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A central tenant in the classification of phases is that boundary conditions cannot affect the bulk
properties of a system. In this work, we show striking, yet puzzling, evidence of a clear violation of
this assumption. We use the prototypical example of an XYZ chain with no external field in a ring
geometry with an odd number of sites and both ferromagnetic and antiferromagnetic interactions.
In such a setting, even at finite sizes, we are able to calculate directly the spontaneous magneti-
zations that are traditionally used as order parameters to characterize the system’s phases. When
ferromagnetic interactions dominate, we recover magnetizations that in the thermodynamic limit
lose any knowledge about the boundary conditions and are in complete agreement with standard
expectations. On the contrary, when the system is governed by antiferromagnetic interactions, the
magnetizations decay algebraically to zero with the system size and are not staggered, despite the
AFM coupling. We term this behavior ferromagnetic mesoscopic magnetization. Hence, in the anti-
ferromagnetic regime, our results show an unexpected dependence of a local, one–spin expectation
values on the boundary conditions, which is in contrast with predictions from the general theory.

Introduction: Landau theory is one of the most im-
pactful constructions of the last century. It allows distin-
guishing between different phases through different local
order parameters, quantities which are finite or vanish
depending on the phase of a system [1–4]. Although the
new century has taught us that this classification is not
complete, because certain phases of quantum matter are
characterized by non–local order (for instance, topologi-
cal [5–13]), Landau theory remains a cornerstone to inter-
pret phases, directly borrowed from classical statistical
mechanics.

Order parameters are supposed to capture macroscopic
properties of phases and thus are believed not to de-
pend on boundary conditions. Indeed, as the boundary
contributions are typically sub–extensive, they should
bring a negligible effect for sufficiently large systems.
Of course, depending on the system and on the type
of interactions, there can be ambiguities on what “suf-
ficiently large system” means, as sometimes boundary
effects can decay just algebraically, even in phases con-
sidered gapped [14, 15]. Thus, the standard prescription
to characterize a phase is to take the thermodynamic
limit before evaluating physical observables [1, 3].

This being said, the effects of boundary conditions
have been a subject of interest in different contexts. For
instance, the Kondo Effect can largely be interpreted
as a boundary effect [16, 17]. . But additional simple
examples that have received a lot of attention imme-
diately come to mind, such as conformal field theories
(CFTs) and integrable models. In the former, confor-
mal invariance poses tight bounds on the bulk proper-
ties and it has been established that boundary condition
modifies the system’s equilibrium behavior [18–20]. In
the latter, different boundary conditions are commonly
employed to study various properties. For instance, the
partition functions of 2D classical systems with domain
wall boundary conditions provide the normalization of

the corresponding quantum wave–functions [21]. But
certain boundary conditions are also known to generate
the phenomenon of the “arctic curve”, which separate
frozen regions (due to boundary conditions) from liquid
ones [22–30].

A particularly thorny issue is represented by frustra-
tion [31, 32]. This term evokes different phenomena to
different ears. While it simply refers to the presence of
interactions promoting incompatible orderings (hence the
impossibility of simultaneously minimizing every term in
the system’s Hamiltonian [33–35]), the effects of frustra-
tion are varied and complex [36–38]. Frustrated systems
are a debated and very active field of research, with a
rich phenomenology (different in many ways from that of
non-frustrated systems) and with unique challenges [37].
Nonetheless, at the heart of every frustrated system one
can find one (or typically many) frustrated loops, which
are the building blocks out of which the different phe-
nomenologies arise [39]. Here, we will concentrate on this
simplest, and original, incarnation of geometrical frus-
tration. This is a classical concept which applies, for
instance, to Ising spins coupled anti–ferromagnetically.
While, locally, there is no problem in satisfying the AFM
interactions, when the spins are arranged in a loop made
of an odd number of sites, at least one bond needs to
display ferromagnetic alignment. In this case, the frus-
tration arises because of an incompatibility between local
interactions and the global structure of the system and
is due to the particular choice of boundary conditions
(namely, periodic with an odd number of sites, which we
term “frustrated boundary conditions”, FBC). Note that,
while for loops with an even number of sites the lowest
energy state is doubly degenerate (given by the two types
of Neel orders), with frustration the degeneracy becomes
extensive because the defect can be placed on any bond
of the ring. We remark that the massive change in the
degeneracy of the lowest energy states by adding a single
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site to the ring cannot be accounted for perturbatively
and is evidence of a non–local effect.

Upon adding quantum interactions to a geometrically
frustrated system, we can generally expect the degener-
acy to be lifted. A perturbative approach characterizes
the resulting ground state as the superposition of a de-
localized excitation on top of the non frustrated ground
state. This picture was recently checked in [15] for its va-
lidity even beyond the perturbative regime and confirmed
using the Entanglement Entropy. The effects of such de-
localized excitation have been studied in the past [40–
42], revealing subtle phenomena, usually dismissed by
the community as peculiar quirks, because these analyses
never addressed local observables, but rather properties
such as the spectral gap.

In this work, we pluck a hole in this canvas by focusing
instead on the order parameter of antiferromagnetic spin
chains and by showing that FBC makes it vanish as the
ring’s length diverges. To the best of our knowledge, this
is the first example of a case in which boundary condi-
tions affect local observables (in thermodynamic limit)
and it is in evident contrast with standard general argu-
ments recapped above. Nonetheless, we should remark
that evidence pointing toward a vanishing of the sponta-
neous magnetization with FBC was already reported, for
instance through the two–point function [14, 15], but in
previous works, the importance of finite–size effects was
harder to estimate. We should also stress that our result
is consistent with the single–particle picture mentioned
above, as the traveling excitation destroys local order by
flipping every spin in its motion. At the moment, we do
not know how to reconcile our findings with the tradi-
tional paradigm, although we can speculate that, being
geometrical frustration a non–local effect, some sort of
topological mechanism is at play so that we propose to
call the interplay between quantum interaction and FBC
with the term “topological frustration”. Our evidence is
inescapable and should compel the community to under-
stand what makes the spin chains we consider different
and so sensitive to the boundary conditions, so to un-
derstand what class of models share the same or similar
behaviors and how do they fit in the standard paradigm.

After introducing the systems under consideration
(namely, a class of spin– 1

2 chains with a global Z2 sym-
metry), we will recap the two complementary approaches
to extract the order parameter in the symmetry broken
phase in absence of frustration and then apply the same
techniques to the case with FBC. Doing so, we bench-
mark our technique, showing that it yields the expected
results in the former case, while it shows that frustration
suppresses the order parameter to zero. In our work, we
consider both models where we can perform exact analyt-
ical calculations to prove our claims and generalizations
in which we have to resort to numerical diagonalization.
We will show that for non–frustrated systems the order
parameter grows to saturation exponentially with grow-

ing total system size, while it decreases toward zero al-
gebraically with FBC.
The spin chains and generalities: We consider an

anisotropic spin– 1
2 chain with Hamiltonian

H=

N∑
j=1

cos δ
(
cosφσxj σ

x
j+1+sinφσyj σ

y
j+1

)
−sin δσzjσ

z
j+1(1)

where σαj , with α = x, y, z, are Pauli operators and N is
the number of lattice sites, which we henceforth set to be
odd N = 2M + 1. Crucially, we apply periodic boundary
conditions σαj+N = σαj .

The model is expected to exhibit a quantum phase
transition every time two of the couplings are, in mag-
nitude, equal and greater than the third [43] (in that
case, the model becomes equivalent to a critical XXZ
chain [44]). Dualities are connecting different rearrange-
ments of the couplings along the x, y, and z direc-
tions [43]. Moreover, to avoid additional effects (and
degeneracies) that will be the subject of subsequent
works [45, 46], we will allow only one antiferromagnetic
(AFM) coupling (namely, along the x direction), letting
the other two to favor a ferromagnetic alignment. We
thus limit the range of the anisotropy parameters such
that φ ∈ [−π/2, 0] and δ ∈ [0, π/2], so that the phase
transition is at φ = −π/4 (for tan δ < 1/

√
2) and sep-

arates two phases characterized by a two–fold degener-
ate ground state. In particular, for φ ∈ [−π/2,−π/4)
the phase favors a ferromagnetic alignment along the y
direction (yFM), while for φ ∈ (−π/4, 0] the dominant
interaction is AFM along the x direction (xAFM) and
thus topologically frustrated.

With no external field, all three parity operators along
the three axes Πα ≡

⊗N
j=1 σ

α
j commute with the XYZ

Hamiltonian in eq. (1) ([H,Πα]). Moreover, since we
are considering systems made by an odd number of sites
N = 2M + 1, the Πα do not commute with one another,
but rather anti–commute

{
Πα,Πβ

}
= 2δα,β and actually

fulfill a SU(2) algebra. This structure implies that every
state is exactly degenerate an even number of times, also
on a finite chain. If |Ψ〉 is an eigenstate, say, of Πz, then
Πx |Ψ〉, that differs from Πy |Ψ〉 by a global phase factor,
is also an eigenstate of the Hamiltonian with opposite
z–parity but with the same energy.

Applying an external magnetic field h along, say, the
z–direction leaves only Πz to commute with the Hamilto-
nian, thus restoring the original Z2 symmetry the model
is known for and breaking the exact finite-size degeneracy
between the states [44, 48]. Nonetheless, up to a critical
value of h, it is known that the induced energy split is
exponentially small in the system size [47] and thus that
the degeneracy is restored in the thermodynamic limit,
representing one of the simplest, and most cited, exam-
ples of spontaneous symmetry breaking (SSB) [48]. To
simplify things, let us set δ = 0, so that eq. (1) describes
an anisotropic XY chain [44, 49]. For |h| < 1 we are in
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the SSB phase. This means that, although a ground state
with definite z–parities necessarily has zero expectation
value concerning σxj and σyj , in the thermodynamic limit
the degeneracy allows to select a ground state which is
a superposition of different z–parities, which can thus
display a spontaneous magnetization in the x or y direc-
tion. In the yFM phase we expect the order parameter
my ≡ 〈σyj 〉 to be finite, while in the xAFM the non–
vanishing order parameter should be the staggered mag-
netization mx ≡ (−1)j 〈σxj 〉.
The ferromagnetic case: Let us now turn back to the

system in eq. (1) and focus on the ferromagnetic region
φ ∈ [−π/2,−π/4). The (quasi–)long–range order repre-
sented by the order parameter can be extracted in two
ways: either from the two–point function or by selecting
a suitable superposition of states at finite sizes and then
following their magnetization toward the thermodynamic
limit. Traditionally, the former is most suitable for ana-
lytical techniques, while the latter is easily amenable to
numerical and experimental approaches.

The former takes advantage of the cluster decomposi-
tion property

lim
r→∞

〈σαj σαj+r〉 − 〈σαj 〉 〈σαj+r〉 = 0, (2)

to extract the order parameter from the large distance
behavior of the system’s two–point correlators. The XY
chain is exactly mappable into a system of free fermions
and thus the fundamental two–point functions can be
expressed as the determinant of a Toeplitz matrix, whose
asymptotic behavior can be evaluated analytically in the
asymptotic limit [50]:

〈σxj σxj+r〉
r→∞' − 1

4π
√

1− cot2 φ

cotr φ

r3
+ . . . , (3)

〈σyj σ
y
j+r〉

r→∞'
√

1− cot2 φ
[
1+ 1

2πr2
(− cotφ)r+1

1+cotφ +. . .
]
, (4)

〈σzjσzj+r〉
r→∞' − (−1)r

2π

cotr φ

r2
+ . . . . (5)

From these and eq. (2) we can extract that, in this phase,
in the thermodynamic limit, the order parameters take
value:

mx = mz = 0, my =
(
1− cot2 φ

)1/4
. (6)

where mα ≡ 〈σzj 〉.
However, on an odd–length chain at h = 0, exploit-

ing the symmetries that we have already illustrated,
we can provide a direct way to evaluate the different
magnetizations even in finite systems. In fact, if |gz〉
is one of the degenerate ground states with definite z–
parity which can be constructed in terms of the Bogoli-
uobov fermions [44], we can generate a ground state with
definite x–parity (y–parity) as |gx〉 ≡ 1√

2
(1 + Πx) |gz〉,

(|gy〉 ≡ 1√
2

(1 + Πy) |gz〉). All these states have a van-

ishing magnetization in the orthogonal directions while

along their own axes we have

〈gx|σxj |gx〉 = 〈gz|σxj Πx |gz〉 = 〈gz| Π̃x
j |gz〉

〈gy|σyj |gy〉 = 〈gz|σyjΠy |gz〉 = 〈gz| Π̃y
j |gz〉 (7)

where Π̃α
j ≡

⊗
l 6=j σ

α
l with α running between x and y.

These states are the analytical continuation at h = 0 of
the zero–temperature “thermal” ground state that spon-
taneously breaks the Z2 symmetry.

Note that in this way, we turn the calculation of the
expectation value of an operator defined on a single–spin
with respect to a ground state with a mixed z–parity into
that of a string made by an even number of spin operators
on a definite z–parity state, which is a standard problem.
After a Jordan-Wigner Transformation [44, 51], the RHS
of eq. (7) can be written again as the determinant of a
Toeplitz matrix, whose asymptotic behavior can be stud-
ied analytically, similarly to what has been done in [50].
This novel “trick” can be understood as originating from
the fact that, at zero external fields, the chain eq. (1)
has particle/hole duality and that, on a chain with an
odd number of sites, this symmetry relates states with
different parities. The result of such analysis reproduces
eq. (6), proving the consistency of the two methods of
evaluation for the order parameters. More details on this
direct approach.

While for δ = 0 we can evaluate the magnetizations
using the analytical “trick”, for δ 6= 0 we have to resort
to numerical solutions. In Fig. 1 we present some typical
results for the finite size magnetizations for the XY and
XYZ chain, showing a quick exponential decay in N of
mx and mz to zero and a fast saturation of my (note that
each plotted magnetization mα is calculated with respect
to the corresponding ground state |gα〉).
The frustrated case: We now turn to the case with

(φ ∈ (−π/4, 0]), where the boundary conditions induce
topological frustration. The effect of frustration has been
recently studied in detail in Refs. [14, 15, 52]. For δ = 0,
the model can be solved through the same steps used in
the traditional cases and exactly mapped into a system
of free fermions. In the ferromagnetic phase, the degen-
eracy between the different parity states is due to the
presence of a single negative energy mode (only in one of
the parity sectors), whose occupation lowers the energy
of those states. With frustrations, the negative energy
mode moves into the other parity sector and, because of
the parity selection rules, cannot be excited alone. Hence,
the effect of frustration is that the allowed lowest energy
states for each parity are not the absolute lowest energy
states that could be constructed, was not for the parity
requirement (see the supplementary material for addi-
tional details).

The two degenerate ground states thus carry the signa-
ture of a single delocalized excitation and lie at the bot-
tom of a band of states in which this excitation moves
with different momenta (with an approximate Galilean
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Figure 1. Magnetizations along the three axis (in absolute
value) as a function of the chain length for the yFM phase at
φ = −1.32. The upper panel dots represent the data gathered
settings δ = 0 and using the “trick” discussed in the text to
evaluate the magnetizations as determinants of N−1

2
× N−1

2
matrices, while the dots in the lower one are obtained taking
δ = .3 and using exact numerical diagonalization. Regardless
the value of δ, my quickly saturates to its asymptotic finite
value, while mx and mz decay to zero exponentially fast, as
shown by the best fit lines (plots presented in logarithmic
scale).

dispersion relation). Hence, another effect of frustration
is to close the gap that would otherwise exist.

Let us then repeat the extraction of the order parame-
ters in the xAFM phase, following the same procedure we
followed for yFM. The asymptotic behavior of the fun-
damental two point functions of the XY model can be
evaluated with an educated fit driven by the analytical
results of Dong et al. in Ref. [14] (see the supplementary
materials for details):

〈σxj σxj+r〉
r→∞' (−1)r

√
1− tan2 φ

(
1− 2r

N

)
×

×
[
1− (−1)r

2π

tanφ

1 + tanφ

tanr φ

r2
+ . . .

]
, (8)

〈σyj σ
y
j+r〉

r→∞' (−1)r√
1−tan2 φ

tanr φ

r3
×

×
[
1+

2πr

N

4

√
1−tan2 φ

(− tanφ)−
r
2

r−
3
2

+. . .

]
,(9)

〈σzjσzj+r〉
r→∞' − (−1)r

r

(
tanr φ

2πr
+

4

N
√

2π
(− tanφ)

r
2

)
(10)

While they imply quite clearly that my = mz = 0 (in ac-
cordance to expectations), the extraction of mx is more
subtle: using the standard prescription of taking N →∞
first, one would get mx =

(
1− tan2 φ

)1/4
. However, one
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Figure 2. Magnetizations along the three axis (in absolute
value) as a function of the chain length for the xAFM/MFM
phase at φ = −0.25. The upper panel dots represent the data
gathered settings δ = 0 using the “trick” discussed in the text
to evaluate the magnetizations as determinants of N−1

2
× N−1

2
matrices, while the dots in the lower one are obtained taking
δ = .3 and using exact numerical diagonalization. Regardless
of the value of δ, we see how all magnetizations decay just
algebraically to zero, as shown by the best fit lines (plots
presented in log–log–scale).

could argue [15] that a better procedure would be to eval-
uate eq. (8) at antipodal points r ∼ N/2 to minimize the
correlations and then take the thermodynamic limit. In

this way, one would get mx = 1
N

(
1− tan2 φ

)1/4 N→∞→ 0.

It is thus important that we can directly access the
single spin magnetization using eq. (7). Once more,
the expectation values can be cast as determinants of
Toeplitz matrices, whose behaviors are depicted in the
upper panel of Fig. 2: all magnetizations are character-
ized by an algebraic decay to zero with the system size.

Several elements are surprising in these results. The
most evident one is that FBC kills the magnetization in
the x–direction, that on an open or even-length chain
would be finite, thus seemingly contradicting the inde-
pendence of Landau construction from boundary con-
ditions. Note that a finite spontaneous magnetization
can be measured in any finite system, although it de-
creases algebraically with the system size, a phenomenon
we term “mesoscopic magnetization”. Quite surprisingly,
however, this finite–size spontaneous magnetization is
not staggered, but rather ferromagnetic–looking (thus, we
will call the AFM phase with FBC, a mesoscopic ferro-
magnetic phase, MFM). In hindsight, we could have ex-
pected this, since a staggered magnetization would have
not been compatible with PBC with an odd number of
sites (note that this is not a problem for the 2–point func-
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tion, since its range naturally does not extend beyond one
periodicity).

This semi–analytical outcomes are corroborated by ex-
act numerical diagonalization results, which allow us to
extended our analysis to the XYZ (δ 6= 0) ring, (see the
lower panel of Fig. 2). In Fig. 3 we plot the behavior
of the magnetizations as a function of φ for δ = 0.3 for
several chain lengths N : while in the yFM phase there
is little dependence on N as the saturation values are
reached quickly, in the MFM phase we observe the slow,
algebraic decay toward zero of the order parameters.

It is rather surprising that a finite chain, unable to sus-
tain AFM order, would nonetheless generate a ferromag-
netic spontaneous magnetization and that in any finite
system, a phase with a dominant interaction along the
x direction would show the weakest spontaneous magne-
tization in that direction, with my being the strongest
one (once more, these magnetization refers to different
states |gα〉). Finally, we remark that FBC also seems
to somewhat spoil the cluster decomposition, since the
non–staggered mesoscopic magnetization we find is not
compatible with (8), although both of them vanish in the
thermodynamic limit.

Conclusions: We have presented a comparative study
of the ferromagnetic and AFM frustrated case for a XYZ
chain, showing that, contrary to expectations, the bound-
ary conditions are able to destroy local order. We have
done so, by realizing that, with no external field, we can
exploit particle/hole duality to construct an exact ground
state at finite sizes that break the Z2 symmetry. For the
XY chain, we can express the one-point function as the
determinant of a Toeplitz matrix and evaluate it analyt-
ically, while for the interacting cases we can numerically
diagonalize the model and calculate the expectation val-
ues. We benchmarked these procedures on a ferromag-
netic phase with FBC to show that they reproduce the
expected results eq. (6), while in an AFM phase the mag-
netizations, while finite in a finite chain, decay toward
zero algebraically in the thermodynamic limit. Further-
more, despite a dominant AFM interaction, no magne-
tization shows a staggered behavior: we thus term this
pseudo–phase generated by FBC a mesoscopic ferromag-
netic phase (MFM).

While we worked at zero fields to have an exact de-
generacy on any finite chain and thus to have perfect
control of finite size effects, we expect our results to re-
main valid also with a finite external field (at least up
to some threshold). While the exact degeneracy is lifted
by a finite field, the energy difference between the low-
est energy states in the two parity sectors closes in the
thermodynamic limit. However, while this closing is usu-
ally exponentially fast, with frustration is only algebraic
and accompanied by a similar behavior with respect of
other low energy states [14, 15]. This different behavior is
mirrored by the two-point function (8), which can be ex-
tended with a qualitative difference for finite h and indi-
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Figure 3. Plot of the magnetizations as a function of φ for
δ = .3 for several system sizes. The yFM phase (φ < −π/4)
shows a fast approach to saturation, while for the frustrated
case the decay toward zero is algebraically slow.

cates a vanishing order parameter when evaluated at an-
tipodal points [15]. The extension of our analysis to finite
h will be the subject of future work, but the existence of
a MFM phase would be experimentally detectable, with
signatures like those in Fig. 3 easily measurable. The rea-
son for which it has not been seen until now lies in the
(surely not extreme) difficulty in realizing a ring geome-
try and in the expectation that every boundary condition
would yield the same result, an expectation that our work
put into question.

Nonetheless, we should remark that our results are
fully consistent with a straightforward perturbative cal-
culation starting from the classical frustrated Ising chain,
as we show in the supplementary material. Our original
contribution is to have found an exact way to approach
the thermodynamic limit and to calculate the order pa-
rameter. Moreover, with our techniques, we can prove
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that our result is resilient against a coupling defect break-
ing translational invariance [53], which further ensures
the experimental observability of our claim.

Our results are surprising because they seemingly con-
tradict the assumption that boundary conditions cannot
influence the bulk behavior of a system and therefore cer-
tainly not destroy local order. We do not know at the
moment how to reconcile this apparent paradox and we
invite the community to help us in looking for a general
explanation. For the moment we can contribute with a
couple of observations. The first is that FBC provides
a non–local contribution to the system since frustration
arises from an incompatibility between local and global
order. Thus, it is possible that the problem we con-
sider can have a topological origin that defies the Landau
paradigm. Another, somewhat more technical angle, is
that in our class of models, the single spin magnetization
is dual to a non–local correlator, see eq. (7). From this
point of view, it is not surprising that a non–local func-
tion is sensitive to the boundary conditions. Nonetheless,
we have to admit that it seems to us rather paradoxical
to consider single–site magnetizations as non–local quan-
tities.
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Supplementary Material:

The Hamiltonian of the topologically frustrated XY
chain (δ = 0) in a zero magnetic field can be written as

H = cosφ

N∑
j=1

σxj σ
x
j+1 + sinφ

N∑
j=1

σyj σ
y
j+1 , (11)

where φ ∈ [−π/2, 0] is the parameter that allows us to
change the relative weight of the ferromagnetic and an-
tiferromagnetic Hamiltonian terms, σαj are the Pauli op-
erators, N = 2M + 1 is the odd number of lattice sites in
the system and we assume periodic boundary conditions,
i.e. σαN+j = σαj .

Due to the absence of any external field, the Hamilto-
nian in eq. (11) commutes with all the three parity op-

erators Πα =
⊗N

j=1 σ
α
j . Because we are considering only

systems made by an odd number of spins N , such parity
operators do not commute with each other. Indeed we

have [
Πα,Πβ

]
= ı εα,β,γ2(−1)

N−1
2 Πγ , (12)

where εα,β,γ is the Levi–Civita symbol. The existence
of several operators that commute with the Hamiltonian
but do not commute with each other induces a degener-
acy in all the eigenstates of the Hamiltonian. We have
that to any eigenvalue is associated a 2d–times degen-
erate manifold (d positive integer). For any of the par-
ity operators Πα, each eigenstate manifold will contain
d eigenstates belonging to the even sector and d to the
odd one. This is also valid for the ground state manifold
which always has a minimum size equal to two. As we
shall see, this property plays a fundamental role in the
analytical evaluation of magnetizations in the different
spin directions.
Solution of the topologically frustrated XY model: It

is possible to diagonalize analytically the spin model in
eq. (11) employing the well–known techniques based on
a Jordan–Wigner transformation that maps spins into
spinless fermions. Once we have obtained a spinless
fermionic model, a Fourier transformation followed by
a Bogoliubov rotation allows us to separate it in N non–
interacting fermionic problems that can be analytically
treated [44]. At the end of this process, the Hamiltonian
in eq. (11) can be written as

H =
1 + Πz

2
H+ 1 + Πz

2
+

1−Πz

2
H−

1−Πz

2
, (13)

where

H± =
∑
q∈Γ±

ε(q)

(
a†qaq −

1

2

)
, (14)

and

ε(q) = 2
∣∣cosφ eı2q + sinφ

∣∣ , q 6= 0, π ,

ε(0) = −ε(π) = 2(cosφ+ sinφ) , (15)

with the two sets of momenta given, respectively, by
Γ− = {2πk/N} and Γ+ = {2π(k + 1

2 )/N} with k run-
ning on all integers between 0 and N − 1. It is worth to
note that the momenta 0 ∈ Γ− and π ∈ Γ+ (if N is even
π ∈ Γ−), are different from the others because a) they do
not have a corresponding opposite momentum; b) their
energies can be negative.

From eqs. (13–15) it is easy to determine the ground
states of the system starting from the vacuum of Bo-
goliubov fermions in the two sectors (|0±〉) and tak-
ing into account the negative energy modes. When
−π/2 < φ < −π/4 the 0–mode has negative energy while
the π–mode a positive one. Therefore, the state with
the minimum energy in the odd sector (a†0 |0−〉) has an
odd number of fermions while the one in the even sector
is characterized by an even number of fermions (|0+〉).
Having, both states the right parity and the same en-
ergy they represent a basis for the two-fold degenerate
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ground states manifold of the Hamiltonian, that is sepa-
rated, from the rest of the eigenstates, by a finite energy
gap that does not close as N increases.

On the contrary, when −π/4 < φ < 0 the energy of the
0–mode becomes negative while the one of the π–mode
becomes positive. As a consequence, the state with the
minimum energy in the even sector (a†π |0+〉) has now an
odd number of fermions while the one in the odd sector
(|0−〉) has an even one. Therefore they cannot represent
physical states of our system, as they violate the par-
ity constraint of their relative sectors. On the contrary,
the ground states can be recovered from such states with
the minimum energy by adding the lightest possible ex-
citation. Because we are considering φ ∈ [−π/2, 0], the
smallest excitations are associated with the π and the 0–
mode respectively for the even and the odd sector. There-
fore in the region φ ∈ [−π/2, 0] the two ground states of
the Hamiltonian that are also eigenstates of Πz are

|g+〉 = |0+〉 even sector

|g−〉 = a†0 |0−〉 odd sector (16)

Note that, although the expressions in eq. (16) describe
the ground states in both the xFM and xAFM phases,
they in fact characterize quite different structures. For
instance, in the frustrated case, since the GS is obtained
as the lightest excitation on top of the lowest possible
energy state (as just explained), adding different excita-
tions provides states with an almost continuum of energy,
which becomes a dense, gapless band in the thermody-
namic limit [14, 52].

Moreover, also the different correlations and magneti-
zations in the two phases show different behaviors. This
can be traced back to the fact that, in the two phases,
the Majorana correlation functions are different. Indeed,
defining the Majorana fermionic operators as

Aj ≡

(
j−1⊗
l=1

σzl

)
σxj , Bj ≡

(
j−1⊗
l=1

σzl

)
σyj , (17)

and exploiting Wick’s Theorem, all non–vanishing spin
correlation functions on ground states that are also eigen-
states of Πz can be evaluated in terms of the two–body
Majorana correlation functions:

〈g±|Aj+rAj |g±〉 = 〈g±|Bj+rBj |g±〉 = δr0 (18)

〈g±|Aj+rBj |g±〉 =
ı

N

∑
q∈Γ±

ei2θqe−iqr +
2ı

N
f±(r) .

In eqs. (18) θq stands for the Bogoliubov angle satisfying

eı2θq = eıq
cosφ+ sinφ e−ı2q

| cosφ+ sinφ e−ı2q|
, (19)

while the function f±(r) is zero for −π/2 < φ < −π/4,
while for −π/4 < φ < 0 we have f+(r) = (−1)r and
f−(r) = −1.

Two–spins correlation function along the x and y di-
rections: Let us now move to analyze the behavior of
the two–spin correlation functions along x and y direc-
tions as a function of r. Following the path traced in
Ref. [49, 50], it is easy to express such correlations in
terms of determinants of a r× r Toeplitz matrices. More
precisely said Cxx(r) the two–spin correlation function
along x at distance r, i.e. Cxx(r) = 〈g±|σxj σxj+r |g±〉, we
have that it is given by

Cxx(r) = (−ı)r∆(ρxx) (20)

where ∆(ρxx) is the determinant of the matrix ρxx

ρxx≡


G(1) G(0) G(−1) · · · G(1− r)
G(2) G(1) G(0) · · · G(2− r)
G(3) G(2) G(1) · · · G(3− r)

...
...

...
...

G(r) G(r−1) G(r−2) · · · G(1)

 , (21)

where G(r) ≡ −ı 〈g±|Aj+rBj |g±〉. At the same time the
correlation function along y at distance r is given by

Cyy(r) = 〈g±|σyj σ
y
j+r |g

±〉 = (ı)r∆(ρyy) (22)

where ∆(ρyy) is the determinant of the matrix ρyy

ρyy≡


G(−1) G(0) G(1) · · · G(r − 1)
G(−2) G(−1) G(0) · · · G(r − 2)
G(−3) G(−2) G(−1) · · · G(r − 3)

...
...

...
...

G(−r) G(1−r) G(2−r) · · · G(−1)

 (23)

As we anticipated, the behavior of these two correla-
tion functions is very different in the two phases of our
system. In the ferromagnetic phase, the asymptotic be-
havior is well known from the literature: Cxx(r) expo-
nentially decays to zero, while Cyy(r) saturates exponen-
tially fast to the square of the y-magnetization, that is
to
√

1− cot2 φ.
In the xAFM phase, the evaluation of the asymptotic

behaviors of the Toeplitz determinants is more compli-
cated. In the end, we have used an educated fit of the nu-
merical data, driven by the results presented in Ref. [14].
Magnetizations along the x and y directions In this

section, we show how it is possible to exploit the par-
ticular symmetries of the model in eq. (11), to evaluate,
for any odd N , the magnetization along the x and the y
directions. For sake of simplicity, we limit ourselves to
illustrate the method for the magnetization along the x
direction and we report the results for both at the end.

As we have seen, in the region that we are analyzing,
the ground state manifold has always dimension equal to
two. Therefore the set made by |g+〉 and |g−〉 represents
a good basis for the ground state manifold and, hence,
all its elements can be written as a linear combination
of |g+〉 and |g−〉. But in our case, we can say more. As
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we have already shown, the Hamiltonian in eq. (11) com-
mutes not only with Πz but also with Πx and Πy. This
fact implies that the state Πx |g+〉 is also a ground state
of the system. On the other hand, taking into account
the anticommutation rules of the spin operators on the
same site and the fact that we are considering a system
with odd N , it is easy to see that, while |g+〉 is in the
even sector of Πz, Πx |g+〉 lives in the odd one. As a
consequence we have that |g−〉 = Πx |g+〉, up to a global
multiplicative phase factor, and hence the generic ground
state can be written as

|g〉 =
[

cos(θ) + sin(θ)eıψΠx
]
|g+〉 , (24)

or equivalently using Πy, since |g−〉 and Πy |g+〉 only
differ by a global phase factor.

Let us now choose a generic site j of the system. For
the generic ground state in eq. (24) the magnetization
along x on the j-th spin is

mx(j)=〈g|σxj |g〉 (25)

=cos2(θ) 〈g+|σxj |g+〉+ sin2(θ) 〈g+|Πxσxj Πx |g+〉

+
1

2
sin(2θ)

[
eıψ〈g+|σxj Πx|g+〉+e−ıψ〈g+|Πxσxj |g+〉

]
Being both |g+〉 and Πx |g+〉 eigenstates of Πz, the two
expectation values 〈g+|σxj |g+〉 and 〈g+|Πxσxj Πx |g+〉
vanish. On the contrary, because the number of spins
in the system is odd, the operator Πxσxj = σxj Πx, that

is equal to Π̃x
j =

⊗
l 6=j σ

x
l , is an operator that commutes

with Πz and hence can have a non–vanishing expectation
value on |g+〉. Therefore we have

mx(j)=cos(ψ) sin(2θ)〈g+|Π̃x
j |g+〉 . (26)

which reaches the maximum for ψ = 0 and θ = π
4 , that

is, the state on which we focus in the letter.

Hence, to evaluate the magnetization, we only need
to determine the expectation value 〈g+|Π̃x

j |g+〉. Since

[Π̃x
j ,Π

z] = 0, the magnetization can be easily evaluated

exploiting the representation of Π̃x
j in terms of the Majo-

rana operators in eq. (17) and Wick’s theorem. Without
loss of generality, let us set j = 1. From the definition of
the Majorana operators in eq. (17), the operator Π̃x

j can
be written as

Π̃x
1 = (−ı)

N−1
2

N−1
2⊗
l=1

B2lA2l+1 , (27)

and, exploiting Wick’s theorem, we obtain that the ex-
pectation value 〈g+|Π̃x

1 |g+〉 is

〈g+|Π̃x
1 |g+〉 = (−1)

N−1
2 ∆(ρx) , (28)

where ∆(ρx) is the determinant of the N−1
2 × N−1

2

Toeplitz matrix ρx that reads

ρx=


G(1) G(−1) G(−3) · · · G(4−N)
G(3) G(1) G(−1) · · · G(6−N)
G(5) G(3) G(1) · · · G(8−N)

...
...

...
...

G(N−2) G(N−4) G(N−6) · · · G(1)

 (29)

with G(r) ≡ −ı 〈g+|Aj+rBj |g+〉
On the other hand, the magnetization along y on the

spin 1 becomes

my(1)=cos(ψ) sin(2θ)〈g+|Π̃y
1 |g+〉 . (30)

where Π̃y
1 =

⊗N
l=2 σ

y
l . Also in this case the maximum of

the magnetization is equal to 〈g+|Π̃y
1 |g+〉, which in turn

can be written as

〈g+|Π̃y
1 |g+〉 = (−1)

N−1
2 ∆(ρy) , (31)

where ∆(ρy) is the determinant of the N−1
2 × N−1

2
Toeplitz matrix ρy

ρy=


G(−1) G(−3) G(−5) · · · G(2−N)
G(1) G(−1) G(−3) · · · G(4−N)
G(3) G(1) G(−1) · · · G(6−N)

...
...

...
...

G(N−4) G(N−6) G(N−6) · · · G(−1)

 (32)

Magnetizations in the ferromagnetic phase If we are
in the yFM phase we can obtain analytically the expres-
sions of the magnetizations in the thermodynamic limit.
Indeed, we have that in eq. (18) the function f+(r) = 0
and hence G(r) becomes

G(r) =
1

N

∑
q∈Γ+

cosφ+ sinφ e−ı2q

| cosφ+ sinφ e−ı2q|
e−ıq(r−1) , (33)

and for large N we can approximate the sum with an
integral, hence obtaining

G(r) =
1

2π

∫ 2π

0

cosφ+ sinφ e−ı2q

| cosφ+ sinφ e−ı2q|
e−ıq(r−1)dq . (34)

To evaluate the determinants ∆(ρx,y) of the Toeplitz
matrices in eq. (29) eq. (32) we introduce

Dn ≡ G(2n− 1) = − 1

2π

∫ 2π

0

1 + cotφ eıq

|1 + cotφ eıq|
e−ıqndq ,

(35)
and rewrite them as

∆r(ρx) =

∣∣∣∣∣∣∣∣∣
D1 D0 . . . D2−r
D2 D1 . . . D3−r
...

...
. . .

...
Dr Dr−1 . . . D1

∣∣∣∣∣∣∣∣∣ , r =
N − 1

2
, (36)
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and

∆r(ρy) =

∣∣∣∣∣∣∣∣∣
D0 D−1 . . . D1−r
D1 D0 . . . D2−r
...

...
. . .

...
Dr−1 Dr−2 . . . D0

∣∣∣∣∣∣∣∣∣ , r =
N − 1

2
. (37)

The latter can be evaluated straightforwardly for large
N using Szegö theorem [54], yielding, to leading order,

〈g+| Π̄y
1 |g+〉 = (1− cot2 φ)

1
4 . (38)

The magnetization in the x direction, instead, is more
complicated, because the generating function of the cor-
responding Toeplitz matrix has a non–zero winding num-
ber. To overcome this problem, we proceed as in Ref. [55]
and notice that the determinant in eq. (36) can be seen as
the minor of ∆r+1(ρy) in eq. (37) obtained removing the
first row and the last column. To calculate this minor,
we use Cramer’s rule and consider the following linear
problem:

r∑
m=0

Dn−m xm = δn,0 , n = 0, . . . , r . (39)

Then,

∆r(ρx) = (−1)rxr∆r+1(ρy) , (40)

where ∆r+1(ρy) is a Toeplitz determinant satisfying the
conditions for Szegö theorem. For large r, xr can be
evaluated following the standard Wiener–Hopf procedure
as in Ref. [55]. The result is

xr
r�1∼ − 1

2πı

∮
ξr−1 dξ√

(1 + cotφ ξ)(1 + cotφ ξ−1)

= − 1

π

∫ − cotφ

0

xr−1/2 dx√
(1 + cotφ x)(− cotφ− x)

,(41)

where we deformed the contour of integration around the
branch cut. Up to now, everything has been similar to
the standard calculations usually performed in the XY
model, but now we have to proceed anew because, un-
like the generating functions for the two–point correlators
which have two pairs of poles and zero when extended to
the complex plane, the generating function (symbol) in
eq. (35) we have for the magnetization only has one mov-
able pole/zero.

Fortunately, the integral in eq. (41) can be expressed
in terms of hypergeometric functions:

xr
r�1∼ − (−1)r√

π

cotr φ√
1− cot2 φ

Γ

(
r +

1

2

)
/Γ (r + 1)×

×2F1

(
1

2
,

1

2
; r + 1;

tan2 φ

tan2 φ− 1

)
, (42)

whose asymptotic behavior gives to leading order

xr
r�1∼ − (−1)r√

πr

cotr φ√
1− cot2 φ

, (43)

since the 2F1 tends to 1 for large r. Combining eq. (43)
with eq. (40) and eq. (38) we arrive at

∆r(ρx) =
(−1)r cotr φ

(1− cot2 φ)
1
4
√
πr

, (44)

which means that the magnetization in the x direction
decays exponentially with the system size:

〈g+| Π̄x
1 |g+〉 N�1∼ cot

N−1
2 φ

(1− cot2 φ)
1
4

√
π(N − 1)/2

N→∞∼ 0 . (45)

Note that, despite the x interaction being AFM, the cor-
responding magnetization is not staggered.

Finally, the magnetization in the z–direction is just
equal to the Majorana two–point function in eq. (18) and
thus its exponential decay to zero arises as to the differ-
ence between the finite sum in eq. (18) and vanishing of
the corresponding integral in the N →∞ limit.
Magnetizations in the frustrated phase If we are in

the xAFM phase we have that in eq. (18) the function
f+(r) 6= 0 and hence the generating function G(r) be-
comes

G(r)=
2

N
(−1)r +

1

N

∑
q∈Γ+

cosφ+ sinφ e−ı2q

| cosφ+ sinφ e−ı2q|
e−ıq(r−1) ,

(46)
in which, for large N , we can approximate the sum with
an integral, hence obtaining

G(r) =
2

N
(−1)r+

1

2π

∫ 2π

0

cosφ+ sinφ e−ı2q

| cosφ+ sinφ e−ı2q|
e−ıq(r−1)dq .

(47)
This generating function reflects the fact that, effectively,
the ground states of the frustrated case have a single,
delocalized excitation. Thus, in this phase, we write the
Toeplitz determinants in eq. (29) and eq. (32) as

∆r(ρx) =

∣∣∣∣∣∣∣∣∣
D̃0 D̃−1 . . . D̃1−r
D̃1 D̃0 . . . D̃2−r
...

...
. . .

...

D̃r−1 D̃r−2 . . . D̃0

∣∣∣∣∣∣∣∣∣ , r =
N − 1

2
, (48)

and

∆r(ρy) =

∣∣∣∣∣∣∣∣∣
D̃−1 D̃−2 . . . D̃−r
D̃0 D̃−1 . . . D̃1−r
...

...
. . .

...

D̃r−2 D̃r−3 . . . D̃−1

∣∣∣∣∣∣∣∣∣ , r =
N − 1

2
, (49)

where

D̃n ≡ G(2n+ 1) = − 2

N
(−1)n +

1

2π

∫ 2π

0

D (eıq) e−ıqndq,

(50)
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with

D (eıq) ≡ 1 + tanφ e−ıq

|1 + tanφ e−ıq|
. (51)

Note that, compared to the definitions employed for the
yFM phase, we changed the definition of the generating
function by shifting its Fourier series, so that eq. (51)
has zero winding number. The analytical evaluation of
the asymptotic behavior of Toeplitz determinants with
symbols of the type eq. (50) is complicated and thus we
simply calculated them numerically, with results shown
in the main text.

Finally, the magnetization in the z direction is simply
equal to ± 2

N .
Perturbative analysis of the frustrated phase A fur-

ther insight into low-energy behavior of the model in the
frustrated phase and an analytical check of our numerical
results on magnetization can be obtained through a per-
turbative analysis close to the classical Ising point φ = 0.
This analysis is similar to the one of Ref. [56]. At the
classical point it is trivial to diagonalize the model, in
the basis where σxj are diagonal. The ground states are
simply the kink states |j〉 and Πz |j〉, for j = 1, 2, ..., N ,
where the state

|j〉 = |..., 1,−1, 1, 1,−1, 1, ....〉 (52)

has a ferromagnetic bond between the sites j and j + 1,
with σxj = σxj+1 = 1, and antiferromagnetic bonds be-
tween other adjacent sites, while the state Πz |j〉, with
all spins reversed, has σxj = σxj+1 = −1 and all the other
bonds antiferromagnetic. The ground state energy equals
−N + 2. The states |j〉 and Πz |j〉 belong to the parity
sectors Πx = (−1)(N−1)/2 and Πx = −(−1)(N−1)/2 re-
spectively.

For φ < 0, the σyj σ
y
j+1 terms kick in, splitting the 2N -

fold ground state degeneracy. The corresponding eigen-
states and the correction to the energies are found by
diagonalizing the perturbation in the ground state sub-
space (other states are separated by a finite gap and thus
can be neglected at this level). Since the matrix elements
of the perturbation between two different Πx sectors van-
ish (because the σyj σ

y
j+1 terms still commute with all the

parities Πα), we can focus on each sector separately. In
the Πx = (−1)(N−1)/2 sector they read

〈l|
∑

j = 1Nσyj σ
y
j+1 |k〉 = δ

(N)
l,k−2 + δ

(N)
l,k+2 , (53)

where the equalities in the Kronecker delta δ(N) are un-
derstood modulo N . It follows that the perturbation in
the subspace spanned by |j〉, j = 1, ..., N , is a cyclic ma-
trix

N∑
j=1

σyj σ
y
j+1 =


c0 cN−1 . . . c2 c1
c1 c0 . . . c3 c2
...

...
. . .

...
...

cN−2 cN−1 . . . c0 cN−1

cN−1 cN−2 . . . c1 c0

 , (54)

with

cj = δj,2 + δj,N−2 (55)

Diagonalizing the cyclic matrix [57] we find the energies

Eq = −(N − 2) cosφ+ 2 sinφ cos(2q), q ∈ Γ−, (56)

corresponding to the states

|sq〉 =
1√
N

N∑
j=1

eiq |j〉 (57)

Clearly, the states with opposite Πx corresponding to
the same energies can be constructed as Πz |sq〉. The
energies of the exact solution reduce, of course, to those
of perturbative calculation when φ is close to π/2.

The energy is minimized by q = 0 and thus the
ground states are translationally invariant superpositions
of kinks, |sq=0〉 =

∑N
j=1 |j〉 /

√
N and Πz |sq=0〉. By look-

ing at the parities we can conclude that the states eq. (16)
from the exact solution, in the limit φ → 0−, are equal
(up to a phase factor) to

|g+〉 = 1√
2
(1 + Πz) |sq=0〉 (58)

|g−〉 = 1√
2
(1−Πz) |sq=0〉 (59)

Having identified these ground states, we can compute
analytically the magnetization and the two-point corre-
lator in the generic ground state eq. (24). For this task
we use the relation

〈l|σxj |l〉 =

{
(−1)l+j+1, l < j

(−1)l+j , l ≥ j
(60)

that follows from the definition of the kink states.
The two-point correlator Cxx(r) = 〈g|σxj σxj+r |g〉 has

the same value on whole ground state subspace and is,
in particular, equal to

〈sq=0|σxj σxj+r |sq=0〉 =
1

N

N∑
l=1

〈l|σxj |l〉 〈l|σxj+r |l〉 (61)

Using eq. (60) and summing up we find

Cxx(r) = (−1)r
(

1− 2r

N

)
, (62)

in agreement with the numerical result obtained from the
exact solution.

The magnetization is determined by the element

〈sq=0|σxj |sq=0〉 =
1

N

N∑
l=1

〈l|σxj |l〉 =
1

N
. (63)

Using its value it follows that in the generic ground state
eq. (24) the magnetization is equal to

mx(j) = cos(ψ) sin(2θ)
1

N
(64)
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The magnetization is ferromagnetic and its value agrees
with the one obtained numerically from the exact solu-
tion.
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