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Abstract
Determination of the distribution function of relaxation times (DFRT) is an approach 
that gives us more detailed insight into system processes, which are not observable 
by simple electrochemical impedance spectroscopy (EIS) measurements. DFRT 
maps EIS data into a function containing the timescale characteristics of the system 
under consideration. The extraction of such characteristics from noisy EIS measure-
ments can be described by Fredholm integral equation of the first kind that is known 
to be ill-posed and can be treated only with regularization techniques. Moreover, 
since only a finite number of EIS data may actually be obtained, the above-men-
tioned equation appears as after application of a collocation method that needs to be 
combined with the regularization. In the present study, we discuss how a regularized 
collocation of DFRT problem can be implemented such that all appearing quanti-
ties allow symbolic computations as sums of table integrals. The proposed imple-
mentation of the regularized collocation is treated as a multi-parameter regulariza-
tion. Another contribution of the present work is the adjustment of the previously 
proposed multiple parameter choice strategy to the context of DFRT problem. The 
resulting strategy is based on the aggregation of all computed regularized approxim-
ants, and can be in principle used in synergy with other methods for solving DFRT 
problem. We also report the results from the experiments that apply the synthetic 
data showing that the proposed technique successfully reproduced known exact 
DFRT. The data obtained by our techniques is also compared to data obtained by 
well-known DFRT software (DRTtools).
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1 Introduction

In electrochemical impedance spectroscopy (EIS), the experiments are usu-
ally interpreted by fitting complex-valued impedance measurements 
Z
(
�j

)
= Z�

(
�j

)
+ iZ��

(
�j

)
, j = 0, 1,… ,N − 1, against chosen equivalent electrical 

circuit (EEC) models. One of such EEC model is known as the Voight circuit (Bar-
soukov and Macdonald 2005) which is composed of a series of parallel capacitors Cm 
and resistors Rm,m = 0, 1,… ,M − 1 , for which the impedance can be written as:

where �m = RmCm . The high-frequency cut-off resistance (R∞) can be also added to 
(1), but herein it is omitted for simplicity. This R∞ can be estimated from EIS meas-
urements at large angular frequencies (ω).

Moreover, EIS experiments cannot often be described by a finite number of sim-
ple resistor–capacitor (RC) elements, because they involve distributed time constants. 
Then a Voigt circuit with an infinite number of RC elements can also be used to fit the 
impedance data 

(
Z
(
�j

))
 . However, instead of discrete values Rm = �mC

−1
m

 [see (1)], 
one should use R = g(�) to obtain a continuous version of (1):

where g(�) describes the time relaxation characteristic of the electrochemical system 
under study.

Up to a certain extent g(�) provides a circuit model-free representation of essential 
relaxation times, which are directly connected to the charge transfer process (see, e.g., 
Song and Bazant 2018). One should bear in mind that not only Voigt circuit, but also 
other known circuit models, such as a Cole–Cole (Cole and Cole 1941) model, David-
son–Cole (Davidson and Cole 1951) model, Warburg element (Barsoukov and Mac-
donald 2005), etc., can also be discussed in terms of the Eq. (2).

Furthermore, since we are interested in a real-valued solution g(�) of (2), the Eq. (2) 
can be reformulated into the system of integral equations with operators A1,A2:

where Z�(�), Z��(�) are real and imaginary parts of Z(�).
If we observe that instead of the whole function Z(�) , only the impedance meas-

urements Z
(
�j

)
= Z�

(
�j

)
+ iZ��

(
�j

)
, j = 0, 1,… ,N − 1 are available, then the sys-

tem (3) is reduced to a collocation and can be abstractly written as:

(1)Z
(
�j

)
=

M−1∑
m=0

Rm

1 + i�j�m
, j = 0, 1,… ,N − 1,

(2)Z(�) =

∞

∫
0

g(�)d�

1 + i��
,

(3)

⎧⎪⎪⎨⎪⎪⎩

(A1g)(�) =
∞∫
0

g(�)d�

1+�2�2
= Z�(�),

(A2g)(�) =
∞∫
0

��g(�)d�

1+�2�2
= −Z��(�),
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where TN is the so-called sampling operator, which assigns to each func-
tion F(ω) a vector of its values at the collocation points �j , i.e., 
TNF = (F

(
�0

)
,F

(
�1

)
,… ,F

(
�N−1

)
.

Recall that the collocation is a special form of discretization that arises when 
we replace the original problem, such as (3), by one in a finite dimensional 
space. In case of collocation this space is just the Euclidean space RN of vectors 
u =

(
u0, u1,… , uN−1

)
 , v =

(
v0, v1,… , vN−1

)
 equipped with a scalar product

and the corresponding norm ‖⋅‖RN ; here the weights �j, j = 0, 1,… .,N − 1 , are some 
positive numbers.

Note that if operators A1,A2 are considered to be acting from the space L2(0,∞) 
of real-valued square summable functions on (0,∞) then the Eq.  (4), due to their 
finite dimension, are always solvable at least in the sense of least squares. Moreover, 
least square solutions of (4) can be reduced to the corresponding systems of N linear 
algebraic equations, such that no additional discretization is required and, as a result, 
no additional discretization error is introduced. Therefore, the impedance measure-
ments considered as collocation data already hint at a way to approximate the solu-
tion of (2).

At the same time, in the EIS literature, one mainly finds two other different 
approaches for approximate solving of (2). In the first approach, which has been 
studied in Dion and Lasia (1999), Gavrilyuk et al. (2017) and Renaut et al. (2013), 
the integral operators A1,A2 in (4) are additionally discretized by means of quadra-
ture formulas. This approach can also subsume the methods (Boukamp 2015; Bouk-
amp and Rolle 2017; Schichlein et  al. 2002) in which the Eq.  (2) is reduced to a 
deconvolution problem by a suitable change of variables, after which a numerical 
Fourier transform is employed. This procedure is usually conducted by using diverse 
approximation techniques such as quadrature formula (Boukamp 2015). The second 
approach, advocated in Saccoccio et al. (2014) and Wan et al. (2015), discretizes the 
operators A1,A2 in (4) by projection onto the subspaces of piecewise linear or radial 
basis functions (RBFs).

In both previously mentioned approaches the level of additional discretization, gov-
erned by the number of knots of a quadrature formula or by the number of basis func-
tions, should be properly tuned. Such tuning is especially crucial in the case of noisy 
impedance measurements when the application of regularization techniques avoids 
numerical instabilities in solving (4). Then, according to the Regularization theory 
(see, e.g., Mathe and Pereverzev 2003) the level of additional discretization of A1,A2 
in (4) should be coordinated with the amount of regularization. However, such coor-
dination has not been discussed in the aforementioned literature yet. At the same time, 
this discretization issue does not even appear in (4) as no additional discretization of 

(4)
TNA1g = TNZ

�,

TNA2g = − TNZ
��,

⟨u, v⟩RN =

N−1�
j=0

�jujvj,
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the operators A1,A2 is introduced. Therefore, in the present paper, we study a new 
approach to obtain g(�) that avoids any additional discretization of the operators in (4).

Furthermore, it is known that the imaginary and real components Z′′
(
�j

)
, Z′

(
�j

)
 

of the impedance have different importance. A more thorough analysis of Eq. (3) indi-
cates that g(�) has a greater impact on Im(Z(�)) then on Re(Z(�)) (see, e.g., Dion and 
Lasia 1999). In that case it seems reasonable to treat the Eq. (4) with different amount 
of regularization (i.e., by applying two regularization parameters). At the same time, in 
the aforesaid literature, regularization of the Eq. (4) is governed by only one regulari-
zation parameter that does not allow a desired flexibility in exercising the regulariza-
tion. There is one exception though, namely the paper (Zhang et al. 2016) that proposes 
to minimize a multi-parameter version of the Tikhonov regularization functional also 
over the values of regularization parameters. However, the above minimization prob-
lem may have several local minima, and one of them corresponds to zero values of the 
regularization parameters that leads to unregularized least-squares.

Herein, we propose a new approach that applies a multi-parameter regularization 
scheme without unnecessary additional discretization. We have also added to this 
approach an ability to automatically choose regularization parameter values. Note that 
this kind of endeavor has not been reported in the aforementioned literature. In addi-
tion, in order to enable an automatic regularization in the present study, we use the idea 
(Chen et al. 2015) of an aggregation of regularized solutions corresponding to different 
values of multiple regularization parameters.

2  Multi‑parameter regularization of the collocated impedance 
equations

In this section we analyze a methodology for joint regularization of the collocation 
Eq. (4) that leads to a multi-parameter regularization. The joint regularization can be 
formulated as the minimization of the objective functional:

Here, the first two terms are the measures of data misfit that are weighed with the 
regularization parameters 𝜆1, 𝜆2 ⊆ (0,∞) . These misfits measures are combined in (5) 
with a regularization measure. According to, e.g., Chen et  al. (2015), the minimizer 
g = g�1,�2 (�) of (5), can be found from the operator equation:

where 
(
TNA1

)∗ and 
(
TNA2

)∗ are the adjoins of TNA1 and TNA2 respectably, and they 
are defined by the relations:

that should be satisfied for any f ⊆ L2(0,∞) and u =
(
u0, u1,… , uN−1

)
⊆ RN .

(5)�(g) ∶= �1
��TNA1g − TNZ

���2RN + �2
��TNA2g + TNZ

����2RN + ‖g‖2
L2(0,∞)

.

(6)
g + �1

(
TNA1

)∗
TNA1g + �2

(
TNA2

)∗
TNA2g = �1

(
TNA1

)∗
TNZ

� − �2
(
TNA2

)∗
TNZ

��,

(7)⟨u, TNA1f ⟩RN = ⟨�TNA1

�∗
u, f ⟩L2(0,∞), ⟨u, TNA2f ⟩RN = ⟨�TNA2

�∗
u, f ⟩L2(0,∞),



1 3

GEM - International Journal on Geomathematics            (2020) 11:2  Page 5 of 23     2 

In view of the definition of TN ,A1and⟨u, v⟩RN =
∑N−1

j=0
𝛾jujvj, 𝛾j > 0 we have

Now from (7) we can conclude that for any u =
(
u0, u1,… , uN−1

)
⊆ RN it holds:

On the other hand, the definition of the adjoint operator 
(
TNA1

)∗ indicates that it 
should be N-dimensional operator from RN to L2(0,∞) and, as such, it should allow 
the representation:

where lj ⊆ L2(0,∞), ej ⊆ RN . Comparing this with (8) we arrive at the formulas

where �kj is the Kronecker delta, i.e., �kj = 0 for k ≠ j, and �jj = 1.
By a similar argument, we can also obtain the following representation:

where

Next, from (9)–(12) one can deduce that the solution of (6) admits the 
representation:

⟨u, TNA1f ⟩RN =

N−1�
j=0

�juj

⎛
⎜⎜⎝

∞

∫
0

f (�)d�

1 + �2
j
�2

⎞
⎟⎟⎠
=

∞

∫
0

�
N−1�
j=0

�juj

1 + �2
j
�2

�
f (�)d�

=

�
N−1�
j=0

1

1 + �2
j
�2

�juj, f

�

L2(0,∞)

.

(8)
(
TNA1

)∗
u =

N−1∑
j=0

1

1 + �2
j
�2

�juj.

(9)
�
TNA1

�∗
(⋅) =

N−1�
j=0

li(�)⟨ej, ⋅⟩RN ,

(10)

lj(𝜏) =
1

1 + 𝜔2
j
𝜏2

,

ej =
(
e
j

0
, e

j

1
,… , e

j

N−1

)
⊆ RN ,

e
j

k
= 𝛿kj.

(11)
�
TNA2

�∗
(⋅) =

2N−1�
j=N

lj(�)⟨ej−N , ⋅⟩RN ,

(12)lj(�) =
�j−N�

1 + �2
j−N

�2
, j = N,N + 1,… , 2N − 1.

(13)g�1,�2 (�) =

N−1∑
j=0

gj
1

1 + �2
j
�2

+

2N−1∑
j=N

gj

�j−N�

1 + �2
j−N

�2
.
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The unknown coefficients gi = 0, 1,… , 2N − 1, can be found from the following 
system of linear algebraic equations:

where a1,k,N+k =
�k

2�k

, k = 0, 1,… ,N − 1,.

and following (Zoltowski 1984) we use the following weights

in the definition of the data misfits norm ‖⋅‖RN.
From (13), (14) it is clear that for given �1, �2 the regularized approximate solu-

tion g�1,�2 of (4) can be constructed without additional discretization of the integral 
operators A1,A2.

3  Aggregation of the regularized approximants in weighted norms

Note that in the EIS literature, the weighted solutions ��g(�), � = 1, of the imped-
ance Eq. (2) are of interest by themselves (see, e.g., Dion and Lasia 1999; Wan et al. 
2015) and they are often called distribution functions of relaxation time (DFRT). 
Moreover, researchers are often interested in the behavior of DFRT only within a 
specific time window 𝜏 ⊆

[
Wmin,Wmax

]
⊂ [0,∞) . Therefore, for example, if g̃(𝜏) is 

an approximate solution of the impedance Eq. (2), such as g̃(𝜏) = g𝜆1,𝜆2 (𝜏) , then it 
seems to be reasonable to measure approximation error in the weighted norm:

(14)

⎧
⎪⎪⎨⎪⎪⎩

gk + �1

2N−1∑
j=0

a1,k,jgj = �1�kZ
�
�
�k

�
, k = 0, 1,… ,N − 1,

gk + �2

2N−1∑
j=0

a2,k,jgj = − �2�k−NZ
��
�
�k−N

�
, k = N,N + 1,… , 2N − 1,

a1,k,j =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

∞∫
0

�kd�

(1+�2
k
�2)

�
1+�2

j
�2
� =

��k

2(�k+�j)
,

j = 0, 1, 2,… ,N − 1
∞∫
0

�k�j−N�d�

(1+�2
k
�2)

�
1+�2

j−N
�2
� =

�k�j−N�
�2
k
−�2

j−N

� ln
�

�k

�j−N

�
,

j = N,… , 2N − 1; j ≠ N + k,

a2,k,k−N =
�k−N

2�k−N

, k = N,N + 1,… , 2N − 1,

a2,k,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∞∫
0

�k−N�k−N�d�

(1+�2
k−N

�2)
�
1+�2

j
�2
� =

�k−N�k−N�
�2
k−N

−�2
j

� ln
�

�k−N

�j

�
,

j = 0, 1, 2,… ,N − 1; j ≠ k − N,
∞∫
0

�
k−N

�j−N�k−N�
2d�

(1+�2
k−N

�2)
�
1+�2

j−N
�2
� =

�

2
�k−N

1

�k−N�j−N(�k−N+�j−N)
,

j = N,N + 1,… , 2N − 1,

(15)�k =
|||Z
(
�k

)|||
−2

, k = 0, 1,… ,N − 1,
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It is clear that this norm is a Hilbert space norm which is generated by the scalar 
product:

While we have described the explicit procedure (13), (14) for approximating the 
solutions of (2) directly from the impedance measurements without the applica-
tion of discretization, there is still a question about the choice of the regularization 
parameters �1, �2 that determines suitable relative weighting between these measure-
ments. By setting �1 = 0 or �2 = 0 , one may reduce this question to the case dis-
cussed in Gavrilyuk et al. (2017). In another particular case �1 = �2 = � , one may 
choose a suitable value of � = �−1 by a cross-validation technique, as it was sug-
gested in Wan et al. (2015). In both particular situations, one in fact deals with a sin-
gle-parameter regularization which is applied in, e.g., Weese (1992) FTIKREG and 
DRTtools (Wan et al. 2015) software. However, a multi-parameter regularization is 
much less studied in EIS topic, especially when multiple regularization parameters 
are employed to construct a common misfit measure as in (5). Herein, we use new 
findings developed originally for inverse problems of satellite geodesy (Chen et al. 
2015) and recently adjusted in the context of EIS (Zic and Pereverzyev 2018).

Note that known regularization parameter choice strategies usually con-
sist of using some criteria for selecting only one particular candidate from a 
family of approximate solutions calculated for different values of regulari-
zation parameters from a sufficiently wide range. In contrast, in Chen et  al. 
(2015) it is proposed to construct a new approximate solution in the form 
of a linear combination of all calculated approximants. In the present con-
text this means, for example, that at first we calculate g�1,�2 (�) for some values 
�1 = �1,p, p = 0, 1, 2,… ,P − 1, �2 = �2,q, q = 0, 1, 2,… ,Q − 1, deserving consid-
eration, and then consider a new approximate solution:

where

and cm are coefficients to be determined.

‖g − g̃‖L2,𝜈(Wmin,Wmax) =

⎧
⎪⎨⎪⎩

Wmax

∫
Wmin

�
𝜏𝜈g(𝜏) − 𝜏𝜈 g̃(𝜏)

�2
d𝜏

⎫
⎪⎬⎪⎭

1

2

.

⟨f , g⟩L2,�(Wmin,Wmax) =

Wmax

∫
Wmin

�2�g(�)f (�)d�.

(16)g̃(𝜏) =

PQ−1∑
m=0

cmg
m(𝜏),

gm(�) = g�1,p,�2,q(�),

m = Pq + p, p = 0, 1, 2,… ,P − 1, q = 0, 1, 2,… ,Q − 1,

m = 0, 1, 2,… ,PQ − 1,
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In view of the previously mentioned discussion, it is natural to choose the coeffi-
cients cm such that g̃ provides the best approximation of the exact solution g in the norm 
‖⋅‖L2,�(WminWmax) among all linear combinations (16). Since ‖⋅‖L2,�(WminWmax) is a Hilbert 
space norm, then the coefficients vector c⃗ =

(
c0, c1,… , cPQ−1

)
 corresponding to the 

best approximation (16) should solve the following matrix vector equation:

where

If the regularized approximants

are already calculated from (13), (14), then the elements of the matrix G can be 
exactly calculated as well. Indeed, from (18) it follows that

where

and li(�), lj(�) are given by (10), (12). The above integrals can be explicitly1 calcu-
lated. For example, for � = 1 and i, j = N + 1,… , 2N − 1 we have

(17)G�⃗c = F⃗,

F⃗ =
�
Fm

�PQ−1
m=0

,

Fm = ⟨g, gm⟩L2,𝜈(Wmin,Wmax) =

Wmax

∫
Wmin

𝜏2𝜈g(𝜏)gm(𝜏)d𝜏,

G =
�
Gm,n

�PQ−1
m,n=0

,

Gm,n = ⟨gm, gn⟩L2,𝜈(Wmin,Wmax) =

Wmax

∫
Wmin

𝜏2𝜈gm(𝜏)gn(𝜏)d𝜏.

(18)gm(�) = g�1,p,�2,q (�) =

2N−1∑
j=0

gm
j
lj(�),

Gm,n =

2N−1∑
i=0

2N−1∑
i=0

gm
i
gn
j
bi,j,

bij =
⟨
li, lj

⟩
L2,�(Wmin,Wmax)

=

Wmax

∫
Wmin

�2� li(�)lj(�)d�

1 This step allows us to avoid additional discretization; and thus, no numerical integration error will 
occur.
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On the other hand, the components Fm of the vector F⃗ in (17) depend on the 
unknown solution g of (2), and therefore are inaccessible.

At the same time, in Chen et al. (2015) and Kindermann et al. (2018) we can find 
an approach to estimate the components of the vector F⃗ by using the so-called quasi-
optimality criterion in the linear functional strategy. The advantage of this approach 
is that the values of the scalar products Fm = ⟨g, gm⟩L2,�(Wmin ,Wmax)

 of the solution g can 
be estimated much more accurately than the solution g in the norm ‖⋅‖L2,�(WminWmax) . 
According to Chen et al. (2015) and Kindermann et al. (2018) we estimate the scalar 
product ⟨g, gm⟩ by ⟨f� , gm⟩L2,�(Wmin ,Wmax)

 , where f�(�) is the regularized approximate 
solutions g�1,�2 (�) given by (13) and constructed for �1 = 0, �2 = � , with the use of 
only imaginary part of the impedance data. The reason for this is that the imaginary 
part may allow better accuracy than the real part of the impedance (see, e.g., Dion 
and Lasia 1999).

In principle, the values of �2 = � may be taken from the same set 
{
�2,q

}Q−1

q=0
 as the 

one above. However, in Chen et al. (2015) and Kindermann et al. (2018) it is sug-
gested to take � = �s from a geometric sequence 𝛼s = 𝛼0𝛽

s, s = 0, 1,… , S − 1, S > Q . 
Therefore, we consider

where gj = g
0,s

j
 are the solutions of the linear system (14) with 

�1 = 0, �2 = �s, s = 0, 1,… , S − 1 , and

Then, according to the quasi-optimality criterion in the linear functional strategy 
(Kindermann et al. 2018) we select such s = sm that

The theoretical analysis of Kindermann et al. (2018) guarantees that the values 
of Fm = ⟨g, gm⟩ are well approximated by the values of F̃m =

⟨
f𝛼sm , g

m
⟩
.

bij =

⎧
⎪⎪⎨⎪⎪⎩

Wmax−Wmin

�i−N�j−N

+
�3
j−N

tan−1 (�i−N�)−�
3
i−N

tan−1 (�j−N�)

�2
i−N

�2
j−N

�
�2
i−N

−�2
j−N

�
�����

�=Wmax

�=Wmin

, i ≠ j

�i−N�
�
2+(1+�2

i−N
�2)

−1
�
−3 tan−1 (�i−N�)

2�3
i−N

�����

�=Wmax

�=Wmin

, i = j.

f�s(�) =

2N−1∑
j−N

g
0,s

j
lj(�),

⟨
f�s , g

m
⟩
L2,�(Wmin,Wmax)

=

2N−1∑
i=N

2N−1∑
j=0

g
0,s

i
gm
j
bi,j.

||||
⟨
f�sm

, gm
⟩
L2,�(Wmin,Wmax)

−

⟨
f�sm−1

, gm
⟩
L2,�(Wmin,Wmax)

||||
= min
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Recall that vector c⃗ of the coefficients of the best linear combination of (16) 
approximating the solution g of (2) in the norm ‖⋅‖L2,�(WminWmax) should solve the 
matrix vector Eq. (17).

According to the aggregation strategy (Chen et al. 2015) we approximate this 
ideal vector by the vector c̃ =

(
c̃0, c̃1,…,c̃PQ−1

)
 solving in the least squares sense 

the approximate matrix vector equation

Then the theoretical analysis of Chen et al. (2015) guarantees that the approxi-
mate solution

is almost as good as the best linear approximation (16) of the calculated regularized 
solutions g�1,p,�2,q (�).

We have described an adaptive procedure that automatically constructs an 
approximate solution of (2). This procedure should theoretically perform at the 
level of the best regularized approximant g�1,�2 (�) calculated according to (13), 
(14) for a given range of �1, �2 . The input of the procedure consists of the imped-
ance data Z

(
�j

)
, j = 0, 1,… ,N − 1 , the weights �j, j = 0, 1,… ,N − 1 determining 

the misfits measures, the endpoints Wmin,Wmax of the time window of interest, and 
the numbers �0,1, �0,2, �0,P,Q, S defining the range of the regularization param-
eters under consideration.

4  Experimental

4.1  Synthetic and polluted ZARC2 and FRAC2 impedance data

The synthetic data in this work were prepared by using both Cole–Cole (i.e., 
ZARC) and Davidson–Cole (i.e., FRAC) relations. According to the literature 
(Barsoukov and Macdonald 2005), ZARC is widely used in Distribution Function 
of Relaxation Times (DFRT) study (see, e.g., Wan et al. 2015); and thus, a model 
of two ZARC elements was used to compute the synthetic ZARC2 data in this 
work:

Gc̃ = F̃,

(19)F̃ =
(
F̃0, F̃1,… , F̃PQ−1

)
.

(20)

g̃(𝜏) =

PQ−1∑
m=0

c̃mg
m(𝜏) =

PQ−1∑
m=0

N−1∑
j=0

c̃mg
m
j

1

1 + 𝜔2
j
𝜏2

+

PQ−1∑
m=0

2N−1∑
j=N

c̃mg
m
j

𝜔j−N𝜏

1 + 𝜔2
j−N

𝜏2
,

(21)Zsynth(�) = R∞ +
R1

1 +
(
i��0,1

)n1 +
R2

1 +
(
i��0,2

)n2 ,



1 3

GEM - International Journal on Geomathematics            (2020) 11:2  Page 11 of 23     2 

where � is angular frequency, R∞,Rj, j = 1, 2 are resistances and �0,j is a time 
constant.

On the other hand, FRAC element is not often seen in the real experiments 
although it has been commonly applied when testing different DFRT approaches 
(Boukamp and Rolle 2017; Dion and Lasia 1999). This element is of a special inter-
est in our paper as it is very hard to reconstruct DFRT data due to discontinuities at 
some time points � . Hence, to provide a more complete study, a model of two FRAC 
elements was used to prepare the synthetic FRAC2 data:

Herein, we are interested in the comparison of performances of different regulari-
zation techniques, and we consider the synthetic ZARC2 and FRAC2 data polluted 
by noise:

where NF = 0.001 and �′, �′′ are independent normally distributed random variables 
with zero mean and the variance one. This approach to simulate noisy data is similar 
to one reported in Wan et al. (2015).

As the majority of regularization techniques in EIS study employs discretiza-
tion, the applied frequency values were equally spaced in the logarithmic scale from 
0.01 Hz to 100 kHz, taking 10 points per decade. Parameters used to compute the 
synthetic ZARC2 and FRAC2 data are given in Table 1.

4.2  Analytical DFRT for ZARC2 and FRAC2

Since we applied synthetic ZARC2 and FRAC2 data, it is natural to compare their 
reconstructed DFRT with the analytical ones. This is a usual approach which ena-
bles fast and consistent evaluation of new DFRT methods (see, e.g., Dion and Lasia 
1999; Wan et al. 2015). This approach is especially relevant as our reconstruction 
method (i.e., DFRT-Py) utilizes automatic choice of parameters. Herein, we applied 
the following analytical form to compute DFRT (abbreviated here as  DFRTZARC2) of 
the synthetic ZACR2 data:

(22)Zsynth(�) = R∞ +
R1(

1 + i��0,1
)n1 +

R2(
1 + i��0,2

)n2 .

(23)Zpoll
(
�j

)
= Zsynt

(
�j

)
⋅

(
1 + NF ⋅

(
��
j
+ i���

j

))
,

(24)

g(�) =
R1

2π�

sin
((
1 − n1

)
�
)

cosh

(
n1 ln

(
�

�0,1

))
− cos

((
1 − n1

)
π
) +

R2

2π�

sin
((
1 − n2

)
π
)

cosh

(
n2 ln

(
�

�0,2

))
− cos

((
1 − n2

)
π
) ,

Table 1  Parameters used to compute the synthetic ZARC2 and FRAC2 data

Synthetic data R∞ (Ω  cm2) R1 (Ω  cm2) �0,1 (s) n1 R2 (Ω  cm2) �0,2 (s) n2

ZARC2/FRAC2 10 50 0.01 0.7 50 0.001 0.7
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whilst for synthetic FRAC2 the corresponding DFRT (i.e.,  DFRTFRAC2) is given by:

4.3  Measured impedance data

For the purpose of this study experimental measurements were performed on solid 
oxide fuel cells (Fig. 11). The cells were of industrial-size with a chemically active 
surface of 80 cm2, whereby the operating temperature was set to be 800 °C. The fuel 
electrode was fed with humidified hydrogen, and the air electrode was supplied with 
air. For the purpose of this study impedance measurements were performed starting 
with the open circuit conditions, further loading the cell and decreasing the volt-
age down to 0.7 V. The EIS measurements were carried out using a galvanostatic 
technique. The AC amplitude was set to be 4% of the DC values, whereby the volt-
age was measured. The measurements were performed in a frequency range between 
10 kHz and 100 mHz. For more detailed information about the experimental setup, 
the authors refer to Subotić et al. (2018).

4.4  DFRT software used in this work

Although there are several DFRT software that can be used in EIS study (see 
Sect. 5.1), we decided to apply (and comment2) only those listed in Table 2. The first 
one is FTIKREG developed by Weese (1992), which is a well-known FORTRAN 
library that has been continuously used to construct DFRT from impedance data. 
The second one is DRTtools produced by Wan et al. (2015) that applies radial basis 

(25)g(𝜏) =

{
R1

𝜋

sin (n1𝜋)
𝜏−n1(𝜏0,1−𝜏)

n1 +
R2

𝜋

sin (n2𝜋)
𝜏−n2(𝜏0,2−𝜏)

n2 , if 𝜏 < 𝜏0

0, if 𝜏 > 𝜏0.

Table 2  The different strategy utilized in available DFRT softwere that apply regularization

a See http://cpc.cs.qub.ac.uk/licen ce/licen ce.html
b DRTtools is freely available under the GNU license from this site (https ://sites .googl e.com/site/drtto 
ols/)
c See https ://opens ource .org/licen ses/MIT

Software Software requirements 
(license)

Regularization Regularization parameter 
choice

Discretization

FTIKREG None  (freea) Single-parameter Manual or SC-method 
(Honerkamp and Weese 
1990)

Yes

DRTtools Proprietary Matlab  (freeb) Single-parameter Manual Yes
DFRT-Py None (MIT  licensec) Mulit-parameter Automatic None

2 FTIKREG was not used herein, but its results from literature were commented on.

http://cpc.cs.qub.ac.uk/licence/licence.html
https://sites.google.com/site/drttools/
https://sites.google.com/site/drttools/
https://opensource.org/licenses/MIT
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functions (RBFs) to discretize DFRT. And the last one, DFRT-Py by Zic and Per-
everzyev (2018), which does not apply discretization. Note that programs given in 
Table 2 are rather different as they apply diverse strategies (e.g., single- and multi-
parameter regularization) to reconstruct DFRT data (see details in Sect. 5.1).

In order to extract DFRT from impedance data by using the listed software 
(Table 2), one needs to adjust several parameters (Table 3). Specifically, in DRTtools 
both regularization and RBF shape parameters need to be a priori chosen. However, 
when chosen they were not modified in this work (unless otherwise specified). Fur-
thermore, the regularization parameter in FTIKREG can be manually given or it can 
be obtained by using the self-consistent (SC) method (Honerkamp and Weese 1990) 
(Table 3). And finally, in the case of DFRT-Py, there are two sets of parameters. The 
first set of parameters (Fig. 1a) was applied in Sects. 5.2–5.4, whilst in Sect. 5.5 we 
used parameters shown in Fig. 1b.

As listed programs (Table  2) apply single- and multi-parameter regularization, 
it is important to emphasize that DFRT data were constructed from combined 
Re(Z(�)) and Im(Z(�)) parts (see Table  3). Interestingly, some researchers prefer 
the application of only Re(Z(�)) part because it is less affected by noise and errors 

Table 3  Parameters used to extract DFRT from ZARC2 and FRAC2 impedance data in this work

FWHM: full width at half maximum (RBF shape parameter)
a See description in Wan et al. (2015)

Software Regularization 
parameter

Coefficienta to 
FWHM

Discretization method Combined 
Re(Z(�)) and 
Im(Z(�))

FTIKREG SC-method None Gaussian Yes
DRTtools 10−3 0.2 Quadrature Yes
DFRT-Py Automatic None None Yes

Fig. 1  Screenshot of the DFRT-Py regularization parameters that were used in a synthetic data study, 
b measured data study. Note that only in the case of measured data study (see b inset) the weights (15) 
were equal to ones
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(Ivers-Tiffee and Weber 2017). This approach is a common one, especially when 
dealing with noisy data. On the other hand, there are papers (Dion and Lasia 1999) 
that claim that better DFRT results are obtained by the usage of only Im(Z(�)) . The 
choice to use only Im(Z(�)) can be explained by the fact that DFRT has greater 
impact on this part of impedance data (see (3)).

5  Results and discussion

5.1  Existing DFRT approaches

According to DFRT literature (Ivers-Tiffee and Weber 2017; Kobayashi and Suzuki 
2018), there are numerous approaches to extract the Distribution Function of Relax-
ation Times (DFRT) data from electrochemical impedance spectroscopy (EIS) data. 
The majority of reported approaches is based on evolutionary programming (Her-
shkovitz et  al. 2011; Tesler et  al. 2010) and Monte Carlo techniques (Tuncer and 
Macdonald 2006), maximum entropy model (Horlin 1998), Fourier filtering (Bouk-
amp 2015; Schichlein et  al. 2002), and regularization techniques (Dion and Lasia 
1999; Kobayashi et al. 2016; Kobayashi and Suzuki 2018; Wan et al. 2015; Zic and 
Pereverzyev 2018). Additionally, the first software to extract DFRT from EIS data 
is based on Fourier transform technique (Kobayashi and Suzuki 2018). However, 
in this work we are focused on the regularization techniques that are embedded in 
FTIKREG, DRTtools and DFRT-Py software (Table 2); and thus, there are several 
facts that should be discussed.

First, the approaches in FTIKREG and DRTtools are based on discretization 
methods (Table  2). To be precise, in FTIKREG, all functions and operators are 
approximated by finite-dimensional vectors and matrices (Weese 1992) whereas, 
in DRTtools the approximation error is somewhat reduced due to the application 
of radial basis functions (RBFs) (Wan et  al. 2015) as discretization basis. On the 
other hand, DFRT-Py applies table integrals; and thus, any additional discretization 
errors are avoided (Zic and Pereverzyev 2018). Second, in DRTtools the regulariza-
tion parameter should be given a priori, whilst in FTIKREG this parameter can be 
given manually or it can be obtained by a self-consistent (SC) method (Honerkamp 
and Weese 1990). However, this method is heavily based on the assumption that 
the noise is independent standard Gaussian random variable (Honerkamp and Weese 
1990), which is frequently not the case when dealing with measured EIS data. 
Oppositely to DRTtools and FTIKREG, in DFRT-Py, the regularized solutions are 
aggregated, which allows an automatic regularization (Zic and Pereverzyev 2018). 
Third, the discretization procedure in DRTtools requires a priori choice of RBF 
shape parameter (Wan et al. 2015), which indicates that both regularization and the 
shape parameters have to be properly chosen. Interestingly, this action is avoided 
when operating with FTIKREG and DFRT-Py, as they do not apply any parameter-
ized basis functions. And finally, DRTtools and FTIKREG apply a single-parame-
ter regularization even when using combined real and imaginary impedance parts, 
whereas DFRT-Py applies a multi-parameters regularization.
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To sum up, the aforementioned software (Table  2) apply different approaches 
to extract DFRT data from the EIS data; and thus, to properly probe different 
approaches they were tested by a series of the synthetic and measured data.

5.2  DFRT study of noisy ZARC2 and FRAC2 impedance data

To illustrate the impact of the measurements noise, the polluted (NF = 0.001) syn-
thetic ZARC2 and FRAC2 data were analyzed (Fig. 2a, b). Nowadays, it is common 
practice to apply the noisy data in DFRT study and readers are encouraged to review 
the following papers, e.g., Dion and Lasia (1999) and Wan et al. (2015). Although 
the application of NF = 0.001 offers at least 0.1% of noise (see Eq. (23)), it should 
be mentioned that normally distributed noise can take arbitrary large values. In this 
work, the impact of noise can be observed at f > 0.4 Hz and f > 2.00 Hz (see insets in 
Fig. 2a, b).

Next, DFRT of ZARC2 and FRAC2 data (Fig.  2a, b) obtained by DFRT-Py 
software are displayed in Fig. 3. Note that the impact of noise on  DFRTZARC2 and 
 DFRTFRAC2 data is presented in Fig. 3a, b, whilst insets in Fig. 3a, b represent data 

Fig. 2  Nyquist spectra of the polluted synthetic, a ZARC2, b FRAC2 impedance data. Insets in a, b 
show the high frequency regions of ZACR2 and FRAC2

Fig. 3  Analytical and aggregated DFRT data of polluted (NF = 0.001), a ZARC2, b FRAC2 data 
(Fig. 2a, b) obtained by DFRT-Py. Insets in a, b show DFRT data of unpolluted ZARC2 and FRAC2
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obtained from non-polluted synthetic data. The constructed  DFRTZARC2 data per-
fectly match the analytical ones (see Fig. 3a inset), whereas the height of the right 
(vs. left)  DFRTFRAC2 peak is somewhat higher. According to Fig.  3a and inset in 
Fig.  3a, it follows that the noise induced  DFRTZARC2 oscillations at τ > 0.05  s 
(Fig. 3a). On the other hand, it is obvious that discontinuities induced  DFRTFRAC2 
oscillations in Fig.  3b inset, whereas these oscillations are additionally amplified 
due to the presence of noise (Fig. 3b).

At the same time,  DFRTZARC2 and  DFRTFRAC2 obtained by DRTtools show no 
oscillations (Fig.  4a, b). Furthermore, the lack of oscillations can be attributed to 
the application of RBF (Wan et al. 2015) as a basis for discretization. However, it 
appears that application of RBF smooths DFRT data that can result in a possible loss 
of DFRT-related information. Furthermore, the application of DRTtools (Fig. 4a, b) 
leads to the occurrence of additional border peaks between τ = 10−6 and  10−4 s. The 
origin of the border peaks in DFRT data (obtained by using FTIKREG) was also 
discussed in Ivers-Tiffee and Weber (2017). It was concluded that these peaks con-
tain no additional information and that they could be attributed to the presence of 
the noise. As DFRT-Py yielded data without the border peaks (Fig. 3), it is fair to 
say that discretization errors in DRTtools might be responsible for the formation of 
the border peaks in Fig. 4.

5.3  Effect of missing data points on DFRT study

To investigate further the difference between single- and multi-parameters regulari-
zation approaches (Table 2), they have been probed by analyzing noisy ZARC2 and 
FRAC2 data from which two impedance data points at 15.85 and 158.49  Hz are 
removed (Fig. 5a, b). This frequency values are chosen (Fig. 5) as they correspond 
to the positions of  DFRTZARC2 and  DFRTFRAC2 peaks maxima (see Fig. 6).

The idea to study the missing data effect originates from the literature (Boukamp 
and Rolle 2017; Ivers-Tiffee and Weber 2017) as some authors (Boukamp and Rolle 
2017) reported that this effect induces changes in DFRT spectra. On the other hand, 
one group of authors concluded (Ivers-Tiffee and Weber 2017) that this effect has no 
impact on DFRT study. However, the conclusions presented in Boukamp and Rolle 
(2017) and Ivers-Tiffee and Weber (2017) are obtained by using two different software 

Fig. 4  DFRT data of noisy (NF = 0.001), a ZARC2, b FRAC2 data (Fig. 2a, b) obtained by the DRT-
tools. Insets in a, b show DFRT data of unpolluted ZARC2 and FRAC2 data
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(FTIGREG and DRTtools) that apply single-parameter regularization. Thus, it would 
be intriguing to see the effect of missing data onto both single- and multi-parameter 
regularizations techniques.

Our experiment shows that when using ZARC2 data (Fig. 5a), DFRT-Py produced 
two  DFRTZARC2 peaks of the same height that perfectly match the analytical ones 

Fig. 5  Nyquist spectra of the polluted synthetic, a ZARC2, b FRAC2 data. The data points related to 
15.85 and 158.49 Hz are missing

Fig. 6  Analytical and aggregated DFRT data of noisy (NF = 0.001), a ZARC2, b FRAC2 data (Fig. 5a, 
b) obtained by DFRT-Py

Fig. 7  DFRT data of noisy (NF = 0.001), a ZARC2, b FRAC2 data (Fig. 5a, b) obtained by the DRT-
tools. Left insets in both a, b are obtained by using only Re(Z(ω)) parts, whereas right insets in both a, b 
are obtained by using only Im(Z(ω)) parts
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(Fig. 6a). On the other hand, DRTtools produced two unexpected features in Fig. 7a. 
The first feature is that  DFRTZARC2 peaks are separated by a large depression, which 
presents a problem because such two peaks configuration can be easily misinterpreted 
as the one corresponding to  DFRTFRAC2 peaks (Fig. 7b) i.e., to Davidson–Cole (David-
son and Cole 1951) model but not to Cole and Cole (1941) Cole–Cole model. The 
second unexpected feature is the fact that there are two additional erroneous peaks 
at ≈ 10−4 and ≈ 10−1 s (Fig. 7a), which further hinder DFRT interpretation.

Furthermore, supplementary calculations with DRTtools indicate that when using 
only real impedance part (left inset in Fig. 7a), both the depression and the peaks turn 
out to be more pronounced. At the same time, when using only imaginary impedance 
part (right inset in Fig.  7a), the depression disappears as two  DFRTZARC2 peaks are 
merged into one. This clearly indicates that the same regularization parameter value 
(e.g.,  10−3) cannot be applied when using single or combined impedance parts in the 
regularization. To rephrase it, for a proper regularization of combined real and imagi-
nary impedance parts, the multi-parameter regularization (as in DFRT-Py) seems to be 
unavoidable.

Next, a computation of FRAC2 impedance data shows that both DFRT-Py (Fig. 6b) 
and DRTtools (Fig. 7b) are not drastically affected by the missing data effect. To be 
specific, this effect increased oscillation at τ > 0.01 s in Fig. 6b, but there are no addi-
tional peaks in Fig. 7b. Moreover, it appears that DRTtools yielded almost identical 
data in Fig. 7b and in Fig. 7b insets, which suggests that the missing data effect is not 
observed because RBF cannot properly mimic discontinuities in  DFRTFRAC2 anyway.

To summarize, it appears that both the missing data effect and the application of 
additional discretization basis (i.e., RBFs) yield similar  DFRTZARC2 and  DFRTFRAC2 
pictures and hinder their distinguishment. At the same time, this kind of problems can 
be avoided when using DFRT-Py as this software does not apply any unnecessary dis-
cretization techniques. However, the full benefit of the application of the regularization 
without unnecessary discretization will become obvious in the next section when using 
impedance data corresponding to randomly spaced (in logarithmic scale) frequency 
values.

5.4  Effect of unequally spaced frequency data on  DFRTZARC2 and  DFRTFRAC2 study

In order to further inspect advantages of avoiding unnecessary discretization (see 
Table 2), the noisy ZARC2 and FRAC2 data (Fig. 8a, b) are prepared by using 
unequally (i.e., randomly) spaced frequency values from 0.01  Hz to 100  kHz 
interval. The data points are also randomly spaced around points at 15.85 and 
158.49 Hz that can be related to DFRT peaks. Although such kind of spacing is 
not so usual in practice, these data (Fig. 8a, b) can be used as, e.g., a dataset for 
testing newly developed DFRT methods.

Figure 9a, b display  DFRTZARC2 and  DFRTFRAC2 data approximated by DFRT-
Py. The oscillations in Fig. 9a, b are increased, which is attributed to the “higher” 
level of data corruption (i.e., application of unequally spaced frequency data). The 
positions of reconstructed (vs. analytical)  DFRTZARC2 peaks show insignificant off-
set towards right, but the peaks are of the same height. Furthermore, the height of 
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the right (vs. left)  DFRTFRAC2 peak is slightly increased, which can be attributed 
to the vicinity of two discontinuities. Overall, DFRT-Py yielded  DFRTZARC2 and 
 DFRTFRAC2 peaks with positions that match well to the positions of the analytical 
ones.

Fig. 8  Nyquist spectra of the polluted synthetic, a ZARC2, b FRAC2 data obtained by using randomly 
spaced frequency data points

Fig. 9  Analytical and aggregated DFRT data of noisy (NF = 0.001), a ZARC2, b FRAC2 data (Fig. 8a, 
b) obtained by DFRT-Py

Fig. 10  DFRT data of noisy (NF = 0.001), a ZARC2, b FRAC2 data (Fig. 8a, b) obtained by the DRT-
tools. Left insets in a, b are obtained by using only Re(Z(ω)) parts, whereas right insets in a, b are 
obtained by using only Im(Z(ω)) parts
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On the other hand, it appears that  DFRTZARC2 and  DFRTFRAC2 peaks obtained by 
DRTtools are shifted to the left (Fig. 10a, b). Additionally,  DFRTZARC2 peaks are 
separated by depression, whilst  DFRTFRAC2 peaks are merged. To be exact, Fig. 10b 
suggests that the right  DFRTFRAC2 peak is moved to the left and merged with the 
left one. The same observation can be obtained by analyzing data in Fig. 10b insets. 
This indicates that the considered level of data corruption is so “high” that RBF dis-
cretization fails in reconstruction.

In contrast, DFRT-Py yielded DFRT peaks with no positions offset, but with 
higher level of oscillation.

5.5  Real experiment data in  DFRTZARC2 and  DFRTFRAC2 study

The next experiments uses measurements of Nyquist spectra of industrial-size 
oxide fuel cell displayed in Fig. 11. By comparing this figure with Fig. 8, one may 
conclude that the level of data perturbation in Fig. 11 is similar to that in Fig. 8. 
Moreover, Fig. 11 hints that the data are characterized by two time constants that 
should yield two DFRT peaks. Furthermore, the number of frequency data points 
is 19, which is much less (< 71) than in the case of synthetic data experiments 
(Sects.  5.2–5.4). However, a low number of data points is desirable as it reduces 
total measurement time, which enables fast insight in DFRT data.

Figure 12 represents DFRT curves obtained by DRTtools and DFRT-Py. DRT-
tools data were obtained by the application of two different values of FWHM coeffi-
cients (see Table 3), namely 0.2 and 0.35, whilst DFRT-Py parameters are shown in 
the screenshot b) of Fig. 1. DFRT curves in Fig. 12 are characterized by two peaks, 

Fig. 11  Measured experimental 
impedance data of industrial-
sized solid oxide fuel cells

Fig. 12  DFRT data of measured 
impedance experimental data 
obtained by DFRT-Py and by 
DRTtools. Symbol reference: 
black (–) and red (–) curves 
were collected when DRTtools 
applied two different shape fac-
tors (0.2 and 0.35; see Table 3), 
whilst blue (–) curve was 
obtained by DFRT-Py (color 
figure online)
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i.e., by one modest and one prominent. It appears that the positions of the recon-
structed prominent DFRT peaks are rather similar (i.e., − 0.35, − 0.37, and − 0.46). 
At the same time, the positions of the modest DFRT peaks exhibit an excessive off-
set (− 2.87, − 2.49, and − 1.86). Recall that similar offset in the peaks’ positions was 
detected in Fig. 10, which was attributed to high level of impedance data perturba-
tion (Fig. 8). Therefore, according to Fig. 12, it is fair to conclude that when data 
quality and number of data points are low both software should be used side by side 
in DFRT study.

6  Conclusions

We have tested and analyzed some of the available DFRT programs based on dif-
ferent regularization strategies i.e., FTIKREG and DRTtools apply single-parameter 
regularization and diverse discretization techniques whereas, DFRT-Py applies the 
multi-parameter regularization without any additional discretization.

Our tests show that a single-parameter regularization is suitable for moderately 
corrupted impedance data. On the other hand, a multi-parameter regularization 
approach is able to handle the cases where the level of data corruption is higher.

In this work, the positions of reconstructed  DFRTZARC2 and  DFRTFRAC2 peaks 
were always equal to the analytical ones only in the case of DFRT-Py. This clearly 
supports our belief that a full regularization effect can only be obtained when using 
multi-parameters regularization and directly applying it to impedance data without 
any additional discretization.

However, when low quality measured experimental data were analyzed by meth-
ods under comparison, the positions of DFRT peaks were not the same. This indi-
cates that both software should be used when dealing with low quality data.
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