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a b s t r a c t

This article contains data on structural characterization of the
[C2Mim][NTf2] in bulk and in nano-confined environment
obtained using MD simulations. These data supplement those
presented in the paper “Insights from Molecular Dynamics Simu-
lations on Structural Organization and Diffusive Dynamics of an
Ionic Liquid at Solid and Vacuum Interfaces” [1], where force fields
with three different charge methods and three charge scaling
factors were used for the analysis of the IL in the bulk, at the
interface with the vacuum and the IL film in the contact with a
hydroxylated alumina surface. Here, we present details on the
construction of the model systems in an extended detailed
methods section. Furthermore, for best parametrization, structural
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is widely used in various technological applications.
at the solid and vacuum interfaces and determine the depth of the film
ement.
tion of the cations and anions at the interfaces and hence provide an un-

uence the arrangement at the solid-liquid interface as checkerboard of
from INND plot and from MD snapshot, rather than a bilayer
1. Data

In this article we present structural data [2] acquired in molecular dynamics simulations of an IL
consisting of imidazolium based cations [C2Mim]þ and prototypical anions [NTf2]- (Fig. 1a). Three
different model systems are explored: a) the bulk IL (L), b) IL in between two vacuum slabs (V-L-V), and
c) IL placed on a slab of sapphire surface (S-L-V)) and a 80 nm large slab of vacuum (Fig. 1bed).
The latter are today commonly used for Supported Ionic Liquid Phase (SILP) catalysis [3e5] or Solid
Catalysis with an Ionic Liquid Layer [6,7] (SCILL). In Fig. 2, we present the Interface Normal Number
Densities of the V-L-V and the S-L-V model systems which are used to identify a proper bulk region,
shown as a pink slab, in every geometry so that the influence of one interface on the structural
arrangement of the IL at the other interface is minimized. Fig. 3 shows that the total in-plane corre-
lation functions (hxy) are nearly the same for the bulk region of all three model systems.
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Fig. 1. a) The cation and anion constituting the ionic liquid (IL). b) The bulk liquid (L model system) consisting of 1000 ion pairs.
Cations and anions are shown in red and blue respectively. c) The IL consisting of 1400 ion pairs between two vacuum slabs (V-L-V
model system). d) The IL consisting of 1800 ion pairs in an S-L-V model system; the solid substrate is a fully hydroxylated (0001) slab
of sapphire of dimension 7.57 nm � 6.29 nm x 2.12 nm.

Fig. 2. Interface Normal Number Density (INND): a) Non-homogenized bulk region of thickness 2.5 nm in V-L-V system with 1000
ion pairs; b) Larger and more homogenous bulk region (4nm) in V-L-V system containing 1400 ion pairs; c) S-L-V system with 1800
ion pairs e the homogenized bulk region is almost 7 nm. Note that here the choice of origin of the coordinate system is at the edge of
the simulation box for both V-L-V and S-L-V systems. Only the relevant section is shown.
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Fig. 3. Total in-plane correlation functions (hxy) in the bulk region of the L, L-V-L and S-L-V systems with sampling times of 70, 100
and 160 ns respectively.
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Figs. 4e7 contain data obtained for the L system. In Fig. 4, the radial distribution functions (rdfs) are
shownwith RESP-HF/0.9 parametrization, obtained from last 30 ns of the production runs of L system.
A detailed comparison to the experimental structure factors (cf. Fig. S1 of Supporting Information to
Ref. [1]), demonstrates a good reproduction of the average structural features. In Fig. 5 the rdfs of the
H9 of cation (cf. Scheme 1 of [1]) with nitrogen, sulphurs and oxygens of the anion, obtained for all
three charge methods are compared for the scaling factor of 0.9. For details see Ref. [1] Fig. 6 shows
results of our QM calculations using Gaussian09 software [8] that the preferred conformation of the
anion in the gas phase is trans. In the L system, depending on the charge methods and charge scaling
this conformation is trans/gauche or pure cis (cf. Fig. 2 of [1]). Fig. 7 on the other hand shows that the
distributions of the cation dihedral C2eN3eC7eC8 are practically independent of the chosen charge
method and scaling factor.
Fig. 4. Radial distribution functions (rdfs), g(r), as function of distance, r, shown here for RESP-HF/0.9 parametrization. Black line:
rdfs between centre of masses of cation [C2Mim]þ and anion [NTf2]e; red (blue) lines: rdfs between centre of masses of cations
(anions). Rdfs were obtained with GROMACS tool using last 30 ns of the production runs of L system.



Fig. 5. Radial distribution function of the H9 from cation with nitrogen, sulphurs and oxygens from anion obtained by three charge
methods in the L system: blue (CHelpG/0.9), red (RESP-HF/0.9), green (RESP-B3LYP/0.9).
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Figs. 8e12 describe various features of the structural organization of the IL at the solid and liquid
interfaces, using RESP-HF/0.9 parametrization chosen as the optimal force field. Fig. 8 presents
structural ordering visible close to the solid-liquid interface from a snapshot from the MD simulations.
INND profiles close to the solid liquid interface are presented in Fig. 9. Note that here and in further
plots z ¼ 0 is defined at the top of the sapphire surface. Fig. 9 reveals the role played by hydrogen
bonding between the hydroxylated sapphire surface and with the oxygens in the anion and with the
hydrogen on the ring of the cation. This deduced orientation of the ring is confirmed by a probability
distribution analysis presented in Fig. 10. Both of these imply a checkerboard arrangement rather than
the usually expected bilayer arrangement of the ions of the IL [1]. INND profiles presented in Fig. 11 for
both S-L-V or a V-L-V model system with sampling times of 160 and 100 ns respectively establish that
the behavior of the IL at the vacuum interface is the same in both systems. This enables an examination
of the INND profiles at the vacuum interface as presented in Fig. 12, which shows that here there is no
real possibility of bonding unlike at the solid interface. While the less polar CF3 groups of the anion
Fig. 6. From quantum mechanical (QM) calculations at the B3LYP/ccepVTZ//HF/6e31G(d,p) level of theory combined with an
IEFPCM (ε ¼ 4.335) continuum dielectric model mimicking solvent polarization, the anion can be seen to prefer a trans conformation.
All QM calculations were performed using the Gaussian09 software package [8].



Fig. 7. The distributions of the cation dihedral C2eN3eC7eC8 are practically independent of the chosen charge method and scaling
factor: left panel (CHelpG), middle panel (RESP-HF), right panel (RESP-B3LYP).
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point towards the vacuum, it is the alkyl side chain of the cation that are closest to the vacuum
interface. Detailed discussion of structural organization at the two interfaces and its implications for
dynamics are discussed in detail in Ref. [1].

2. Experimental design, materials, and methods

For all three simulatedmodel systems (Fig.1bed), three different parametrization schemes are used
for the force field with different charge methods: CHelpG charges [9], RESP-HF charges [10]
(HF/6e31G(d) level of theory) and RESP-B3LYP [11] charges (B3LYP/cc-pVTZ level of theory). In all three
parametrization schemes, the Maginn parameters [12] were used for the cation, the CL&P [13] were
used for the anion, and the Lorentz-Berthelot mixing rule was applied. The original atomic charges
were rescaled to 90% and 85% of their initial values, leading to a total of nine different sets of pa-
rameters. The sapphire was optimized in GULP [14] with a fully hydroxylated (0001) x-y surface,
described by the CLAYFF [15] force field. Each system was first minimized as per the requirements of
the configuration, then relaxed and equilibrated via NVT and NPT ensemble, described in detail in
Ref. [1]. All simulations for the threemodel systems were performed in GROMACS 5.1.2 [16] with a time
Fig. 8. From a snapshot of the MD simulations, a low density region corresponding to the minima in INND (see Fig. 2c) between first
few layers and the rest of the ionic liquid is clearly visible.



Fig. 9. Interface-normal number density per atom type at solid-liquid interface for anion (upper panel) and cation (lower panel).
Schematic representation of anion and cation at hydroxylated sapphire surface (small red and white rods).
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Fig. 10. A probability distribution analysis shows the orientation of the C2eH9 bond (maroon line), the alignment of the vector
connecting the side carbons C6eC7 (green line) and the orientation of the ring as a whole (orange line), all normal to the interface.
The cation ring is mostly perpendicular to the sapphire surface; the short alkyl chains are mostly parallel to the sapphire interface
and the hydrogen (H9) points predominantly towards the solid surface.
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step of 2 fs and a cut-off of 2 nm for the van der Waals and short-range Coulomb interactions.
Three-dimensional periodic boundary conditions were employed, along with the particle-mesh Ewald
procedure for a proper description of the long-range Coulomb interactions for all three model systems.
Full details regarding the simulations can be found in Ref. [1].

The bulk liquid (Fig. 1b) was simulated with 1000 ion pairs and had a mix of both cis and trans
configuration for the anions as starting configurations. The V-L-V system was minimized first with
Fig. 11. Number density per molecule (red - cation, blue - anion) as a function of z close to the vacuum interface with the sampling
time taken to be 160 and 100 ns for S-L-V (full lines) and V-L-V systems (dashed lines), respectively.



Fig. 12. Interface-normal number density per atom type at the liquid-vacuum interface for anion (upper panel) and cation (lower
panel). Schematic representation of probable anion and cation conformation at the vacuum interface (dark blue) is also provided.
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1000 and then with 1400 ion pairs. The introduction of two vacuum interfaces of about 13 nm each to
the bulk system of about 8 nm (Fig. 1c) showed that 1400 ion pairs are needed (Fig. 2aeb) for obtaining
sufficient homogenized bulk region of about 4 nm which is approximately half the thickness of the IL
layer in the V-L-V system. Similar considerations resulted in a system size of 1800 ion pairs of the IL
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when simulating the S-L-Vmodel systemwith a column of 16 nm of liquid and a large vacuum (Fig. 1c).
This gave a sufficiently large homogenous bulk region as seen in the INND plot of about 7 nm (Fig. 2c).
Further, the above mentioned fully homogeneous bulk region is achieved only when the sampling
(averaging) time corresponds to the last 70 ns, 100 ns and 160 ns for the L, V-L-V and S-L-V systems,
respectively. Details of these criteria for defining a proper bulk region are found in Ref. [1].

The large height of the vacuum in the S-L-V system (cf. Fig. 1d) is used to minimize the contribution
of the z-replicas (from the periodic boundary conditions imposed) to the electrostatic interactions in
the central simulation cell [17], and to obtain estimation comparable to that resulting from Ewald sum
in the slab geometry [18,19].

RESP-HF/0.9 was found to be the optimal force field in reproducing various properties of the IL in
bulk, in V-L-V and S-L-V system. Details are presented in Ref. [1] and also in Fig. S2 of Supporting
Information to Ref. [1].

The depletion region found in Fig. 2 allows for less restricted internal rotations of the anion, intrinsic
to its liquid state and is shown in Fig. 5 and discussed in detail in Ref. [1].
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