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Abstract
In order to prepare novel polycyclic derivatives of bicyclo[3.2.1]octadiene systems fused with a thiophene ring, photochemical
cyclization and aldol condensation reactions were carried out. The starting substrates were easily obtained by a Vilsmeier–Haack
reaction of bicyclo[3.2.1]octadiene thiophene derivatives with dimethylformamide. From the obtained carbaldehydes, novel methyl,
methoxy, and cyano-substituted styryl thienobenzobicyclo[3.2.1]octadiene derivatives were synthesized through Wittig reactions
and subjected to photochemical cyclization, in terms of obtaining the new annulated structures. As part of this study, the aldol reac-
tion of the starting 2-substituted carbaldehyde with acetone was also performed, which produced the thieno-fused
benzobicyclo[3.2.1]octadiene compound with an extended conjugation.
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Introduction
The bicyclo[3.2.1]octane skeleton has become the subject of
intensive research in recent years [1-3]. Its presence in numer-
ous biologically active natural compounds (Figure 1) [4-7],
their strenuous isolation procedures from plants, as well as their
complicated multistage synthesis due to the complexity of their
structure, encouraged us to develop a simple one-step synthetic

procedure based on a photochemical methodology [8-21]. By
using a simple photochemical procedure, it was possible to
obtain a whole library of novel bicyclo[3.2.1]octadiene deriva-
tives, available for further functionalization, which could enable
the easier investigation of the relationship between structure and
biological activity. During our previous investigation a series of
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Figure 2: Previously prepared bicyclo[3.2.1]octenes/octadienes with cholin-esterase inhibitory properties.

functionalized compounds with a benzobicyclo[3.2.1]octadiene
skeleton was prepared, among which some showed cholin-
esterase inhibitory properties (Figure 2) [2,3].

Figure 1: Known biologically active bicyclo[3.2.1]octenes/octadienes.

The aim of this study was to prepare novel thiophene
bicyclo[3.2.1]octadiene derivatives with a structure convenient
for the introduction of new functional groups. Further on, the
study aimed at expanding the compound library and at creating
preconditions for further biological investigations. This work
represents a rational continuation of the research [17], previ-

ously done on similar furobicyclo[3.2.1]octadiene compounds.
The previous study included the synthesis of aldehyde 03,
which was via the corresponding styryl derivatives converted to
the annulated products 04–07. These compounds were of partic-
ular importance due to their rigid methano-bridged junction of
two aromatic units (Scheme 1). The idea herein was to prepare
thienyl analogues of the annulated furyl derivatives, as sub-
strates suitable for biological testing and/or new precursors for
further functionalization.

Results and Discussion
As starting precursors two bicyclic thiophene derivatives 1'
and 2', with different position of the sulfur in thiophene moiety,
were selected. The compounds 1' and 2' were prepared
according to the previously reported one-step photochemical
methodology [15], and subjected to the Vilsmeier–Haack
reaction (Scheme 2, Scheme 3), respectively. After chromato-
graphic purification, the aldehydes 1 and 2 were obtained in
very good yields (1: 79%; 2: 68%), and subsequently used as
novel starting substrates for further addition/condensation reac-
tions.

The Wittig reaction of the prepared aldehydes with the corre-
sponding triphenylphosphonium salts provided five new styryl
derivatives 3–7 as mixtures of cis and trans-isomers. The
isomers of compounds 3 and 4 were separated by column chro-
matography and completely spectroscopically characterized,
while in the case of compounds 5–7, only trans-isomers were
obtained. Figure 3 presents parts of the 1H NMR spectra of the
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Scheme 1: Synthesis of annulated furobenzobicyclo[3.2.1]octadiene compounds.

Scheme 2: Synthesis of annulated thiophenebicyclo[3.2.1]octadiene compounds 8-10.

trans-isomers 3–6 as representative examples. The detailed
analysis of all new compounds' NMR spectra can be found in
Supporting Information File 1. The 1H NMR spectra of the
presented examples confirmed the conservation of the bicyclic
core. Six proton pattern, characteristic for these bicyclic
systems, were clearly visible, with similar shifts in all cases,

due to the only slight impact of the substituents on the phenyl
moiety. The most significant difference was related to the
protons of the methoxy group, which were shifted upfield as ex-
pected. Also a slight impact of para-substituents on the chemi-
cal shifts of the aromatic protons could be observed, with the
proton chemical shift shifting upfield.
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Scheme 3: Synthesis of compound 11.

Figure 3: 1H NMR spectra (CDCl3) for the trans-isomers 3–6.

The comparison of the UV spectra of the cis- and trans-isomers
of compound 3 (Figure 4) showed the expected bathochromic
and hyperchromic shifts of the trans-isomers, due to the
planarity of the structure.

Further, the separated isomers of 3–7 were irradiated and the
reaction course followed by UV spectroscopy. In all cases, the
longest wavelength absorption band gradually disappeared upon
irradiation. Based on previous research, it was assumed, that the
preliminary process could be a photoisomerization, which could
be accompanied by a photochemical annulation. The photolysis

spectra of compound's 3 isomers are shown in Figure 5, as rep-
resentative examples.

Figure 6 presents the UV spectra of products' 3–7 trans-
isomers. All the isomers showed an absorption maxima be-
tween 300–400 nm. It can be noticed that p-substituents (trans-
3, trans-4, and trans-7) enabled a higher value of molar extinc-
tion coefficients, in comparison to o-substituted compounds
(trans-5 and trans-6). The cyano-substituted compound trans-6
showed the largest bathochromic shift, in regards to the methyl
and methoxy-substituted compounds (trans-3–5, trans-7).
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Figure 5: Photolysis spectra of cis-3 (a) and trans-3 (b) in ethanol (95%).

Figure 4: UV spectra in ethanol (95%) of the cis- and trans-isomers of
compound 3.

The structure of trans-6 was also confirmed by X-ray analysis
(Figure 7). The compound crystallized in the  space group,
with the molecular symmetry Ci. The crystal packing is
presented in Figure 8.

The next synthesis step involved the preparation of the annu-
lated bicyclo[3.2.1]octadiene derivatives by irradiating the tolu-
ene solution of compound's 3–7 mixture of cis- and trans-
isomers in the presence of iodine (Scheme 2 and Scheme 3).
The electrocyclization reactions were successfully imple-
mented in most cases and photoproducts 8–11 were obtained in
moderate yields. The only exception was the cyano derivative 6
which was proven to be non-reactive, since the reaction mix-

Figure 6: UV spectra in ethanol (95%) of the trans-isomers of com-
pounds 3–7.

Figure 7: Molecular structure of compound trans-6. Displacement ellip-
soids are drawn for the probability of 30% and hydrogen atoms are
shown as spheres of arbitrary radii.
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Figure 8: Crystal packing of trans-6. (a) Chain parallel to [100] and (b) chain parallel to [010].

Figure 9: 1H NMR spectra (CDCl3) of compounds 1, 8, and 9.

ture showed solely the presence of the initial cis- and trans-
isomers.

Figure 9 presents the 1H NMR spectra of photoproducts 8 and
9, in comparison to the spectra of the starting aldehyde 1. The
effect of the substituent could be seen through a shift of the aro-
matic singlet, which is, in the case of methoxy-substituted de-
rivative 9, shifted downfield, due to the electronic and
anisotropic effect of the methoxy group.

In continuation of the study herein presented, the aldol conden-
sation reaction of the bicyclo[3.2.1]octadiene aldehyde 1 and
acetone was conducted (Scheme 4). After purification of the
reaction mixture the product 12 was obtained. The aim of this

experiment was to obtain a system with an extended conjuga-
tion of the heteroaromatic moiety under mild conditions, while
leaving the bicyclic skeleton preserved.

The UV spectrum of the aldol product 12, in comparison to the
starting aldehyde 1, showed the expected red shift, under the
prolonged conjugation in product 12 (Figure 10). Contrary to
the results obtained on the styryl analogs 3–7, the preliminary
irradiation experiments of compound 12 indicated its lower
photoreactivity, as it was shown by only a slight decrease of the
absorption band (Figure 11).

As previously emphasized, the prepared products 3–7 and 12,
due to the presence of a double bond in their structure, could
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Scheme 4: Synthesis of compound 12.

Scheme 5: Possible outcomes of future photocatalytic oxygenation reactions of new benzobicyclo[3.2.1.]octadienes.

Figure 10: UV spectra of compounds 1 and 12 in ethanol (95%).

serve as potential starting precursors for further functionaliza-
tion. These functionalizations, beside the addition reaction,
could involve photooxygenation reactions (Scheme 5) [1,22-
25], previously studied in our laboratory. These reactions could
result in a completely new spectrum of products, with preserved
bicyclo[3.2.1.]octadiene skeleton, crucial for biological testing.

Conclusion
From the two starting thiophene derivatives 1 and 2, ten novel
products 3–12 have been prepared by a simple and low-cost
procedure, paving the way to new researches, some of which
could be directed toward inclusion of new heterocycles. Due to
their indicative structure the prepared compounds 1–12 are
candidates for biological assays. The novel styryl derivatives

Figure 11: Photolysis spectra of compound 12 in ethanol (95%).

3–7 and 12 could also find application in further research for
functionalization of the bicyclo[3.2.1.]octadiene core.

Supporting Information
Supporting Information File 1
Experimental details, copies of spectra and X-ray
crystallographic data.
[https://www.beilstein-journals.org/bjoc/content/
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