well but has larger projections onto the second and third
modes. In contrast, the GI path is almost equally displaced along
the first and second modes near minima, while it has to enter the
minima along the lowest mode. Finally, the smallest contribution
to the splitting pattern of water dimer arises from the bifurcation
tunneling (BT) and donor exchange (DE) paths, which correspond
to the (12)(34) and (12) permutations, respectively. These path-
ways possess the highest effective barriers, V¢ = 469 cm™' and
Ve = 581 cm™ ', respectively. They cause the shifts in the energies
of the triplets by the amounts called the lower bifurcation and the
upper bifurcation, A(LB) = |h(BT) + 4h(DE)| and A(UB) = |h(BT)
— 4h(DE)|. The bifurcation tunneling path is displaced mostly along
the third mode near minima. The donor exchange path, on the other
hand, is displaced mostly along the lowest mode near one minimum,
while it is displaced mostly along the second and third modes near
the other minimum. Therefore, this path represents a realistic case of
the asymmetric potential that features longitudinal-transversal exci-
tations that we discussed in Subsection IV A on a 2D model poten-
tial. The five contributing pathways in water dimer can be found
visualized in Refs. 7 and 77.

The lowest mode of vibration in the deuterated water dimer
corresponds to donor torsion and has a frequency of w = 84 cm™".
In order to calculate the splitting pattern with the excited donor
torsion, we calculate the matrix elements, & = —A;/2, for all five rear-
rangement paths. The AT matrix element, obtained by the instanton
method, is 3 times larger than the experimental value, as seen in
Table VI. Since donor torsion is the longitudinal mode of the AT
path and its excitation frequency is larger than the effective barrier
on the path, this represents a case of over-the-barrier tunneling. The
instanton method is known to overestimate the splittings by a factor
of 2-3 in such circumstances,””" as also noted in Subsection IV A.
The sign of the acceptor splitting is found to be opposite to that of
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TABLE VI. Tunneling matrix elements —h/cm—" for different tunneling pathways
in deuterated water dimer (D,O), obtained using instanton theory. Pathways
described are acceptor tunneling (AT), geared interchange (Gl), antigeared inter-
change (Al), bifurcation tunneling (BT), and donor exchange (DE). The excited-state
splittings are, top to bottom, obtained using the expansion of exp(—w) to F, F +
UjAx;, and F + UiAx; + %Z,—,-Ax,-ij terms, respectively. The splittings given in
parentheses are experimental’® (top) and quantum-mechanical®® (bottom) results.
(Ground-state (GS) experimental results are from Refs. 25 and 80.)

Mode AT GI Al BT DE

GS 0766  9.73(—3)  4.88(—4) 1.83(—4) 3.21(—6)

1 —11.8 —4.58(—2) 1.86(—2) 1.43(—9) 2.95(—6)
~11.1  —507(—2) 1.83(—2) —3.96(—5) 1.12(—5)
—12.0 —530(—2) 1.95(—2) —3.96(—5) 8.26(—6)
(3.953) (6.643(—2)) (1.561(—2)) (—) (—)
(3.92) (6.63(—2)) (1.63(—2)) (—) ()

2 —0.502  —0.256  4.01(—3) —6.17(—9) —5.16(—5)
—0.509  —0.254  4.98(—3) —2.28(—4) —4.38(—5)
—0457  —0261  5.18(—3) —2.28(—4) —4.78(—5)
(0.634)  (0.109) (1.375(—3))  (—) (-)
(0.758)  (0.140)  (4.25(—2)) (—) (—)

3 1.15 0.147 213(—2)  547(-3) 3.27(—6)
2.72(=2)  0.141 213(—2) 5.42(—3) 2.42(—6)
0.469 0.143 221(—2) 5.58(—3) 5.32(—6)
(0.442) (3.033(—2)) (2.427(—3)) (=) (—)
(045)  (2.88(=2)) (1.25(—3)) (—) (—)

4 195  2.94(—2)  2.64(—2) 2.17(—3) —2.43(—4)

898  320(—2) 2.58(—2) 241(—3) —3.70(—4)
—57.0 0220  —3.87(—2) 6.45(—2) 4.05(—4)
() () (—) () (—)
(123)  (0.173)  (7.75(=2)) (=) (—)

the ground state, indicating that the groups of states associated with
the lower and upper interchange change places. This observation is
in agreement with the experimental measurements’’ and the exact
quantum-mechanical calculations.”

GI and AI matrix elements are found to be in good agreement
with the experimental results”” in their absolute values, but their rel-
ative sign appears to be wrong. This results in the wrong ordering of
the LI and UI splittings in magnitude, as seen in Table VII. We note
that the contribution of the F term accounts for 86% and 95% of
the matrix element in Eq. (33). A large contribution for the AI path
is expected as donor torsion is its longitudinal mode. However, for
the GI path, which lies along a combination of modes near minima,
the contribution of the F term is also important. We presume that
the disagreement between the instanton and quantum-mechanical
results of Ref. 25 is caused by a large rotation-vibration coupling
in the excited mode, which mixes the vibrational states of K, = 0
and K, = 1 and is not accounted for in the instanton method. The
values obtained for LI and UT (0.134 cm™! and 0.290 cm™!) are, in
fact, in better agreement with the experimental values’” for K, = 1,
which are 0.132 cm™! and 0.257 cm™!, both in magnitude and in
ordering.

Lower and upper bifurcations are underestimated for the first
excited vibrational mode, as can be seen in Table VII. For the DE
path, this represents a longitudinal-transversal excitation, and it
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TABLE VII. Acceptor, upper interchange, and lower interchange splittings (cm—") in
deuterated water dimer (D,O), obtained using the instanton method. The excited-
state splittings are, top to bottom, obtained using the expansion of exp(—w) to F,
F + U;jAx;, and F + U;Ax; + %Z,-ij,-ij terms, respectively. The splittings given
in parentheses are experimental’® (top) and quantum-mechanical”® (bottom) results.
(Ground-state (GS) experimental results are from Refs. 25 and 80.)

Mode A Ul LI UB LB

GS 306 3.70(—2) 4.09(—2) 1.70(—4)  1.96(—4)
(177)  (3.6(=2)) (3.9(=2)) (2.2(—4))  (2.3(—4))
(1.78)  (3.6(—2)) (3.8(—2)) (—) ()

1 47.3 0.257 0.109 1.18(—5)  1.18(-—5)
445 0.276 0.129 8.44(—5)  5.15(—6)
47.9 0.290 0.134 727(=5)  6.57(—6)
(15.811)  (0.203)  (0.328) (8.006(—4)) (1.698(—3))
(15.68)  (0.20) (0.33) () ()

2 2.01 1.04 1.01 2.06(—4)  2.06(—4)
2.04 1.04 1.00 531(—5)  4.03(—4)
1.83 1.07 1.02 3.67(—5)  4.20(—4)
(2535)  (0.443)  (0.432) (2.662(—3)) 2.635(—3)
(3.03)  (0.73) (0.39) (—) (—)

3 4.60 0.503 0.673 546(—3)  5.49(—3)
0.109 0.479 0.649 541(—3)  5.43(—3)
1.88 0.484 0.660 556(—3)  5.60(—3)
(1.768)  (0.112)  (0.131) (1.304(—3)) 5.174(—3)
(1.81)  (0.11) (0.12) (=) (—)

4 78.1 0.012 0.22 3.14(—3)  1.20(—3)
35.9 0.025 0.231 3.89(—3)  9.35(—4)
228 1.04 0.725 629(—2)  6.62(—2)
(—) (—) (—) (—) (—)
(4.9) (0.38) (1.0) () ()

was shown for the model potential above that an underestimate is
expected because of the unaccounted anharmonicities. However, the
difference between the lower and upper bifurcation is not zero, as
it would be in using the theory of Ref. 53, and even though it is
underestimated, a rough estimate of its value is obtained. The exact
quantum-mechanical calculations™ do not report it, probably due
to the difficulty in converging the values with sufficient accuracy.
It is also worth mentioning that the UB and LB change signifi-
cantly in the K, = 1 rotational state to 8.906(~4) cm™' for UB and
1.201(—4) cm™ ' for LB. These values are again in better agreement
with those that we computed, as in the case of the AT path, which
provides further indication that the coupling of the first excited state
to rotations plays a significant role. Finally, the UB and LB are under-
estimated even in the ground vibrational state, which suggests the
possibility that the BT and DE pathways are poorly described by the
PES, either by too large potential energy barriers or by slightly mis-
placed instanton paths, both of which can have a drastic effect on the
splittings.

The second mode corresponds to the acceptor twist, with fre-
quency w = 100 cm™ ", while the third mode corresponds to the
acceptor wag, with frequency w = 110 cm”™ '. However, in quantum-
mechanical calculations,”” the order of these two motions changes,
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and the acceptor wag frequency drops to 82 cm ™", while the acceptor
twist drops to 90 cm™'. The large deviation of vibrational ener-
gies from the harmonic frequencies is a strong indication of large
anharmonic effects in these two vibrational modes. Furthermore,
since their energy difference is very small, it was noticed that these
states interact through a Coriolis perturbation’” adding to the quan-
titative disagreement with the harmonic analysis. Nevertheless, the
splittings obtained from the second excited mode are in good agree-
ment with the experimental results. We note that the F term on the
AT path contributes with around 77% to the matrix element, even
though the displacements near minima along this mode are small.
The overestimation of the GI matrix element can be explained by
the fact that the path has a large projection onto the second mode
near minima, which means that the effective barrier is significantly
lowered. The discrepancy of the AI matrix element can be explained
by the inaccuracy of the PES, since quantum-mechanical results” on
a similar surface’’ also overestimate this matrix element. Upper and
lower bifurcations are again underestimated, probably for the same
reasons as above, namely, the inadequate PES and the unaccounted
anharmonic effects in the longitudinal-transversal excitation.

In the case of the third mode excitation, especially interesting
is the AT path for which the contributions of the F term and the U
term in the matrix element almost cancel each other out, while the
major contribution arises from the anharmonicity contained in the
Z term. For this excitation, both GI and AI matrix elements are over-
estimated. This can again be attributed to the rovibrational coupling
since the quantum-mechanical results show a significant increase in
the lower and upper interchange with the excitation to the K, =1
rotational state.” Upper and lower bifurcations for this excitation
show a much better agreement with the experimental values’ than
above.

At larger excitation frequencies, the theory breaks down. A
probable cause of this breakdown is the fact that as the frequency
increases, the contribution of the w term to the overall splitting rises
significantly. This is due to the fact that the F contribution depends
exponentially on the frequency of excitation, while the # values do
not compensate it. As a result, its contribution becomes comparable
to that of W, while the WKB approach assumes In F << Wy. A good
test of the reliability of the obtained results is to redo the calcula-
tions with a different value of the initial “jump” parameter €. As the
value of ¢ is reduced, the results should converge to the correct value.
However, there is a limit to how much ¢ can be reduced, as the prop-
agation from the point too close to the minimum is not stable.”"”
If the results converge before this breakdown, they can be treated
as reliable. As the value of ¢ is increased, the values of the splittings
should not change by more than a few percent. This is the case for
the excitations in the first three lowest modes. For the fourth excited
mode, if we change ¢ from 0.1 mY 2a0 to 1 mmao, the AT matrix
element changes from 8.98 cm™! to 3(+3) cm™?, which is an indi-
cation that the breakdown of theory occurred. Similar behavior is
present for the Al pathway, where the matrix element changes from
2.58(=2) cm ™! t0 0.23 cm™!. The change is not as drastic as in the
AT case, but it indicates that the error bars on our results are very
large, which also explains the discrepancies of results for the LI and
UI splittings. Noticeable changes are also present for the DE path-
way [from —3.70(—4) cm™! to —6.85(~4) cm™ '], while the values for
other pathways do not change appreciably and can be considered
reliable.
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V. CONCLUSIONS

We developed a semiclassical theory for calculating tunnel-
ing splittings of low-lying vibrationally excited states based on the
instanton method. A WKB wavefunction is constructed along the
instanton path and its harmonic neighborhood for each well and
inserted into the Herring formula to obtain the splitting that matches
the JFI result in the ground state.”” The excited-state splittings are
then obtained constructing excited-state wavefunctions analogously.
The procedure closely follows that of Ref. 53 but uses a more general
boundary condition near minima and does not assume the left-
right mirror symmetry of potential along the instanton path. In our
approach, transversal and longitudinal excitations do not require
separate treatments, as in Ref. 53. This allows us to compute split-
tings in the systems where the excited vibrational mode does not
line up along the instanton path near minima, but has both lon-
gitudinal and transversal components, or the systems in which the
excited mode is longitudinal at one minimum and transversal at the
other. Both components are propagated simultaneously along the
instanton path, and cross interaction is kept in the treatment.

The tests on the symmetric double-well model potential
showed that a high accuracy can be expected for low-lying states
below the barrier. It was shown that for transversal modes, even
a small longitudinal displacement near minima can dominate
the tunneling splitting. We also observed that the longitudinal-
transversal cross terms improve results. The tests on the asymmetric
model potential showed that we can calculate splitting estimates
for excited longitudinal-transversal modes, albeit with somewhat
reduced accuracy. Finally, we calculated the tunneling splitting pat-
tern of the deuterated water dimer in vibrationally excited lowest
three modes by computing contributions from five different rear-
rangement pathways. This is a particularly challenging system for
treatment with partly harmonic theories. Additionally, the system
exhibits significant rovibrational couplings, which are, at present,
neglected in our treatment. We could nevertheless obtain reasonable
agreement in many cases in a system that showcases the situations
in which the present theory gives significantly different results from
that of Ref. 53.

Tunneling splittings in vibrationally excited states require no
additional information about the molecular system. All compu-
tational effort is concentrated, as for the ground-state splittings,
in determining the MAP by optimization and the evaluation of
Hessians along the MAP. This allows us to compute and inter-
pret splitting patterns in many mid-sized molecules using state-of-
the-art potentials. The theory is applied in Cartesian coordinates
and requires no modification for treating different molecular sys-
tems. However, tunneling splittings in vibrational states with higher
frequencies, such as the excitations of librational modes of water
trimer” and pentamer”‘ that were recently measured, cannot be
treated with the theory in the present format. Many small tun-
neling systems exhibit large rotation-vibration coupling, which is
currently neglected and can affect the splittings. A computation-
ally tractable theory for calculating splittings in rotationally excited
states would also be desirable. These are some of the immediate
challenges remaining in which the future efforts will certainly be
directed in a quest to provide quantitative estimates for splitting pat-
terns for molecules and clusters that are out of reach to the exact
quantum-mechanical treatments.
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APPENDIX A: METHOD OF CHARACTERISTICS
AND LOCAL COORDINATES

The method of characteristics is a technique for solving partial
differential equations.” It relies on locating curves, the characteris-
tics, along which the gradient of the desired solution is tangential.
As a consequence, the partial differential equation reduces to an
ordinary differential equation. For a non-linear partial differential
equation of the form

F(x1,..., %N, P15, pN-f) =0, (A1)
where p; = 0f/Ox;, defining equations of the characteristics are
d _ O
dr B 8p, ’
dpi OF OF
4 _67,- - affpz, (A2)
g _oF,
dr =~ Bpipl)

where 7 parametrizes the characteristic.

The Hamilton-Jacobi equation is a non-linear partial differ-
ential equation for which F = 1pipi — V, where p; = 0W,/0x;. Its
characteristics are therefore

o,
dT - 1>

o ov (A3)
dr ~ Oxi’

The characteristics describe classical trajectories on the inverted
PES, while VW, is the momentum on the trajectory. The total
energy of the classical motion is Et = 3pipi + (V) = 0. On
characteristics, Wy is found by solving

d:‘:() = Pipi =2V. (A4)
The parameter 7 represents time, and as the trajectory approaches
minimum, its value 7 — —oco. This is numerically problematic, so we
reparametrize characteristics with the arc length distance from the
minimum, S, using the transformation in Eq. (7).

In order to expand Wy in Taylor series around the characteris-
tic, it is convenient to define a set of local coordinates {S, Ax}. Since
coordinate S parametrizes characteristic, it is only defined for the
points lying on it. In order to assign a value S to the point that does
not lie on the characteristic, a point xo(S) that does lie on it is chosen
so that

(xi — x0i(8) )poi = 0, (A5)

that is, Xo(S) is chosen so that the vector connecting it with the point
x is orthogonal to the characteristic at xo(S). The value of S that
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corresponds to Xo(S) is then assigned to x. The orthogonal coor-
dinates Ax are then defined as Ax = x — x¢(S). Differentiation of
Eq. (A5) gives'®

Poi
L T
836,‘ l_a;Ax PO

2
0

.
+a ?X+...), (A6)
by

where a = % denotes the acceleration. From the differentiation
of the Hamilton-Jacobi equation [Eq. (3)], we obtain a = Apo.
Finally, the differentiation of the defining equation of orthogonal
coordinates in Eq. (A5) gives the transformation

8Ax,—

Poipoj ( a' Ax )
=8 I+ —+...). (A7)
8xj ! P% P%

Equations (A6) and (A7) are used throughout the paper to transform
between Cartesian and local coordinates on the characteristic as A,
U, B, and Z are all given in the differential form.

APPENDIX B: WAVEFUNCTIONS NEAR MINIMA

Near minima Xmin, the PES can be approximated by a harmonic
oscillator potential

1 59
V= 2 @idis (B1)
where g; = Vji(xj — Xmin j) are normal coordinates and w; are corre-
sponding harmonic frequencies. Since Ay = H"2, we have VTA)V

= Q, with (Q);; = w;id;;. In the harmonic region near minima, the
equations of characteristics, Eq. (A3) become

dzqi _ 8V
2 .’
dr?  Og; (B2)
dzqi 2
dr? = wigi

The trajectory along the characteristic from the minimum to an
arbitrary point q; at 7 = 0 inside the harmonic region is

qi(7) = quie"”. (B3)
By considering the tangent vector of the characteristic,

ot e o
Po w]? ‘1%1 Q20T
we note that in the limit 7 — —oo, the tangent becomes t; = dium,
where M denotes the lowest frequency normal mode for which g1, u
# 0. This means that all characteristics approach the minimum along
the lowest normal mode with a non-zero projection upon enter-
ing the harmonic region. In the case of an n-fold degeneracy of
the mode, the minimum is approached in the n-dimensional sur-
face defined by the corresponding eigenvectors, as shown in a similar
analysis in Ref. 83.
The function Wy in Eq. (A4) can be evaluated in the harmonic
region at the characteristic as

W _ T2 2 2w g
o(7) = | wiqye dr (B5)

or, making use of Eq. (B3), as
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2

1
Wo(g) = 5014 (Bo)
Furthermore, since in the harmonic region A ~ Ao, the ground-state
wavefunction corresponds to that of the harmonic oscillator,

$=e 209 (B7)

Equation (B7) is used to approximate the norm of the ground-state
wavefunction in the Herring formula [Eq. (1)].

For vibrationally excited states, the correct form of the wave-
function at the minimum is obtained by choosing (Up); = Vi, that
is, by equating the vector U with the excited normal mode at the
minimum. The wavefunction then has the form

¢ = qeeféwquz. (B8)

For a point on the characteristic, which lies in the harmonic region,
Ax; =0, so its form is

¢ = F(e)er 9% @, (B9)
Therefore, the initial condition for the F term at S = ¢ has to be

F(e) = qe = Up (x(£) - x(0)), (B10)

in order to yield the correct form of the wavefunction in Eq. (B8).

APPENDIX C: ANHARMONICITY ABOUT
THE INSTANTON PATH

The anharmonicity of potential in the directions perpendicular
to the instanton path can be partially accounted for by including the
higher derivatives of the PES along the instanton path, beyond Hes-
sian, in the semiclassical treatment of Sec. III. We assume below3 that
along the instanton path has been determined. This allows us to

FWo
8x,-8xj8xk i
Taylor expansion in Eq. (10). The equation for propagation of ten-
sor B is obtained by differentiating the Hamilton-Jacobi equation
[Eq. (3)] three times as

the third derivative tensor of the PES with elements ¢ =

compute the third derivatives of function Wo, By =

*'W, W, . PW, W, . PW, W,
Oxi0xj0x0x; Ox;  0xi0xj0x; 0x0x;  Ox;0x,0x; 0%10%;
3 2 3
IFWe OW, OV 1)

" Ox10x;0x;, Ox;0x;  Ox:i0x;0x;,

The first term in Eq. (C1) represents a directional derivative of the
tensor element Bjj along the instanton trajectory, while the other
terms can be recognized as tensor elements of B and of Hessian
A, which is determined by solving Eq. (9). Equation (C1) on the
instanton reads

PoBj + ByA + BiAjj + BiyeAy; = cii. (C2)

We proceed to determine the initial condition B(e) in the
vicinity of the minimum. For that purpose, we linearize Eq. (C2),
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following an analogous procedure to that for A in Refs. 52 and 67, as

B=B" +BWs,
c=c® 4 c(l)S,
A=A +AWs,

po=pg"s.

(C3)

Inserting the above expressions into Eq. (C2) and equating terms of
the same order in S yields equations for B” and B" as
(0) 4(0) , p(0) ,(0) , B(0) 4(0) _ (0)
By Ay +By A+ B ALY = oyl
(D) p(1) , p(1) 4(0) , p(1) 4(0) , p(1) 4(0) _ (1) _ p(0) 4(1)
Po "By + By Ay By AT+ B AT = ol =Byt Ay
(0) 4 (1) _ p(0) 4 (1)
~Bi Alj _Bljk Ay
(C4)

These are solved by transforming to the basis of normal modes, the
eigenvectors of A”, using the following relations:

w,-(S,-j = V,'r,' Vj']'A.(O)

i
B,»(jz) = Vi’iV]"ij’kB,-(r?/)kn (C5)
~(0) (0)

G = ViiVii Vi€

Inserting Eq. (C5) into Eq. (C4) yields equations

~(0)

.
L L (C6)
Y w; + wj + Wi

=(1) _ 5(0) 7(1) _ 5(0) 7(1) _ 5(0) 7(1)
B _ G — By Ay — By Ay — Byl Ay
i p((,l) + ;i + W) + Wy ’

(C7)

which are needed to construct B(¢). Equation (C2) can now be solved
in the interval [¢, S] using any differential equation solver, such as the
Runge-Kutta method.””

Tensor B cannot be included in the wavefunction of Eq. (2)
without the inclusion of fourth derivatives as the resulting wave-
function would not be integrable in the dividing plane. However,
it is used below to compute the Z term in the expansion of exp(—w)
in Eq. (34) and thus indirectly account for a part of anharmonicity.

We first note that the following expressions are valid on the
instanton path:

F=¢e",
0 _w  Ow _y
U; a—Xie 3xie S
7. e e *w ey ow aﬂe,w (C8)
v 8x,-6xj - ax,@ag ax,' axj ’
9]
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In the next step, we differentiate Eq. (19) twice to obtain useful
relations,

*w  _y
=AUy,
s
Pw  _y
P oxom . B Uy + AiZij + AL (C9)
i0X;
8'LU 8w
+ AU + —Aj U
8Xj ik Yk a)q jk Uk

Finally, we take the third derivative of exp(-w) in Eq. (34) to arrive

at
iz,. - _ 83w —w aﬂ 82710 -w
(8xk 1])Pk B Pk E)xiaxjaxk ¢ +Pk axk c’)x,-axje
dw Fw _y dw Fw _y
Oxi 0x,0x; ¢ "ach O0x;0xi ¢
Ow Ow Ow _y,
_ kf?Tck B, a—xje ,

+pk

(C10)

where we insert Eq. (C9) and recognize Eq. (C8) to obtain the
equation for Z in the following form:

POZi,j + Aikaj + Aijk,- + Bijk Ui + weZij =0. (C11)

This equation is again solved separately in the interval [0, €]
and [¢, S], following the same procedure as for A and B. All objects
are expanded up to linear terms in S and inserted into Eq. (C11). By
equating terms of the same order in S, we obtain equations for Z*
and Z(l),

A ZO) 4 7O 4O, 7(0) L gOGO) _
pZD L AOZD L ZDAO 70 L AOZO) | 70 4 )

+BOUY©® L gOy® _ 0, (C12)

where matrices (BU); evaluate as By Ux. These equations are again
solved by transforming to the basis of normal modes, the eigenvec-
tors of A, as

Z(,O) _ (B(O) U(O))ij
i We + Wi +w;
S0 _ (B(I)U(O))ij +(B® U(l))ﬁ + (A(I)Z(O))ij + (Z(O)A(l)),j

i (1) ,
Do+ We + Wi+ wj

(C13)
We are now in the position to compute Z(e), which serves as the
initial condition for the propagation of Z in the interval [¢, S] by
solving Eq. (C11) using the Runge-Kutta method.
When the Z term is included in the expansion of exp(-w), the
tunneling splitting formula assumes the following form:

A= Ao(2we)(F(L)F(R) + Ly
2

+ %F(L)Tr(Z(R)[(l) + iF(‘UTr(z(L)A’I)), (C14)
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where terms of the form Z;Z;Ax;AxjAx;Ax; in the surface inte-
gral have been neglected as their contribution was found to be
negligible.

APPENDIX D: INVARIANCE OF TUNNELING
SPLITTINGS WITH RESPECT TO THE POSITION
OF THE DIVIDING PLANE

The invariance of the ground-state tunneling splitting formula
can be proved by differentiating Eq. (17) with respect to the position
of the connection point Sy, where the dividing plane intersects the
instanton path,

0Ny Ao (., Opo po 0 I3 0 (L)
=—12 - = det'A -2, W
ascp ZPO ( aScp det’A ascp € PO ascp !
9 y®
-2 w . D1
PO ascp 1 ) ( )

The derivative of the determinant in Eq. (D1) is simplified using
the Jacobi formula [Eq. (C4) in Ref. 67], while WIL/R functions are
differentiated in the upper/lower limit of the integral in Eq. (11),

O\ Ao Opo - 0
- B0 %0 oA
BSe 2p0( 9Sep r( T

A) - Tr(A" - Ap)
+Tr(A® - Ao)). (D2)

The derivative of A can be shown to equal

ascp -2 ( A _ (L))%(A(R)_

where use has been made of Egs. (9) and (16). Furthermore, since
the tangent t is an eigenvector of A with zero eigenvalue and, by

o A® )A, (D3)

definition of the pseudoinverse, A"t = 0, we have PAP = A and

PA'P=A"", where P =1 - tt" is the operator that projects out the
tangent of the instanton path. Using the above, one can show that

Tr(A Po ascp ) -Tr(p(A™ - A1)p)

= Tr(a{ - A®). (D4)

Thus, the derivative of the tunneling splitting becomes

0Ao B A() BPO
BSCP Zp() OSCP

+Tr(AY - A®) —r(a® - A(R))) (D5)

Finally, since TrA® = po+ TrAEL) and TrA® = —po + TrAER), as
shown in Ref. 52, we have
8A0 Ao ( BPO
=22
GSCP Zpo 8Scp

+Tr(AM —A®)
Tr(A® _ Ay _,0P0 ) _
- r(Al _AL )—ZW —0, (D6)
cp

which proves that the ground-state tunneling splitting does not
depend on S, the position of the dividing plane.
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Similarly, the invariance of the excited-state tunneling splitting
on the position of the dividing plane is checked by differentiating
Eq. (33) with respect to Scp. If only the F terms are included in the
expansion of exp(—w), we have

A F)
OA1 _ e[ ZE g0
8Scp 8Scp

®

) OF )

FY— (D7)
BSqp

which together with Eq. (21) gives

A e X
OA _ AOZwE(;)—F(L)F(R) - w—F(L)F(R)) -0. (D8
0

OSep po
If we include the U terms in the expansion of exp(—w), the
derivative of the splitting becomes
O _ ppo[ 2 v A u® 4 y®7 2 i g®
GSCP ascp cp
yumTa 2w, (DY)
OSep
It can be shown that
Po =PAMAT _ATAW®p, (D10)
BSCP
which can be used to rewrite Eq. (D9) as
A e -
0A1 _ 20 (~(U® — PU) AV A YW
OSep po
+UDTATA® (g® - PU(R))). (D11)

In this form, it is evident that if U remains orthogonal to the instan-
ton path, i.e,, PU = U, the excited-state tunneling splittings become
independent of the position of the dividing plane. If that is not the
case, however, Eq. (D9) can be further simplified to

0A _ AO&(_ e (1) T4 41 ®
8Scp pO PO
- %F(R)U(L)TA_IA(R)t), (D12)
0

which does not vanish and the tunneling splitting will, in general,
depend on the position of the dividing plane, as observed in Sec. I'V.

If the same analysis is performed with the Z terms, there arise
two factors that cancel out the U terms. However, a multitude of
other factors also arise, which again cause the dependence on the
position of the dividing plane. As mentioned above, the root of the
problem is that the expansion of exp(—w) is inconsistent with the
expansion of W1, and it gives rise to terms of all orders in Ax. How-
ever, in the case of a symmetric potential, all perpendicular com-
ponents of the gradients, Hessians, and third-order tensors are the
same for the left- and right-localized wavefunctions at the dividing
plane in the middle of the instanton path, while their tangent com-
ponents differ in sign. Thus, it is possible to show that the derivative
of the Z contribution with respect to S, vanishes at the middle of
the instanton path, and numerical tests show that its contribution
is minimal there. Therefore, for symmetric systems, the middle of
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the path represents the optimal position of the dividing plane. For
the asymmetric paths, there is no such preferential point on the
instanton. However, good results are obtained by positioning the
dividing plane at the maximum of the barrier as, at this point, py is
the largest and the derivatives of the splitting are generally smallest,
which means that, at this point, the splittings are relatively stable.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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