
Physics of metabolic organization
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Abstract

We review the most comprehensive metabolic theory of life existing to date. A special focus is
given to the thermodynamic roots of this theory and to implications that the laws of physics—such
as the conservation of mass and energy—have on all life. Both the theoretical foundations and
biological applications are covered. Hitherto, the foundations were more accessible to physicists
or mathematicians, and the applications to biologists, causing a dichotomy in what always should
have been a single body of work. To bridge the gap between the two aspects of the same theory,
we (i) adhere to the theoretical formalism, (ii) try to minimize the amount of information that a
reader needs to process, but also (iii) invoke examples from biology to motivate the introduction of
new concepts and to justify the assumptions made, and (iv) show how the careful formalism of the
general theory enables modular, self-consistent extensions that capture important features of the
species and the problem in question. Perhaps the most difficult among the introduced concepts, the
utilization (or mobilization) energy flow, is given particular attention in the form of an original and
considerably simplified derivation. Specific examples illustrate a range of possible applications—
from energy budgets of individual organisms, to population dynamics, to ecotoxicology.
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1. Introduction1

The study of life and living organisms invariably crosses the borders of a single scientific disci-2

pline, inspiring interdisciplinary research and providing opportunities for important contributions3

from mathematics [1, 2], chemistry [3, 4], and physics [5, 6]. Dynamic Energy Budget (DEB)4

theory [7, 8] provides such an opportunity [9]. DEB is a formal metabolic theory of life [10] that5

represents an attempt to build a physics-like foundation for biological research [10, 11]. Its ap-6

peal originates from an unusual level of generalization and formalism attained through the guiding7

principle that the mechanisms responsible for running metabolism apply universally to the organ-8

isms of all species [8, 10, 11]. Identifying and formulating such universal mechanisms is largely9

in the domain of biology, but insights from other sciences, particularly thermodynamics [6, 12],10

have proven invaluable.11

The interdisciplinary approach taken in the development of DEB theory, though successful,12

comes at a price—it introduces an abstract layer that forms a high barrier to entry [13]. In par-13

ticular, the thermodynamic foundations of DEB theory remain disproportionately more accessible14

to physicists and mathematicians than biologists. Conversely, real-world applications in the form15

of individual-based bioenergetic models are mostly targeted at biologists, and as a consequence16

appear less palatable to physicists or mathematicians. Securing consistency across all disciplines,17

thus enabling each of the groups to focus on their interests without fear of incongruity between18

disciplines, is one of the chief strengths of DEB theory.19

Having identified a dichotomy between the two aspects of the same theoretical body, we act20

to show in a manner accessible to a wide audience that the thermodynamic foundations and the21

resulting bioenergetic models integrate seamlessly with each other. We make a step forward from22

the existing literature by proving that the concept of energy (weak) homeostasis [14] can be math-23

ematically formulated and derived from the common assumptions of DEB theory. To avoid being24

overly abstract and to supply readers with a practical guide to DEB-based modeling, we describe25

the standard DEB model in great detail, demonstrate its dynamics, and illustrate several applica-26

tions. First, however, we turn to motivational considerations that list some reasons for the method-27

ology adopted herein.28

2. Occam’s razor: The need for simplicity29

The need for simplicity when mathematically describing living organisms has been acknowl-30

edged for at least 75 years [6]. Our aim is to take metabolism as a set of life-sustaining, enzyme-31

catalyzed chemical reactions occurring inside a living organism and capture the important aspects32

of the dynamics driven by these reactions in a systematic way. Because the number of possible33

reactions is vast, modeling all of them simultaneously would require an overwhelming level of34

detail and a vast number of potentially indeterminable parameters. We have little choice but to35

resort to (a high degree of) abstraction in an attempt to bring the complexity of the model down to36

a manageable level. Several properties of organisms encourage the pursuit of such an abstraction.37

We list some of these properties.38

Limiting the amount of information. Out of approximately 90 naturally occurring elements, only39

11 are ubiquitous in living organisms [15]. Out of these 11 elements, the main four (C, H, O,40
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and N) comprise about 99% of living biomass. A modeler, therefore, hardly needs to keep track41

of a large number of mass balances to capture the effects of many important metabolic processes.42

For example, mathematical expressions describing various components of the overall metabolism,43

such as growth or specific dynamic action, emerge from considerations that involve no more than44

the mass balances of the four main elements [13].45

Focusing on aggregate (macrochemical) effects. In metabolic networks (i.e., graph-theoretical46

representations of metabolism), nodes corresponding to metabolites have an approximately scale-47

free degree distribution [16, 17]. The importance of this observation is twofold. First, metabolic48

networks are robust to random disruptions because most nodes (metabolites) are of small-degree49

and cannot cause a major loss of connectivity. Second, exceptionally high-degree nodes (hub50

metabolites) do exist and their presence is essential to the proper functioning of metabolic net-51

works. In the modeling context, therefore, focusing on the aggregate (macrochemical) effects of52

hub metabolites may result in useful simplifications.53

Cell similarity. The metabolic similarity of cells is mostly independent of organism size. The54

context here is much broader than the life cycle of a single individual. Once a successful metabolic55

pathway evolves, it can be preserved by evolution to serve very similar functions in various organs56

or even the same function in different species. A famous example is the cyclic AMP pathway57

used in cell communication by all animals investigated, including bacteria and other unicelluar58

organisms [18]. This pathway produces a cell-wide biochemical change that can last long after59

the outside stimuli stopped. Some responses triggered by the activated cyclic AMP pathway are60

(i) lipolysis in adipose tissue [18, 19], (ii) cardiac muscle contraction at an increased rate [18, 20],61

and (iii) the formation of short-term memory not only in humans, but also in such distant genera62

as Aplysia and Drosophila [21].63

The simplifications and generalizations utilized by DEB may seem stretched, but are effective,64

and have been successfully applied for quite a while—even in clinical applications [6]. For exam-65

ple, the method of indirect calorimetry uses oxygen (O2) consumption and carbon dioxide (CO2)66

production to infer the net heat production of a whole organism [22]. The method thus makes67

a tremendous leap of distilling the complexities of such in vivo reactions as glucose, lipid, and68

protein oxidation, lipogenesis, and gluconeogenesis into the exchange of two gases with the envi-69

ronment. Nevertheless, the method is not only theoretically sound (see Section 5.3), but also used70

in numerous clinical contexts [23]. The need for simplicity, aside from these practical aspects, has71

epistemological and evolutionary origins that are discussed in the rest of this section.72

2.1. The epistemological Occam’s razor: The scientific reasons for simplicity73

A simpler mathematical description of living organisms, i.e., the one with a lower number of74

variables and parameters, process-based and consistent with observed data, is better because its75

predictions are easier to test in practice [11]. Two aspects of this statement have been the subject76

of many discussions in the DEB-related literature.77

The first aspect is the number of parameters and how they are estimated. If the axiomatic basis78

of a theory leads to models with many parameters that need to be estimated in applications, there79

is a danger of the curse of dimensionality—a situation in which the dimensionality of the model’s80

4



parameter space is so high that any practically attainable amount of data is sparse. In this situation,81

it becomes virtually impossible to obtain parameter estimates with reasonable statistical signifi-82

cance. The curse of dimensionality is a common theme in numerical analysis, combinatorics,83

machine learning, and data mining [24, 25, 26, 27, 28], but similar issues have been raised in rela-84

tion to mechanistic models in climatology [29], ecology [30], and epidemiology [31, 32] to name a85

few examples. Given these circumstances, DEB theory has perhaps unsurprisingly been criticized86

for introducing too many parameters—nine in the standard DEB model to capture ontogeny (see87

Appendix A), and additional two to capture feeding on food of known density in the environment,88

and egg production. In a subsequent bid to make the standard model widely applicable, DEB89

theorists have devoted a lot of attention to parameter estimability [33, 34, 35, 36, 37, 38]; today,90

provisional parameter estimates can be calculated from existing sets using inter-species scaling91

arguments.92

The second important aspect is the ability to generate testable predictions. Without doing so,93

theoretical work fails the criterion of falsifiability, and may be regarded as unscientific [39]. By94

generating predictions, however, we are able to refute any theory that is in irreparable disagreement95

with empirical data. The importance of this ability cannot be overstated as exemplified by the96

current state of affairs in the relationship between two physically sound metabolic theories in97

ecology: DEB, and Metabolic Theory of Ecology (MTE). MTE [40] has roots in nutrient supply98

network modeling [41] and aims to explain empirical observations that metabolic rates scale with99

species body size according to a 3/4 power law across some 20 orders of magnitude (see Section 7).100

The problem is that both DEB and MTE can serve as starting points to derive the same scaling101

equation, but do so for entirely different reasons [42]. Is it possible that both theories offer a valid102

basis for studying the fundamentals of biological form and function? This and similar questions103

have been at the heart of delicate discussions in the literature [43, 44], with the ultimate goal of104

finding empirical tests that may resolve the current conundrum [45, 46].105

2.2. The evolutionary Occam’s razor: evolutionary reasons for simplicity106

Metabolic systems, ranging from a single pathway to the whole organism, are characterized107

by reaction rates and metabolite concentrations determined by a set of drivers such as enzymes,108

temperature, and externally available metabolites [47]. These drivers are subject to change due109

to environmental stimuli or stresses, followed by a regulated transition of the system to a new110

metabolic state. Without such a regulation, living organisms faced with the environmental vari-111

ability would have to constantly adapt their physiology. Because the complexity of continuous112

physiological adaptations to a changing environment would be overwhelming, the evolutionary113

selection favored regulated internal conditions such that environmental changes are effectively fil-114

tered out and control of the metabolism is maintained. During evolution, therefore, organisms were115

able to develop several forms of maintaining the constant internal conditions commonly referred116

to as homeostasis [11].117

2.3. Strong and weak homeostasis in DEB organisms118

Metabolic systems are often found in a steady state with constant metabolite concentrations [6].119

Even if the system is growing, the homeostatic regulation strives to maintain these concentrations120
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constant [47]. Consequently, the chemical composition of organisms should be remarkably stable.121

Does the evidence support such a conclusion?122

Cyprinid fishes, for instance, exhibit only small differences in whole fish C, N, and P chem-123

istry [48], and the variation of all chemical variables is lower in the fish than in the guts contents.124

These observations support the idea that the guts contents are driven by ingested material, whereas125

whole fish chemistry undergoes a homeostatic regulation observable even at the elemental level.126

Stoichiometric homeostasis is, in fact, so ubiquitous that it represents the key aspect for a branch127

of ecology called ecological stoichiometry [15]. This branch attributes much of the first-order128

commonality in the chemistry of living organisms to the homeostatic regulation. The same line129

of research also emphasizes second-order differences between species or functional groups. In130

general, autotrophs are more affected by the characteristics of their environment and exhibit less131

homeostatic regulation than heterotrophs [49]. The elemental content in heterotrophs largely re-132

flects the differences in the allocation to major biochemical components.133

To enable a simultaneous description of metabolism in mass, energy, and entropy terms, we134

need to assume that an organism is divided into conceptual compartments (generalized com-135

pounds) that have constant chemical composition and constant thermodynamic properties; this136

is referred to in DEB as strong homeostasis. Occam’s razor urges us to minimize the number of137

generalized compounds that we consider while evidence supporting variability in stoichiometry138

suggests that one generalized compound is not enough. Typically, two generalized compounds are139

enough to describe stoichiometric variability in heterotrophs, while three or more are needed for140

autotrophs.141

Empirical evidence suggests that the degree of homeostatic regulation in organismal stoichiom-142

etry is related to food conditions [50]. Under abundant food or constant food density, organisms143

are able to achieve a “perfect” homeostatic regulation, i.e., constant stoichiometry. This constancy144

is in DEB theory referred to as weak homeostasis. Because weak homeostasis is equivalent to145

a form of energy homeostasis (see Section 6.4), we use the terms energy and weak homeostasis146

interchangeably.147

Thus, the organism’s generalized compounds have constant chemical and thermodynamic148

properties regardless of (fluctuations in) available food. When the food is constant, the biomass as149

a whole also has constant chemical and thermodynamic properties.150

2.4. Thermal homeostasis in DEB organisms151

Endotherms are organisms that are able to maintain a constant body temperature (e.g., birds152

and mammals). The thermal homeostasis allows these species more independence from the envi-153

ronment because all metabolic rates depend on temperature [11]. This form of homeostasis comes154

with an additional energetic cost outside the thermoneutral zone (environmental conditions that155

do not require an increased metabolism to keep body temperature constant). Thermal homeostasis156

allows also for a higher body temperature, i.e., endotherms have higher internal body temperature157

when compared to ectotherms. Thus, endotherms eat, grow, and reproduce faster.158

3. State variables159

DEB theory is by no means limited to heterotrophic aerobes, yet we shall do so hereafter for160

clarity of exposition. The reason for imposing this limitation is that, as already mentioned, au-161
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totrophs exhibit less homeostatic regulation, thus generally requiring a more complex description162

in terms of three rather than two generalized compounds. Moreover, obligate aerobic metabolism163

characterizes almost all eukaryotic organisms, including plants, animals, and fungi.164

3.1. State variables: material vs. non-material; requiring maintenance vs. not requiring mainte-165

nance166

Biology provides a myriad of empirical evidence, often presented in a stylized form, that can167

serve as a foundation for theoretical developments [10, 11]. Among the empirical evidence that168

shapes the very core of DEB theory are observations made on organisms in the embryonic stage169

or during starvation. Embryos grow without food intake from outside sources, and most organ-170

isms survive short-term and sometimes even long-term starvation [51, 52, 53, 54, 55]. These facts171

suggest that the organic compounds necessary to run metabolic processes are provisioned for cer-172

tain life stages or periods of suboptimal food availability. Hence, we assume that biomass in a173

heterotrophic organism is divided into two conceptual compartments (generalized compounds):174

reserve and structure. To distinguish reserve from structure in an intuitive manner, the former may175

be visualized as all tissue that does not require maintenance and is metabolizable as a source of176

energy. The latter consists of tissues that must be continuously maintained and are necessary for177

the survival of the organism.178

Focusing on heterotrophic aerobes, DEB organisms are assumed to ingest food from the en-179

vironment and egest feces back into the environment. Further interaction with the surroundings180

is assumed to occur through the exchange of four inorganic compounds: carbon dioxide (CO2),181

water (H2O), oxygen (O2), and nitrogenous waste (predominantly ammonia (NH3) in aquatic and182

uric acid (C5H4N4O3) or urea (CH4N2O) in terrestrial environments) [56]. Food is first assimilated183

(converted) into reserve. In the process, oxygen is taken from the environment while carbon diox-184

ide, water, and ammonia are excreted as metabolites. Inefficiencies of the digestive system result185

in the egestion of organic matter in the form of feces. Growth is the conversion of reserve into186

structure in the presence of oxygen, with the already mentioned metabolites being released into187

the environment. Finally, energy from reserve is dissipated on processes that are necessary for the188

organism to stay alive and mature. The setting we just described—i.e., the basic assumptions on189

how heterotrophic aerobes function (Fig. 1)—reveal the natural candidates for capturing the state190

of a living organism. Therefore, we next briefly introduce the state variables of the DEB theory.191

Material state variables. Based on the above considerations, four flows of organic compounds are192

readily identifiable. These flows are food ingestion, J̇X; assimilation into reserve, J̇E; growth, J̇V ;193

and feces egestion, J̇P. Each flow quantifies the rate of change of one variable:194

• Flow J̇X governs the amount of ingested food (MX), dMX
dt = J̇X.195

• Flow J̇E governs the amount of amassed reserve (ME), dME
dt = J̇E.196

• Flow J̇V governs the growth of structure (MV), dMV
dt = J̇V .197

• Flow J̇P governs the amount of egested feces (MP), dMP
dt = J̇P.198
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Figure 1: Schematic representation of the basic metabolic processes in DEB organisms (heterotrophic aerobes).
Typically, food is assimilated into reserve in the presence of oxygen during which carbon dioxide, water, and ni-
trogenous waste are excreted into the environment. Reserve is used to power (i) growth, and (ii) various dissipative
metabolic processes, where the latter keep the organism alive and allow it to mature. The egestion of feces occurs in
parallel with assimilation due to the inefficiencies of digestive tracts.

Of the four listed variables, only two (ME and MV) represent the state of the organism. The other199

two are of interest when assessing the feed conversion ratios of the form MX
ME+MV

or the digestibil-200

ity coefficients of the form 1 − MP
MX

. Such quantities are often used to measure performance in201

commercial activities such as aquaculture production [57, 58].202

Non-material state variables. Along the life-cycle, organisms acquire new metabolic capabilities.203

For a typical multicellular organism, there is no feeding in the embryonic stage, the first feeding204

occurs at the onset of the juvenile stage, and reproductive events follow a transition to the adult205

stage. The material state-variables introduced so far are not able to fully describe the metabolism206

of organisms because stage transitions are only indirectly related to organismal growth; some207

species—the so-called indeterminate growers [59]—continue growing well into the adult stage,208

while others do not enter the adult stage well after growth has ceased. Furthermore, age and size209

at maturity depend on food availability [60, 61, 62]; and if food availability in the environment is210

poor, organisms may completely fail to enter the adult stage [63].211

To account for these observations, additional state variable that quantifies the level of maturity212

(i.e., development) of the organism is needed. The level of maturity, MH, increases with investment213

into maturation from zero at the initial embryo stage to Mb
H, the threshold that signals birth and214

triggers the feeding behavior, to Mp
H, the threshold that signals puberty and triggers allocation to215

reproduction. The maturity thresholds (Mb
H and Mp

H) are species-dependent parameters.216

Notation. The chosen notation greatly facilitates understanding of DEB equations. Here, we lay217

out a set of notation rules that should, after an initial period of adaptation, be helpful in recognizing218

at a glance the type of quantity and its units.219

Amounts: Capital M, E, and V denote the amount of a substance (units: C-mol for organic and220

mol for inorganic compounds), energy (unit: J), and volume (units: cm3 or m3), respectively.221

Flows: All quantities represented symbolically by the capital J are the flows of substances (units:222

C-mol d−1 for organic and mol d−1 for inorganic compounds), while quantities symbolized223

by the small p are flows of energy (unit: J d−1). A common phrase used to designate the224

flows of both substances and energy is metabolic flows or rates.225
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Dimensions: A dot on top of these symbols indicates the dimension of time−1. Occasional appear-226

ance of curly braces indicates the dimension of area−1. All symbols except V may appear in227

square braces indicating the dimension of volume−1.228

Indices for organic compounds: A set of indices for organic compounds is {X,V, E, P}, repre-229

senting food, structure, reserve, and feces, respectively. In line with these definitions we230

can, for example, denote the amount of reserve by ME, the energy fixed into structure as EV ,231

and the energy invested into maturity by EH. Symbols EE and VV for energy contained in232

reserve and volume occupied by structure are usually written without indices.233

Indices for inorganic compounds: An analogous set of indices for inorganic compounds is {C,H,O,N},234

representing carbon dioxide, water, molecular oxygen, and nitrogenous waste, respectively.235

Indices for basic powers: The three basic powers—assimilation, growth, and dissipation—are236

represented by the set of indices {A,G,D}. When considering flows of substances, indices237

for basic powers are sometimes combined with indices for organic or inorganic compounds238

to produce quantities such as J̇EA, indicating the flow of mass into reserve due to assimila-239

tion. In some equations, a star, ∗, is used as a wildcard index.240

Yields: Lowercase letter y with two compound indices is reserved for yields when one compound241

is transformed into another. For example, yVE denotes the yield of structure on reserve and242

arises from mass-balance considerations because these two compartments have a different243

chemical composition.244

4. Transformations245

Occam’s razor and empirical evidence lead us to the definition of two material state variables246

in heterotrophic organisms: reserve and structure. The metabolic processes mentioned in the pre-247

vious section (i.e., assimilation, growth, and dissipation) represent macrochemical transformations248

between the generalized compounds of reserve and structure. These transformations are summa-249

rized in Table 1.250

Table 1: The three types of macrochemical reactions for a heterotrophic aerobe.

Assimilation
yXECHnHX OnOX NnNX + c11O2 → CHnHE OnOE NnNE + c12CO2 + c13H2O + c14NH3 +

yPECHnHPOnOPNnNP

Growth CHnHE OnOE NnNE + c21O2 → yVECHnHV OnOV NnNV + c22CO2 + c23H2O + c24NH3

Dissipation CHnHE OnOE NnNE + c31O2 → c32CO2 + c33H2O + c34NH3

Symbols n∗X , n∗V , n∗E , n∗P: chemical indices for food, structure, reserve, and feces
yXE , yPE , yVE: yields (food on reserve, feces on reserve, structure on reserve)
ci j, i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4}: stoichiometric coefficients

Section 2.3 introduces the concept of strong homeostasis. We are now in a position to provide251

a more technical definition of this concept and examine some basic implications thereof. Referring252
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to chemical indices in Table 1, the strong homeostasis assumption states that chemical indices and253

other thermodynamic properties for reserve and structure remain constant regardless of chemical254

indices for food. An immediate consequence is that acquiring an additional C-mole of, say, reserve255

always increases the internal energy of reserve by the same amount of joules. This amount is256

expressed in terms of molar enthalpy—a quantity representing the change in the internal energy of257

a system for every C-mole (mole) of an organic (inorganic) compound added to that system, i.e.,258

h̄∗ ≡ ∂U∗/∂M∗. Molar entropy, s̄∗ ≡ ∂S ∗/∂M∗, is another similarly defined quantity that remains259

constant under the strong homeostasis assumption. For the chemical (elemental) composition and260

the thermodynamic properties of the whole biomass to remain constant (weak homeostasis) even261

when the organism is growing (which occurs if the food conditions are stable), the ratio between262

the amount of reserve and structure must be fixed (see also Section 6.4).263

4.1. The three fundamental transformations264

What is the interpretation of the macrochemical reactions in Table 1? Taking assimilation as265

an example, we see that food gets transformed into reserve in the presence of oxygen, whereby266

building 1 C-mol of reserve requires ingesting yXE C-moles of food and breathing in c11 moles267

of oxygen. In addition, yPE C-moles of feces are produced because food cannot be processed268

fully in the digestive system. If we assume that reserve is assimilated at a rate J̇EA, these simple269

considerations imply a food ingestion rate of J̇X = yXE J̇EA, and a feces egestion rate of J̇P =270

yPE J̇EA. In addition, food assimilation accounts for a (variable) fraction of the organism’s oxygen271

consumption by contributing amount c11 J̇EA to the respiration rate (J̇O).272

The process of assimilation also partly accounts for the excretion of carbon dioxide, water,273

and ammonia. While assimilated, food as a group of organic compounds with one aggregate274

chemical structure is being converted into reserve with another aggregate chemical structure. Due275

to the difference in the chemical structures of food and reserve, the conservation of mass implies276

a surplus in carbon, hydrogen, and/or nitrogen that must be excreted in some form. Heterotrophic277

aerobes typically excrete carbon dioxide, water, and ammonia. This excretion, much like oxygen278

consumption above, contributes c12 J̇EA, c13 J̇EA, and c14 J̇EA to carbon dioxide (J̇C), water (J̇H), and279

ammonia (J̇N) flows, respectively, where coefficients c12, c13, and c14 are analogous to c11.280

Assimilated reserve is utilized for growth, or dissipated for maintenance and maturation. Growth281

involves the conversion of reserve into structure, meaning that 1 C-mol of reserve utilized for282

growth yields yVE C-moles of structure. This conversion happens in the presence of c21 moles of283

oxygen, while c22, c23, and c24 moles of carbon dioxide, water, and ammonia, respectively, are284

being excreted for the same reasons as during food assimilation. Again, denoting the rate at which285

reserve is utilized for growth by J̇EG, we obtain that structure grows at a rate J̇V = yVE J̇EG, while286

the corresponding contributions to flows J̇O, J̇C, J̇H, and J̇N of inorganic substances are c21 J̇EG,287

c22 J̇EG, c23 J̇EG, and c24 J̇EG, respectively.288

Reserve dissipated for maintenance and maturation—at a rate J̇ED—contributes only to the289

flows of inorganic substances. These contributions are c31 J̇ED, c32 J̇ED, c33 J̇ED, and c34 J̇ED to J̇O,290

J̇C, J̇H, and J̇N , respectively. Lastly, the net reserve assimilation flow is J̇E = J̇EA − J̇EG − J̇ED.291

A summary of how all flows of organic and inorganic substances relate to the inflow into and292

outflows from reserve is given in Table 2, where the yields yXE, yPE and yVE are species-dependent293
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parameters that account for the mismatch between the chemical compositions of food, reserve,294

and structure, as well as inefficiencies in conversion.295

Any flow of substance that is consumed or produced by the organism is a weighted average296

of assimilation, dissipation, and growth rates (see Table 2). This means that metabolism has three297

degrees of freedom. If three flows are measured, e.g., oxygen consumption, and carbon dioxide298

and water production, then assimilation, dissipation, and growth can be estimated and used to299

compute any other flow.300

Table 2: Flows of organic and inorganic compounds.

Flow of substance Description
J̇X = yXE J̇EA Ingestion
J̇V = yVE J̇EG Growth
J̇E = J̇EA − J̇EG − J̇ED Net reserve assimilation
J̇P = yPE J̇EA Egestion
J̇O = c11 J̇EA + c21 J̇EG + c31 J̇ED Oxygen
J̇C = c12 J̇EA + c22 J̇EG + c32 J̇ED Carbon dioxide
J̇H = c13 J̇EA + c23 J̇EG + c33 J̇ED Water
J̇N = c14 J̇EA + c24 J̇EG + c34 J̇ED Ammonia

4.2. Basal, standard, and field metabolic rates in DEB301

In endotherms, basal metabolic rate (BMR) is defined as the metabolic rate of a fully grown302

fasting organism, at rest, in thermoneutral conditions [64]. In these conditions, assimilation and303

growth are null (i.e., J̇EA = J̇EG = 0) and dissipation is minimum because the organism is at rest304

and in thermoneutral conditions. For BMR measurements, only one flow, such as oxygen con-305

sumption, is enough to estimate dissipation and hence any other metabolic flow listed in Table 2.306

BMR differs between endothermic species. One of the factors that contributes to these differ-307

ences is body temperature, because BMR is measured in endotherms at their body temperature,308

which is species-specific. In contrast, ectotherms are organisms that have a variable body temper-309

ature and, consequently, have a variable basal metabolic rate. For these organisms, the BMR is310

measured at a reference temperature Tre f , and referred to as the standard metabolic rate (SMR).311

Some of the factors that explain these differences (such as the amount of structure) will be easier312

to understand in later sections, after more details on the physiological processes that comprise313

dissipation have been provided.314

The application of Occam’s razor suggests that organisms will have a higher and easier con-315

trol over their own metabolism if all macrochemical transformations exhibit the same temperature316

dependence [7]. The temperature dependence of physiological rates is well described by the Ar-317

rhenius equation [65], which is consistent with empirical evidence that the logarithm of metabolic318

rates, such as reproduction or growth, decreases linearly with the inverse of absolute body temper-319

ature [7]. Arrhenius temperature, TA, is the key parameter; the higher TA (unit: K), the larger the320
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effects of temperature changes:321

ln J̇∗ (T ) = ln J̇∗
(
Tre f

)
+

TA

Tre f
−

TA

T
, (1)

where J̇∗ is any of the flows summarized in Table 2. The Arrhenius description works well over a322

certain temperature range. At higher temperatures, the changes in metabolism-regulating enzymes323

could kill the organism; at lower ones, the metabolic rates are often below those predicted by the324

Arrhenius relationship. To compensate for these changes, an additional term, ln γ
(
Tre f

)
− ln γ (T ),325

can be added to Eq. (1), where function γ = γ (T ) is given by326

γ (T ) = 1 + exp
(
TAL

T
−

TAL

TL

)
+ exp

(
TAH

TH
−

TAH

T

)
. (2)

Quantities TAL and TAH (unit: K) are constant parameters, and TL and TH (unit: K) are the lower327

and the upper boundaries of the organisms’ temperature tolerance range [66]. Function γ = γ (T )328

is always greater than unity, convex, and has a minimum between TL and TH. Because ln γ (T ) in329

the extension of Eq. (1) comes with a minus sign, the role of γ (T ) is to decrease metabolic rates if330

temperatures are too high or too low.331

When using the Arrhenius relationship, it is perhaps good to keep in mind that there is no332

mechanistic rationale for this relationship in the DEB theory. In fact, existing arguments [67]333

portray the Arrhenius relationship as a statistical formulation of an evolutionary outcome that at334

present cannot be derived from the first principles.335

Superficially it may seem that the comparison of SMR for ectotherms is more straightforward336

than the comparison of BMR for endotherms because the rates are standardized to the same tem-337

perature. However, the chosen reference temperature changes the relative values of SMR among338

species because Arrhenius temperatures TA are species-specific.339

Finally, it is useful to make a clear distinction between basal and field metabolic rates (FMR).340

FMR is the average metabolic rate effectively expended by organisms over longer time periods341

going about their daily business of surviving [68]. In this case as opposed to BMR, assimilation342

and dissipation and possibly growth rates are positive, and a minimum of three flows are needed343

to estimate all other flows appearing in Table 2.344

5. Thermodynamics345

The first and second laws of thermodynamics apply to all living organisms. A living organism346

represents an open thermodynamic system that continuously exchanges compounds and heat with347

the environment, performs mechanical work, and disposes of internal entropy production. The first348

law was first tested in organisms by Max Rubner who in 1889 kept an adult dog in a calorimeter349

for 45 days measuring all input and output flows (food, feces, urine, and gases) and heat exchange.350

The measurement of heat exchange yielded 17,349 cal, while the difference between inputs and351

outputs yielded 17,406 cal. These values are almost identical [69] to the expected value if the352

dog’s body mass changed only negligibly.353
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5.1. Types and relevance of heat, work, and mass flows354

Analysis for a control volume [70] can help understand the implications of the laws of ther-355

modynamics for DEB organisms. The control volume is an arbitrarily selected (often, but not356

necessarily fixed) volume of space through the boundary of which substances can pass in and out.357

In our case, the control volume is simply the organism itself, i.e., the volume of space bounded by358

the control surface at which all exchanges between the organism and the environment take place.359

At the boundaries of the organism, flows include food, water, feces, nitrogenous waste, and360

gases such as oxygen and carbon dioxide among others. For the amount of substances, M, that361

comprise the biomass of the organism to be constant, the total input must equal the total output of362

substance, whereas the imbalance between these inputs and outputs determines the rate of change363

of M364

dM
dt

=
∑

i

dMi

dt

∣∣∣∣∣
in
−

∑
i

dMi

dt

∣∣∣∣∣
out
. (3)

Here i ∈ {X, P} for organic substances, and i ∈ {O,C,H,N} for inorganic ones. Each amount365

of substance Mi can increase or decrease internal energy by h̄iMi, where the molar enthalpy (h̄i)366

serves as a conversion coefficient. The internal energy is also affected by heat, Q, escaping or367

being received through the control boundary, as well as the mechanical work, W, performed by or368

on the organism. For internal energy U of the organism to be constant, the total energy input must369

equal the total energy output, whereas the imbalance between these inputs and outputs determines370

the rate of change of internal energy U:371

dU
dt

= Q̇ + Ẇ +
∑

i

h̄i
dMi

dt

∣∣∣∣∣
in
−

∑
i

h̄i
dMi

dt

∣∣∣∣∣
out
. (4)

To improve our intuition about the quantities appearing in this equation, it is useful to note [71]372

that within the animal kingdom (i) the heat transfer rate is relatively large and directed outwards373

(Q̇ < 0), (ii) the mechanical power is typically small and manifests itself as the work done on the374

surroundings (Ẇ ≈ 0, or possibly Ẇ < 0), and (iii) the energy transfer associated with the inflows375

of compounds is typically much larger than associated with the outflows.376

The mechanical power expenditure at the boundary is separable into expansion and non-377

expansion parts, i.e., Ẇ = pdV
dt + Ẇ ′, where p is the pressure. At the surface of the Earth, the378

power expended on changes in volume is negligible, though this may not be the case in the deep379

ocean.380

The non-expansion power expenditure Ẇ ′ is mostly associated with the movement of organ-381

isms, and therefore potentially relevant for very active species. Studies on the muscle efficiency382

suggest that the net muscle efficiency over a full contraction-relaxation cycle rarely exceeds 30%383

[72]. In a typical organism, therefore, over 70% of metabolic energy expended by the muscle is384

turned into heat rather than mechanical work.385

Chemical reactions inside the organism release energy in the form of: (i) mechanical work such386

as external and internal muscle work, (ii) chemical work such as the maintenance of diffusion and387

chemical non-equilibrium, (iii) electrical work such as transmission of information, and (iv) heat.388

If the organism is in a steady state, i.e., mass and energy (and temperature) are constant, then all389

the internal work and internal heat release that result from metabolism end up escaping through390
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the boundary of the organism as “metabolic heat” via the heat transferring mechanisms such as391

radiation, convection, diffusion, and vaporization of liquid water. If “metabolic heat” is generated392

at a rate higher than the maximum possible rate for transfers through the boundary, the temperature393

of the organism increases. At a higher temperature, heat transfer mechanisms and all metabolic394

rates (see Eq. 1) pick up pace, and a new steady state is achieved.395

Entropy in living organisms flows with substances, s̄iMi, and with heat, Q̇
T . For the internal396

entropy of the organism S to be constant, the total entropy input plus the entropy production must397

equal the total entropy output, whereas the imbalance between these inputs and production on one398

hand, and outputs on the other hand, determines the rate of change of entropy S ,399

dS
dt

=
Q̇
T

+ σ̇ +
∑

i

s̄i
dMi

dt

∣∣∣∣∣
in
−

∑
i

s̄i
dMi

dt

∣∣∣∣∣
out

(5)

A major difference between Eqs. (4) and (5) is that Eq. (5) has a an entropy production (σ̇) term400

that serves as a measure of irreversibility, which cannot be measured at the boundaries of the401

organism.402

5.2. Mass, energy, entropy, and exergy balances of DEB organisms403

Mass balance. If the amount of substance, M, that comprises the biomass of an organism changes404

in time, this change must come either from depositing new or removing existing reserve or struc-405

ture, i.e., dM
dt = J̇V + J̇E. Comparing with Eq. (3), we get406

J̇V + J̇E = J̇X − J̇P + J̇O − J̇C − J̇N − J̇H. (6)

Energy balance. Any change in the amounts of reserve and structure means that energy gets ei-407

ther deposited in or extracted from these compartments. Taking as a first approximation that the408

temperature of the organism is constant, the amounts of reserve and structure fully account for the409

changes in internal energy of the control volume, i.e., dU
dt = h̄V J̇V + h̄E J̇E. Comparing with Eq. (4),410

we readily obtain411

h̄V J̇V + h̄E J̇E = Q̇ + Ẇ + h̄X J̇X + h̄O J̇O − h̄P J̇P − h̄C J̇C − h̄H J̇H − h̄N J̇N (7)

where h̄i, i ∈ {X,V, E, P}, represent the molar enthalpies of organic compounds (unit: J C-mol−1).412

Similarly, h̄i, i ∈ {C,H,O,N}, stand for the molar enthalpies of inorganic compounds (unit:413

J mol−1). The equation above represents the energy balance for DEB organisms in a non-steady414

state [12].415

The energy balance may be applied to problems such as predicting spatial impact of climate416

change on biodiversity [73, 74]. Once the heat generation is quantified, it can be compared to417

the losses due to conduction, convection, and radiation. Ultimately, a body temperature implied418

by the given environmental conditions can be worked out. If, for example, the implied body419

temperature in the sun is outside the tolerance range of an organism, the organism may need to420

spend excessively long time in the shade, which could seriously hamper the organism’s ability to421

catch prey and assimilate energy. The modeling approach allows testing of various climate change422

scenarios, and thus help determine critical environmental conditions in which the organism is no423

longer able to meet its maintenance requirements.424
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Entropy balance. Once again, any change in the amounts of reserve and structure means that425

entropy gets either deposited in or extracted from these compartments, i.e., dS
dt = s̄V J̇V + s̄E J̇E.426

Comparing with Eq. (5), we find that427

s̄V J̇V + s̄E J̇E =
Q̇
T

+ σ̇ + s̄X J̇X + s̄O J̇O − s̄P J̇P − s̄C J̇C − s̄H J̇H − s̄N J̇N , (8)

where s̄i, i ∈ {X,V, E, P}, denote the molar entropies of organic compounds (unit: J C-mol−1 K−1),428

while s̄i, i ∈ {C,H,O,N}, denote the molar enthalpies of inorganic compounds (unit: J mol−1 K−1).429

This equation represents the entropy balance for DEB organisms in a non-steady state [12] and430

provides a convenient way to quantify the entropy production.431

By combining energy and entropy balances of living organisms in Eqs. (7) and (8), and taking432

into account that µ̄i = h̄i − T s̄i, we obtain433

µ̄V J̇V + µ̄E J̇E = T σ̇ + Ẇ + µ̄X J̇X + µ̄O J̇O − µ̄P J̇P − µ̄C J̇C − µ̄H J̇H − µ̄N J̇N , (9)

where µ̄∗, is the chemical potential (unit: J C-mol−1). To better understand the meaning of µ̄∗ let434

us take a closer look at the left-hand-side of Eq. (9). Changes in internal energy and entropy are435

given by dU
dt = h̄V J̇V + h̄E J̇E and dS

dt = s̄V J̇V + s̄E J̇E, respectively. A combination of the last two436

equations gives437

dU
dt
− T

dS
dt

=
(
h̄V − T s̄V

)
J̇V +

(
h̄E − T s̄E

)
J̇E. (10)

Constant molar enthalpies and entropies, due to strong homeostasis assumption, allow us to per-438

form the integration of both sides, resulting in439

U − TS =
(
h̄V − T s̄V

)
MV +

(
h̄E − T s̄E

)
ME. (11)

On the left, we recognize the definition of the total Gibbs free energy contained in the control440

volume, while right-hand side represents the sum of Gibbs free energies in reserve and structure441

compartments. The strong homeostasis assumption, therefore, implies that Gibbs free energy, G∗,442

is proportional to the amount of substance, M∗, where the proportionality constant is the chemical443

potential, µ̄∗.444

Eq. (9) allows us to estimate the maximum theoretical amount of external work, i.e., work that445

an organism would perform if it could function without entropy production. For a steady-state446

organism, such that µ̄V J̇V + µ̄E J̇E = 0, this maximum work is called exergy and is equal to the net447

balance of Gibbs free energies. The exergy increases with the difference between the Gibbs free448

energy of the inputs (food and oxygen) and the Gibbs free energy of the outputs (feces, carbon449

dioxide, water, and nitrogenous waste).450

5.3. Indirect calorimetry: the linear relation between flows451

When mechanical power at the boundary of the control volume is negligible, e.g., when an452

organism is at rest, Eq. (7) can be used to quantify the organism’s net heat generation. First, from453

the definitions in Table 2, we can express the reserve inflow and outflows in terms of oxygen,454

carbon dioxide, and nitrogen flows (basically by solving a system of three equations with three455
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unknowns). The resulting expressions can then be used to redefine all other flows of substances456

(see Section 4.1). Inserting these expressions into Eq. (7) would allow the inference of the organ-457

ism’s net heat generation solely from gas exchange measurements. Such a possibility is exploited458

in indirect calorimetry [22] and the subsequent array of modern-day clinical applications [23].459

5.4. Relating heat and entropy production460

Assimilation, dissipation, and growth are the three fundamental, macrochemical transforma-461

tions taking place in conceptual biological reactors that are in a steady state. If we (i) make energy462

balances for these three biological reactors, (ii) assume that for most important biological aerobic463

reactions T∆s is very small compared to ∆h, and therefore ∆h is approximately equal to ∆µ [71],464

and (iii) sum the three energy balances, we obtain:465

µ̄V J̇V + µ̄E J̇E = Q̇ + Ẇ + µ̄X J̇X + µ̄O J̇O − µ̄P J̇P − µ̄C J̇C − µ̄H J̇H − µ̄N J̇N . (12)

By combining the last equation with Eq. (9), we conclude that for aerobic organisms all entropy466

production is dissipated in the form of heat T σ̇ = Q̇. The higher the temperature at the boundary467

of the control volume, the lower the entropy released per unit of heat dissipated. This means that468

the organism needs to dissipate more heat to get rid of the same amount of entropy. However,469

a higher temperature usually accompanies better regulated metabolism, which increases entropy470

production and implies an even higher need to dissipate heat. The result T σ̇ = Q̇ means that for471

aerobic organisms the heat production is a good measurement of entropy production [12].472

5.5. Measuring the entropy of living organisms vs. measuring the entropy of dead biomass473

The result T σ̇ = Q̇ implies that for aerobic organisms the entropy balance, Eq. (5), simplifies474

to475

s̄V J̇V + s̄E J̇E = s̄X J̇X + s̄O J̇O − s̄P J̇P − s̄C J̇C − s̄H J̇H − s̄N J̇N , (13)

which means that the specific entropies of reserve s̄E and structure s̄V can be estimated from476

entropy flows at the boundary of the control volume, and that the specific entropy of biomass477

( sV MV +sE ME
MV +ME

) can be estimated as a function of reserve density [12]. Specific entropies for biomass478

obtained using this method for Klebsiella aerogenes are significantly different from the entropy479

of biomass given by Battley’s empirical rule [75]. Because Battley’s rule has been validated with480

good results for dead biomass and organic compounds [12], this difference suggests that the en-481

tropy of living biomass is different from the entropy of dead biomass.482

By combining Eq. (13) with Eq. (6) and those found in Table 2, we have a system with 10483

equations and 11 unknowns for aerobic organisms. If food conditions (J̇X) or any other flow are484

known then all other flows can be estimated. Aerobic metabolism has only one degree of freedom.485

5.6. An energy description of dynamics in DEB organisms486

In Section 5.2, we have seen that the strong homeostasis assumption implies proportionality487

between Gibbs free energy, G∗, and the amount of substance, M∗, with chemical potential, µ̄∗, as488

the constant of proportionality. However, the usual notation does not emphasize the fact that we489

are working with Gibbs free energy. Instead of symbol G∗, it is customary to use E = µ̄E ME for490

the reserve compartment, and Ei = µ̄iMi, i ∈ {X,V, P} for the other state variables.491
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Chemical potentials relate flows of substances to energy flows in the same manner in which492

they relate amounts of substances to Gibbs free energies. It is particularly useful to focus on493

the inflow into reserve, J̇EA, and outflows from reserve, J̇EG and J̇ED, because (as emphasized in494

Table 2) all other flows of substances can be expressed in terms of these three. Here, indices A, G,495

and D, stand for assimilation, growth, and dissipation, respectively. We are now in a position to496

define assimilation, growth, and dissipation energy flows by ṗi ≡ µ̄E J̇Ei, i ∈ {A,G,D}, thus making497

it possible to track the state of an organism in units of energy as summarized in Table 3.498

Table 3: Dynamic equations in units of energy.

Equation Description
dEX
dt = κA ṗA Ingestion

dE
dt = ṗA − ṗG − ṗD Reserve dynamics
dEV
dt = κG ṗG Growth

dEP
dt = κP ṗA Egestion
κA ≡ yXE

µ̄X
µ̄E

Assimilation ratioa

κG ≡ yVE
µ̄V
µ̄E

Growth efficiency
κP ≡ yPE

µ̄P
µ̄E

Egestion efficiency
aIn DEB-based literature (e.g., [7, 60]), it is custom-
ary to define the assimilation efficiency as κX ≡ 1/κA.
For all efficiencies, it holds 0 < κ∗ < 1, whereas
κA > 1.

6. From theory to applications: the standard DEB model499

Discussion so far aimed at deducing the simplest, general equations possible for mass, energy,500

and entropy balances of living organisms. We achieved this aim by treating organisms as open501

thermodynamic systems in a non-steady state. Despite the deliberate search for simplicity, we502

ended up introducing a rather inconvenient layer of abstraction in the form of non-observable state503

variables that need to be related to measurable quantities.504

6.1. Measurable quantities as functions of the abstract state variables505

Biomass. Let us briefly consider the problem of linking relatively abstract state variables to fre-506

quently measured quantities such as biomass (units: g or kg) or the length of an organism (units:507

cm or m). To get an expression for biomass, we can combine the molar masses of structure and508

reserve, wi, i ∈ {V, E} (unit: g C-mol−1), with their respective chemical potentials, µi, i ∈ {V, E}509

(unit: J C-mol−1), into ratios wi/µ̄i, i ∈ {V, E} (unit: g J−1) that contain the information on how510

mass relates to energy. The molar mass values follow from chemical indices in Table 1, but it511

is important to keep in mind whether generalized compounds are given in hydrated form or not.512

Usually non-hydrated form is preferred, meaning that if dE and dV are the proportions of water in513

reserve and structure, respectively, (wet) biomass W is given by514

W =
wE

dEµ̄E
E +

wV

dV µ̄V
EV . (14)
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Two terminological and conceptual issues are worth emphasizing in the context of Eq. (14). First,515

the biological literature traditionally refers to biomass as the weight of organisms, although weight516

is technically a force and should be expressed in newtons rather than grams or kilograms. Symbol517

W is in fact the remnant of a such tradition. In a similar fashion, molar masses are often termed518

molecular weights. Second, the amounts of substances, M∗, are often called (molar) masses in519

DEB-based literature. This may not come as a surprise in view of the strong homeostasis assump-520

tion which guarantees proportionality between the amount of substance and the corresponding521

mass. Biomass, however, cannot be tracked in C-moles because chemical composition of the522

whole organism generally varies, even in DEB.523

Structural volume and physical length. Before getting an expression for the measurable length524

of an organism, we consider the volume occupied by non-hydrated structure, V , also referred525

to as structural volume. Here, we rely on the observation that the wet density of organisms is526

generally close to dw ≈ 1 g cm−3. To obtain the information on how dry structural mass relates527

to structural volume, we define a new quantity, the specific structural mass: [MV] ≡ dwdV/wV =528

1 g cm−3 × dV/wW (unit: C-mol cm−3). The volume occupied by structure is then V = MV/ [MV].529

Another associated quantity is structural length, L, which can be defined as L ≡ V1/3. Using530

these definitions and conversions EV = µ̄V MV and MV = [MV] V , it is possible to rewrite the531

growth equation in Table 3 in terms of structural volume or length. We obtain532

dV
dt

=
κG

µ̄V [MV]
ṗG =

ṗG

[EG]
, and (15)

dL
dt

=
ṗG

3L2 [EG]
, (16)

where [EG] ≡ µ̄V [MV] /κG is the volume-specific cost of structure (unit: J cm−3).533

Structural length, because it cannot be measured, is not yet a solution to our problem of linking534

the state variables to the measurable length of an organism. Bridging the gap between structural535

length and some measurable length of the organism is made possible by assuming isomorphism.536

The assumption is an approximation and rests on the observation that many organisms, at least537

in a given life stage, change their shape very little [76, 77, 78, 79, 80]. A striking example of538

isomorphism in action are the shapes of the organisms with a permanent exoskeleton [81]. The539

crucial aspect for us, however, is the fact that the ratio of two arbitrarily chosen lengths of an540

isomorphic organism is constant throughout the entire lifetime. Hence, any measurable length541

of the organism unaffected by the state of reserve, Lw, and structural length, L, are related by542

L = δMLw, where δM is a constant shape factor. A cubically shaped organism would have δM = 1,543

if Lw were one of its sides, while a spherically shaped organism would have δM = 3
√
π/6, if Lw were544

its diameter. Many Osteichthyes (bony fish), for which a natural Lw is fork length, are characterized545

by δM ≈ 0.2 [7].546

6.2. Relating metabolic processes to the state variables: scaling-based considerations547

Assimilation. The discussion here focuses on the supplementary assumptions needed to specify548

how assimilation and dissipation energy flows depend on the state variables. We choose the as-549

similation of energy as a starting point. The main idea is that an organism needs some time, t1,550
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to find and some time, t2, to process food. For the processing time, we proceed from the fact that551

ingestion takes place over the control surface separating the organism from the environment. The552

larger the control surface, the more food is processed in any given time period. In the case of an553

isomorphic organism, the area of the control surface is proportional to the structural surface area,554

S , defined as S ≡ L2. When the organism stops growing, the ability to process food becomes555

limited by the type and characteristics of the feeding apparatus. If
{
J̇XAm

}
denotes the maximum556

surface-area-specific ingestion rate of a given feeding apparatus (unit: C-mol cm−2 d−1), then we557

have t−1
2 =

{
J̇XAm

}
L2, meaning that the food processing rate is assumed to scale with squared558

structural length. Note that t2 is a time measure given in days per C-mole.559

The next step is to find a similar expression for t1. The time between two successive encoun-560

ters with edible items must depend on the density of food in the environment X (unit: C-mol m−3)561

because finding an edible item is easier when food density increases and vice versa. Considering562

as an example a motile organism that searches its surroundings with an average cruising speed563

v̇avg, the volume searched per unit of time can be expressed as S e f f v̇avg, where S e f f is surface area564

effectively accessible to the sensing organs. In the case of a growing isomorph, S e f f increases565

proportionally to the surface area of the sensing organs, which is in turn proportional to structural566

surface area. Consequently, S e f f v̇avg =
{
Ḟm

}
L2, where

{
Ḟm

}
is the surface-area-specific search-567

ing rate (unit: m3 cm−2 d−1; here the cubic meter pertains to the environment, while the square568

centimeter pertains to the organism). We can now write t−1
1 = X

{
Ḟm

}
L2, meaning that the food569

searching rate, similarly to the processing rate, is assumed to scale with squared structural length.570

The ingestion rate thus becomes J̇X = (t1 + t2)−1, which combined with ṗA = µ̄E J̇EA, J̇X = yXE J̇EA571

(Table 2), and a little algebra gives the expression for the assimilation energy flow572

ṗA = µ̄E

{
J̇XAm

}
yXE

X
{J̇XAm}
{Ḟm}

+ X
L2 = { ṗAm} f L2. (17)

In the above equation, the simplification on the rightmost hand side comes from the definition of573

the surface-area-specific maximum assimilation rate, { ṗAm} ≡ µ̄E

{
J̇XAm

}
/yXE (unit: J cm−2 d−1),574

and the Holling type II functional response, f ≡ X/ (KX + X), where KX ≡
{
J̇XAm

}
/
{
Ḟm

}
is in575

ecology widely known as the half-saturation constant.576

Somatic maintenance. Somatic maintenance, ṗS , is a part of maintenance costs associated with577

the existing structure. All eukaryotic cells continuously degrade and synthesize proteins in a series578

of biochemical processes collectively known as the protein turnover [82, 83, 84, 85, 86]. The579

energetic costs of the protein turnover [87, 88, 89, 90, 91] rise in proportion to the number of580

cells, which in turn is approximately proportional to structural volume. On the other hand, heating581

the body of an endothermic organism must counteract the heat loss through the outer surface.582

Therefore, the energy required to counteract the heat loss is proportional to structural surface.583

We can thus make a distinction between volume-related, ṗM, and surface-area-related, ṗT somatic584

maintenance costs, where the following relationships are assumed to hold585

ṗS = ṗM + ṗT =
[
ṗM

]
L3 + { ṗT } L2. (18)

19



Proportionality constants
[
ṗM

]
(unit: J cm−3 d−1) and { ṗT } (unit: J cm−2 d−1) are called the volume-586

specific and the surface-area-specific somatic maintenance costs, respectively.587

Maturation and maturity maintenance. In comparison to somatic maintenance, maturation and588

maturity maintenance are inferred from somewhat circumstantial empirical evidence, some of589

which was mentioned in Section 3.1. Furthermore, ubiquitous fitting of the von Bertalanffy growth590

model [92] to growth data for species that continue to grow in the adult stage would suggest591

that there is no growth retardation despite the sudden, considerable investment of energy into592

reproduction. If so is the case (but see [93, 94]), maturation is a metabolic process separate from593

growth, yet takes place and requires energy in parallel to growth.594

The level of maturity, EH, can be quantified by tracking the cumulative investment of energy595

into maturation. Quantity EH is a non-material state variable whose rate of change is determined596

by maturation energy flow ṗR, i.e., dEH
dt = ṗR. The stage transitions are assumed to occur when EH597

crosses fixed threshold levels called maturity at birth, Eb
H, and maturity at puberty, Ep

H. Addition-598

ally, Ep
H is assumed to be the maximum level of maturity, because in the adult stage the maturation599

energy flow is redirected to reproductive activities (e.g., egg production).600

One way to interpret the level of maturity is to identify it with the complexity of structure601

[10, 11], which in turn could relate maturation to the functioning of the genetic regulatory network.602

In line with the second law of thermodynamics, the complexity of structure would decrease without603

some form of maintenance. As a consequence, we assume that maturity maintenance energy flow604

ṗJ is proportional to the level of maturity, i.e., ṗJ = k̇JEH, where k̇J is the maturity maintenance605

rate coefficient (unit: d−1).606

To better understand the concept of maturity maintenance, a comparison with volume-related607

somatic maintenance, ṗM =
[
ṗM

]
L3, may be helpful. Upon recalling that energy in the structure608

compartment is EV = µ̄V MV , and the amount of substance in this compartment relates to structural609

length via MV = [MV] V and V = L3, we obtain ṗM =
[
ṗM

]
/ (µ̄V [MV]) EV . The last relationship610

shows that ṗM ∝ EV , which is completely analogous to ṗJ ∝ EH. However, there is an important611

difference between quantities EV and EH. The rate of change of the former is given by κG ṗG612

(Table 3), but the rate of change of the latter is determined directly by ṗR. Growth efficiency,613

κG, reflects the dissipation of energy in the transformation of reserve into structure. By contrast,614

maturity is immaterial and therefore involves no such transformation. In applications, it is often615

convenient to work with a compound parameter, k̇M ≡
[
ṗM

]
κG/ (µ̄V [MV]) =

[
ṗM

]
/ [EG], called the616

somatic maintenance rate coefficient (unit: d−1). The roles of somatic and maturity maintenance617

rate coefficients are quite similar, but the analogy is incomplete as seen by contrasting ṗM =618 (
k̇M/κG

)
EV with ṗJ = k̇JEH.619

6.3. Relating metabolic processes to the state variables: the kappa rule620

At this point, it is useful to take a closer look at energy flows out of reserve. There are two621

such flows; the growth flow, ṗG, and the dissipation flow, ṗD. Summing the two gives rise to the622

utilization (also mobilization or catabolic) flow, ṗC = ṗG + ṗD = ṗG + ṗS + ṗR + ṗJ, which simplifies623

the reserve dynamics equation in Table 3 to624

dE
dt

= ṗA − ṗC. (19)
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Much like the other energy flows, the utilization flow is a function of the organism’s state, i.e., ṗC =625

ṗC (E, L). It is intuitive to ask what part of the utilization flow is used for somatic maintenance626

and growth as opposed to maturation in juveniles or reproduction in adults because, as mentioned627

before, these processes seem to take place in parallel. Therefore, without any loss of generality,628

we introduce a function 0 < κ (E, L) < 1 to split the utilization flow into somatic and maturation629

(or reproduction) branches:630

κ ṗC = ṗG + ṗS , (20)
(1 − κ) ṗC = ṗR + ṗJ. (21)

Such a division would be rather impractical if κ were to depend on the state variables in a com-631

plex manner. The strong homeostasis assumption, fortunately, comes to the rescue with its two632

important consequences.633

The first consequence of strong homeostasis is that the utilization flow is a homogeneous634

function of degree one with respect to energy in reserve. In mathematical terms, ṗC (λE, L) =635

λ ṗC (E, L), where 0 < λ < 1 is a constant. To see why this result holds, let us for the moment en-636

tertain the notion that the reserve compartment, represented by an original generalized compound637

in total amount M, is decomposable into two more fundamental sub-compartments, represented638

by their own generalized compounds in amounts M1 and M2. Every C-mole of the original gen-639

eralized compound mobilized from reserve will now be replaced with r C-moles of generalized640

compound 1 and (1 − r) C-moles of generalized compound 2. We can say that M1 = rM and641

M2 = (1 − r) M, where 0 < r < 1. The strong homeostasis assumption then guarantees that r is a642

constant, because otherwise the ratio M1/M2 = r/ (1 − r) would be changing in time. This change643

would, in turn, imply a non-constant chemical composition of reserve, thus violating strong home-644

ostasis.645

Turning the amounts of substances into energies by means of chemical potentials, yields E1 =646

λE and E2 = (1 − λ) E, where E1 = µ1
E M1, E2 = µ2

E M2, E = µE M, and λ = rµ1
E/µE is a constant.647

In addition, the ratio E1/E2 = λ/ (1 − λ) is also constant, meaning that for every joule of energy648

utilized from reserve exactly λ joules come from the first reserve sub-compartment (and 1 − λ649

joules from the second). Consequently, we have ṗC (E1, L) / ṗC (E, L) = λ, which is equivalent to650

the first order homogeneity of function ṗC = ṗC (E, L) with respect to variable E.651

The second consequence of strong homeostasis—and the first order homogeneity of the uti-652

lization flow—is that κ is independent of energy in reserve. In mathematical terms, κ (λE, L) =653

κ (E, L). To obtain this result, we note that the somatic branch of the utilization flow, for the same654

reason as the total utilization flow above, is a first order homogeneous function with respect to655

variable E. This homogeneity implies that κ (λE, L) ṗC (λE, L) = λκ (E, L) ṗC (E, L). Applying656

ṗC (λE, L) = λ ṗC (E, L) onto the left side of the previous equality, we recover the expected re-657

sult κ (λE, L) = κ (E, L), which proves that κ cannot be a function of energy in reserve. At best,658

κ = κ (L). With the kappa rule in place, we can deduce several important results.659

We start by showing that the organism grows to a finite size. From equations for reserve660

dynamics and growth in Table 3, we obtain that the total energy in reserve and structure satisfies661

d
dt (E + EV) = ṗA− ṗD−(1−κG) ṗG = ṗA− ṗS −(1−κ)ṗC−(1−κG) ṗG. Crucial in this equation is the662

interplay between ṗA ∝ L2 (Eq. 17) and ṗS ∝ L3 (Eq. 18), meaning that at some finite structural663
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size (L∞), the somatic maintenance flow will be high enough to balance the equation’s right-hand664

side. At this point, structure must stop growing because otherwise equality dE
dt = −dEV

dt implies665

ṗA − ṗC = −κG ṗG ≤ 0, which leads to the depletion of reserve. The only sustainable situation for666

the organism is ṗG = 0 and thus ṗA = ṗC.667

Inserting these sustainability conditions into the kappa rule gives an expression for the ultimate668

size, L∞. Specifically, we have ṗA = ṗS /κ, from where the ultimate size is669

L∞ =
κ{ ṗAm}[

ṗM
] f −

{ ṗT }[
ṗM

] . (22)

Here, it is natural to define two compound parameters. The first one is the maximum length,670

Lm, given by Lm ≡ κ{ ṗAm}/
[
ṗM

]
(unit: cm) beyond which the organism cannot grow even at the671

highest food level, f = 1. The second compound parameter is the heating length, LT , given by672

LT = { ṗT }/
[
ṗM

]
(unit: cm), which determines how much surface-area related somatic maintenance673

costs reduce the ultimate size attainable by the organism irrespective of the food level.674

Because the condition from which we obtain the ultimate size at constant f is ṗA = ṗC, energy675

in reserve also reaches its maximum value, E∞, at this size. It is now of major convenience to676

define a state variable alternative to E—called the reserve density, [E] (unit: J cm−3)—as the ratio677

of energy in reserve to structural volume, i.e., [E] = E/V = E/L3. It immediately follows that the678

dynamics of the reserve density are given by679

d [E]
dt

=
ṗA − ṗC

L3 − 3
[E]
L

dL
dt
, (23)

where the terms on the right-hand side arise directly from Eq. (19) and the chain rule d[E]
dt =680

d
dt (E/L

3) = dE
dt /L

3−3E dL
dt /L

2. The second term is often referred to as “dilution by growth” because681

it contributes to the decreases of the reserve density via the increase of structure. More importantly,682

the chain rule guarantees that pair ([E∞] , L∞), where [E∞] = E∞/L3
∞, is a stationary point of683

Eq. (23) because both dE
dt and dL

dt are zero at E∞ and L∞, respectively. It is safe to say that this684

stationary point is a global attractor. Irrespective of the starting point, therefore, energy in reserve685

grows to E∞ and structural length grows to L∞, indicating that [E] = E/L3 → E∞/L3
∞ = [E∞] as686

t → ∞.687

6.4. Relating metabolic processes to state variables: the energy mobilization theorem688

Deriving dependence of the utilization flow on the organismal state variables is one of the689

more technical tasks in defining the standard DEB model. A simplified, pedagogical approach is690

pursued in Ref. [34], while Refs. [7, 10] provide the most details. Here we take a middle path691

to the main result by offering a standalone, rigorous, and novel—but still fairly understandable—692

treatment. Much of the preparatory work was, in fact, completed in the preceding section on the693

kappa rule.694

To derive a mathematical expression for the utilization flow, we rely on a number of earlier695

results. Specifically, we use:696

1. the reserve density equation, Eq. (23);697

2. the stationary point of Eq. (23), i.e., ([E∞] , L∞);698
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3. the assimilation flow, Eq. (17);699

4. the somatic maintenance flow, Eq. (18);700

5. the kappa rule, Eq. (20); and701

6. the degree one homogeneity of the utilization flow with respect to reserve density, i.e.,702

ṗC (λ [E] , L) = λ ṗC ([E] , L).703

We append this list with one last assumption. The reserve compartment in DEB theory serves704

as a buffer that separates the relatively unstable environment from the relatively stable conditions705

maintained within an organism by homeostatic mechanisms [14, 95, 96, 97, 98]. To represent706

the effects of homeostatic mechanisms in our idealized framework, we assume that the metabolic707

processes powered from reserve are only implicitly dependent on food availability. In mathemat-708

ical terms, ∂ṗC
∂ f = 0, which is the last ingredient needed to prove the functional dependence of the709

utilization flow on the state variables.710

Theorem 1 (Energy mobilization). If results 1.–6. hold and the utilization flow is only implicitly711

dependent on food availability (∂ṗC
∂ f = 0), then energy is mobilized from reserve at a rate712

ṗC = ṗC ([E] , L) = [E]
v̇ [EG] L2 +

[
ṗM

]
L3 + {ṗT } L2

[EG] + κ [E]
. (24)

Proof. As a first step in proving the energy mobilization theorem, we rewrite Eq. (23):713

d [E]
dt

=
1
L3

(
ṗA − ṗC −

[E]
[EG]

ṗG

)
. (25)

We then contrast this form with a general expression for the rate of change of [E] ( d[E]
dt ), which714

follows from the result that ([E∞] , L∞) is a stationary point of the reserve density, and from the715

Taylor’s formula for a function of two variables:716

d [E]
dt

= ([E] − [E∞])Ḟ1([E]) + (L − L∞)Ḟ3(L)

+ (L − L∞)([E] − [E∞])Ḟ2([E] , L), (26)

where Ḟi, i =1, 2, 3 are unspecified functions. Derivatives in Eqs. (25) and (26) must be equal at717

all points, including ([E∞] , L). We obtain718

1
L3

(
ṗA − ṗC −

[E∞]
[EG]

ṗG

)
= (L − L∞)Ḟ3(L), (27)

which, upon inserting Eq. (20) and some algebra, gives719

ṗC([E∞] , L) =
[EG]

[EG] + κ [E∞]

(
ṗA +

[E∞]
[EG]

ṗS + (L∞ − L)L3Ḟ3(L)
)
. (28)

The expression in Eq. (28) is beginning to resemble the desired result, but there are several720

problems. First, the appearance of the assimilation flow, ṗA, is problematic because this flow721
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explicitly depends on f —a direct violation of the assumption that ∂ṗC
∂ f = 0. We can find a way722

out, however, by noticing that [E∞] and L∞ originate from the same condition ( ṗA = ṗC) and that723

L∞ = Lm f − LT is explicitly dependent on f , indicating that the same must hold true for [E∞]. A724

function, Ḣ = Ḣ([E∞]), therefore exists such that Ḣ([E∞]) = { ṗAm} f , where parameter { ṗAm} is725

inserted out of convenience and without a loss of generality. Eventually, we generalize Eq. (28)726

out of the stationary state, thus replacing [E∞] with [E] and removing the explicit dependence on727

f . Another violation of assumption ∂ṗC
∂ f = 0 is due to the presence of the ultimate length, L∞,728

in Eq. (28). In this case, however, a replacement analogous to the one just made is impossible729

because Eq. (28) is already out of the stationary state with respect to variable L. We therefore730

must conclude that Ḟ3(L) = 0. Summarizing these considerations yields731

ṗC([E∞] , L) =
[E∞]

[EG] + κ [E∞]

(
Ḣ([E∞])

[EG]
[E∞]

L2 + ṗS

)
. (29)

To finalize the proof, we generalize Eq. (29) out of stationary state [E∞], while fully expanding732

the somatic maintenance flow in order to obtain733

ṗC ([E] , L) =
[E]

[EG] + κ [E]

(
Ḣ([E])

[EG]
[E]

L2 +
[
ṗM

]
L3 + { ṗT }L2

)
+ ([E∞] − [E]) Ḟ ([E] , L) , (30)

where Ḟ = Ḟ ([E] , L) is another, momentarily unspecified, function. Note that the presence of734

[E∞] in the second term on the right-hand side of Eq. (30) would violate the assumption that735
∂ṗC
∂ f = 0, unless Ḟ([E] , L) = 0.736

The last remaining unknown in Eq. (30) is function Ḣ = Ḣ([E]). To determine this function,737

we rely on the result that the utilization flow is degree one homogeneous with respect to [E].738

In this context, if reserve is subdivided into two or more sub-compartments, each of these sub-739

compartments is responsible for paying a fraction of somatic maintenance costs and for building a740

fraction of the structure, indicating that replacement [E] 7→ λ [E], 0 < λ < 1 should be accompa-741

nied with replacements [EG] 7→ λ [EG],
[
ṗM

]
7→ λ

[
ṗM

]
, and { ṗT } 7→ λ{ ṗT } (see also Section 2.3742

in [7]). It turns out that the only form of function Ḣ = Ḣ ([E]) compatible with degree one homo-743

geneity of the utilization flow is linear, i.e., Ḣ ([E]) = v̇ [E], where v̇ is a new fundamental DEB744

parameter called the energy conductance (unit: cm d−1).745

The energy mobilization theorem has multiple corollaries. In the following, we present in a746

formal manner perhaps the two most important ones.747

Corollary 1 (Growth flow). Given the conditions of Theorem 1, the growth flow is748

ṗG ([E] , L) = [EG]
κv̇ [E] L2 −

[
ṗM

]
L3 − { ṗT }L2

[EG] + κ [E]
. (31)

Proof. Eq. (31) is obtained by inserting the utilization flow (Eq. 24) and the somatic maintenance749

flow (Eq. 18) into the kappa rule (Eq. 20), and solving for ṗG.750
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Corollary 2 (Energy or weak homeostasis). Given the conditions of Theorem 1 and a constant751

food availability f , an organism with reserve density at birth [Eb] = [E∞] = f { ṗAm}/v̇ will main-752

tain this reserve density unchanged throughout the ontogeny.753

Proof. From Eq. (26), it s evident that d[E]
dt

∣∣∣
([E∞],L)

, 0 only if there is a term of the form (L −754

L∞)Ḟ3(L). This term, however, turned out to be incompatible with assumption ∂ṗC
∂ f = 0, leading to755

the conclusion that Ḟ3(L) = 0. An expression for the utilization flow missing this term, such as the756

one given by Eq. (24), necessarily results in reserve density dynamics in which d[E]
dt

∣∣∣
([E∞],L)

= 0. At757

a constant reserve density the organism still grows as long as L < L∞ (verifiable from Eq. (31)).758

With the above proofs completed, we are in a position to emphasize several interesting ob-759

servations that pertain to energy (weak) homeostasis. In comparison with the many works so far,760

wherein the concept of energy homeostasis is presented as an assumption of DEB theory, here the761

same concept arises as a consequence of a more fundamental set of assumptions. Critical for the762

existence of energy homeostasis is the incompatibility of the term (L − L∞)Ḟ3(L) in Eq. (28) with763

the assumption that ∂ṗC
∂ f = 0. By contrast, function Ḣ = Ḣ ([E]) first appearing in Eq. (29) could764

have any form whatsoever, and energy homeostasis would still hold. The ultimate reason for the765

linearity of Ḣ ([E]) is traceable to strong homeostasis. Furthermore, we see that at maximum food766

availability ( f = 1), the reserve density also reaches its maximum value [Em] = { ṗAm}/v̇. Finally, a767

constant reserve density translates into a constant ratio of the amounts of substances in reserve and768

structure, meaning that the chemical composition of organisms experiencing a constant food level769

is stable in time, which is the essence of weak homeostasis as stated initially (see Section 2.3).770

6.5. The standard DEB model, simplifications, and dynamics771

Gradually introducing the concepts of DEB theory in a logical sequence scattered the key772

equations, thus making it difficult to form a complete overview of the standard DEB model. To773

address this difficulty, energy flows are schematically presented in Fig. 2, while model equations774

and important symbols are summarized in Appendix A.775

The closed form of the standard DEB model presented in Appendix A is general, but rather776

inconvenient for an intuitive grasp of the dynamics. Understanding the model dynamics is much777

easier by considering the scaled equations. To derive the scaled equations, we first need to scale778

the state variables. This scaling is quite natural given that we know the maximum reserve density,779

[Em], and maximum structural length, Lm, which allow us to introduce dimensionless quantities,780

e ≡ [E] / [Em] (0 < e ≤ 1) and l ≡ L/Lm (0 ≤ l ≤ 1) called the scaled reserve density and scaled781

structural length, respectively. It is convenient to supplement the new quantities with dimension-782

less scaled time, τ ≡ k̇Mt as the independent variable, and dimensionless scaled heating length,783

lT ≡ LT/Lm as a model parameter. Using these definitions in conjunction with the standard DEB784

model yields the scaled equations:785

de
dτ

= g
f − e

l
, (32)

dl
dτ

=
g
3

e − l − lT

e + g
, (33)
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Figure 2: Schematic representation of energy flows in the standard DEB model. Commonly tracked state variables
are denoted by rectangles. Nodes b and p indicate metabolic switches at birth (onset of feeding) and puberty (onset of
reproduction). The utilization flow is split in accordance with the kappa rule. Overheads, quantitatively represented
by assimilation and growth efficiencies, result from the chemical transformations of food into reserve and reserve into
structure, respectively.

where g ≡ [EG] / (κ [Em]) is a compound parameter called the energy investment ratio. Multi-786

ple interesting conclusions on the dynamics of reserve and structure can be deduced from these787

equations.788

The first conclusion on the basis of scaled equations is that the fate of reserve is determined789

by food availability in the environment. From Eq. (32), at e = f , the rate of change of the790

scaled reserve density equals zero, meaning that e is in a stationary state. This stationary state is791

a manifestation of energy (weak) homeostasis that we discussed previously. If, however, e < f ,792

the rate of change of the scaled reserve density is always positive, meaning that e must increase793

towards f . This increase is faster when the difference between f and e is large, but gradually comes794

to a halt as e approaches f from below. Analogous reasoning applies to the opposite case, e > f ,795

when e decreases and approaches f from above. Summarizing these conclusions in mathematical796

terms, at constant f , we have that e→ f as τ→ ∞. In addition, scaled size acts to slow down the797

reserve density dynamics, thus implying that larger individuals of the same species should be more798

resilient to the unfavorable feeding conditions and starvation. The trend that larger individuals799

better resist starvation is generally supported by observations [99, 100, 101, 102], but there are800

exceptions too [103].801

The second conclusion based on the scaled equations is that the state of reserve determines802

the size of the organism. From Eq. (33), if l + lT = e, the growth rate equals zero. If, however,803

l + lT < e, the growth rate is positive, implying that l + lT increases towards e. The larger the804

difference between l + lT and e, the faster the growth. Conversely, as this difference gets smaller,805

the growth gradually ceases. In mathematical terms, we have that l + lT → e as τ → ∞, which is806

the expected result, but we reached it without considering the possibility l + lT > e.807

Inequality l+ lT > e corresponds to the state of food deprivation in which organisms are unable808

to cover somatic maintenance costs from reserve. To cover the immediate costs, as well as reduce809
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the need for somatic maintenance during prolonged food deprivation, organisms may shrink by810

metabolizing structure [7, 11, 104, 105]. However, there is an important difference between the811

growth and shrinkage: the former involves a conversion of reserve into structure accompanied812

by an overhead cost, whereas the latter does not. Because Eq. (33) incorporates such a growth813

overhead under all circumstances, using this equation during food deprivation would be incorrect.814

Scaled equations tell us not only how the dynamics of reserve and structure unfold (i.e., e→ f815

and l + lT → e as τ → ∞), but also contain information on the relative time scales at which816

convergence takes place. Key quantity in this context is the energy investment ratio, g. As g817

becomes increasingly small, it takes more and more time for e to reach f , and for l + lT to reach e.818

Under such circumstances, both the dynamics of reserve and structure play an important role.819

The situation changes as g increases. On the one hand, e becomes more and more responsive820

to f , up to the point where we can simply approximate the reserve density with food availability,821

i.e., e ≈ f . On the other hand, when g � e, the energy investment ratio cancels out of the growth822

equation, leaving only structural length as the relevant state variable. An implication of these823

results is that for a range of moderate values of g, the reserve dynamics will be considerably faster824

than the growth. A reverse situation in which the growth is faster than the reserve dynamics cannot825

hold irrespective of the value of g.826

Having a relatively fast-converging reserve dynamics would indicate that, at constant food827

availability, organisms would keep growing long after the scaled reserve density approached its828

stationary state. It is, therefore, meaningful to examine the growth of organisms when condition829

e = f is satisfied. Under this condition, Eq. (33) is solvable and the solution is the well known von830

Bertalanffy growth curve [92, 106, 107, 108, 109].:831

l = ( f − lT ) − ( f − lT − lb) exp (−rBτ) , (34)

where rB ≡
1
3g/ ( f + g) is the dimensionless von Bertalanffy growth rate and lb is the scaled length832

at birth (i.e., the initial condition). The curve in Eq. (34) is a monotonically increasing, concave833

function of time with one horizontal asymptote at l∞ = f − lT . When derived from the standard834

DEB model, von Bertalanffy curve for post-embryonic growth is determined by four compound835

parameters (Lm, g, k̇M, and lT ), but not all of them can be estimated from fitting this curve to data.836

Specifically, we would have to settle with estimates for L∞ = ( f − lT )Lm and ṙB = 1
3 k̇Mg/ ( f + g).837

If food availability was changing and reserve played a more prominent role, in addition to the four838

mentioned compound parameters, describing the post-embryonic growth would require a fifth839

parameter—the maximum reserve density, [Em].840

For completeness, it is also necessary to define the scaled maturity density as a dimensionless841

quantity. One appropriate definition is eH ≡ EH/
(
L3 [Em]

)
. Consequently, the dynamics of the842

scaled maturity density are given by843

deH

dτ
= (1 − κ)

ge
l

l + g
e + g

− eH

(
k +

g
l

e − l
e + g

)
, (35)

where k is the dimensionless ratio of maturity to somatic maintenance rate coefficients, i.e., k ≡844

k̇J/k̇M. Eqs. (32), (33), and (35) complete the mathematical formulation of ontogeny—from an845

egg to an adult individual—in accordance with DEB theory. It is now evident that in addition to846
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the five compound parameters already listed above, additional two parameters appear in Eq. (35);847

namely, κ and k. Two more parameters, scaled maturity densities at birth (eb
H) and puberty (ep

H),848

are needed to mark stage transitions, thus bringing the grand total to nine. What about the initial849

value of the scaled maturity density, e0
H, at τ = 0? An intuitive answer might be that an embryo at850

the beginning of its development should have zero scaled maturity density, but the mathematics is851

more tricky. In fact, a discussion on the initial conditions has purposely been avoided up to now852

due to considerable mathematical complexities [7, 110].853

To say something about the initial conditions for the standard DEB model, we must start from854

the non-scaled state variables. At the beginning of embryonic development (i.e., at time t = 0),855

an egg is assumed to receive from its mother initial energy reserve E0 [7, 110]. There is no856

structure, and the maturity level is zero. At t = 0, triplet (E, L, EH) thus becomes (E0, 0, 0).857

We now encounter a difficulty because the value E0 is unknown. There are also implications858

for the scaled state variables, some of which turn out to be ill-defined. The scaled reserve den-859

sity, e ≡ E/
(
L3 [Em]

)
, is initially infinite because it has a finite numerator (E0), but zero de-860

nominator. Scaled structural length, l ≡ L/Lm, is simply zero, but the scaled maturity density,861

eH ≡ EH/
(
L3 [Em]

)
, initially has zeros in both the numerator and the denominator, making it862

undetermined. However, using the fact that at scaled time τ = 0, the condition deH
dτ = 0 is satis-863

fied [7], Eq. (35) leads to the scaled initial maturity density given by e0
H = (1 − κ) g. At τ = 0,864

triplet (e, l, eH) thus becomes
(
+∞, 0, e0

H

)
. Further details on the initial conditions, including an865

expression for the initial energy reserve, are presented in Appendix B.866

Figure 3: Numerical illustration of the standard DEB dynamics. Scaled structural length as a function of time is
plotted at four constant and one sinusoidal food availability. The sinusoidal food availability oscillates between 0.65
and 0.80, with a scaled period of 2.35. Reserve dampens the effect of the variable environment, but at τ ≈ 8.8 the
organism becomes large enough to experience food deprivation; when it does, Eq. (33) is no longer valid. Vertical bars
indicate age- and length-at-puberty. Parameter values used in these simulations are: [Em] = 3375 J cm−3, Lm = 3 cm,
k̇M ≈ 2.143 · 10−3 d−1, g ≈ 3.1111 and lT = 0.

The results of a numerical example are shown in Fig. 3. At four different, but constant, food867

availabilities, the solution to Eqs. (32) and (33) is the von Bertalanffy growth curve given by868
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Eq. (34). In this case, an organism’s size increases monotonically towards the asymptote (i.e., the869

ultimate size) determined by the value of f . In a seasonal environment, in which f periodically870

oscillates, the growth curve also oscillates, but with a much lower amplitude. The reserve acts as a871

low pass filter between environmentally driven assimilation and relatively stable energy utilization.872

However, at scaled time τ ≈ 8.8 the organism becomes large enough to experience food deprivation873

(sensu κ ṗC < ṗS ). The simulation was stopped at this point because, in line with the above874

explanation, applying Eq. (33) to shrinkage would violate energy conservation. Along with the875

size of the organism, we kept track of the scaled maturity density to illustrate how age and length876

at puberty change with food availability. As the value of f decreases, age at puberty increases877

because time required for the cumulative investment of energy into maturation to reach the level878

necessary for a stage transition increases as food decreases. Simultaneously, length at puberty879

decreases with f due to the considerable decline in the growth rate.880

7. Allometry in DEB881

Allometry describes by means of power laws the way biological traits such as oxygen con-882

sumption, life span, or reproduction rate change with the size of the organism. Allometry is a883

powerful tool because it reveals empirical patterns [69] that raise important research questions.884

For example, why does standard metabolic rate increase among living organisms with body mass885

raised to the power less than unity? This question, in fact, formulates the famous Kleiber’s law886

[111] that originated from the work of Max Kleiber in the early 1930s and remained controversial887

to this day [112].888

In the literature, allometric relationships typically fail to distinguish between intra- and inter-889

specific comparisons. However, the distinction between intra- and inter-specific scaling relation-890

ships is crucial because organisms are not only characterized by their size but also by their pa-891

rameter values. In DEB theory, differently sized organisms of the same species share the same892

set of DEB parameters, yet differ in the values of state variables E, V , and EH. Conversely, the893

organisms of different species have different parameter values.894

Results provided by DEB intra- and inter-specific scaling relationships are indistinguishable895

from the empirical patterns revealed by allometry [7, 10]. However, DEB intra-specific relation-896

ships can be different from inter-specific relationships because each of these types of relationships897

arise from the different mechanistic explanations. A good example is provided by the explanations898

for Kleiber’s intra- and inter-specific laws [11].899

To obtain DEB inter-specific relationships we need to know how parameter values vary be-900

tween species. The key aspect is to realize that some parameters, collectively called intensive,901

characterize processes that occur at a cellular level. The similarity between the cells of different902

species implies that intensive parameters (e.g., v̇, κ, κR,
[
ṗM

]
, k̇J, and [EG]) are roughly constant903

and are independent of the maximum size of the species. Other parameters (e.g., { ṗAm}, Eb
H, and904

Ep
H), called extensive, depend on maximum size in predictable ways; this dependence is mathe-905

matically expressed in the form of the functions of maximum size and intensive parameters [10].906

An example is the maximum surface-area-specific assimilation rate, { ṗAm} = Lm
[
ṗM

]
/κ. In this907

expression, extensive parameter { ṗAm} is proportional to maximum size (Lm), where the propor-908

tionality constant is the ratio of two intensive parameters,
[
ṗM

]
/κ.909
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We are now in a position to exemplify how intra- and inter-specific scaling of an energy flow910

may differ from one another. The focus is put on the assimilation flow (ṗA). From Eq. (17), we911

immediately obtain ṗA ∝ L2 intra-specifically. Inter-specific scaling, by contrast, is the functional912

dependence of biological traits on maximum size (Lm as opposed to L), meaning that in mathemat-913

ical expressions (i) all appearances of L must be replaced with Lm and (ii) all extensive parameters914

must be expanded in terms of Lm. Applying (i) and (ii) onto Eq. (17) quickly yields ṗA ∝ L3
m inter-915

specifically. Thus the assimilation flow increases with the squared structural length among the916

individuals of the same species, but the same flow increases with the cubed maximum structural917

length among the individuals of different species.918

The maximum reserve density, [Em], is an ecologically important parameter because it indi-919

cates how well an organism withstands starvation. It is therefore useful to have at least an approx-920

imate idea if [Em] systematically varies with species size. From expression [Em] = { ṗAm}/v̇, it921

follows that [Em] ∝ Lm because { ṗAm} ∝ Lm and v̇ is an intensive parameter. Thus larger species922

should generally have a higher reserve density and hence better tolerate starvation than smaller923

species.924

The fact that the parameters of the standard DEB model (see Appendix A for a summary)925

can be divided into intensive and extensive, naturally leads to the idea of parameter covariation926

[7, 11, 36, 37]. For all intensive parameters, on the one hand, we can expect that their values927

remain within a well-defined range irrespective of the species at hand. For example, if species 1 is928

characterized by energy conductance v̇1, while species 2 is characterized by v̇2, it should generally929

hold that v̇1 ≈ v̇2. Although there are instances wherein intensive parameters differ considerably930

from one species to another (e.g., the volume-specific cost of structure, [EG], may easily vary by931

a factor of three depending on the water content of organisms), a reasonable bound on the values932

of these parameters suggests a certain reference—there should be some “default” (typical) values933

such that they represent a good starting point for parameter estimation whenever the standard DEB934

model is applicable.935

For extensive parameters, on the other hand, we exploit their systematic dependence on the936

maximum species size to define the reference values at a predetermined maximum structural937

length, Lre f
m . If species 1 is the reference (i.e., L1

m = Lre f
m ) with, say, maximum surface-area-938

specific assimilation rate { ṗ1
Am}, then for species 2 we immediately have { ṗ2

Am} = { ṗ1
Am}L

2
m/L

re f
m ,939

where L2
m is the maximum structural length of species 2. In general, ratio z ≡ Lm/L

re f
m is called the940

zoom factor. Relationships such as { ṗAm} = Lm
[
ṗM

]
/κ suggest that by setting Lre f

m = 1 cm (or m),941

reference values for extensive parameters are determined entirely by the values of intensive param-942

eters and hence approximately valid in any standard DEB model application. Because reference943

values should be a good place to start the estimation of model parameters or, alternatively, because944

similarly sized species should have similar parameter values, the method of parameter estimation945

employed in the DEB-based literature is often referred to as the covariation method [7, 11, 36, 37].946

The discussion here is far from exhaustive, yet it illustrates the principles of obtaining ecologi-947

cally relevant scaling relationships based on the standard DEB model. For a much more exhaustive948

treatment of the subject of allometry in DEB, the reader is referred to Refs. [7, 8, 10, 11, 36, 37].949
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8. DEB applications950

The rigorous theoretical background and strict adherence to the laws of conservation of mass951

and energy allows for coherent applications and extensions of DEB models. As of the first quarter952

of 2016, there are more than 500 peer-reviewed papers on DEB and its applications (see [113] for a953

complete list), and DEB parameters for more than 400 species have been determined (see [114] for954

a complete list of species and parameter values). Clearly, any review of DEB applications shorter955

than a book can be cursory at best. We hope, however, that even a cursory review can give a useful956

overview of the type of problems DEB can be used for. To maximize the effect, our examples span957

applications ranging across scales of biological organization, types of organisms, and research958

questions. Inevitably, the choice of examples has been biased by interests, comprehension, and959

expertise of the authors. Hence, this section is not exhaustive; there are numerous additional960

existing and potential applications. We sincerely hope that the reader will find or devise one961

suitable for their research question(s).962

We start by giving a short overview of the huge and growing database of standard DEB model963

parameters, and on a recent example (the loggerhead turtle) showcase the type of insights one964

might expect by applying a DEB model to a species. Next, we show examples of DEB model ex-965

tensions that track metabolic products, predict distribution of toxicants, and enable coherent mech-966

anistic approach to ecotoxicology. Finally, we discuss mortality, and show how DEB has been used967

to extrapolate environmental conditions to population-level dynamics, including population-level968

effects of toxicants.969

8.1. Overview of the Add my pet collection—the on-line DEB model parameters database970

The Add my pet collection currently houses 416 species belonging to 17 phyla [114], which971

is a 7-fold increase from 60 species present in the collection only 5 years ago [37]. Estimation972

of parameter values for new species has been simplified and can be done using four user defined973

scripts (run, mydata, pars init, and predict) implemented in the software package DEBtool974

[115]. Over 70% of species for which the DEB parameters have been estimated belong to the975

Chordata phylum, with only two other phyla having more than 10 species represented: Mollusca976

(34 species, 8.2%) and Athropoda (50 species, 12%). A somewhat anthropocentric interest to977

study creatures that are our food (such as mollusks and crabs), or that eat our food (for example,978

insects) becomes even more obvious when we take a closer look at the Chordata phylum: over979

> 30% of studied species belong to Actinopterygii (for example, fish), and another > 30% of980

species are those closest to us—mammals. The third largest group are birds with 49 species981

represented, the majority of which are a result of recently performed work [116].982

Such a vast and versatile collection reveals its huge potential when the parameter values are983

analyzed simultaneously for the patterns to emerge. Patterns in parameter values (e.g., sub optimal984

investment into reproduction mentioned in Ref. [37]) often are a part of a more general trend con-985

firmed when the analysis is repeated using a larger sample size with more species [117] or studying986

several classes of a single group (e.g., fish [118]). Meta-analyses of parameter values have helped987

explain (i) metabolic acceleration in juveniles [119, 120], (ii) the wasteful use of resources to988

maximize growth during periods of plentiful resources [121], (iii) the position of animals on the989
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abstract supply-demand spectrum, including the resilience of organisms during periods of starva-990

tion [122], and (iv) the link between sensitivity to chemical compounds and animal metabolic rates991

[123].992

While the collection of parameter values provides insights into potentially important evolution-993

ary patterns, focusing on a single species (i.e., the corresponding parameters, model predictions,994

and the subsequent implications) offers insights into physiology and ecology of this species with995

important applications for resource management. Such management becomes especially relevant996

when the species of interest is commercially valuable and a major food source (e.g., fish [124]), or997

is an endangered species facing various threats despite the conservation measures, as is the case998

with six out of seven sea turtle species [125]. We showcase insights that can be gained from ap-999

plication of a DEB model to a species on the example of one of the largest nesting aggregations of1000

the loggerhead turtle, the North Atlantic population [126].1001

8.2. Application of the standard DEB model—the case of the loggerhead turtle1002

Interest in studying the loggerhead turtles spans more than seven decades. For instance, the1003

information on growth in captivity was published as early as in the 1920s [127, 128, 129]. More-1004

over, the need for an energy budget approach was identified almost a decade ago [130]. Despite1005

this interest, data detailing energy utilization are scarce, a comprehensive life cycle analysis is hin-1006

dered by disjointed data sets, empirical studies by necessity rarely share focus, and methodologies1007

widely differ. The mechanistic nature of DEB models enables the assimilation of a wide variety1008

of disjointed data sets, thus enabling much of the existing (published and unpublished) data to be1009

used simultaneously.1010

To satisfy the need for an energy budget approach in loggerhead turtle research, we devised1011

a full life cycle model based on DEB theory [131]. Data sets and sources used during the model1012

development are listed in Table 4. Achieved data completeness level is estimated at between 3.51013

and 4 on a theoretical scale of 1 to 10 defined in Ref. [36]. The parameter values of the standard1014

DEB model (see Appendix A) were estimated using the covariation method (see Section 7; [36,1015

37]), although some values were used as found in the literature. All values are listed in Table 5.1016

The model yielded a very good description of the loggerhead turtle’s life cycle [131], with a1017

mean relative error (MRE) of 0.178. Generally, the MRE is negatively correlated with the data1018

completeness level [37] because fitting a greater variety of data with the same number of parame-1019

ters is bound to produce a comparatively worse albeit a more meaningful fit. The data complete-1020

ness level of 3.5 for the loggerhead turtle is relatively high because all entries in the Add my pet1021

collection have a completeness level below 5, and only approximately 3% of the species have1022

the data completeness level above 3.5 [114]. The MRE of the loggerhead DEB model (0.178) is1023

slightly above the average MRE of the Add my pet library (0.158), but lower than the MREs of1024

57.4% of library entries. Given the high data completeness level, this is an exceptional fit. Favor-1025

able goodness of fit was especially encouraging because certain information required to complete1026

the whole life cycle had been incorporated in the model through simplifications, adjustments,1027

and/or additional assumptions. For example, environmental conditions were assumed constant,1028

with estimated average food availability of f = 0.81 and temperature of 21◦ C [149], even though1029

loggerhead sea turtles are known to switch between distinctly different habitats during their life1030

cycle [150].1031
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Table 4: Types of data and data sources used for the parameter estimation: life-history traits (from A to K) and
functional relationships (from a to h). SCL stands for straight carapace length.

Life-history traits Data source
(A) age at birtha [132, 133]
(B) age at puberty [134, 135, 136]
(C) life span [137, 138]
(D) SCL at birth [128, 129, 135]
(E) SCL at puberty [139, 140, 141, 142, 143]
(F) ultimate SCL [139, 140, 141, 142, 143]
(G) wet body mass at birth [132, 144]
(H) wet body mass at puberty [141, 142]
(I) ultimate wet body mass [140, 142]
(J) initial energy content of the egg [145]
(K) maximum reproduction rateb [146, 147]

Functional relationships Data source
(a) Incubation duration vs. incubation temperature [132]
(b) Carapace length vs. age (captive post-hatchlings up to 10 weeks old) [132], L. Stokesc

(c) Body mass vs. age (captive post-hatchlings up to 10 weeks old) [132], L. Stokes
(d) Body mass vs. length (captive post-hatchlings up to 10 weeks old) L. Stokes
(e) Carapace length vs. age (captive juveniles and adults) [127, 128]
(f) Body mass vs. age (captive juveniles and adults) [127, 128, 129]
(g) Body mass vs. length (wild juveniles and adults) [148]
(h) Number of eggs per clutch vs. length (wild adults) [143]
aBirth in DEB is defined as the moment when hatchlings start feeding, so age at birth was calculated by
adding the average time between hatching (exiting the egg shell) and onset of feeding to the observed age
at hatching.
bMaximum reproduction rate was expressed as eggs per day using the number of eggs per clutch (assumed
to be 140 on average), the number of clutches per nesting season, and the number of nesting seasons
per year (an inverse of the remigration interval). The maximum reproduction rate was then calculated as
Ri = 4 × 140/(2.5 × 365) = 0.7671.
c Unpublished data courtesy of L. Stokes, Southeast Fisheries Science Center, National Marine Fisheries
Service, Miami, Florida, United States of America.
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Table 5: List of standard DEB model parameters for the North Atlantic loggerhead turtle (Caretta caretta). An
additional shape parameter δCL was used for the data where the type of length measurement had not been specified
[127, 128]. Preliminary parameter values for two other sea turtles in the Add my pet library are given for comparison:
Kemp’s ridley (Lepidochelys kempii) [151], and leatherback turtle (Dermochelys coriacea) [152]. Typical parameter
values used to initiate the covariation estimation method are found in Refs. [7], Table 8.1, p. 300 and [36]. All rates
are given at reference temperature Tre f = 273 K, and scaled food availability f = 0.81. Parameters for which the
typical values were used as-is are listed below the table.

Parameter Symbol C. caretta L. kempii D. coriacea Unit
Max. area-specific assimilation rate {ṗAm} 906.1a 728.4 1191 J d−1 cm−2

Energy conductance v̇ 0.07084 0.0424 0.0865 cm d−1

Allocation fraction to soma κ 0.6481 0.6929 0.9166 -
Volume-specific somatic maint. rate [ ṗM] 13.25 20.1739 21.178 J d−1 cm−3

Volume-specific cost of structure [EG] 7847 7840.77 7843.18 J cm−3

Maturity at birth Eb
H 3.809e+04 1.324e+04 7.550e+03 J

Maturity at puberty Ep
H 8.730e+07 3.648e+07 8.251e+07 J

Arrhenius temperature TA 7000b 8000 8000 K
Shape coefficient δM 0.3744 0.3629 0.3397 -
Shape coefficient δCL 0.3085 -
Density of structure and reserve dV , dE 0.28c 0.3 0.3 -
aIndirectly estimated parameter, {ṗAm} = Lre f

m z
[
ṗM

]
/κ, using the estimate of z = 44.3 for loggerhead

turtles. L. kempii: z = 25.0, D. coriacea: z = 51.6.
b Estimated independently by direct fitting to the data on incubation duration vs. incubation temperature
published in Refs. [132], [153], and [154].
c Value from Ref. [155].
Other parameters with typical values: Ingestion efficiency κX = 0.8; Reproduction efficiency, κR = 0.95;
Maturity maintenance rate coefficient, k̇J = 0.002 d−1; Egestion efficiency, κP = 0.1; Maximum searching
rate,

{
Ḟm

}
= 6.5l d−1 cm−2.

Instead of discussing the model’s goodness of fit in great detail, we showcase the type of1032

information obtainable by applying the DEB model. For example, calculating the cumulative1033

energy investment during embryonic period offers insights into the energy reserve available to1034

post-hatchlings when they reach the offshore feeding grounds (Fig. 4).1035

The amount of assimilated energy and subsequent allocation thereof change as a loggerhead1036

turtle grows and matures. Calculating and visualizing the allocation of mobilized energy between1037

the processes of (somatic and maturity) maintenance, growth, and maturation (i.e., reproduction1038

after reaching adulthood), allows us to better understand metabolism that shapes an individual’s1039

life cycle (Fig. 5). For example, the (rarely discussed) maturity maintenance comprises almost1040

25% of the energy budget of a fully grown adult (Fig. 5). Furthermore, while a juvenile individual1041

retains anywhere between 40% (when younger) and 10% (when older) of the assimilated energy1042

as reserve, once this same individual reaches its ultimate adult size, the mobilization flow, ṗA,1043

equals the assimilation flow, ṗC (Fig. 5). This equality implies a constant amount of reserve1044
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Figure 4: Cumulative energy investment until birth (i.e., the moment of first feeding), including the remaining
reserve. Shown are the plots for two scaled functional responses, f = eb = 0.81 and f = eb = 1. At f = 0.81 (left
panel), representative of the North Atlantic loggerhead turtle population, slightly less than half of the initial reserve is
left at birth. The rest is dissipated into the environment or consumed for the growth of structure before birth. The exact
fraction is important for further development and survival because the size of the remaining reserve (partly visible as
the external yolk sac) determines, e.g., the period that hatchlings survive before reaching the feeding grounds. The
DEB model also allows examining alternative scenarios. Shown is the case of maximum functional response f = 1
(right panel). A comparison between the two scenarios suggests a limited sensitivity to f experienced by the mother
because the remaining reserve at birth changes only a little.

(Eq. 19). Because neither reserve nor structure change anymore, the reserve density (Eq. 23) is1045

also maximal.1046

The maximum reserve density is an ecologically interesting parameter because it determines1047

how well an individual withstands starvation. This parameter depends on the ratio of two other1048

parameters: { ṗAm} (determining reserve assimilation) and v̇ (determining reserve mobilization).1049

For a general discussion, however, a more intuitive quantity than the maximum reserve density is1050

the time to reserve depletion, t†. Starving organisms after a while reach a point at which κ ṗC = ṗM1051

(i.e., when reserve energy is E∗ = ṗM
L
κv̇ ), meaning that the mobilization flow is about to become1052

too low to satisfy the somatic maintenance needs under the kappa rule. Although there is no1053

single general recipe for how organisms handle starvation within DEB theory [7], one reasonable1054

alternative is to assume that enough energy is mobilized from reserve to maintain the existing1055

structure. In this case, the time it takes for energy in reserve to drop from level E = E∗ to E = 0 is1056

given by a particularly simple expression, t† = L
κv̇ = [Em]

[ ṗM] l, where l = L/Lm is the scaled structural1057

length (see Section 6.5). If maturity is maintained as well, the time to reserve depletion shortens1058

by factor 0 < ṗM
ṗM+ṗJ

< 1. The larger the maximum reserve density, the longer the time to reserve1059

depletion. The somatic maintenance cost, represented here by
[
ṗM

]
, has exactly the opposite effect.1060

Finally, adults (larger l) better handle starvation.1061

The relatively low value of [ ṗM] (Table 5) and the relatively high value of [Em] = 12791 J cm−3
1062

for the loggerhead turtle, indicate that an average adult of this species may spend up to a year1063

in starvation before depleting reserve [131]. This result is in sharp contrast with the results for1064

pelagic fish such as anchovies [156] and bluefin tunas [60, 124, 157]. For these species the ratio1065

of { ṗAm} and v̇ keeps the maximum reserve density disproportionately small. Prime examples in1066

this context are bluefin tunas, who are notable for their small reserve density compared to body1067

size, the result of which is a life style typical of demand systems [122] summarized succinctly in1068

the phrase “energy speculators”.1069

We conclude that the standard DEB model aided the characterization of the whole life cycle1070

of the loggerhead turtle using only a relatively few disjointed data sets on life-history traits and1071
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Figure 5: Visualization of the full life cycle energy budget of the loggerhead turtle. Insets zoom into energetically
important moments—birth, puberty, and ultimate size. Shown are growth (ṗG), maturation/reproduction ( ṗR), and
somatic and maturity maintenance (ṗM and ṗJ , respectively) energy flows as the fractions of the daily energy intake.
Parameter values correspond to North Atlantic population (Table 5) experiencing the scaled food availability of f =

0.81.

growth, some of which date from 1926. This and similar models thus offer an opportunity to1072

bridge the knowledge gaps and help understand the life cycle of endangered species. The model1073

can further be used to study the environmental effects on metabolic processes such as growth,1074

maturation, and reproduction, as well as explore future scenarios, e.g., those resulting from the1075

global climate change. Ultimately it is possible to investigate how changes in temperature and food1076

availability might affect an individual’s maturation and reproduction and, through it, population1077

viability. For further details on the subject of population-level effects, the reader is referred to1078

Section 8.5.1079

8.3. Tracking formation of metabolic products1080

Products in DEB can appear as a consequence of changes in stoichiometry when materials are1081

transformed from one pool of materials into another. If the two pools have different stoichiometric1082

composition, there must be excess material during the transformation corresponding to the differ-1083

ence. The law of conservation of mass implies that either the stoichiometric compositions of the1084

pools have to change as the excess is returned to one or both pools, or that the materials need to be1085

excreted in the form of a (metabolic) product. Since the strong homeostasis assumption requires1086

that the compositions of the pools remain (near-)constant, product excretion is the only remaining1087

option.1088

While many products are simply excreted into the environment, some are retained within the1089

organism. The retained product can be recognized by its metabolic role. If it does not require main-1090

tenance, it is not structure; if it cannot be metabolized, it is not reserve; thus, it is a DEB product.1091

Because the products are created in conjunction with active metabolic processes, consistency in1092
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DEB require that they be expressed as a weighted sum of the three fundamental transformations1093

(assimilation, growth, and dissipation). Furthermore, the law of conservation of mass requires that1094

the functional dependence of contribution of each flux be linear: only a fixed proportion of any1095

given flux is ’excess’ and can contribute to product formation.1096

Cellulose that form tree trunks and otoliths in fish are examples of useful, retained DEB prod-1097

ucts. Cellulose is a complex carbohydrate that (among other functions) provides structural stability1098

to green plants. Indeed, when integrated into a trunk, it neither requires maintenance, nor can it be1099

used as a source of energy by the tree.1100

The same rules apply to fish otoliths, calcified structures in the fish inner ear whose growth1101

and opacity depends on both fish metabolism (growth and other metabolic functions) and envi-1102

ronmental conditions and, therefore, can exhibits seasonal variations in temperate environments.1103

Otoliths can be assumed to be products in DEB theory because, even though they help with bal-1104

ance, orientation, and sound detection, they are metabolically inert. Moreover, because they grow1105

even after the fish stops (as expected from a product not exclusively related to growth), otoliths1106

provide a historical record of fish life history and environmental conditions experienced by the1107

individual fish. Understanding this record, however, has been challenging; populations in appar-1108

ently similar conditions can have widely different opacity patterns. The otoliths are difficult to1109

interpret because it is difficult to disentangle the different factors that control opacity; for exam-1110

ple, both high temperature and low growth conditions in winter can generate translucent sections.1111

Modelling explicitly otolith growth and otolith opacity as functions of metabolic fluxes and tem-1112

perature conditions can help us disentangle these drivers, get a more precise reconstruction of the1113

growth pattern, and reconstruct a new variable: the amount of food assimilated.1114

Fablet et al. [158] and Pecquerie et al. [159] developed a comprehensive model of otolith1115

growth based in DEB theory, and used it to analyze non-standard patterns of otolith growth in two1116

cod populations (Barents Sea and the southern North Sea). Their research on biology of otoliths1117

and cod identified (i) two fractions in the otoliths: a dark organic matrix, P, and a translucent1118

mineral (aragonite) fraction, C, (ii) temperature dependence of aragonite precipitation, and (iii)1119

two possible major contributions to otolith formation: growth and maintenance. Since otolith1120

production is a weighted sums of the two contributions, they define1121

dVP

dt
= αP pG + βP pM, (36)

dVC

dt
= f (T ) (αC pG + βC pM) , (37)

where αP and βP are production weights for the organic matrix, αC and βC the production weights1122

for the mineral fraction, and f (T ) is the temperature dependence of precipitation. Opacity is then1123

given by the ratio of the two product functions.1124

First, parameters were fitted using independent data from experiments that had very differ-1125

ent conditions from what could be expected in nature (one set with constant food level, another1126

with nearly constant temperature). Next, the model was simulated with environmental conditions1127

expected for the two natural cod populations. The simulated size and opacity of otoliths were1128

markedly similar to real-life otoliths, and captured all details and differences between the two1129

populations (Figure 6). Back-calculation using the DEB model (Figure 7) was also successful:1130
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the back-calculated environmental conditions corresponded well with feeding and temperature in1131

controlled experiments [159].1132

The generality of DEB implies that, once tested, the otolith model can be used for all sim-1133

ilar processes, including shell growth in shellfish. More importantly, additional effects can be1134

included, e.g., reduced biomineralization of calcium carbonate due to increase in CO2, thus giving1135

plausible predictions of biological effects for multiple climate scenarios based on readily avail-1136

able data. The ability to utilize multiple sources of information and decouple effects of multiple1137

causes to correctly predict growth and reproduction of, as well as product formation by organisms1138

in never before experienced environments is one of the chief benefits of DEB models, crucial for1139

understanding future anthropogenic effects on individuals.1140

Figure 6: Comparison of real and simulated otoliths. Left: real (top) and simulated (bottom) otoliths from the
southern North Sea population. Right: real (top) and simulated Barents Sea population (bottom). Note that only
temperature and food forcing differ between the two populations; the model and parameter values are equal in both
simulations. Adapted from Ref. [158].

Figure 7: Using DEB model to recover missing information. Left plot (’forward mode’): DEB model is used to
predict otolith growth and opacity from known temperature and food conditions. Right plot (’backward mode’): DEB
model is used to predict otolith growth and food levels from known temperature and measurements of otolith opacity.
Adapted from Ref. [159].

In addition to tracking formation of metabolic products, the rigorous definition of material1141
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and energy fluxes in DEB enables tracking of incidental materials such as toxicants. The ability1142

to quantitatively predict distribution of toxicants throughout the organism resulting from a given1143

exposure is crucial to quantitative predictive ecotoxicology. Indeed, problems in ecotoxicology1144

are historically responsible for the creation of the DEB theory.1145

8.4. Ecotoxicology1146

Traditional standardized toxicity tests determine acceptable levels of adverse effects, ECx,1147

where EC stands for ’effective concentration’, and x for the percentage of population exhibiting1148

the investigated adverse effect. The ECx and older standard, no-effect concentration (NOEC) have1149

been proven inadequate (see [160] for a summary). In short, NOEC and ECx give information1150

about consequences of exposure with ad-libitum food over a standardized period of an animal of1151

a certain size; data, however, show that the consequences depend on a number of factors such1152

as food availability, organism size and age, exposure duration, and many more. DEB-based ap-1153

proaches address the shortcomings of the NOEC and ECx testing, and are included in the new1154

OECD guidance [161] as an alternative to traditional tests. Most notably, DEB theory has been1155

successful in capturing and predicting toxic effects of mixtures for multiple endpoints over the1156

whole life cycle (see [162, 163] for overview). The advances have been made possible by the1157

rigorous consideration of energy and material fluxes in DEB models.1158

DEB model fluxes not only determine growth and reproduction of individuals, but also their1159

interaction with the environment, including toxicant intake with food, and assimilation of the1160

toxicant through surfaces (e.g., skin). The energy and material fluxes within the organism specified1161

by DEB also serve as a basis for determining how the toxicants distribute within the organism. The1162

model linking the outside toxicant concentration with the internal bioaccumulation and distribution1163

of the toxicant is called a toxicokinetic model. The results of the toxicokinetic model serve as an1164

input to a toxicodynamic model that accounts for the effects of toxicants, and the resulting model1165

can be incorporated into a population model (see [164] for a comprehensive review of population1166

models suitable for this purpose).1167

Because DEB models capture all aspects of energy utilization, toxicodynamics (effects of the1168

bioaccumulated toxicant) can be represented as effects on DEB parameters. In most applications,1169

one or more DEB parameter values increase linearly with bioaccumulated toxicant density less1170

some no-effect concentration, which represents the capacity of the organism to mitigate toxic1171

effects (for a list of more than 70 relevant publications see [165]). While the standard DEB-based1172

toxicology modeling (DEBtox) as described in Ref. [7] has a steep learning curve and may require1173

a significant number of parameters, it more than compensates by providing numerous advantages1174

over purely empirical modeling, most importantly:1175

• Multiple endpoints can be integrated independently and consistently.1176

• Modular construction: starting with the standard DEB model, modules can be attached as1177

required by the research question, physiology of the organism, and/or environmental char-1178

acteristics.1179

• Built-in constraints dictated by the physiology and strict observance to laws of physics help1180

identify processes that govern responses to environmental conditions.1181
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• Each set of measurements can be used to fit a disjointed set of parameters. For example, es-1182

timation of parameters governing the growth of zero-exposure treatment can be independent1183

from estimation of parameters governing responses to toxicants.1184

• Parameter estimates for physiologically similar species estimated in completely different1185

environments can be used to great effect, thereby drastically reducing data requirements;1186

this is especially useful for species where experiments are impractical or illegal, and data1187

are sparse and unevenly distributed (e.g., whales [166]).1188

• Once created and parameterized, a DEB-based model can give new insights into physiology1189

by evaluating competing hypothesis.1190

Sometimes, the complexity of a toxicity model based on the full DEB model is not required1191

for a specific task, and creates a ’barrier to entry’ that prevents wider adoption and application of1192

the theory. For these cases, Jager et al. [167] developed DEBkiss, a simplification of the standard1193

DEB model.1194

DEBkiss simplifies the standard DEB by removing the energy reserve dynamics and assuming1195

a constant body size at puberty. These simplifications remove maturity as a state variable, but the1196

maturity maintenance can still be included. DEBkiss captures most of the nuances of the standard1197

DEB, and is especially appropriate for small animals with small energy reserves, where parameters1198

governing the reserve dynamics are difficult to estimate. Embryonic development, sustained by a1199

dynamic reserve compartment in standard DEB, is in DEBkiss sustained by a buffer of assimilates1200

in the egg, with egg weight as the primary parameter; the embryo hatches when the buffer runs1201

out. As testified by more than a dozen DEBkiss papers since its inception in 2013, DEBkiss1202

significantly simplifies the toxicity analysis because it uses less parameters, fewer state variables,1203

and is easier to expand with toxicokinetic models.1204

DEBkiss (like other) simplifications, however, come at the cost of loss of generality. For1205

example, DEBkiss parameters are not directly comparable to standard DEB model parameters,1206

cannot be included in the Add my pet database, and special attention has to be used when com-1207

paring DEBkiss parameter values between species. Furthermore, when the environment is rapidly1208

varying (compared to timescale of reserve equilibration in standard DEB), and/or size is not a1209

good predictor of puberty, DEBkiss may skew predictions. Since population dynamics is espe-1210

cially susceptible to predictions determining fecundity (affected, among other factors, by timing1211

of puberty), special attention should be paid when using DEBkiss to model populations in varying1212

environments.1213

8.5. Population-level analysis1214

DEB, respecting the fundamentals of thermodynamics, relates biochemical level to the in-1215

dividual level of biological organization, but ecological applications require understanding of1216

population-level dynamics. The understanding is especially important in the light of anthropogenic1217

influence on the ecosystem (including global warming) because of a completely new set of envi-1218

ronmental conditions developing at an unprecedented rate. Due to the rapid change of environmen-1219

tal conditions, species have to adapt without benefits of long-term individual adaptation through1220

evolution. The population-level adaptations are reflected in changes of the size and age structure,1221
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and patterns of growth and reproduction. Understanding and predicting these changes and patterns1222

is crucial to our ability to properly account for limits of population-level adaptations in environ-1223

mental management efforts such as species conservation, habitat preservation, and fishing rules1224

and quotas. For example, predictions of changes in maturation size and age of a commercial fish1225

species can help change fishing gear regulations years in advance, allowing for timely gear replace-1226

ment. Without predictions, management reactions can only be retroactive: only once overfishing1227

is noticeable, can rules and regulations change; by the time the changes are implemented in the1228

field, it may already be too late. Empirical models could provide the needed information, but de-1229

pend on experimental data. Population-level experiments, however, require multiple generations.1230

Multi-generation experiments can take too long, be too expensive, and raise ethicsl concerns.1231

Population dynamics models making use of the ability of DEB models to predict individual1232

growth and reproduction patterns offer a unique tool for providing quick and useful predictions.1233

DEB models have successfully been incorporated into models of population dynamics: individual-1234

based population models (IBMs) run the DEB model for each individual or group of individuals1235

separately, while other approaches rely (e.g., matrix population models [168]) on simplifications1236

and/or mean-field approximations.1237

All of the population-level models need to account for mortality. Mortality can be intrinsic, due1238

to internal failures caused by starvation, aging and other sources of internal damage, or external1239

due to external factors such as harvesting and predation. Only the basic ideas of aging in DEB are1240

covered here; the reader is directed to Chapter 6 of Ref. [7] and Ref. [169] for details on aging in1241

DEB, and numerous literature for accounting for other sources of mortality (e.g., [170, 171]).1242

Aging in DEB is assumed to be the consequence of accumulation of minute units of irreparable1243

damage resulting from energy utilization. Oxidation required for energy utilization is extremely1244

dangerous because oxidation of cellular components destroys their function. Cells have developed1245

mechanisms to defend against the unwanted oxidation, but the defenses are not perfect, and some1246

components do get damaged. Much of the damage can be repaired, but some damage to genetic1247

information cannot be. Cellular components and functions based on the faulty genetic information1248

have reduced efficiency, and are less able to defend against new damage, thus creating a positive1249

feedback leading to accelerating accumulation of damage with a source term proportional to the1250

energy utilization rate. Damage creates hazard, h, and the aging-induced mortality rate is assumed1251

to be proportional to the hazard: probability of an organism alive at time t to be dead at t + dt is1252

equal to hdt. Toxicants can affect the hazard rate, as well as other cellular processes. Note that1253

organisms in the wild rarely die of old age, and often the mortality due to aging can simply be1254

ignored.1255

8.5.1. Individual-based models1256

IBMs have the most natural link with DEB models [164], in large part because they require1257

less mathematical expertise to implement, and offer great flexibility in the choice of physiological1258

models [172]. Although utilized before (e.g., [172, 173]), DEB-based IBMs have only recently1259

been generally and rigorously implemented [174]. The publicly available DEB-IBM model imple-1260

mented in NetLogo by Martin et al. [174] can be used to investigate any of the hundreds of species1261

for which DEB parameters are known [114]. The software also allows for spatial heterogeneity in1262

food levels, with a probabilistic movement decision tree able to incorporate primitive behavioral1263
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changes.1264

The ability of the DEB-based IBM to correctly predict population dynamics was tested on1265

one of the most commonly researched animals in DEB—Daphnia [175]. The model was able to1266

predict population growth rates and peak densities, but could not correctly capture the population1267

decline without assuming increase in infant mortality for low food levels. The model with food-1268

dependent infant mortality, however, was able to correctly predict both large and small amplitude1269

cycles previously observed in Daphnia populations feeding on algae in a mesocosm. In addition1270

to providing robust predictions of independent data, the model was able to serve as a test bed1271

for modeling alternatives. For example, Martin et al. [175] were able to test the need to include1272

energy reserves as a state variable. Results suggest that—as long as maintenance during starvation1273

is paid from structural biomass, and mortality is linked to assimilation—energy reserves can be1274

omitted. This finding supports the use of net production models as a basis for stage structured1275

models discussed below.1276

8.5.2. Stage-structured models1277

Stage structured models are mainstays of ecology; basing them on DEB models enables process-1278

based analysis of population dynamics, and mechanistic analysis of inter-dependencies between1279

multiple trophic levels. Compared to IBMs, stage-structured models require significantly less1280

computing power, are less sensitive to effects of cohorts, and are easier to include into ecological1281

networks, but require simplifications of the underlying DEB model. Furthermore, while using1282

a stage-structure model, we gain the expediency of running the population model, but loose the1283

ability to rigorously track material fluxes, as well as interrelate species by using scaling rules1284

emanating from the full DEB description.1285

DEB-based stage-structured models include a number of simplifications, but can capture the1286

general dynamics well regardless. For example, Nisbet et al. [176] use a net production model1287

(in many respect similar to DEBkiss) to calculate functionals in delay-differential equations of1288

the population dynamics model. The net production model includes only structure, W, and egg1289

production, R, as state variables. The complexities of DEB growth dynamics are reduced by1290

considering the production flux, P = κA ṗA − ṗJ − ṗM. The production flux is responsible for1291

all energy utilization towards growth and reproduction; the slowdown of growth and increase in1292

production intrinsic to the full DEB model are captured by an assumed size-dependent allocation1293

to growth, Θ:1294

dW
dt

= ΘP, (38)

dR
dt

=
1

we
(1 − Θ)P, (39)

where we denotes units of energy required per egg. The simplified model was then used to drive1295

population dynamics, and the feedbacks of food ingestion onto food availability (X). The resulting1296

dynamics captured and offered insights into the previously investigated small- and large-amplitude1297

cycles in Daphnia microcosms. Interplay between resource and population dynamics producing1298

the oscillations in Daphnia populations is at the heart of many ecological questions.1299
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Ananthasubramaniam et al. [177] take yet another approach. After assembling data from a1300

large number of studies on Daphnia magna, they create a variant of a DEB model that captures1301

specificities of the Daphnia, including molting. In addition to evaluating the DEB parameters,1302

they calculate population growth rate for exposures at different food levels. Their subsequent1303

sensitivity analysis was presented using heat maps, making the analysis conducive to the type of1304

reasoning used in genomics and proteomics. They use the approach to cross-relate known omics1305

data to the DEB analysis, thus identifying potential hotspots of toxicity response. Conceptually,1306

the approach could be used to identify physiological roles of upregulated genes (and proteins):1307

correlation between changes in DEB parameters describing a physiological process (e.g., assimi-1308

lation) and upregulation of certain set of proteins suggests that the particular set is related to the1309

physiological process.1310

8.5.3. Using DEB to directly model (bacterial) population growth and effects of toxicants1311

Populations of a special class of organisms, V1-morphs, can be modeled using the individual1312

DEB model. V1-morphs are organisms whose surface area is proportional to volume for all sizes1313

(e.g., filamentous hyphae of a fungus with a fixed diameter but variable length), signifying that1314

all fluxes are proportional to volume. This, in turn, implies self-similarity: fluxes can be easily1315

scaled to any size of the organism because ratios of fluxes are independent of size, so any part of1316

the organism is representative of the whole. If appropriations to reproduction are also not size-,1317

age-, or stage-dependent, organisms of all sizes contribute equally to the reproduction (normalized1318

to size). Consequently, the same equations describe growth and reproduction normalized to size1319

for any individual. If the simulated size is the sum of individual sizes of all organisms in the1320

population, the equations describe population dynamics.1321

Microorganisms are small enough that, even though they may not be V1-morphs, their sur-1322

face areas are proportional enough to their structural volumes that a V1-morph approximation1323

can be made. Furthermore, there is often no distinction between growth and reproduction in mi-1324

croorganisms, and even if there is, the large numbers allow a mean-field approximation of energy1325

commitment to reproduction. Therefore, microorganisms are prime targets for using DEB to di-1326

rectly model population growth. This is especially useful in ecotoxicology, where microorganisms1327

are often the organisms of choice.1328

For example, the model of cadmium-ion toxicity on a bacteria, P. aeruginosa [178] uses a1329

DEB model to model bacterial population growth and toxicokinetics. Rather than directly modi-1330

fying the hazard rate, toxicodynamics is modeled by increasing the rate of damage created in the1331

DEB aging module in proportion to the bioaccumulated toxicant. The greater rate of accumula-1332

tion of damage leads to increase in hazard and, therefore, mortality. The inability to capture P.1333

aeruginosa population-level responses from effects on mortality alone, indicated that additional1334

toxicodynamic effects must be in play. Toxic effects on the maximum assimilation rate, and on ac-1335

climation (energy spent re-purposing the molecular machinery to reduce effects of exposure) were1336

identified as the likely culprits. The resulting model was able to, using information on population1337

dynamics in low toxicant concentrations, satisfactorily predict population-level responses to high1338

toxicant concentrations (Fig. 8).1339

The mechanistic nature of DEB models makes them useful in verification of hypotheses, and1340

enables self-consistent model expansion and inclusion of completely different data into the analy-1341

43



Figure 8: Cadmium toxicity. Left panel (adapted from Ref. [178]): predictions of the model for ionic toxicity. The
model reproduces growth patterns for all treatments with a single common parameter set. Fitting toxicity parameters
using bacterial growth for exposures of 0, 10, and 20 mg(Cd)/L (dotted lines) predicts well growth at exposures of up
to 150 mg(Cd)/L well (solid lines). Right panel (adapted from Ref. [179]): predictions of damage-inducing compound
(DamIC) levels (lines) compared to ROS levels (squares) for three different toxicodynamic modes: increase in costs
of maintenance (solid line), decrease in energy conductance (dashed line), and increase in negative effects of previous
damage (aging acceleration, dotted line). Increase in maintenance costs results in a pattern of damage-inducing
compounds most like the observed ROS pattern.

sis. For example, Klanjscek et al. [179] used the ionic model of Cd toxicity to test and disprove1342

the hypothesis that ionic toxicity could be responsible for toxicity of cadmium-selenium quantum1343

dots (CdSe QDs), an engineered nanomaterial. Next, they expanded the model to include toxicoki-1344

netics and toxicodynamics of the QDs, while keeping all parameter values from the ionic part of1345

the model unchanged. Because any and all metabolic processes could have been affected, the au-1346

thors tested a number of alternatives. The growth curves lead to conclusions that—unlike the ionic1347

toxicity—acclimation to nano-toxicity requires energy investment that increases with exposure.1348

Also, additional data on abundance of reactive oxygen species (ROS) helped identify increase1349

in maintenance due to bioaccumulated QDs as the most likely propagator of the toxicodynamic1350

effect.1351

The few examples presented in this section represent neither the typical, nor the extent of pos-1352

sible uses of the DEB theory; for the most part, they focus on the non-standard approaches to1353

DEB. Apart from avoiding having to choose among many excellent DEB applications, this is to1354

make the point that DEB theory goes beyond the description of all life forms: it provides a com-1355

prehensive, highly adaptable platform for investigating causal links between objects and actors on1356

all levels of biological organization, starting with molecular dynamics, through individuals and1357

populations, to the ecosystem (see also [8]). DEB is unique in its ability to predict effects of alter-1358

native environmental scenarios on organisms, thus offering a way to inform decision-makers and1359

enable proactive policies necessary to successfully adapt to, and mitigate effects of, environmen-1360

tal pollution and oncoming global climate change. This will be especially important in the new,1361

Anthropocene era where our actions are the main drivers of change on the planet Earth, and we no1362
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longer have the luxury of experimenting with the ecosystem.1363
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A. Summary of key equations and quantities1371

To provide a complete overview of the standard DEB model in one place, here follows a1372

summary of key equations and quantities. The model dynamics covering the development of an1373

organism from an egg to a fully mature adult are given by1374

dE
dt

= ṗA − ṗC, Reserve dynamics

dL
dt

=
ṗG

3L2 [EG]
, and Growth

dEH

dt
=

 ṗR, if EH < Ep
H

0, if EH = Ep
H

. Maturation

For these ordinary differential equations to be solvable, energy flows should be specified in terms1375

of the state variables1376

ṗA =

0, if EH < Eb
H

{ ṗAm} f L2, otherwise
Assimilation

ṗC = [E]
v̇ [EG] L2 +

[
ṗM

]
L3 + { ṗT } L2

[EG] + κ [E]
, Utilization

ṗG = [EG]
κv̇ [E] L2 −

[
ṗM

]
L3 − { ṗT }L2

[EG] + κ [E]
, and Growth

ṗR = (1 − κ) ṗC − k̇JEH. Maturation

Important symbols appearing in the model equations are conveniently summarized in Table A.1.1377

To close the life cycle of an organism, an estimate of the reproductive output is still needed.1378

The rate of continuous egg production, for example, is estimable using1379

Ṙ =
κR

E0
×

0, if EH < Ep
H

ṗR, if EH = Ep
H

. Egg production rate

An alternative to continuous egg production is intermittent reproduction limited to a suitable win-1380

dow of opportunity called the reproductive season. Between two consecutive reproductive seasons,1381

energy allocated to reproduction is stored in a buffer according to1382

dER

dt
=

0, if EH < Ep
H

ṗR, if EH = Ep
H

. Reproduction buffer

Obtaining the rate of intermittent egg production from energy in the reproduction buffer requires1383

defining species-specific buffer handling rules.1384

Although not strictly necessary from a mathematical perspective, in some applications (e.g.,1385

ecotoxicology), it is useful to explicitly write down the two maintenance flows as1386

ṗS =
[
ṗM

]
L3 + { ṗT } L2, and Somatic maint.

ṗJ = k̇JEH, Maturity maint.
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which can then be used to slightly simplify the equations for other flows, i.e., utilization, growth,1387

and maturation. The reason for doing such a simplification and emphasizing the role of mainte-1388

nance flows is that some toxicants, e.g., xenobiotics, directly influence the value of maintenance-1389

related parameters. Instead of having an environmental effect on the parameter values scattered1390

across multiple model equations, it is usually a better practice to capture these changes in a single1391

equation whenever possible.1392

One more equation consistently used in conjunction with the standard DEB model is the Ar-1393

rhenius relationship. This relationship captures the effect of temperature on the metabolic rates of1394

ectotherms1395

ṗ∗(T ) = ṗ∗(Tre f ) exp
(

TA

Tre f
−

TA

T

)
. Arrhenius rel.

When additionally the temperature tolerance range of an ectothermic organism needs to be ac-1396

counted for, the Arrhenius relationship is extendable by multiplying its right-hand side by ratio1397

γ(Tre f )/γ(T ), where function γ = γ(T ) is given in Eq. (2).1398

Table A.1: Key quantities appearing in the standard DEB model.

Symbol Description Unit
E (t) Energy in reserve J
L (t) Structural length cm
EH (t) Level of maturity J
ER (t) State of the reproduction buffer J
E0 Initial energy reserve of an egg J
f (t) Scaled functional response (see Section 6.2) –
T Body temperature K
{ṗAm} Maximum surface-area-specific assimilation rate J d−1 cm−2

v̇ Energy conductance cm d−1

κ Allocation fraction to soma –
κR Reproduction efficiency –[
ṗM

]
Volume-specific somatic maintenance cost J d−1 cm−3

{ṗT } Surface-area-specific somatic maintenance cost J d−1 cm−2

k̇J Maturity maintenance rate coefficient d−1

[EG] Volume-specific cost of structure J cm−3

Eb
H Maturity at birth J

Ep
H Maturity at puberty J

TA Arrhenius temperature K
Tre f Reference body temperature for parameter values K

B. Embryonic development and the initial conditions1399

In DEB theory, an egg is assumed to initially contain only reserve received from the mother.1400

By utilizing this reserve the embryo develops until becoming capable of feeding on its own. Under1401
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such conditions, as shown in Section 6.5, the triplet of the scaled state variables (e, l, eH) at scaled1402

time τ = 0 is
(
+∞, 0, e0

H

)
, where e0

H = (1 − κ) g. Because the embryo is not feeding on an outside1403

food source, the scaled energy density is decreasing until it reaches value eb at the moment of first1404

feeding (i.e., birth in DEB terminology because the first feeding represents a major shift in the1405

energy budget of any organism). The value of the scaled reserve density at birth is assumed to be1406

known due to the maternal effect [110]. Namely, eb = f , where f is food availability experienced1407

by the mother. These considerations indicate that the scaled reserve density is a monotonically1408

decreasing function of time (from e = +∞ initially to e = eb at birth), thus allowing us to simplify1409

the system of Eqs. (32) and (33) by using e as an independent variable instead of scaled time τ.1410

We get an ordinary differential equation1411

dl
de

= −
l

3e
e − l
e + g

, (B.1)

where we have taken into account that embryos do not feed ( f = 0) and have negligible surface-1412

area related somatic maintenance costs (lT = 0).1413

Eq. (B.1) has an exact solution1414

l (e) =
2g

−2 + 2Cg4/3 (1 + e/g)1/3 + (1 + e/g)<
[
2F1 (2/3, 1, 5/3, 1 + e/g)

] , (B.2)

where C is an unknown integration constant,< is the real part of a complex number, and 2F1(·, ·, ·, ·)1415

is a hypergeometric function. The correctness of this solution can be proven by inserting Eq. (B.2)1416

back to Eq. (B.1). More importantly, we see that determining the integration constant C is equiv-1417

alent to determining scaled length at birth, lb, because lb = l (eb), which can be solved for lb when1418

C is known and vice versa. Function l (e) can be slightly simplified by substituting x = 1 + e/g,1419

which runs from x0 = +∞ to xb = 1 + eb/g during the course of embryonic development.1420

Constant C is constrained by Eq. (35) for the scaled maturity density. However, the problem1421

is considerably simplified if we substitute h = l3eH/ (1 − κ), upon which maturity is tracked with1422

equation1423

dh
dx

=
k
g

l (x)
x − 1

h (x) − [l (x)]3 l (x) + g
x

, (B.3)

where h(x0) = 0 and h(xb) = l3
beb

H/(1−κ)—a known value because l3
beb

H = Eb
H/([Em] L3

m). Eq. (B.3)1424

is recognizable as a first-order linear differential equation of the form dh
dx + P (x) h = Q (x) [180].1425

In our case, P (x) = − k
g

l(x)
x−1 and Q (x) = − [l (x)]3 l(x)+g

x . The general solution is [180]1426

h (x) = exp
(
−

∫ x

xb

P
(
x′
)

dx′
)

×

[
h (xb) +

∫ x

xb

Q
(
x′
)

exp
(∫ x′

xb

P
(
x′′

)
dx′′

)
dx′

]
. (B.4)

Fortunately, we do not need to solve this equation to find the value of constant C. Instead, it is1427

sufficient to use the fact that h(x0) = 0, yielding1428

h (xb) = −

∫ x0

xb

Q
(
x′
)

exp
(∫ x′

xb

P
(
x′′

)
dx′′

)
dx′. (B.5)
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From this condition, constant C is readily calculated using numerical integration. Once the value1429

of C is known, the initial condition for simulating post-embryonic development with the standard1430

DEB model is
(
eb, lb(eb), eb

H

)
.1431

If constant C is known, can it be used to calculate the initial energy reserve of an egg, E0? The1432

answer is affirmative, and the relationship to perform this calculation is1433

E0 =
[Em] L3

m(
C − 1

4Γ
(

1
3

)
Γ
(

5
3

))3 , (B.6)

where Γ(·) is the gamma function. Proving Eq. (B.6) is quite technical and laborious, and hence1434

omitted here. Fortunately, it is possible to test its correctness numerically against an equivalent1435

relationship [110] (see also Section 2.6 in [7]). Given the numerical example in Fig. 3 with κ = 0.8,1436

Eb
H = 7.425 J, and k ≈ 0.9333 at eb = f = 0.8, we obtain C = 12.5497. This value for C gives1437

lb = 0.05075 and E0 = 47.6 J, which are precisely the expected results.1438
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