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Abstract: The application of tritium, 2H, and 18O in the characterization of the precipitation,
groundwater, and surface and lake water of the Plitvice Lakes (PL), Croatia, over the 1979–2019
period is presented. An increase in the mean annual air temperature of 0.06 ◦C/year and in
the annual precipitation amount of 10 mm/year is observed. The good correlation of the tritium
activity concentration in the PL and Zagreb precipitation implies that the tritium data for Zagreb
are applicable for the study of the PL area. The best local meteoric water line at PL was obtained by
the reduced major axis regression (RMA) and precipitation-weighted ordinary least squares regression
(PWLSR) approaches: δ2HPWLSR = (7.97 ± 0.12) δ18O + (13.8 ± 1.3). The higher deuterium excess at
PL (14.0 ± 2.2 %�) than that at Zagreb reflects the higher altitude and influence of the Mediterranean
precipitation. The δ2H in precipitation ranges from −132.4%� to −22.3%� and δ18O from −18.3 %�

to −4.1%�. The much narrower ranges in the groundwater (<1%� in δ18O, <10%� in δ2H) indicate
the good mixing of waters in aquifers and short mean residence times. The higher average δ2H
in all three karst springs observed after 2003 can be attributed to the increase in the mean air
temperature. The mean δ2H and δ18O values in the surface and lake water increase downstream due
to the evaporation of surface waters. There is no significant difference between the surface water line
and the lake water line (2011–2014). The stable isotope composition of the surface and lake waters
reacts to extreme hydrological conditions.

Keywords: Plitvice Lakes; Croatia; karst; precipitation; groundwater; surface water; lake water;
tritium; deuterium δ2H; oxygen δ18O

1. Introduction

Karst is a special type of landscape that is formed by the process of karstification—i.e.,
the dissolution of soluble carbonate rocks, mostly limestone and dolomite. Karst channels, conduits,
and fissures store relatively large quantities of groundwater, and such karst aquifers are capable of
providing large supplies of water for human consumption. The precipitation water quickly infiltrates
underground, creating a system of interconnected flow paths, and eventually re-appears at the surface
as springs. Karst aquifers, especially in areas with a high permeability, can be very vulnerable to
contamination and can enable the fast transport of contaminants through the aquifers, which can
result in the degradation of water quality [1–4]. The assessment of the impact of human activities
and recent climate changes on karst waters has to be properly considered [5]. A good understanding
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of the characteristics of karst aquifers, especially the origin of karst spring water, is essential for their
efficient protection.

The most prominent methods for the research of the origin of spring water (groundwater)
are isotopic methods, especially the application of 2H, 18O, and 3H isotopes that constitute water
molecules. They behave as conservative ideal tracers, with a broad application in hydrogeology [5–18].
Precipitation presents an input to groundwater, and therefore knowledge of the isotope composition
of precipitation is a prerequisite for groundwater studies [19]. The importance of water isotopes as
perfect tracers was recognized by the World Meteorological Organization (WMO) and the International
Atomic Energy Agency (IAEA), which established a worldwide network for the monitoring of water
isotopes—the Global Network of Isotopes in Precipitation (GNIP) [20–22]. GNIP contains data from
Zagreb, as a permanent GNIP station, and from some other locations where the isotope composition of
precipitation was monitored in different projects, including the Plitvice Lakes station [23] and references
therein. Some differences in the isotopic composition of precipitation in the continental and maritime
stations were discussed [19], and the long-term data for the station in Zagreb showed the influence of
climate change on the isotope composition [23].

Croatia is a southeastern European country situated between the eastern Adriatic coast
and the Pannonian Plain (Figure 1). Dinaric karst covers almost half of the Croatian territory [24,25],
including the islands and the Adriatic coast, the high mountain regions, and part of central Croatia.
Dinaric karst, known worldwide as the locus typicus of classical karst, is a part of the Dinarides system
and consists of very porous and permeable rocks, with many permanent and intermittent springs and a
developed underground drainage system [26,27]. Croatia is rich with clean drinking water, and in
many cases this water is groundwater originated from the karst springs [11,12,14,28].
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Figure 1. Map of Croatia and the position of the study area: Zagreb (Zg), Plitvice Lakes (PL),
and Zadar (Zd).

The Plitvice Lakes (PL) area presents a unique system of 16 cascade flow-through lakes that are fed
by three main springs (Crna Rijeka River, Bijela Rijeka River, Plitvica River) and outflow to the Korana
River. It is famous worldwide for its beauty and diversity. The area has been protected as a part of
the national park since 1949, and since 1979 it has been included in the United Nations Educational,
Scientific, and Cultural Organisation (UNESCO) World Heritage List. The area is one of the most
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studied karst areas in Croatia, where various scientific studies have been performed since the beginning
of 20th century. During the 1970s, a group from the Rud̄er Bošković Institute joined the scientific
community with the application of isotope methods. A comprehensive overview of the investigation
conducted at the Plitvice Lakes is given in [29]. An overview of the isotope investigations in both
the karst and alluvial aquifers in Croatia [30] at approximately 100 sites in period 1997–2014 presents
an important contribution to regional knowledge of groundwater hydrology. However, the study did
not include the area of the Plitvice Lakes.

The main aim of the investigation of the group from the Rud̄er Bošković Institute was the study
of secondary carbonate precipitation in the form of tufa and lake sediment (e.g., [7,31,32]), which made
the Plitvice Lakes a unique natural phenomenon. The analysis of more than 30 years of records of
various physico-chemical parameters presented geochemical conditions for tufa precipitation in relation
to climate change [33]. Isotope methods were applied also to studies of springs and surface and lake
waters of the area [7,8,34,35]. Precipitation was also occasionally studied [36,37]. Both the isotope
and physico-chemical data at springs showed constant values in different seasons, implying that
the water was of atmospheric (meteoric) origin, of both winter and summer precipitation, and that
the recharge water was well mixed with the existing water in aquifers [7]. The short mean residence
time (MRT) of the water was determined based on the tritium activity concentration [7,8,35] and by
the stable isotopes and additional tracers (helium and neon, chlorofluorocarbons (CFCs), and sulfur
hexafluoride) [10].

Plitvice Lakes, although protected from direct anthropogenic influence, cannot be protected from
global changes such as climate change. Thus, the consideration of the lakes’ hydrology is of most
importance for the system, especially in dry summer periods [38–40]. Water warming was observed
in the surface water and springs of the Crna Rijeka and Bijela Rijeka Rivers [33]. The warming of
the waters did not endanger the tufa precipitation process, since the increase in temperature favors
both the physico-chemical and biological factors of authigenic calcite precipitation. However, an
increase in temperature contributes to the loss of water from the lakes through evaporation [10,38,40].

The aim of this paper is to present various isotope studies of different types of water bodies
(precipitation, groundwater, surface lake and river water, lake water from traps at certain depths) from
the early period of isotope applications (since 1979) to the most recent one (2018) at the Plitvice Lakes
National Park, as an area of unique geomorphological karst formation. Although the Plitvice Lakes are
of great scientific interest worldwide, an overview of the isotopic studies of its water bodies has never
been presented so far.

The results will be compared to the long-term isotope-in-precipitation data at Zagreb [23], as well
as to regional precipitation and groundwater data [30]. The aim of the paper is to evaluate the most
important hydrological inputs to the Plitvice Lakes, detect the possible influence of climate change on
karst groundwater, and eventually show what conclusions could be drawn after a long-term and rather
comprehensive study of a certain area by isotopic techniques.

2. Materials and Methods

2.1. Site Description

The Plitvice Lakes area is located in a continental, mountainous part of west Croatia (Figure 1).
The Plitvice Lakes are a system of 16 lakes developed on carbonate rocks [41] separated by tufa barriers
and interconnected by waterfalls (Figure 2). Geologically, they belong to the External Dinarides
or Dinaric-coastal area, with characteristic carbonate sediments and karstic features. The altitude
difference of the system from the springs to the Korana River is about 300 m (Figure 2b). However,
the recharge area extends to higher mountains (the highest altitude of the national park is 1279 m a.s.l.),
and the average recharge altitude is about 900 m a.s.l. [38].
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Table 1. List of sampling locations, their codes, and the types of water body samples.

Location Code Sample Type Comment

Plitvice Lakes PL precipitation study area
Zagreb Zg precipitation comparison location
Zadar Zd precipitation comparison location

Crna Rijeka River CR groundwater spring
Bijela Rijeka River BR groundwater spring

Plitvica River PR groundwater spring

Matica Ma surface water
Lake Prošćansko LP surface water
Lake Ciginovac LC surface water

Lake Burget LB surface water
Burget—Waterfall BW surface water

Lake Kozjak—Bridges KzB surface water
Korana River—Sastavci KoS surface water
Korana River—Bridge KoB surface water

Lake Kozjak IRB1 lake water water depth 6 m
Lake Kozjak IRB2 lake water water depth 8–10 m

Lake Prošćansko IRB3 lake water water depth 6 m
Lake Gradinsko IRB4 lake water water depth 2 m

Zagreb is also situated in a continental part of Croatia (to the north) (Figure 1). It belongs to
the Pannonian area characterized by its milder relief; predominantly magmatic, clastic, and metamorphic
rocks; and well-developed stream grid [42]. Zadar is located at the Adriatic Sea coast (southern Croatia)
(Figure 1), which belongs to the Dinaric coastal area.

The three selected locations of precipitation sampling differ in the altitude of the meteorological
stations; Plitvice Lakes station is situated at 550 m a.s.l., Zagreb-Grič station at 165 m a.s.l., and Zadar
at 5 m a.s.l. [19,23]. Climatologically, Zagreb and Plitvice Lakes belong to the Cfb climate class,
characterized by a temperate climate without a dry season and with a warm summer, while Zadar
belongs to the Cfa climate class, characterized by a temperate climate without a dry season but with
a hot summer [43,44]. The annual precipitation amounts in Zagreb (measured at the Zagreb-Grič
meteorological station) and Zadar are almost identical: 883 mm and 915 mm for the 1961–1990
period, and 884 mm and 882 mm for the 1991–2004 period, respectively [19]. The annual precipitation
amount is significantly higher at the Plitvice Lakes, where it ranges between 1148 and 2113 mm in
the 1986–2019 period [45]. The monthly precipitation at the Plitvice Lakes is distributed relatively
uniformly throughout the year, with slight maxima observed in spring and autumn and minimum
values in summer months. The annual temperatures range from 8.0 to 10.8 ◦C (1986–2019), with an
average value of 9.2 ± 0.5 ◦C. January is the coldest month (0 ± 2.3 ◦C on average) and July is
the warmest month (18.4 ± 1.1 ◦C) [45]. Snow falls between November and March; however, reduced
snowfall is observed in recent times compared to the older data [33,45].

The water temperature at the springs is very stable throughout the year. Nevertheless, an increase
in the spring temperatures is observed between the 1981–1986 and 2010–2014 periods in both Crna
Rijeka spring (from 7.80 ± 0.15 ◦C to 8.04 ± 0.14 ◦C) and the Bijela Rijeka spring (from 7.46 ± 0.17 ◦C
to 8.14 ± 0.53 ◦C) [33]. The temperature of the surface water downstream ranges from near zero in
winter to 23 ◦C in summer, being on the average about 12 ◦C [33,46]. The lakes can be frozen in
the winter months.
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2.2. Sampling

The monthly precipitation was collected between 1978 and 1984 [36] (not continuously) and from
2003 to 2006 [11,37] at the meteorological station at the Plitvice Lakes (altitude 550 m, International
Atomic Energy Agency (IAEA) and World Meteorological Organization (WMO) station code
1432501) [23].

Groundwater samples were collected at the three main karst springs of the system: Crna Rijeka
River and Bijela Rijeka River (in the south), and the Plitvica River that joins the lake water after
the Great waterfall before the location of Korana River—Sastavci (Figure 2, Table 1).

Surface water was collected as grab samples at 8 locations along the water course for the length
of ~10 km from Matica (the main stream feeding the lakes) to the Korana River (the outflow from
the lake system) (Figure 2, Table 1). Lake water was collected at 4 sediment traps in different lakes:
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IRB1 and IRB2 in Lake Kozjak at water depths of 6 m and 8–10 m, respectively; IRB3 in Lake Prošćansko
at 6 m; and IRB4 in Lake Gradinsko at 2 m water depths (note: the water from sediment traps will
be called “lake water” in the further text). At the same time, the surface water was collected at
nearby locations.

All the sampling locations are listed in Table 1, with the location code and the type of water
body sampled. The amount of tritium activity concentration data, stable isotope data, and period of
sampling is given in Table S1.

2.3. Meteorological and Hydrological Data

The meteorological data consisted of the monthly precipitation amount (P) and the average
monthly air temperature (T). The data were obtained on request from the Croatian Meteorological
and Hydrological Service (CMHS) [45]. The meteorological records for the Plitvice Lakes, Croatia,
exist for three distinctive periods: 1986–1990, 1996–2011, and 2015–2019. The data are not complete for
all years, and in further analyses only the years with all 12 months of data will be used. The minimal
and maximal monthly values within a year were identified, and the mean annual temperature
and total annual precipitation amount were determined. CMHS [45] also provided data on the flow
rates measured at different points in the Plitvice Lakes area for the period since 1982, except for
the 1991–2001 period.

2.4. Measurement

Details on the measurement techniques and their changes were described in [23], and here we
give only a short overview. The stable isotope composition of water samples for the period up to 2003
was measured on a Varian MAT 250 dual inlet isotope ratio mass spectrometer (IRMS) at the Jožef
Stefan Institute in Ljubljana [23,47]. The measurement precision of duplicates was better than ± 0.1%�

for δ18O and ± 1%� for δ2H. The δ2H and δ18O in the surface and lake water samples in the period
2012–2014 were measured at the JOANNEUM, Graz, Austria. The oxygen isotopic composition
was determined on a dual-inlet Finnigan DELTAplus by means of the fully automated equilibration
technique, and the isotopic composition of hydrogen was determined on a continuous flow Finnigan
DELTAplus XP mass spectrometer with a HEKAtech high-temperature oven by the reduction of water
over hot chromium [48]. All the measurements were carried out together with laboratory standards
that were calibrated periodically against international standards, as recommended by the IAEA.
The measurement precision was better than ± 0.1%� for δ18O and ± 1%� for δ2H [47]. The stable isotope
composition of recent samples was determined at the Laboratory for Spectroscopy of the Faculty of
Mining, Geology, and Petroleum Engineering, University of Zagreb, with a Liquid Water Isotope
Analyzer (LWIA-45-EP, Los Gatos Research), and the official LGR working standards were used.
The data were analyzed by the Laboratory Information Management System (LIMS) [49].

The tritium activity concentration (A) in all the samples was determined at the Rud̄er Bošković
Institute in Zagreb, except for some data for the 2003–2006 period [10]. The results are expressed in
tritium units (1 TU = 0.118 Bq l−1) [20,22], which represent one 3H atom in 1018 atoms of hydrogen.
The gas proportional counting technique (GPC) was used up to 2009 [34,50]. The detection limit was
2.5 TU, and the measurement uncertainty was between 2 and 5 TU, depending on the activity
concentration. Since 2008, the technique of the electrolytical enrichment of samples (LSC-EE)
and measurement by an ultra-low-level liquid scintillation counter Quantulus 1220 was used [51].
The detection limit obtained by the LSC-EE technique was 0.5 TU, and the measurement uncertainty
was between 0.5 and 3 TU [51].
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2.5. Data Analysis

The results of the stable isotope analyses are reported as δ-values—i.e., the relative difference in
isotope ratios of the sample and the standard [52]:

δS/R =
RSample

RReference
− 1, (1)

where RSample and RReference stand for the isotope ratio (R = 2H/1H and R = 18O/16O) in the sample
and the reference material (standard), respectively. The δ-values are dimensionless and small,
and therefore they are expressed in per mill (%�) [21,52–54]. The international standard VSMOW
(the Vienna Standard Mean Ocean Water) is used [23,54,55]. The δ2H and δ18O isotopic compositions of
meteoric waters (precipitation and atmospheric water vapor) are strongly correlated, and the relation
in Equation (2) is referred to as the global meteoric water line (GMWL) [53,55–57].

δ2H = 8.0·δ18O + 10 (2)

The GMWL describes the general relation between δ2H and δ18O on a global scale reasonably well.
However, for applications in hydrogeological studies, regional local meteoric water lines (LMWLs),
either long-term or for certain shorter periods, can be more appropriate [23,58,59]. Generally, a LMWL
has the form δ2H = a δ18O + b, where a is the slope and b is the intercept. LMWLs can differ from
the GMWL in terms of both the slope and intercept values, depending on the conditions for forming a
local water source [21,58–60].

The deuterium excess (d-excess, or d) was calculated from the paired monthly data according to
Equation (3) [56]:

d = δ2H − 8 δ18O. (3)

This can be related to the meteorological conditions in the source region from which the water
vapor is obtained [20,21,58–60]. Autumn and winter precipitation originating from the Mediterranean
Sea is characterized by distinctly higher d-excess values (d > 18%�) than precipitation coming from
the Atlantic (d ~ 10%�), reflecting the specific source conditions during water vapor formation [19,59,60].

Correlations between various data points were obtained as ordinary least squares regressions
using standard commercial software. Pearson’s coefficient r is given, as are the number of data pairs
n and the p-values describing the statistical significance of the correlations. The data taken from
the literature usually have the adjacent R2 value reported.

In the special case of calculating the a- and b-values of LMWLs, different methods were applied:
ordinary least squares regression (OLSR), reduced major axis regression (RMA), and major axis least
squares regression (MA, or the orthogonal regression) [61,62]. We calculated precipitation-weighted
regressions (PWLSR, PWRMA, and PWMA) [61–63], which took into account the precipitation amount
in a particular month. The local meteoric water lines are defined as LMWLOLSR, LMWLRMA, LMWLMA,
LMWLPWLSR, LMWLPWRMA, and LMWLPWMA. For calculating the regressions from data sets of at least
36 continuous monthly records, we used the Local Meteoric Water Line Freeware [64]. The software
also calculated an average of the root mean square sum of squared errors (rmSSEav), which is a relative
error that allows for a comparison of different methods; the closer the value of rmSSEav is to 1.0,
the better the regression method is for that set of data [61].

3. Results and Discussion

In this section, we present an analysis of the climatological parameters (temperature T
and precipitation amount P) in the area of the Plitvice Lakes, followed by the isotope composition
(tritium activity concentration, δ2H and δ18O values) of precipitation, groundwater, and finally
the surface and lake waters.
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3.1. Temperature and Precipitation Amount

The monthly mean temperatures in three periods when data are available—1986–1990, 1996–2011,
and 2015–2019—show an increase in temperature in all months (Figure 3a). The increase is statistically
significant at 5% (p < 0.05) in June, July, August, and November, and at 10% (p < 0.10) in April.
When the mean annual temperatures in the 1986–2019 period are compared (Figure 3b) (only years
with data for all 12 months), an increase with the slope of 0.06 ± 0.01 ◦C per year is observed, and n = 16,
r = 0.85, p < 0.05. The mean annual temperature at the Zagreb-Grič station in the 1976–2018 period
showed a significant increase, with a slope of 0.071 ± 0.008 ◦C per year (r = 0.82, p < 0.05) and a
faster increase in the maximal annual temperatures (0.09 ± 0.02 ◦C per year, r = 0.69) [23], which is
in accordance with the observation at the Plitvice Lakes, although the set of meteorological data at
the Plitvice Lakes is not complete. The mean temperatures in the three periods with available data
(Table 2) show a constant increase.
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Table 2. Mean annual temperature and annual precipitation amount in the three periods with available
meteorological data.

Period T (◦C) P (mm)

1986–1990 8.7 ± 0.5 1480 ± 170
1996–2011 9.4 ± 0.5 1580 ± 330
2016–2019 10.4 ± 0.4 1745 ± 60

The annual increases in temperature at both the Zagreb and PL stations can be compared with
the global temperature increase and the temperature increase in the city of Ljubljana in Slovenia.
Ljubljana shows a distinctive air warming trend, particularly in the period 1979–2008, of 0.06 ◦C per
year [65]. Although this period does not include the hottest years on record globally (2014–2018),
with 2016 being the hottest year [66], the value of the increase is consistent with the values obtained
for Zagreb [23] and the Plitvice Lakes. Moreover, all the data are higher than the globally observed
temperature change of 0.018 ◦C per year in the 1980–2020 period [67]. A recent study [68] indicated
that the cities in East Europe, including Ljubljana, will experience air warming at a higher extent than
is observed globally.

The monthly mean precipitation amounts show no significant seasonal variations (Figure 4a),
although a slight minimum is observed in the summer months, and slightly higher values in spring
and autumn. Higher fluctuations within a month are observed in the most recent period (2015–2019)
compared to the older ones (Figure 4a). The annual precipitation amounts increase with a slope of
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10 ± 7 mm per year, r = 0.31 (Figure 4b, Table 2). A wider range in the monthly and annual precipitation
amount values has been observed (Figure 4b, Table 2), as observed also in the data for Zagreb [23].
The long-term (1976–2018) annual precipitation amount at Zagreb showed a slight, statistically not
significant, increase of 1.4 ± 1.7 mm per year. However, the most prominent characteristics of the data
were the higher deviations of the annual values in the period after 2000 from the mean value for
the whole period [23].
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3.2. Isotope Composition of Precipitation

The record of the tritium activity concentration (A) in the precipitation for Plitvice Lakes (Table S2)
is not as complete as the one for Zagreb precipitation [23] (Figure 5). The most complete data for Plitvice
Lakes are recorded from mid-1980 to mid-1982, and later from mid-2003 to mid-2006. Both records
exhibited a seasonal pattern typical of the continental stations of the Northern Hemisphere; the maximal
monthly 3H activity concentrations were observed between May and July, mostly in June, and the lowest
3H activity concentrations were observed in winter. Seasonal variations were superposed on the basic
decreasing trend of the mean annual values. The data for Zagreb show that, after 1996, there is no
significant decrease in the A values of precipitation. The mean value of A in the precipitation at Zagreb
for the 1995–2018 period was 8.5 ± 1.2 TU [23], and in the 2003–2006 period it was 7.7 + 1.8 TU, while
that for the precipitation at Plitvice Lakes in the 2003–2006 period was 7.4 ± 4.5 TU, with the highest
value of 18.8 TU in July 2006 and winter values close to the detection limit of the GPC method.

It is obvious (Figure 5) that the tritium activity concentration in the precipitation at Plitvice Lakes
follows the trend of the precipitation in Zagreb. The linear correlation between the two sets revealed a
line with a slope of (1.02 ± 0.04), n = 62, r = 0.96, and the paired t-test showed that at the 0.05 level,
the two sets of data are not significantly different.

The δ2H values in the Plitvice Lakes precipitation range from −132.4%� (February 2005, monthly
temperature −4.1 ◦C) to −22.3%� in August 2003 (monthly temperature 21.7 ◦C) (Table S2, Figure 6).
The extreme δ18O values, −18.3% and −4.1%�, were observed in the same months. The mean δ2H
and δ18O values in the period from July 2003 to September 2006 are −65.3%� and −9.9%�, respectively.
However, if the 3-year cycle is taken into account (July 2003–June 2006) the corresponding values
are −67.5%� and −10.2%�, respectively. These values can now be compared to the Zagreb values in
the same period 2003–2006, which are −59.7%� and −8.3%� for δ2H and δ18O, respectively, resulting in
difference of 1.9%� in δ18O between Zagreb and the Plitvice Lakes. Differences in the mean annual
temperatures at Zagreb (12.3 ◦C [23]) and the Plitvice Lakes (9.4 ◦C, Table 2) can account for about
1%� difference in the δ18O values, taking into account the temperature gradient of 0.331%� per ◦C [23].
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A difference in altitude of 385 m and the altitude effect of 0.28%� per 100 m altitude difference [19]
would account for a further 1.1%�, giving a total difference of 2.1%� in δ18O, which is in good agreement
with the observed difference, taking into account limited number of isotope data for the Plitvice Lakes.Water 2020, 12, x FOR PEER REVIEW 10 of 27 
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Table 3. Values of slopes (a ± σa) and intercepts (b ± σb) for LMWLs obtained by different regression
methods for precipitation at the Plitvice Lakes, Zadar, and Zagreb. OLSR: ordinary least squares
regression; RMA: reduced major axis regression; MA: major axis least squares regression; PWLSR,
PWRMA, and PWMA: precipitation-weighted respective regressions; n—number of data points
included; rmSSEav—average of the root mean square sum of squared errors [60]. In bold: approaches
that describe LMWL the best.

Location and Period Method n a ± σa b ± σb rmSSEav

Plitvice Lakes OLSR 36 7.85 ± 0.12 12.46 ± 1.23 1.0016
2003–2006 RMA 36 7.88 ± 0.12 12.77 ± 1.20 1.0006

MA 36 7.91 ± 0.12 13.06 ± 1.24 1.0016
PWLSR 36 7.97 ± 0.12 13.82 ± 1.32 1.0000
PWRMA 36 8.00 ± 0.12 14.15 ± 1.32 1.0073
PWMA 36 8.04 ± 0.12 14.47 ± 1.32 1.0162

2003–2005 [10] OLSR 24 7.85 ± 0.12 12.46 ± 1.23 1.0016

Zadar OLSR 36 6.57 ± 0.41 1.55 ± 2.37 1.0262
2003–2004 RMA 36 6.70 ± 0.40 3.76 ± 2.31 1.0100

Data from [19] MA 36 7.43 ± 0.440 6.01 ± 2.52 1.0259
PWLSR 36 7.27 ± 0.50 5.95 ± 3.03 1.0000
PWRMA 36 7.84 ± 0.51 9.23 ± 3.09 1.0525
PWMA 36 8.44 ± 0.54 12.67 ± 3.26 1.1433

Zagreb OLSR 121 7.43 ± 0.11 2.59 ± 0.97 1.0048
1996–2006 RMA 121 7.52 ± 0.10 3.35 ± 0.96 1.0019

[23] MA 121 7.60 ± 0.11 4.08 ± 0.98 1.0047
PWLSR 121 7.38 ± 0.11 2.68 ± 0.95 1.0095

PWRMA 121 7.47 ± 0.11 3.44 ± 0.95 1.0024
PWMA 121 7.56 ± 0.11 4.19 ± 0.96 1.0018

1980–2018 [23] RMA 389 7.74 ± 0.06 5.57 ± 0.55 1.0019

RMWL_cont 2008–2013 [30] OLSR 524 7.4 ± 0.005 4.1 ± 0.5 R = 0.99
RMWL_coast 2008–2013 [30] OLSR 655 7.0 ± 0.08 4.4 ± 0.5 R = 0.96
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Figure 6. Stable isotope composition of the precipitation at the Plitvice Lakes (PL) and the LMWLs
obtained by the reduced major axis regression (RMA) and precipitation-weighted ordinary least squares
regression (PWLSR) methods (Table 3). Local Meteoric Water Lines (LMWLs) for Zagreb (RMA method)
and for Zadar (RMA and PWLSR methods) as well as the Global Meteoric Water Line (GMWL)(δ2H = 8
δ18O + 10) are shown for comparison.

In order to determine the relation between the δ2H and δ18O values in the precipitation of Plitvice
Lakes—i.e., the LMWL of the form δ2H = (a ± σa) δ18O + (b ± σb)—we performed linear regression
by different approaches (Table 3). For comparison, the analysis for the Zagreb precipitation is taken
from [23], while the data for Zadar [19] were analyzed here also by applying the same approaches
(Table 3). The analysis of the stable isotope composition of the Plitvice Lakes precipitation is based
on 36 data pairs from 2003–2006 (Table 1, Table S2). The LMWLs obtained by various correlation
methods for all three precipitation stations (PL, Zg, and Zd) are shown in Table 3. The best results for
the Plitvice Lakes and Zadar precipitation were obtained by the RMA and PWLSR approaches (marked
in bold in Table 3), while the Zagreb precipitation data were best described by the RMA and PWMA
approaches (marked in bold in Table 3). The LMWLs obtained by the best approaches are shown in
Figure 6. The LMWLRMA and LMWLPWLSR for PL have slopes close to slope 8 of the Global Meteoric
Water Line (GMWL), but slightly higher intercepts. The slope of the Zd LMWLs is lower, as well as
the intercepts, caused by evaporation during the summer months [19]. In general, the Plitvice Lakes
LMWL lines lie above the GMWL and LMWLs for Zagreb, and are close to the LMWLs for Zadar
(Figure 6). Several precipitation sampling campaigns of precipitation related to the cave drip water
studies in the karst area of Croatia revealed similar results for LMWLs: sites along the coast at low
altitudes gave values of slope (6.6–6.8) and intercept (3.8–6.7) similar to those obtained for Zadar, while
continental stations gave slopes (7.1 to 7.8) and intercepts (2.3 to 14.5) closer to the ones of Zagreb
and the Plitvice Lakes [25].

The deuterium-excess monthly values at the Plitvice Lakes range from 7.7%� (January 2004) to
17.9%� (January 2005), with the mean value of 14.0 ± 2.2%�. These values are higher than those for
the Zagreb precipitation, where the mean annual d-excess values ranged between 2.3%� and 10.7%�,
and in the 2003–2006 period the mean value was 8.8 ± 0.8%� [23]. The higher d value may be explained
by the observed increase in the d-excess value with the altitude [2,19], but also by the more intense
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influence of the Mediterranean air masses in the area of Plitvice lakes [13,19], which is shown here by
the relative position of the LMWL compared to the GMWL (Figure 6). Similar high d-excess values
(between 11.0 and 18.6) were found for several precipitation sampling locations in the continental karst
area at altitudes between 300 and 1550 m [25].

The deuterium excess values for the Zagreb precipitation were higher in autumn than in
spring. [19,23,69]. The higher d-excess in autumn indicates a higher influence of the Mediterranean
air masses in these months. A similar pattern of the monthly d-excess distribution was observed for
the Plitvice Lakes station (Figure 7), with higher d-excess monthly values observed in the autumn–winter
precipitation (September–December, 15.2 ± 0.4%�). The lowest mean monthly d-excess values were
observed in the summer (July–August, 12.5 ± 1.0%�).Water 2020, 12, x FOR PEER REVIEW 13 of 27 
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Figure 7. Deuterium-excess values in the precipitation at Plitvice Lakes, 2003–2006 monthly data,
and mean monthly values.

It should be mentioned here that the δ18O values from the 1983–1984 period ranged from −7.2%�

to −13.1%�, the δ2H from −46.0%� to −94.4%�, and the d-excess from 8.9%� to 11.5%�, based on only
five data points for the monthly isotope composition of the precipitation at the Plitvice Lakes [7,8].

3.3. Groundwater

The tritium activity concentration in the three main springs of the Plitvice Lakes (Figure 8) shows
a general decrease over the sampling period, but the seasonal variations are much smaller than those
for precipitation (Figure 5), and its values fluctuate around the mean annual A values for precipitation.
The A values in the Bijela Rijeka springs were always higher than in the other two springs.

Due to a constant decrease in the A values and the non-equal number of data for each spring,
we compared the A values in the Crna Rijeka and Bijela Rijeka springs in 1984 and 2015 (Figure 9a).
The lower values in 2015 are not surprising, as well as the higher A values in BR than in CR (by a
factor of about 1.3 in 1984 and 1.4 in 2015). In addition, the relative standard deviations of 7.8% in 1984
and 1.3% in 2015 in A for BR were smaller in both periods than those for CR (17% and 9%, respectively).
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Figure 8. Tritium activity concentration in groundwater (CR, BR, and PR springs), 1978–2016. Data for
the CR and BR springs in the spring–summer of 2015 are shown in the insert.
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Figure 9. (a) Comparison of the tritium activity concentration in the Crna Rijeka (CR) and Bijela Rijeka
(BR) springs in 1984 and 2015; (b) comparison of the δ2H values in the CR, BR, and Plitvica River (PR)
springs in the two periods, 1979–1990 and 2003–2019.

The range in the δ18O in precipitation was 14.2%� and in δ2H it was 110.1%� (Table S2). However,
the ranges in the δ values in groundwater (at springs) were much lower, at less than 1%� in δ18O
and less than 10%� in δ2H (Figure 10). Again, we compared the δ2H values in each spring in the two
different periods, 1979–1990 and 2003–2019 (Figure 9b). It can be noticed that, in each period, all three
springs have similar values, and Bijela Rijeka has the narrowest range in both periods. Interestingly,
all three springs have higher δ2H values in the second period, 2003–2019, by 3–5%�. Earlier, we noticed
an increase in temperature in the area, and this increase in the δ2H values in spring can be attributed to
the increase in temperature of 1.2 to 1.9 ◦C when the two periods are concerned, which is in agreement
with the increase in temperature of 0.06 ◦C per year (Figure 3b).
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Figure 10. The δ2H values in groundwater (CR, BR, and PR springs), 1978–2019. Note the break
between 1991 and 2003.

Although the isotope data presented above and the physico-chemical and carbon isotope data
from previous studies [7,33,46] indicate that the three springs originated from different hydrogeological
units, and in principle different groundwater water lines should be obtained, the δ2H and δ18O data in
the three springs cluster together along the LMWL line for the Plitvice Lakes, and the Groundwater
Water Line (GWL) is determined for all the springs (Figure 11, Table 4):

δ2H = (5.7 ± 0.7) δ18O + (−10 ± 7), n = 31, r = 0.84. (4)
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Table 4. Values of the slopes (a ± σa) and intercepts (b ± σb) for the groundwater line (GWL), surface
water lines (SWL), and lake water lines (LWL).

Type of Line Slope Intercept n r Ref.

GWL, 1983–1984 7.8 8.5 13 [7]
RGWL_karst 7.0 4.2 340 R2 = 0.98 [30]

GWL, 2000–2018 5.7 ± 0.7 −10.1 ± 7.3 31 0.84
SWL, 2003–2005 5.0 ± 0.6 −17.3 ± 5.9 35 0.86 [10]
SWL, 2011–2014 6.3 ± 0.3 −3.4 ± 2.7 87 0.94
LWL, 2011–2014 5.8 ± 0.3 −9.4 ± 3.0 42 0.95

The GWL (Equation (4)) has both a lower slope and a lower intercept than the LMWL (Table 3),
which may be a consequence of water evaporation during its flow in karst aquifers, but also due to a
very narrow range of the δ2H values for BR. The regional groundwater line (RGWL) for the Croatian
karst area, based on 340 karst springs, revealed a slope of 7.0 and an intercept of 4.2 (Table 4) [30].

The physico-chemical parameters in the spring waters (temperature, pH, ion concentrations)
were also very constant throughout year, and all these together indicated a good mixing of water,
uniformly recharged during the year in ground water karst aquifers, and the mean residence time of
several years [7,33,46]. The conclusion was confirmed by applying the tritium activity concentrations
in groundwater/springs for the determination of the Mean Residence Time (MRT) by the exponential
model, which supposed a complete mixing of a new recharge with the already existing water in
the aquifer [6–8,70]. The measured A values for the Zagreb precipitation were used as the input
data. The MRT values of different karst springs were very short [8], ranging between 1 and 4 years
on average. Among the three springs in the Plitvice Lakes area, the Crna Rijeka spring (CR) had
the shortest MRT (2 years) and the Bijela Rijeka spring (BR) had the longest of about 4 years. All these
data corroborate the previously obtained isotope data: the longer the MRT, the smaller the range of
the isotope composition of groundwater (Figure 9).

The extreme climatological characteristics in 1983 and 1984 that enabled the determination of
the relative contributions of base-flow and precipitation in the three karst springs are of special interest
here. Summer and fall/autumn 1983 were extremely warm and dry, so the aquifers were not completely
recharged, and as a result the older water with higher tritium activity concentrations appeared at
the springs (Figure 12a). In the following autumn, abundant precipitation was recorded, as well as a
high amount of snow in the winter months (February and March 1984), and these caused lower tritium
activities in springs in the spring of 1984 (Figure 12a). There are no available P and T data at the Plitvice
Lakes in 1983 and 1984. However, the data for Zagreb could help describe the climatological conditions
in these years. The mean annual temperature in Zagreb in 1983 was 12.1 ◦C, which is higher than that
in 1982 (11.7 ◦C) and in 1984 (10.9 ◦C), and also higher than the average temperature for the 1980–1985
period of 11.2 ± 0.9 ◦C [23]. The precipitation amount in 1983 was 755 mm, which is lower than that
in 1982 (805 mm) and in 1984 (897 mm), and also lower than the mean P in the 1980–1985 period
(843 ± 67 mm) [23]. The flow rates at all three springs in autumn 1983 were very low (the lowest flow
rates in November 1983: 0.36, 0.018, and 0.12 m3 s−1 for CR, BR, and PR, respectively), much lower
than the average flow rates in 1983 (1.327, 0.387, and 0.407 m3 s−1 for CR, BR, and PR, respectively) or
the long-term averages (1.41, 0.466, and 0.668 m3 s−1). At all three springs, the highest flow rates were
measured in April 1984 (9.12, 1.81, and 13.3 m3 s−1 for CR, BR, and PR, respectively) [45] (Figure 12b).
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Figure 12. (a) Tritium activity concentration in the CR, BR, and PR springs in 1983 and 1984, when 
extreme hydro-meteorological conditions appeared; (b) flow rates at the CR, BR, and PR springs 
during 1983–1984. Symbols refer to the maximal flow rates in respective months, and lines represent 
the mean annual flow rates in 1983 and 1984. 

The exponential model was applied for MRT calculation under the conditions of the highest 
and lowest A values in springs, although strictly the exponential model is not valid for non-uniform 
recharge. The calculated MRT from the higher A values in summer was doubled, for CR to 4 years 

Figure 12. (a) Tritium activity concentration in the CR, BR, and PR springs in 1983 and 1984,
when extreme hydro-meteorological conditions appeared; (b) flow rates at the CR, BR, and PR springs
during 1983–1984. Symbols refer to the maximal flow rates in respective months, and lines represent
the mean annual flow rates in 1983 and 1984.

The exponential model was applied for MRT calculation under the conditions of the highest
and lowest A values in springs, although strictly the exponential model is not valid for non-uniform
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recharge. The calculated MRT from the higher A values in summer was doubled, for CR to 4 years
and for BR to 8 years, in comparison with the previously determined 2 and 4 years, respectively.
A significant decline in the tritium activity concentrations in springs was observed after abundant
autumn and winter precipitation with lower tritium activity concentrations [7,8,35]. The lowest A values
were observed at all three springs in April 1984 after intensive snow melting, and the corresponding
MRTs were lower, at ~1 year and ~2 years for CR and BR, respectively. The lowest δ2H values in spring
in April 1984 (Figure 10) reflected the high contribution of winter precipitation. Knowing the A of
precipitation, and the A in springs at the highest values (during the dry period) and at the lowest ones
(April 1984), a fraction of precipitation input in the groundwater was estimated. The fraction of new
(precipitation) water in April 1984 was the highest in CR, at about 90%, and was about 60% in PR,
while BR consisted of approximately equal proportions of old groundwater and new input (50% each).

A similar conclusion about the mixing of quick and slow components in the springs of the Plitvice
Lakes area was obtained by multiple tracers [10,11]. To obtain the MRTs, a multi-tracer lumped
parameter modelling approach was applied using the time series of stable isotopes (2H and 18O)
and tritium with a monthly resolution, as well as noble gases and CFCs. The average MRT of most
springs was less than 5 years [10,11]. Two components of the groundwater flow were distinguished:
the quick flow in the conduit network with an MRT of up to 0.5 years, and the slow component of
the matrix of a fissured-porous aquifer with an MRT of up to 28 years [10,11].

3.4. Surface and Lake Waters

A relatively large set of δ2H data in surface waters in the period 2003–2005 can be found in [10],
but the number of δ18O data is significantly lower (Table S1). The data show seasonal fluctuations,
with maxima in late summer and minima in late winter (Figure 13a). However, the amplitude in
δ2H of less than 10%� is much smaller than the amplitude of the δ2H values in precipitation (about
110%�, Figure 6), and reflects the isotope composition of groundwaters (Figure 6). The maxima are
not observed at all locations at the same time due to the retention of water in the two large lakes
(Lake Prošćansko and Lake Kozjak). The two subsequent locations, LB before Lake Kozjak and KzB
at the end of Lake Kozjak, show a very similar seasonal pattern, with a delay of approximately two
months. The data are almost identical at locations KzB and KoB, although four smaller lakes are
situated in between, indicating a fast flow of water through the small lakes. The average values increase
in the downstream direction (Figure 13b) due to the evaporation of the surface waters, resulting in a
Surface Water Line (SWL) with a lower slope (5.0± 0.6) and intercept (−17± 6) than the PL LMWLPWLSR

line (Table 4).
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Figure 13. (a) δ2H values in the surface waters, 2003–2005, data from [10]; (b) box-plots of δ2H 
values at the same locations. 
Figure 13. (a) δ2H values in the surface waters, 2003–2005, data from [10]; (b) box-plots of δ2H values
at the same locations.
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The more recent sampling campaign (between 2011 and 2014) included also lake water from
sediment traps at certain water depths (Table 1, Figure 14a, Figure S1). No difference between lake water
at selected depths and surface waters at the closest sampling sites is observed when the mean values
are concerned, as can be seen from basic statistics data presented in Table S3. A slight increase in both
the mean δ2H and δ18O values and their seasonal variations is observed for locations along the water
course. The δ18O increased from −10.7 ± 0.1%� at Matica to −10.3 ± 0.2%� at the Korana River–Sastavci
(KoS) (Figure S2). Similarly, the δ2H increased from −71.4 ± 1.1%� at Matica to −69.0 ± 1.7%� at KoS
(Figure 14b). Both the δ2H and δ18O are slightly lower at the final location in this study, KoB, probably
due to some local groundwater input along the Korana River course. There is no significant difference
between the isotope composition of the lake water and the corresponding surface water.
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Figure 14. (a) Seasonal variation in the δ2H of surface and lake waters for 2012–2014. For an explanation
of groups (a,b), see text. (b) Box-plots of δ2H values at the same locations.

All the surface waters (2011–2014) lie on the line δ2H = (6.40 ± 0.26) δ18O–(3.4 ± 2.7), r = 0.94
(Surface Water Line (SWL) 2011–2014, Table 4, Figure 15), and the lake water from traps on the line
δ2H = (5.8 ± 0.3) δ18O–(9.4 ± 3.0), r = 0.95 (Lake Water Line (LWL), Table 4, Figure 15). The SWL line
for 2011–2014 is slightly steeper that the SWL for 2003–2005 (Table 4), which could be explained by
the different locations and differences in climatological conditions (2003 was the warmest year in Zagreb
and at the Plitvice Lakes in those periods [45]). Additionally, there is no significant difference observed
between the SWL and LWL (2011–2014), although both have lower slopes than the LMWLPWLSR

obtained for the PL area (Figure 15). The lower slopes and intercepts of both SWL and LWL relations
compared to the LMWL indicate the influence of the evaporation of surface waters, which is more
pronounced in big lakes.

To justify this conclusion, for all the surface and lake waters from the 2011–2014 sampling campaign
we prepared the relations δ2H vs. δ18O, and the slopes and intercepts are shown in Table S4. A general
decrease in both the slopes and intercepts in the downstream direction is observed. The lowest values
are found in the biggest Lake Kozjak (IRB1, IRB2, and KzB).

The tritium activity concentration was determined in the surface water at the locations Matica
and Lake Kozjak–Bridges in 2015, at the same time as in the groundwaters at the CR and BR springs
(Figure 8, insert). The lowest mean A value was observed at CR (4.3 ± 0.4 TU, n = 5), and the highest at
BR (5.5 ± 0.1 TU, n = 4), and the A values the surface waters were in between them (Ma: 4.8 ± 0.2 TU,
n = 5, KzB: 5.1 ± 0.2, n = 4) (Figure S3), as one would expect after the merging of the Bijela Rijeka River
and the Crna Rijeka River into the Matica River.
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Although the range of δ18O values in the lake water is not large, systematic data can help in
identifying extreme hydrological events, similar to the event in 1983–1984 explained earlier. The relation
between δ18O and water temperature (Figure 16) shows a generally increasing trend, as would be
expected from the general relation of δ18O in precipitation with temperature [23]. The influence of heavy
summer rains and snow melting was observed by a slight increase and decrease, respectively, in the δ18O
values compared to the average (“normal”) values in both the surface and lake waters. The higher
δ18O data points (group a, Figure 16) are the consequences of heavy summer rains. For example,
in May and June 2012 the monthly precipitation amounts of 90 mm and 144 mm were recorded in
Zagreb, with δ18O values of −4.63%� and −5.32%�, respectively [23]. Unfortunately, data neither for
the precipitation amount nor the δ18O in precipitation are available for these months at the PL area.
Nevertheless, the effect of the isotopically heavier precipitation is visible in group a (Figure 16), as well
as in Figure S2. The isotope data of group b (Figure 16) are a consequence of the abundant isotopically
lighter precipitation (rain and snow) during January–March 2013; the amount of precipitation was 148,
105, and 126 mm in January, February, and March 2013, respectively, with the δ18O values of −12.04%�,
−13.73%�, and −11.22%�, respectively (all the data are for Zagreb [23]). The effect of the relatively
lower δ18O and δ2H values was observed in all the surface and lake waters in April 2013 (Figure 14a
and Figure S2).
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4. Conclusions

In this paper, we presented an overview of the application of tritium and stable isotopes of water
(2H, 18O) on the characterization of different water bodies (precipitation, groundwater, surface water,
lake water) of the karst area of the Plitvice Lakes, Croatia. Various studies were performed over a
relatively long time period (1979–2018, with a gap between 1990 and 2001). The available climatological
data (amount of precipitation, air temperature) were also analyzed in a search for the evidence of
climatological changes. The isotope data were compared to the continuous long-term data record for
Zagreb precipitation.

The main conclusion/results of this overview are the following:

• An increase in the mean annual air temperatures of 0.06 ◦C per year is observed for the period
1986–2019. An increase in the annual precipitation amount is also observed, at about 10 mm per year,
and the range of the monthly precipitation amounts is higher in recent years.

• Tritium activity concentration in the Plitvice Lakes precipitation shows characteristics typical
for the northern hemisphere. A good correlation of the tritium activity concentration in
the precipitation at the Plitvice Lakes with that in the Zagreb precipitation is observed, implying
that the tritium data for Zagreb can be safely used for the study of the PL area if/when data do not
exist for the PL precipitation.

• The range of the δ18O in precipitation was about 14%�, and in δ2H it was about 110%�. Various
regression approaches for the determination of LMWL were applied, and the best results were
obtained by the RMA and PWLSR approaches, which gave also the best results for the stations
Zagreb and Zadar. The LMWLPWLSR for PL is δ2H = (7.97 ± 0.12) δ18O + (13.8 ± 1.3), n = 36,
for the period 2003–2006. This LMWL lies in between the LMWL for Zagreb and Zadar.

• The deuterium excess for precipitation at the Plitvice Lakes is higher than that for the Zagreb
precipitation. This is caused by the combination of higher altitude and the more intense influence
of the Mediterranean air masses. The seasonal pattern in d-excess is similar to that in Zagreb,
with higher values in the autumn precipitation due to the higher influence of precipitation of
Mediterranean origin.
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• The ranges in the δ values in groundwaters (at springs) were much narrower than those in
precipitation, at less than 1%� in δ18O and less than 8%� in δ2H, indicating the good mixing of
waters in karst aquifers.

• The higher mean δ values in all three karst springs were observed in recent decades (2003–2019)
than in the older period 1979–1990. It can be attributed to the increase in the mean air temperature.

• Different values of mean residence time (MRT) were obtained for three main springs (between
2 years for Crna Rijeka spring and 4 years for Bijela Rijeka spring). Extreme climatological
and hydrological conditions in 1983–1984 enabled the estimation of the proportions of precipitation
in the spring water: the shorter the MRT, the higher proportions of precipitation.

• The amplitude in the δ2H of surface and lake water is less than 10%�, and < 1.4%� in δ18O, similar
to that in the groundwaters. A slight increase in both the mean δ2H and δ18O values and their
seasonal variations is observed for locations along the water course due to the evaporation of
surface waters. No difference between lake and surface waters is observed if the mean values
are concerned. There is no significant difference observed between the Surface Water Line (SWL)
and Lake Water Line (LWL) (2011–2014), both having lower slopes than the LMWLPWLSR obtained
for the PL area. The stable isotope composition of the surface and lake waters reacts to the extreme
hydrological conditions.

The long-term and comprehensive isotope study of different water bodies in the area of the Plitvice
Lakes can be an example of how the application of water isotopes (2H, 18O, 3H) can help in
the characterization of karst aquifers on the regional and global scales. The presented data have also
shown what could be the topic of future research. A systematic long-term monitoring of water isotopes
should be established, which could, together with the new data from the hydrogeological research,
result in more detailed definition on the groundwater flow through the research area and possibly
differentiate the aquifers from which the Plitvice Lakes receive the water. The usefulness of the tritium
activity concentration in hydrogeological research has become recently of less importance due to
the relatively constant mean value of A in precipitation during the last three decades. However,
the monitoring of A in precipitation at the Plitvice Lakes may help in distinguishing global from local
influences on tritium in precipitation. The further monitoring of the stable isotope data in groundwaters
and surface water in relation to the global and local climate changes can give valuable data for
the protection of waters, as well as tufa and biota in the area. The development of the hydrogeological
conceptual model is also foreseen.
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time of water from springs of the Plitvice Lakes and Una River area. In Advances in Isotope Hydrology
and Its Role in Sustainable Water Resources Management (HIS-2007), Proceedings of a Symposium, Vienna,
Austria, 21–25 May 2007; IAEA-CN-15/45; IAEA: Vienna, Austria, 2007; pp. 327–336. Available online:
https://www-pub.iaea.org/MTCD/publications/PDF/Pub1310_web.pdf (accessed on 5 August 2020).
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17. Parlov, J.; Kovač, Z.; Nakić, Z.; Barešić, J. Using Water Stable Isotopes for Identifying Groundwater Recharge
Sources of the Unconfined Alluvial Zagreb Aquifer (Croatia). Water 2019, 11, 2177. [CrossRef]

18. Madonia, P.; Cangemi, M.; Oliveri, Y.; Germani, C. Hydrogeochemical Characters of Karst Aquifers in Central
Italy and Relationship with Neotectonics. Water 2020, 12, 1926. [CrossRef]
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measurement of water samples using liquid scintillation counter and electrolytical enrichment. In Proceedings
of the 8th Symposium of the Croatian Radiation Protection Association, Krk, Croatia, 13–15 April 2011;
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