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14 ABSTRACT. Predicting the activation of sub-micron particles into cloud droplets in the 

 

15 atmosphere remains a challenge. The importance of surface tension,  (mN/m), in these 

 

16 processes has been evidenced by several works but information on the “surfactants” lowering  
 

17 for atmospheric particles remains scarce. In this work, PM1 aerosols from urban, coastal and 
 

18 remote regions of Europe (Lyon, France, Rogoznica, Croatia, and Pallas, Finland, respectively) 

 

19 were investigated and found to contain amphiphilic surfactants in concentrations up to 2.8 g m-3
 

 

20 in the air and 1.3 M in the particle volume. In Pallas, correlations with the PM1 chemical 
 

21 composition showed that amphiphilic surfactants were present in the entire range of particle 
 

22 sizes, thus confirming recent works. This implied that they were present in hundreds to 
 

23 thousands particles cm-3  and not only in a few large particles, as it has been hypothesized. Their 
 

24 adsorption isotherms and Critical Micelle Concentration (CMC) were also determined. The low 

 

25 CMC obtained (3  10-5 – 9  10-3 M) imply that surface tension depression should be significant 
 

26 for all the particles containing these compounds, even at activation (Growth Factor = 10). 
 

27 Amphiphilic surfactants are thus likely to enhance the CCN ability of sub-micron atmospheric 
 

28 particles. 
 
 

29 Introduction 
 

 

30 Predicting the formation of cloud droplets from aerosol particles in the atmosphere is still beyond 
 

31 current capacities, which leads to large uncertainties in predicting important cloud properties 
 

32 such as their precipitation and radiative contribution to climate. For sub-micron particles, the 
 

33 probability to become a cloud droplet, or CCN ability, is predicted by theory1 to be affected by 
 

34 its surface tension. For decades, however, the surface tension of such particles was assumed to be 
 

35 constant and equal to that of pure water, and the role of this parameter ignored,2-3 mostly because 
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the conventional instruments to investigate particle CCN properties are not sensitive to surface 

37 tension and also because information on the surfactants present in atmospheric aerosols was 

38 scarce.4-6
 

 

39 

 

Two main classes of compounds can lower the surface tension,  (mN/m), of aqueous particles, 

40 but employing very different mechanisms and resulting in very different efficiencies: 

41 amphiphilic surfactants and water-soluble organic compounds. Amphiphilic surfactants, which 

42 possess a hydrophilic moiety and one or more hygrophobic chains, lower  by anchoring their 

43 hydrophilic moiety into the aqueous surface and applying a force perpendicular to it with the 

44 hygrophobic chains.7 Water-soluble organic compounds, on the other hand, lower  by screening 

45 off the hydrogen bonds that are responsible for the high surface tension of aqueous solutions. 

46 This later mechanism is much less effective in reducing  than that of amphiphilic surfactants, so 

47 that much larger concentrations are necessary to achieve the same effects. This is reflected in 

48 their respective adsorption isotherms ( vs concentration graphs): water-soluble organics such as 

49 HULIS,8 organic acids9 or acetaldehyde10 display a gradual decrease of  with increasing 

50 concentration, typically 10 mN/m per decade of concentration, resulting in  = 40 – 60 mN/m for 

51 concentrations above 0.1 M.8-9, 11 By contrast, those for amphiphilic surfactants display a sharp 

52 decrease, ~ 30-40 mN/m per decade of concentration, until a specific concentration called critical 

53 micelle concentration or “CMC”, beyond which  remains constant and low,  = min, with 

54 typically min = 25 - 45 mN/m.11-12 The CMC is thus a key parameter for the role of surfactant on 

55 cloud droplet formation. For a particle containing initially 0.1 M of surfactant and with  = 50 

56 mN/m, reaching activation with a Growth Factor GF = 5 would lead to ~ 10-3 M of surfactant. 

57 For an amphiphilic surfactant, this concentration would likely be larger than or comparable to the 
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58 CMC (which are typically between 10-5 and 10-3 M), thus ensuring  = min ≤ 50 mN/m at 
 

59 activation. But for a water-soluble surfactant, the same decrease in concentration would result in 

 

60 an increase of  by over 20 mN/M, thus practically to the value of pure water, water = 72.8 
 

61 mN/m. Amphiphilic surfactants are therefore the most likely compounds to lower the surface 
 

62 tension of particles at activation. 
 

 

63 Recent studies have started to demonstrate the role of surfactants in cloud droplet formation,13-16
 

 

64 which has prompted the development of methods to investigate these compounds in atmospheric 
 

65 aerosols.4-6, 17-18 These methods provide valuable information on atmospheric surfactants, in 
 

66 particular on their concentrations.5, 17-18 But, without a selective extraction, they do not allow to 
 

67 distinguish between the different types of surfactants. Over the years we have developed 
 

68 analytical methods to extract and characterize specifically amphiphilic surfactants in atmospheric 
 

69 aerosols.11-12, 19-20 With them, the presence of such compounds in atmospheric PM 11, 19, 21 and 
 

70 PM 12 aerosols was established. More recently, the selective extraction was applied to PM 
 

71 collected on a cascade impactor and evidenced the presence of amphiphilic surfactants 
 

72 throughout the entire size range, including sub-micron ones.18 As sub-micron particles are the 
 

73 only ones for which surface tension effects are expected to affect the CCN ability, the 
 

74 concentrations and properties (adsorption isotherms) of the surfactants present in such particles 
 

75 in the atmosphere needed to be further characterized. 
 
 

76 In this work, PM1 samples were collected with a resolution of 12 or 24 h in urban, coastal and 
 

77 remote regions of Europe (Lyon, France; Rogoznica, Croatia; and Pallas, Finland, respectively) 
 

78 and analyzed with the objective to determine the presence of amphiphilic surfactants, their 
 

79 concentration, adsorption isotherms, CMC, and any other information (geographic and time 
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variability…) that might be useful to predict their effects on cloud droplet activation in the real 

81 atmosphere. 

 
82 Experimental Section 

 

83 

 

Aerosols sampling. Aerosol samples were collected on pre-baked 150 mm-Quartz filters with a 

84 DIGITEL DA80 through a PM1 inlet with a flow of 30 m3 h-1 and a frequency of 12 or 24 h. 

85 Three locations were chosen, representative of different types of environment. The first site was 

86 the campus of Université Lyon 1, France (45°47'00.3"N 4°52'02.9"E), in the middle of the Lyon- 

87 Villeurbanne agglomeration, thus an urban environment. The sampler was positioned on a top of 

88 the “Dirac” building at ~ 205 m a.s.l. The sampling took place from 1 December 2014 to 19 

89 January 2015, resulting in 53 samples, including 8 blanks. The second site was at the Marina 

90 Frapa, Rogoznica, Croatia (43°31'47.9"N 15°57'35.1"E), on a peninsula surrounded by the 

91 Adriatic Sea, thus representative of a coastal region. The sampler was placed at close to sea level 

92 and the sampling lasted from 01 February 2015 to 20 March 2015 but resulted only in 17 

93 samples, of which 2 were blanks, due to technical problems with the sampler. The third site was 

94 the sub-Arctic site of Sammaltunturi (67°58’23.8 N, 24°076’57.3 E) of the Pallas-Sodankylä 

95 GAW (Global Atmosphere Watch) operated by the Finnish Meteorological Institute, Finland,22-24
 

96 a remote site. The sampler was placed at the research station at the top of the Sammaltunturi hill 

97 (565 m a.s.l) and the sampling took place from 21 April 2015 to 03 December 2015 and resulted 

98 in 255 samples, of which 23 were blanks. But only 142 of those samples were analyzed for 

99 surfactants and are presented in this work. In Lyon and Rogoznica, the samples were taken over 

100 12 h (7:00 am/7:00 pm, thus alternating day/night) and in Pallas they were taken over 24 h 
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101 (midnight- midnight). All the filters were dried for 72 h and weighted before and after sampling 
 

102 with a precision of ± 0.1 mg, to determine the mass of aerosol sampled. 
 
 

103 Sample extraction and analysis. The protocols for the extraction and determination of the 
 

104 concentrations and adsorption isotherms for the amphiphilic surfactants have been described in 
 

105 detail in several publications.12, 20  Briefly, the extraction method involves two consecutive steps, 
 

106 a water extraction and a SPE-based one, ensuring that only amphiphilic surfactants are collected 
 

107 and not water-soluble ones. For all the atmospheric aerosol samples studied until now, however, 
 

108 the second extraction step was found to remove all the effective surfactants from the samples 

 

109 (i.e. all the compounds contributing to lower ), which was demonstrated by the  of the first 

 

110 water extract increasing back to the value for pure water, water, after the second extraction. This 
 

111 implies that amphiphilic surfactants are, in practice, the only effective surfactants in atmospheric 
 

112 aerosols, water-soluble ones having only modest (non-measurable) contributions. The 
 

113 concentrations in the final extracts (after the two steps) are determined separately for anionic, 
 

114 cationic, and non-ionic surfactants by preparing three aliquots and adding specific dyes in each 
 

115 of them. The absolute molar concentration of each ionic surfactant fraction is then determined by 
 

116 UV-visible absorbance and comparison with absolute calibration curves (i.e. independent of the 
 

117 identity of the surfactant). The concentrations in the initial aerosol samples were then determined 
 

118 from the ratio of the extract volume to the sampled aerosol volume, the latter being obtained 
 

119 from weighing the samples and assuming a density of 1 g cm-3. 
 
 

120 The adsorption isotherms were determined for all the surfactants extracted from the Lyon and 
 

121 Rogoznica samples, and for about half of those from the Pallas samples (75 out of 142) because 
 

122 of the large number of samples at this site and the time-consuming nature of the analysis. These 
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isotherms were determined point by point by measuring the surface tension of the extracts and of 

124 their successive dilutions. In each case, surface tension was measured with the hanging droplet 

125 technique, using a Dataphysics OCA 15EC tensiometer.12 On these isotherms, the CMC was 

126 determined graphically as the intersection between the sharp decrease of the curve and the 

127 plateau corresponding to min at large concentration. Although it has been argued that surface 

128 tension measurements made on macroscopic droplets, as with the hanging droplet technique, 

129 might not be representative of  for microscopic droplets, all the experimental works that have 

130 explored this question so far, in particular with single-particle techniques, have confirmed the 

131 good agreement between these approaches.25-26
 

 

132 
 

PM1 mass concentrations. For the Lyon and Rogoznica sites, the PM1 mass concentration in air 

133 was determined for each sample by dividing the sampled mass weighed on the filters by the 

134 volume of air sampled (360 m3). In Pallas, where the site was in clouds for a significant fraction 

135 of the time, the PM1 volume concentration was obtained by comparing the PM0.5 size distribution 

136 measured with a differential mobility particle sizer (DMPS) filtering out cloud droplets with the 

137 PM1 volume measured with an Aerodynamic Particle Sizer (APS) in the absence of cloud to 

138 avoid the contributions from activated particles.22, 27 This volume concentration was converted 

139 into a mass concentration assuming a density of 1 g cm-3. 

 

140 ACSM measurements. In Pallas, the concentrations of the organic fraction and main ions, SO4
2-

 

141 , NO3
-, NH4

+, and Cl-, in the PM1 particles were monitored with an Aerosol Chemical Speciation 

142 Monitor (ACSM, Aerodyne)28 with a 50-min resolution.29
 

 
143 Results and discussion 
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144 Surfactant concentrations. Amphiphilic surfactants were found in all the samples analyzed 

 

145 (Fig. 1) with concentration between (0.01 ± 0.003) and (2.8 ± 0.9) g m-3 in the air, assuming a 

 

146 typical molecular weight of 500 g mol-1, and between (6.8 ± 2.2) mM and (1.3 ± 0.4) M in the 

 

147 particle volume. The lowest concentrations were recorded in Rogoznica (median: 0.08 g m-3or 

 

148 22 mM) and Pallas (median: 0.03 g m-3 or 47 mM), and the largest at the urban site of Lyon 

 

149 (median: 0.6 g m-3 or 73 mM) (Fig. 1). The concentrations obtained at the coastal site of 
 

150 Rogoznica, Croatia, were consistent with those of amphiphilic surfactants measured previously 

 

151 in PM2.5 aerosols at the coastal site of Askö, Sweden (median: 0.1 g m-3 or 38 mM),12 in spite 
 

152 of the different sampling resolution (72 h). The concentrations obtained in this work were also 

 

153 generally consistent with those recently reported (0.07 – 0.95 g m-3) for amphiphilic surfactants 

 

154 in 0.038 – 1 m size fractions of aerosols from Ljubljana, Slovenia.18 All this supported the 
 

155 validity of our results and indicated that amphiphilic surfactants are present in sub-micron 
 

156 aerosol particles in many different regions of Europe. 
 

 

157 As in previous works,12, 20 the surfactants extracted from the samples were divided into three 
 

158 ionic types: anionic, cationic and non-ionic surfactants. In all the samples studied in this work, 
 

159 anionic and non-ionic surfactants largely dominated over cationic ones, the latter being detected 
 

160 only in a few occurrences and at very small concentrations (Fig. 1). In Lyon and Pallas, non- 

 

161 ionic surfactants were more abundant than anionic ones (by about a factor 2, both in g m-3 and 
 

162 in mM). In Rogoznica the opposite trend was observed (Fig.1), as it had been also observed in 
 

163 the PM2.5 from Askö, Sweden, thus confirming this trend in coastal regions. At all the sites, these 
 

164 ionic fractions displayed some degree of correlation with each other, in particular the anionic and 
 

165 non-ionic ones (r2 = 0.8 over 15 samples in Rogoznica; r2 = 0.62 over 43 samples in Lyon and r2
 

 

166 = 0.43 over 142 samples in Pallas) (Fig. S1 of the Supplementary Information), suggesting 
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common background sources. However, these ionic fractions also displayed important sample- 

168 to-sample variability, much larger than the uncertainties and which could not be accounted for by 

169 constant ratios between them. This suggested the existence of several sources, contributing 

170 differently to the different ionic fractions, in addition to a potential common background source. 

 

171 
 

It was important to determine if the observed sample-to-sample variability in concentration 

172 reflected an actual variability in the particles (internal mixing of different surfactants at different 

173 times on the particles) or resulted from mixing different particles containing different surfactants 

174 during the analysis (external mixing). For this, the concentrations were compared with the PM1 

175 volume (or mass), surface, and number concentrations. First, this comparison showed that, in 

176 average, the surfactants accounted for small fractions of the PM1 mass (in g m-3): 7.3 % in 

177 Lyon, 1.5 % in Rogoznica, and 4.7 % in Pallas. Then, for the Rogoznica and Lyon samples, for 

178 which only the mass concentration of PM1 was available (Fig. S2), comparing it with the total 

179 and ionic concentrations showed no correlation (r2 < 0.1), which seemed to exclude internal 

180 mixing as the cause for the variability in surfactant concentration. However, because PM1 

181 number concentrations were not available at these sites, it was not possible to confirm definitely 

182 the occurrence of external mixing in these samples. In Pallas, no correlation was found between 

183 the surfactant concentrations and the PM1 number concentrations (Fig. S2), thus excluding 

184 external mixing. But correlations were found with the PM1 volume concentration (r2 = 0.52 over 

185 142 samples) and, more clearly, with their surface concentration (r2 = 0.57) (Fig. S3), confirming 

186 internal mixing as the cause for the observed variability in surfactant concentration. The larger 

187 correlation obtained with the PM1 surface than with the volume concentrations implied that this 

188 mixing was surface-dependent rather than bulk-dependent, which was consistent for compounds 

189 that are present exclusively at the surface of particles. The apparent correlation between 
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190 surfactant concentration and PM1 volume was likely to be indirect and result from the strong 
 

191 correlation between PM1 surface and volume concentration at this site. These results thus implied 
 

192 that the variability in the surfactant concentrations in the Pallas samples reflected an actual 
 

193 variability in the surfactant mixtures present at the surface of the particles. 
 
 

194 Interestingly, the strongest correlation with the PM1 surface concentration was obtained with the 
 

195 total surfactant concentration, while correlations with each of the ionic fractions were markedly 
 

196 weaker (r2 = 0.50 with non-ionic concentration; r2 = 0.39 with anionic concentration; Fig. S3). 
 

197 As discussed below, the opposite was observed with particulate-phase concentrations, for which 
 

198 correlations with the total surfactant concentration always clearly resulted from a much stronger 
 

199 correlation of one of the ionic fraction. This might indicate that the surfactant mass 

 

200 concentrations (in g m-3 in air) were controlled (i.e. limited) by the aerosol surface, while the 
 

201 particulate-phase concentrations (in M) were controlled by the sources, determining the ratios 
 

202 between the different ionic fractions and other chemical components. 
 
 

203 In Pallas, over the last 6 weeks of sampling (15 October – 24 November 2015, corresponding to 
 

204 38 samples), the surfactants concentrations could also be compared with the PM1 chemical 
 

205 composition in term of organic, SO4
2-, NO3

-, NH4
+ and Cl- fractions measured with an ACSM 

 

206 (Aerodyne). The average PM1  composition over this period, including both the surfactants and 
 

207 the chemical composition given by ACSM, is presented in Fig. 2, where a molecular weight of 
 

208 200 g mol-1 was assumed for the organic fraction. The surfactant concentration represented a 

 

209 small fraction of the total organic compounds: 5.6 % in average in the air (g m-3) and 2.3 % in 
 

210 the particulate phase (mM). 
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Potential correlations between the surfactants concentrations and the chemical fractions were 

212 explored. First, studying the concentrations in the air (in g m-3) provided mostly information on 

213 the largest particles of the population, that contributed most to the PM1 mass. The mass 

214 concentration of the organic and NO3
- fractions in air correlated with each other (r2 ~ 0.65) and 

215 moderately with the PM1 mass (r2 = 0.57) (Fig. S4), while no correlation was found with the 

216 other chemical fractions. The total surfactant concentration in air correlated weakly with the 

217 organic (r2 = 0.46) and NO3
- (r2 = 0.31) fractions and with the PM1 mass (r2 = 0.48) (Fig. S4), but 

218 with no other ions. This suggested that some of the surfactants were present in the large particles 

219 of the population that contributed most to the organic and NO3
- masses in the PM1. The absence 

220 of correlation with the SO4
2- fraction suggested that these large particles did not originate from 

221 anthropogenic pollution. As above, these correlations with the surfactant concentrations in air 

222 were stronger with the total concentration than with each of the ionic fractions, probably because 

223 these total surfactant concentrations were controlled by the PM1 surface concentration (which 

224 correlated strongly with the PM1 mass concentration). 

 

225 
 

Then, examining the concentrations in the particulate phase (in M or mM) provided information 

226 on the smallest particles of the population, as these concentrations were obtained by dividing the 

227 gas-phase concentration by the PM1 volume. As shown in Fig. 2 the particulate-phase 

228 composition of these small particles was dominated by NH4
+. Strong correlations were found 

229 between NH4
+ and Cl- (r2 = 0.91), NO3

- (r2 = 0.88), and the organic fraction (r2 = 0.78) (Fig. S4), 

230 implying that these small particles mostly contained NH4Cl, NH4NO3 and some organic 

231 compounds (or organo-nitrates) rather than ammonium sulfate. The total surfactant concentration 

232 also correlated strongly with NH4
+ (r2 = 0.67). But, unlike with the concentrations in air, this 

233 could be clearly attributed to the non-ionic fraction, which displayed a much stronger correlation 
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234 (r2 = 0.82) (Fig. 2), while the anionic surfactants had a much weaker one (r2 = 0.49) (Fig. S4). As 
 

235 with NH4
+, strong correlations were also found between non-ionic surfactants and Cl- (r2 = 0.77), 

236 NO3
- (r2 = 0.69), and the organic fraction (r2 = 0.53) (Fig. 2). In all cases, the anionic and 

 

237 cationic fractions followed the same trends but with weaker correlations. These strong 
 

238 correlations between specific ionic surfactants and other particulate-phase components show that 
 

239 the particulate-phase composition of the PM1 and relative abundance of the surfactant ionic 
 

240 fraction were controlled by the sources, unlike the mass concentrations in air, which were 
 

241 controlled by the PM1 surface. 
 
 

242 The strong correlations between non-ionic surfactants and the organic and inorganic composition 
 

243 implied that these surfactants were present together with NH4Cl and NH4NO3 in the smallest 
 

244 particles. This, together with the evidence reported above for the presence of amphiphilic 
 

245 surfactant in the large particles, indicated that these compounds were present in the entire 
 

246 particle size range, including the smallest ones. These results were consistent with recent works 

 

247 reporting the presence of amphiphilic surfactants in size fractions from 38 nm to 1 m in 

 

248 aerosols from Ljubljana, Slovenia18 and confirmed that amphiphilic surfactants are present 
 

249 throughout the entire range of particle sizes in the atmosphere. 
 
 

250 Number of sub-micron particles containing amphiphilic surfactants. Although the analyses 
 

251 in this work do not determine directly the number of particles in the aerosol populations that 
 

252 contain amphiphilic surfactants, this number can be estimated from the concentrations measured 
 

253 and the fact that the surfactants are present in all particle sizes. First, a lower limit can be 
 

254 calculated by assuming that all the surfactants are contained in particles made only of surfactant, 

 

255 with a density of 1 g cm-3 and a diameter of 150 nm (typical for the maximum of a PM1 size 
 

256 distribution). Each pure surfactant-particle would thus contain 3.5  10-18 mol, so that the 
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257 concentrations measured in this work would be accounted for by 20 to 430 cm-3 of these 
 

258 particles. If, as indicated by the surfactant/PM1 mass ratios obtained in this work, the surfactants 
 

259 did not exceed 10 % of the particle mass instead of 100 %, the concentrations measured at the 
 

260 different sites implied that these compounds were present in 200 to 1500 particles cm-3 in 
 

261 average. These numbers are significant and in the range reported for CCN numbers.3 These 
 

262 results thus clearly show that surfactants are not present only in a few, large particles in the 
 

263 atmosphere, as it has been hypothesized. 
 
 

264 Isotherms and CMC. Adsorption isotherms were determined for all the surfactant samples from 
 

265 Lyon and Rogoznica, and about half of those from Pallas. The results are presented in Fig. 3. 
 

266 They all displayed a sharp decrease of the surface tension at low concentration and a minimum 
 

267 surface tension values between 25 and 45 mN/m, that are typical of amphiphilic surfactants. 
 

268 These curves are comparable to those obtained previously from amphiphilic surfactants extracted 
 

269 from PM 11, 19 and PM .12
 

 
 

270 As explained in the Experimental Section and illustrated in Fig. 3B, the CMC was determined 
 

271 graphically on these isotherms, which, depending on the sample leaded to uncertainties between 

 

272 30 to 50 % ( 1.5/1.5). The results are presented in Fig. S5. In Rogoznica and Pallas, the CMC 

 

273 were all lower than 10-3 M, with averages of 1.9  10-4 M and 2.1  10-4 M, respectively. In Lyon 

 

274 they were nearly 10 times larger, but all lower than 10-2 M, with an average of 2  10-3 M. As the 
 

275 CMC is mainly a characteristic of the molecular structure of the surfactant, and the environment 
 

276 (particle composition) affects it by less than a factor of 2,30 the very different CMC values 
 

277 obtained in Lyon compared to the other sites clearly indicated the presence of very different 
 

278 surfactants at this site. 
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279 Fig. S5 also shows that, at most sites, the CMC varied by more than one order of magnitude from 
 

280 sample to sample, thus also indicating the presence of different surfactants at different times in 
 

281 the samples. As the CMC is a key parameter for the role of surfactants on cloud droplet 
 

282 formation, it was important to determine if this variability was actually occurring in the particles 
 

283 (internal mixing) or resulted from the mixing of different particles containing surfactants with 
 

284 different CMC during the analysis (external mixing). For this, the CMC values were compared 
 

285 with the PM1 volume (or mass), surface, and number concentrations. In the Lyon samples, no 
 

286 correlation was found between the CMC and PM1  mass concentration. This, together with the 
 

287 absence of correlation between the PM1 mass concentration and surfactant concentration 
 

288 discussed above, and the significant number of samples in the series, seemed to exclude internal 
 

289 mixing as a cause for the concentration and CMC variability in these samples. But the absence of 
 

290 data on PM1 number concentrations at this site prevented to conclude definitely that external 
 

291 mixing was the cause for this variability. In Rogoznica, an anti-correlation was found between 

 

292 the CMC and the PM1 mass concentration (r2 = 0.54) (Fig. S6), indicating that the strongest 
 

293 surfactants (with smallest CMC) were present in the largest particles and, more generally, that 
 

294 the variability in the CMC resulted from the internal mixing of surfactants at the surface of the 
 

295 particles. The lack of correlation between the surfactant concentration and the PM1 mass 
 

296 concentration reported above, which seemed to exclude internal mixing, might thus have resulted 
 

297 from the limited number of samples in the series. In Pallas, weak correlations were found 

 

298 between the CMC and the PM1 mass concentration (r2 = 0.32) and surface concentration (r2 = 

299 0.29) (Fig. S6), but none with the number concentration (r2 < 0.1). This confirmed that external 
 

300 mixing could be excluded and that internal mixing was responsible for the variability in 
 

301 surfactant concentration and CMC in these samples. But, in contrast with the Rogoznica samples, 
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302 

 

the stronger surfactants were present in the smallest particles in Pallas. All these results show 

303 that, at least at two of the sites studied, the wide variability in the surfactant concentration and 

304 CMC reflected actual variabilities at the particle level, and resulting from the mixing of different 

305 surfactants at different times at their surface. 

 

306 
 

Implications for the CCN ability of atmospheric sub-micron particles. As explained above, 

307 the CMC is a key parameter for the surfactant efficiency in droplet activation, as it determines 

308 the concentration at which the  of a particle is minimum, thus how much this particle can take 

309 up water before  increases. To determine if the surfactants studied in this work can maintain a  

310 lower than water at activation, the ratio of surfactant concentration, C, over the CMC for each 

311 sample was thus used to calculate the  as function of the Growth Factor, GF. For this, GF was 

312 converted into a volume change (i.e. a dilution factor on the concentration), which was then 

313 reported on the isotherm of the sample. To simplify, only three domains of  were considered, 

314 reflecting a typical isotherm: for C/CMC > 1,  = min, with typically min < 45 mN/m (cf. Fig. 

315 3); for 1/10 < C/CMC < 1, min <  < water; for C/CMC < 1/10,  = water. The results are 

316 presented in Fig. 4. They show that  for PM1 particles is lower than water for GF = 5 in 98 % of 

317 the samples, and in 60 % of them for GF = 10. The  of sub-micron particles at these sites is thus 

318 very likely to be significantly depressed at activation (GF = 5 to 10). Note, however, that these 

319 calculations were based on concentrations averaged over the entire samples, thus assuming that 

320 the surfactants were uniformly present in all the particles. But if, more realistically, the 

321 surfactants are only present in a fraction of the particles, their typical concentration in the particle 

322 phase increases accordingly and the value of GF for which  becomes lower than water is much 

323 larger. For instance, if the surfactants are present in a fraction of the particles representing only 
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324 10 % of the total PM1 volume concentration, the particulate-phase concentrations used in the 
 

325 above calculations would have to be increased by a factor 10, thus leading to  < water for GF = 
 

326 10 in the totality of the samples studied in this work. These results clearly show that the 
 

327 amphiphilic surfactants present in of sub-micron particles in the atmosphere are very likely to 

 

328 lower their  compared to water even at activation, thus enhance their activation into cloud 
 

329 droplets. 
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FIGURES 
 

 

 

 
Figure 1: Concentration of amphiphilic surfactants in PM1 Rogoznica, Croatia (A in g m-3; B 

in mM) and Lyon, France (C in g m-3; D in mM), and Pallas, Finland (E in g m-3, F in mM). 

Blue areas: anionic surfactants; red: cationic ones; green: non-ionic ones. 
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Figure 2: Average PM1 composition measured by ACSM in Pallas, Finland, for the period 

10/15-11/24/2015 (A: in µg m-3 in air; B: in mM in the particle volume), and correlations with 

the ionic fractions (C-F). For A) and B): red = surfactants; yellow: organic; dark blue = NH4
+; 

clear blue = NO3
-; green = SO4

2-; grey = Cl-. 
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Figure 3: Adsorption isotherms for the surfactant mixtures extracted from PM1: A) Rogoznica, 

Croatia, 02 -09/02/2015; B-D) Lyon, France, B: 1 – 8/12/2014, C: 9 – 17/12/ 2014, D: 12 – 

19/01/2015; E-G) Pallas, Finland, E: 22/04 – 30/05/2015, F: 31/05 – 31/07/2015, G: 31/07 – 

14/11/2015. 
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Figure 4: Surface tension domains for the PM1 particles as function of the Growth Factor. Pale 

blue:  = water; light blue: min <  < water; dark blue:  = min. Top: Rogoznica, Croatia; 

Middle: Lyon, France; Bottom: Pallas, Finland. 


