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Brodsky-Lepage-Mackenzie scale for the pion transition form factor
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The next-to-leading order~NLO! Brodsky-Lepage-Mackenzie~BLM ! scale for the pion transition form
factor is determined. To achieve that, a consistent calculation up tonf-proportional next-to-next-to-leading
order contributions to both the hard-scattering amplitude and the perturbatively calculable part of the pion
distribution amplitude is performed. By combining and matching the results obtained for these two amplitudes,
a proper cancellation of collinear singularities is established and theg5 ambiguity problem~related to the use
of the dimensional regularization method! is resolved by using the naive-g5 as well as the ’t Hooft–Veltman
~HV! schemes. It is demonstrated that the prediction for the pion transition form factor is independent of the
factorization scalemF

2 at every order in the strong coupling constant, making it possible to use the simplest
choicemF

25Q2 at the intermediate steps of the calculation. Assuming the pion asymptotic distribution ampli-
tude and working in theMS scheme, we find the BLM scale to bemR

25mBLM
2 'Q2/9. Based on the same

distribution, the complete NLO prediction for the pion transition form factor is calculated in theaV definition
of the QCD coupling renormalized atmR

25mV
25e5/3mBLM

2 'Q2/2. It is in good agreement with the presently
available experimental data.

DOI: 10.1103/PhysRevD.65.053020 PACS number~s!: 13.40.Gp, 11.15.Me, 12.38.Bx, 13.60.Le
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I. INTRODUCTION

The pion transition form factor plays a crucial role
testing QCD predictions for exclusive processes. It appe
in the amplitude that relates two, in general virtual, photo
with the lightest hadron, the pion,g* g* →p0. Historically,
this process attracted much interest since the axial anom
@1# fixes the value of the form factor when both virtualities
the photons are zero (gg→p0). For large virtualities of the
photons ~or at least for one of them! perturbative QCD
~PQCD! is applicable@2#. A specific feature of this process
that the leading-order~LO! prediction is zeroth order in the
QCD coupling constant, and one expects that PQCD for
process may work at accessible values of spacelike ph
virtualities @3#. Experimentally, the most favorable situatio
is when one of the photons is real (g* g→p0).

The framework for analyzing exclusive processes at lar
momentum transfer within the context of PQCD was in
ated and developed in the late 1970s@4,2#. It was demon-
strated to all orders in perturbation theory that exclus
amplitudes at large-momentum transfer factorize into a c
volution of a process-dependent and perturbatively ca
lable hard-scattering amplitude, with a process-independ
distribution amplitude~DA!, one for each hadron involved i
the amplitude. Whereas the DA is intrinsically nonperturb
tive and its form is determined by some nonperturbat
methods, the DA evolution is subject to a perturbative tre
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ment. In the standard hard-scattering approach~sHSA!, a
hadron is regarded as consisting only of valence Fock sta
transverse quark momenta are neglected~collinear approxi-
mation! as well as quark masses.

Although the LO predictions in the sHSA@as well as in
the modified hard-scattering approach~mHSA! in which the
collinear approximation is abandoned@5# # have been ob-
tained for many exclusive processes, only a few proces
have been analyzed at next-to-leading order~NLO!: the pion
electromagnetic form factor@6–8#, the pion transition form
factor @7,9,10# ~and @11# in the mHSA!, and the processgg

→MM̄ (M5p,K) @12#.
It is well known that, unlike in QED, one cannot rel

upon the LO predictions in PQCD~the expansion paramete
i.e., the running coupling constant is rather large at curr
energies!, and that higher-order corrections are importa
The size of the NLO correction as well as the size of t
expansion parameter, i.e. the QCD running coupling c
stant, can serve as sensible indicators of the convergenc
the expansion. However, as the truncation of the perturba
expansion at any finite order causes the residual depend
of the prediction on the choice of the renormalization sc
and scheme, these choices introduce an ambiguity in the
terpretation of the finite-order perturbative prediction.
general, including higher-order corrections has a stabiliz
effect ~see@8#, for illustration! reducing the dependence o
the predictions on the schemes and scales~since the all-order
prediction is independent of the scheme and scale cho!.
However, to assess the convergence of the perturbative
pansion, it is necessary not only to extend the calculat
beyond the LO~which is a very demanding task in man
cases!, but also to optimize the choices of the scale a
scheme according to some sensible criteria.
©2002 The American Physical Society20-1
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In the Brodsky-Lepage-Mackenzie~BLM ! procedure
@13,14#, all vacuum-polarization effects from the QCDb
function are resummed into the running coupling consta
Since the coefficientsb0 ,b1 , . . . are functions ofnf ~num-
ber of flavors!, according to the BLM procedure, the reno
malization scale best suited to a particular process in a g
order can be, in practice, determined by computing vacu
polarization insertions in the diagrams of that order, and
setting the scale demanding thatnf-proportional terms
should vanish. The renormalization scales in the BL
method are physical in the sense that they reflect the m
virtuality of the gluon propagators and the important adv
tage of this method is ‘‘pre-summing’’ the large (b0aS)n

terms, i.e., the infrared renormalons associated with the c
pling constant renormalization~ @15# and references therein!.

The optimization of the renormalization scale and sche
for exclusive processes by employing the BLM scale fixi
was elaborated in Ref.@15#. It was stated that exclusive pro
cesses are especially sensitive to the choice of the renor
ization scale for the underlying hard-scattering amplitu
and since each external momentum entering an exclu
reaction is partitioned among many propagators of the un
lying hard-scattering amplitude, the physical scales that c
trol these processes are inevitably much softer than the o
all momentum transfer. The BLM method was applied to
pion electromagnetic form factor and thegg→p1p2 pro-
cess. For the pion transition form factor, the size of the BL
scale was only assumed~taken the same as for the pion ele
tromagnetic form factor!. Since the LO prediction for the
pion transition form factor is zeroth order in the QCD co
pling constant, the NLO corrections@7,9,10# represent lead-
ing QCD corrections and the vacuum polarization contrib
tions appearing at the next-to-next-to-leading order~NNLO!
are necessary for determining the BLM scale for this proce

The purpose of this work is to determine the BLM sca
for the pion transition form factor, i.e., for theg* g→p pro-
cess. Although the structure of the process is simple,
calculation of higher-order corrections to the hard-scatter
amplitude is complicated by theg5 ambiguity, which appears
when using dimensional regularization. In our calculation
use dimensional regularization inD5422e dimensions to
regularize both ultraviolet~UV! and collinear singularities
We have obtained the LO, NLO, andnf-proportional NNLO
terms for the hard-scattering amplitude using the Feynm
gauge and modified minimal-subtraction scheme (MS)̄ for
which a suitable compact form has been adopted. In orde
correctly subtract the collinear singularities and also to ve
the right choice of theg5 prescription, we have also dete
mined the LO, NLO, andnf-proportional NNLO terms of the
perturbatively calculable~evolutional! part of the distribution
amplitude. Theg5 ambiguity present in the calculation of th
hard-scattering part has been resolved by combining
matching the results for the hard-scattering amplitude w
the results for the distribution amplitude part. The prop
cancellation of singularities has been established and thg5
problem has been resolved using both the so-called naivg5
@16# and the ’t Hooft-Veltman~HV! schemes@17,18#. It has
been demonstrated that the prediction for the pion transi
05302
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form factor is independent of the factorization scalemF
2 at

every order in the strong coupling constant. Finally, we ha
been able to justify the natural choicemF

25Q2 for the fac-
torization scale and to determine the renormalization sc
using the BLM scale setting method.

The plan of the paper is as follows. Section II is devot
to some preliminary considerations. In Sec. III the calcu
tional procedure is briefly outlined. In Sec. IV the LO, NLO
and thenf-proportional NNLO unrenormalized contribution
to both the hard-scattering amplitude and the perturbativ
calculable part of the pion distribution amplitude are o
tained. Renormalization of the UV divergences and fact
ization of the collinear divergences present in the ha
scattering and the pion distribution amplitude are perform
in Sec. V. The results for both amplitudes are obtained in
naive-g5 as well as the HV scheme. The complete leadin
twist analytical expression for the pion transition form fact
up to nf-proportional NNLO terms is obtained in Sec. V
Section VII is devoted to determining the BLM scale for th
pion transition form factor based on which the comple
NLO numerical predictions are then obtained in theMS and
aV renormalization schemes. The concluding remarks
given in Sec. VII. Theg5 problem is addressed in detail i
Appendix A. In Appendix B the Feynman rules for the pe
turbatively calculable part of the distribution amplitude a
derived. Finally, in Appendix C, we clarify some often ob
scured points on the coupling constant renormalization
justify our renormalization convention.

II. PRELIMINARIES

The pion transition form factorFg* gp(Q2) for a pseudo-
scalar mesonp0 is defined in terms of the amplitudeGmn for
g* (q,m)1g(k,n)→p(P), as

Gmn5 ie2Fg* gp~Q2!emnabPaqb . ~2.1!

For large-momentum transferQ252q2, the form factor can
be represented@4,2# as a convolution

Fg* gp~Q2!5F* ~x,mF
2 ! ^ TH~x,Q2,mF

2 !, ~2.2!

where^ stands for the usual convolution symbol defined

A~z! ^ B~z!5E
0

1

dz A~z!B~z!. ~2.3!

In Eq. ~2.2!, the functionTH(x,Q2,mF
2) is the hard-scattering

amplitude for producing a collinearqq̄ pair from the initial
photon pair;F* (x,mF

2) is the pion distribution amplitude

representing the amplitude for the final stateqq̄ to fuse into
a pion, i.e., the probability amplitude for finding the valen
qq̄ Fock state in the final pion with the constituents carryi
fractionsx and (12x) of the meson’s total momentumP; mF

2

is the factorization~or separation! scale at which soft and
hard physics factorize.

The hard-scattering amplitudeTH is obtained by evaluat-
ing theg* g→qq̄ amplitude, which is described by the Fey
man diagrams in Fig. 1, with massless on-shell quarks
0-2
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linear with outgoing meson. By definition,TH is free of
collinear singularities and has a well-defined expansion
aS(mR

2), with mR
2 being the renormalization~or coupling

constant! scale of the hard-scattering amplitude. Thus, o
can write

TH~x,Q2,mF
2 !5TH

(0)~x,Q2!1
aS~mR

2 !

4p
TH

(1)~x,Q2,mF
2 !

1
aS

2~mR
2 !

~4p!2
TH

(2)~x,Q2,mF
2 ,mR

2 !1•••.

~2.4!
Although the functionF(x,mF

2) is intrinsically nonpertur-
bative ~containing the effects of confinement, nonperturb
tive interactions, and meson bound-state dynamics!, it satis-
fies an evolution equation of the form

mF
2 ]

]mF
2

F~x,mF
2 !5V„x,u,aS~mF

2 !…^ F~u,mF
2 !, ~2.5!

whereV„x,u,aS(mF
2)… is the perturbatively calculable evolu

tion kernel

V„x,u,aS~mF
2 !…5

aS~mF
2 !

4p
V1~x,u!1

aS
2~mF

2 !

~4p!2
V2~x,u!1•••.

~2.6!

If the distribution amplitudeF(x,m0
2) is determined at an

initial momentum scalem0
2 ~using some nonperturbativ

methods!, then the differential-integral evolution equatio
~2.5! can be integrated using the moment method to g
F(x,mF

2) at any momentum scalemF
2.m0

2 . The one-@2# and
two-loop @19–21# corrections to the evolution kernel ar
known, but because of the complicated structure of the t
loop corrections, it was possible to obtain numerically on
the first few moments of the evolution kernel@22#. However,
based on the conformal spin expansion, the conformal W
identities, and the conformal consistency relation, the co
plete analytical form of the NLO solution of the evolutio
equation~2.5! has been obtained in Ref.@23#.

Instead of usingF(x,mF
2), one often introduces the dis

tribution amplitudef(x,mF
2) normalized to unity

E
0

1

dxf~x,mF
2 !51, ~2.7!

FIG. 1. Feynman diagram describing theg* g→qq̄ amplitude in
terms of which the hard-scattering amplitude for theg* g→p tran-
sition is obtained.
05302
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and related toF(x,mF
2) by

F~x,mF
2 !5NFf~x,mF

2 !, ~2.8!

where

NF5
f p

2A2Nc

~2.9!

is the normalization constant imposed by the leptonicp1

→m1nm decay,f p50.131 GeV is the pion decay constan
andNc(53) is the number of QCD colors.

It is convenient to expand the distribution amplitude~DA!
f(x,m0

2) ~determined at the initial scalem0
2) in terms of the

Gegenbauer polynomialsCn
3/2(2x21), representing the

eigenfunctions of the LO evolution kernelV1 :

f~x,m0
2!56x~12x! ( 8

n50

`

BnCn
3/2~2x21!. ~2.10!

The nonperturbative input is now contained in theBn coef-
ficients and( 8 denotes the sum over even indices. The D
~2.10!, when evoluted to the scalemF

2 , is represented by the
perturbative expansion

f~x,mF
2 !5fLO~x,mF

2 !1
aS~mF

2 !

4p
fNLO~x,mF

2 !1•••,

~2.11!

where

fLO~x,mF
2 !56x~12x! ( 8

n50

`

Bn
LO~mF

2 !Cn
3/2~2x21!,

~2.12!

fNLO~x,mF
2 !56x~12x! ( 8

k52

`

Bk
NLO~mF

2 !Ck
3/2~2x21!.

~2.13!

The coefficientsBn
LO(mF

2) andBk
NLO(mF

2) depend on the non
perturbative inputBn , as well as on the scalesm0

2 andmF
2 .

Their exact form can be read from the results obtained fr
@23# and listed in@8#.1

III. CALCULATIONAL PROCEDURE

Before proceeding with the calculation, we would like
point out some subtleties connected with the calculatio
procedure that~we think! deserve more explanation.

The hard-scattering amplitudeTH is obtained by evaluat-
ing theg* 1g→qq̄ amplitude, which contains collinear sin
gularities, owing to the fact that final state quarks are tak
to be massless and on-shell. Since, by definition,TH is a

1It should, however, be pointed out that, in contrast to the exp
sion parameteraS(mF

2)/(4p) from Eq. ~2.11!, the expansion pa-
rameteraS(mF

2)/p was chosen in@8#. Hence, the expressions fo
Bn

LO(NLO) from @8# should be modified accordingly.
0-3
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finite quantity free of collinear singularities, these singula
ties should be subtracted. Theg* 1g→qq̄ amplitude with
the Lorentz structure factored out as in Eq.~2.1! and denoted
by T factorizes as

T~u,Q2!5TH~x,Q2,mF
2 ! ^ ZT,col~x,u;mF

2 !, ~3.1!

where, as usual,u and 12u denote the quark/antiquark lon
gitudinal momentum fractions,mF

2 is a factorization scale a
which the separation of collinear singularities takes pla
and all collinear singularities are factorized inZT,col .

On the other hand, a process-independent distribution
plitude for a pion in a frame whereP15P01P351, P2

5P02P350, andP'50 is defined@2,20,24# as

F~u!5E dz2

2p
ei (u2(12u))z2/2

3^0uC̄~2z!
g1g5

2A2
VC~z!up& (z15z'50) ,

~3.2!

where

V5expH igE
21

1

dsA1~zs!z2/2J ~3.3!

is a path-ordered factor makingF gauge invariant. The ma
trix element in Eq.~3.2! contains an ultraviolet divergenc
coming from the light-cone singularity atz250 @2,24#. This
divergence should be regulated, and after renormalizat
which introduces a renormalization scalem̃R

2 , z2 is effec-

tively smeared over a region of orderz252z'
2 ;1/m̃R

2 . As a

result, the pion distribution amplitudeF(v,m̃R
2) is obtained

corresponding to the pion wave function integrated over
pion intrinsic transverse momentum up to the scalem̃R

2 . The

distribution amplitudeF(v,m̃R
2) is a finite quantity and en

ters the convolution expression~2.2!.
The unrenormalized pion distribution amplitudeF(u)

given in Eq.~3.2! and the distribution amplitudeF(v,m̃R
2)

renormalized at the scalem̃R
2 are~owing to the multiplicative

renormalizability of the composite operatorC̄g1g5VC) re-
lated by a multiplicative renormalizability equation

F~u!5Zf,ren~u,v;m̃R
2 ! ^ F~v,m̃R

2 !. ~3.4!

By differentiating this equation with respect tom̃R
2 one ob-

tains the evolution equation~2.5!, with the evolution poten-
tial V given by

V52Zf,ren
21 S m̃R

2 ]

]m̃R
2

Zf,renD . ~3.5!
05302
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For notational simplicity, here and where appropriate, we
the notation in which the convolution (̂) is replaced by the
matrix multiplication inx-y space@unit matrix is given by
1[d(x2y)#.

The pion distribution amplitude as given in Eq.~3.2!, with
up& being the physical pion state, of course, cannot be de
mined using perturbation theory. If the meson stateup& is
replaced by auqq̄;t& state composed of a free~collinear,
massless, and on-shell! quark and antiquark@carrying mo-
mentatP and (12t)P#, the amplitude~3.2! becomes

f̃~u,t !5E dz2

2p
ei „u2~12u!…z2/2

3^0uC̄~2z!
g1g5

2A2
VC~z!uqq̄;t&

1

ANc

.

~3.6!

Taking Eq.~3.6! into account, Eq.~3.2! can be written in the
form

F~u!5f̃~u,t ! ^ ^qq̄;tup&ANc. ~3.7!

The amplitude~3.6! can be treated perturbatively, making
possible to investigate the high-energy tail of the pion DA,
obtainZf,ren and to determine the DA evolution.

The distributionf̃(u,t) is multiplicatively renormalizable
and the UV singularities that are not removed by the ren
malization of the fields and by the coupling constant ren
malization, factorize in the renormalization constantZf,ren at
the renormalization scalem̃R

2 . Apart from UV singularities,
the matrix element in Eq.~3.6! contains collinear singulari-
ties ~since the initial state quarks are, as before, taken to
massless and on-shell!, which are absorbed inZf,col at the
factorization scalem0

2. Hence, one obtains

f̃~u,t !5Zf,ren~u,v;m̃R
2 ! ^ fV~v,s;m̃R

2,m0
2! ^ Zf,col~s,t;m0

2!.

~3.8!

Upon combining Eqs.~3.7! and ~3.8!, the distributionF(u)
can be written in the form

F~u!5Zf,ren~u,v;m̃R
2 ! ^ fV~v,s;m̃R

2 ,m0
2! ^ F~s,m0

2!.
~3.9!

Here,

F~s,m0
2!5Zf,col~s,t;m0

2! ^ ^qq̄;tup&ANc, ~3.10!

represents the nonperturbative input~containing all effects of
collinear singularities, confinement, and pion bound-state
namics! determined at the scalem0

2, while fV(v,s;m̃R
2 ,m0

2)
governs the evolution of distribution amplitude to the sc
m̃R

2 :

F~v,m̃R
2 !5fV~v,s;m̃R

2 ,m0
2! ^ F~s,m0

2!, ~3.11!

and satisfies the evolution equation
0-4
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m̃R
2 ]

]m̃R
2

fV~v,s,m̃R
2 ,m0

2!5V~v,s8,m̃R
2 ! ^ fV~s8,s,m̃R

2 ,m0
2!.

~3.12!
By convoluting the ‘‘unrenormalized’’~in the sense of

collinear singularities! hard-scattering amplitudeT(u,Q2)
with the unrenormalized pion distribution amplitudeF(u),
given by Eqs.~3.1! and~3.4!, respectively, one obtains~in a
way analogous to@2,25#! the following expression for the
pion transition form factorFg* gp(Q2):

Fg* gp~Q2!5F†~u! ^ T~u,Q2!. ~3.13!

The divergences ofT(u,Q2) andF(u) cancel form̃R
25mF

2

ZT,col~x,u;mF
2 ! ^ Zf,ren~u,v;mF

2 !5d~x2v !, ~3.14!

and the usual expression~2.2! emerges, where the pion tran
sition form factor is expressed in a form of the convoluti
of two finite amplitudes:

Fgp~Q2!5TH~x,Q2,mF
2 ! ^ F* ~x,mF

2 !.

It is worth pointing out that the scalemF
2 representing the

boundary between the low- and high-energy parts in
~2.2! is, at the same time, the separation scale for collin
singularities inT(u,Q2), on the one hand, and the renorma
ization scale for UV singularities appearing in the perturb
tively calculable part of the distribution amplitudeF(u), on
the other hand. The calculational procedure explained ab
is illustrated in Fig. 2.

Our main goal in this work is to determine the BLM sca
for the pion transition form factor. To achieve that, we ma
use of the calculational procedure outlined above and in
following sections calculate the LO, NLO, an
nf-proportional NNLO contributions to the perturbative e
pansions of both the hard-scattering amplitude and the
tribution amplitude.

This is the first calculation of the hard-scattering amp
tudeT(u,Q2) of an exclusive process with the NNLO term

FIG. 2. Pictorial representation of the pion transition form fac
calculational ingredients:T represents the perturbatively calculab
hard-scattering amplitude, whileF is the pion distribution ampli-
tude given by Eq.~3.2! which can be expressed, as in Eq.~3.7!, in

terms of the perturbatively calculable partf̃ ~3.6! and the perturba-
tively uncalculable part.
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taken into account. The subtraction~separation! of collinear
divergences at the NNLO is significantly more demand
than that at the NLO. Owing to the fact that the proce
under consideration contains one pseudoscalar meson
calculation is further complicated by theg5 ambiguity re-
lated to the use of the dimensional regularization method
treat divergences.

In order to correctly subtract the collinear divergences a
determine the right treatment of theg5 matrix, we determine
the LO, NLO, andnf-proportional NNLO contributions to

the distributionf̃(u,t) given in Eq.~3.6!, and by that, fol-
lowing Eqs.~3.7!–~3.9!, the renormalization constantZf,ren

and the evolutional partfV of the distribution amplitude
F(u) ~3.2!. Since there is nog5 ambiguity in the DA calcu-
lation, theg5 ambiguity present in the hard-scattering calc
lation is resolved using Eq.~3.14!. As an additional check
we employ twog5 schemes in our calculation. Finally, w
obtain the (g5 scheme independent! prediction for the pion
transition form factor Fg* gp up to the nf-proportional
NNLO terms, expressed in terms of the finite quantit
TH(x,Q2,mF

2) andF(x,mF
2).

IV. LO, NLO, AND nf-PROPORTIONAL NNLO
UNRENORMALIZED CONTRIBUTIONS

TO THE HARD-SCATTERING
AND THE DISTRIBUTION AMPLITUDES

In this section we present the calculation of the LO, NL
and nf-proportional NNLO contributions to the hard
scattering amplitude and the perturbatively calculable par
the distribution amplitude.

A. Contributions to the hard-scattering amplitude

The hard-scattering amplitudeTH for the pion transition

form factor is obtained by evaluating theg* g→qq̄ ampli-
tude for the parton subprocess, which is described by
Feynman diagrams of Fig. 1.

Theqq̄ pair has to be projected into a negative-parity a
spin 0 ~pseudoscalar! state. This is achieved by introducin
the projection operatorg5P” /A2 and taking the trace over
fermion loop. On the other hand, the color-singlet nature
the qq̄ state is taken into account by introducing the fac
(a51

3 dab /ANc, and taking the trace over the color indice

Also, the flavor function (uū2dd̄)/A2 should be included.
The hard-scattering amplitudeT(u,Q2) can generally be

expressed as an expansion inaS :

T~u,Q2!5
NT

Q2 H T(0)~u!1
aS

4p
T(1)~u!

1
aS

2

~4p!2 F S 2
2

3
nf DT(2,nf )~u!1•••G1•••J .

~4.1!

r
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1. LO contributions

In the LO approximation there are only two Feynm
diagrams that contribute to theg* g→qq̄ amplitude. They
are shown in Fig. 3. The contribution of diagramA ~after
ie2emnabPaqb is factored out! is given by

TA5
NT

Q2

1

12u
, ~4.2!

where

NT52A2NcCp , ~4.3!

and

Cp5
eu

22ed
2

A2
5

A2

6
~4.4!

is the factor taking into account the flavor content of theqq̄
pair. The contribution of diagramB is obtained by making
the replacementu→(12u) in Eq. ~4.2!. Therefore, the
lowest-order~QED! contribution to theg* g→qq̄ amplitude,
i.e., toT(u,Q2) given in Eq.~4.1!, is

T(0)~u!5
1

12u
1~u→12u!. ~4.5!

2. NLO contributions

At NLO there are 12 one-loop Feynman diagrams cont
uting to theg* g→qq̄ amplitude. They can be generated
inserting an internal gluon line into the lowest-order d
grams of Fig. 3. We use the notation whereAi j is the dia-
gram obtained from diagramA by inserting the gluon line
connecting the linesi and j, where i , j 51,2,3. Since NLO,
and all higher-order, diagrams generated from diagramB can
be obtained from the corresponding diagrams generated
diagram A by using the substitutionu→(12u), the total
number of NLO diagrams to be evaluated is 6. They
shown in Fig. 4.

These diagrams contain ultraviolet~UV! singularities, and
owing to the fact that the final state quarks are massless
on shell they also contain collinear singularities. To regu
ize these singularities, we use dimensional regularizatio
D5422e space-time dimensions.

As is well known, dimensional regularization leads to
ambiguity when dealing with the pseudoscalar matrixg5.

FIG. 3. Lowest-order Feynman diagrams contributing to

g* g→qq̄ amplitude.
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The reason for this lies in the fact that the matrixg5 cannot
be unambiguously defined inDÞ4 dimensions. In practice
the difficulty arises in evaluating a trace containing a sin
g5. We address this problem in detail in Appendix A.

In order to make sure that our results for the pion tran
tion form factor areg5 scheme independent, we have eva
ated all the contributions using two schemes: the naiveg5
scheme@16# and the ’t Hooft–Veltman~HV! scheme@17,18#,
defined by Eqs.~A1! and ~A3!, respectively.

A few remarks concerning the diagrams with quark se
energy corrections where the quark momentump is on-shell
(A11, A22) are in order. Since these corrections modify e
ternal legs, each of these diagrams is accompanied wi
factor of 1/2 coming from the expansion of the quark fie
renormalization constantAZ2. In dimensional regularization
the contributions of each of these diagrams turn out to
proportional to (p2)2e and, therefore, vanish whenp250.
On closer inspection, however, one finds that this vanish
is a result of the cancellation of a UV pole with colline
pole. The UV pole contributes to the renormalization of t
quark fields~already taken into account by the factorAZ2)
and eventually leads to a correct running of the coupl
constant.

The contribution of any of the diagramsAi j shown in Fig.
4 can be generally expressed as

TAi j5
NT

Q2

1

12u

aS

4p
CFT̃Ai j , ~4.6a!

where CF54/3 is the color factor~the same for all dia-
grams!, while T̃Ai j is defined by

T̃Ai j5S GUV
(0)~e!

1

122e
T̂Ai j

UV1G IR
(0)~e!

1

122e
T̂Ai j

IR D S m2

Q2D e

,

~4.6b!

with the following abbreviations:

GUV
(0)~e!5G~e!

G~12e!G~12e!

G~122e!
~4p!e,

e

FIG. 4. Distinct one-loop Feynman diagrams contributing to

g* g→qq̄ amplitude, generated from diagramA of Fig. 3 by insert-
ing a gluon line.
0-6
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TABLE I. ContributionsT̂Ai j
UV andT̂Ai j

IR @defined in Eq.~4.6!# of Feynman diagrams shown in Fig. 4. Apa
from the result denoted by 12d51, the listed results correspond to the results obtained using the HV sch
or equivalently, to the results obtained in the naive-g5 scheme withg5 being outside the contractingg
matrices. The result denoted by 12d51 has been obtained using the naive-g5 scheme withg5 placed between
the contractingg matrices and between two Dirac slashed loop momenta.

i j T̂Ai j
UV T̂Ai j

IR

11(22) 2
1

2
~12e!S12

e

2D~12u!2e 2
1

2
~12e!S12

e

2D~12u!2e

33 2(12e)(12u)2e 0

23 (12e)(12u)2e (21e)(12u)2e

13 ~12e!F~12u!2e1
1

u
„12~12u!2e

…G F ~21e!~12u!2e1S 2

e
1e D1

u
„12~12u!2e

…G
12d50 0 22~11e!S1e 12D12u

u
„12~12u!2e

…

12d51 0 22~12e!
1

e

12u

u
„12~12u!2e

…

he

o

th

io
ng
ne
e

o
ng
,

h

in

G IR

(0)~e!5G~11e!
G~2e!G~12e!

G~122e!
~4p!e. ~4.7a!

The first G function on the right-hand side of Eqs.~4.7!
originates from the loop momentum integration, while t
integration over Feynman parameters producesG ’s collected
in a fraction. Consequently, the singularity contained inG(e)
appearing in Eq.~4.7a! is of UV origin, while the singularity
contained inG(2e) appearing in Eq.~4.7a! is of infrared
~IR! origin. It should be pointed out, however, that none
the diagrams of Fig. 4 contains a soft~genuine IR! singular-
ity, so that, here and in the following, the subscript~and/or
the superscript! IR signifies the collinear singularity. If the
relation

G~z!G~12z!5
p

sinpz
~4.8!

is taken into account in Eq.~4.7!, one finds that

GUV
(0)~e!52G IR

(0)~e!. ~4.9!

Nevertheless, we continue to keep track of the origin of
UV and collinear singularities.

The contributionsT̂Ai j
UV andT̂Ai j

IR of the individual diagrams
are given in Table I. Following the explanations and notat
given in Appendix A, we list the contributions obtained usi
the HV scheme, which are equivalent to the results obtai
in the naive-g5 scheme withg5 being positioned outside th
contractedg matrices. For diagramA12 we also list the con-
tribution obtained in the naive-g5 scheme corresponding t
the case whereg matrices are contracted through the stri
of g matrices of the formłg5ł . As elaborated in Appendix A
theg5 ambiguity in diagramsA11, A22, A33, A23, andA13
has been resolved with the help of QED Ward identities. T
05302
f

e

n

d

e

remaining ambiguity in diagramA12 is parameterized byd,
taking the value 0 for the first choice for handlingg5 in
diagram A12, and 1 for the second. Our results listed
Table I are in agreement with@10# ~but see the comments in
Appendix A!.

The NLO contributionT(1)(u) from Eq. ~4.1! is of the
form

T(1)~u!5FGUV
(0)~e!

1

122e
T̄UV

(1)~u!1G IR
(0)~e!

1

122e
T̄IR

(1)~u!G
3S m2

Q2D e

, ~4.10a!

where

T̄UV
(1)~u!5CF

1

12u
~12e!F e

2
~12u!2e1

1

u
„12~12u!2e

…G
1~u→12u!, ~4.10b!

and

T̄IR
(1)~u!5CF

1

12u F412e2S 12
3

2
e1

1

2
e2D ~12u!2e

1S 2

e
242e1~4d23!

12u

u
~21e! D

3„12~12u!2e
…G1~u→12u!. ~4.10c!
0-7
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3. nf-proportional NNLO contributions

By inserting the vacuum polarization bubbles in the NL
diagrams of Fig. 4, the NNLO diagrams displayed in Fig
are obtained. The vacuum polarization insertion is~in the
Feynman gauge! given by the replacement

2 igkl
dab

l 21 ih
→2 i S gkl2

l kl l

l 21 ih
D dab

l 21 ih
P~ l 2!, ~4.11!

where

FIG. 5. Distinct vacuum-polarization two-loop Feynman d

grams contributing to theg* g→qq̄ amplitude, which have been
obtained from the one-loop diagrams of Fig. 4 by inserting
vacuum-polarization bubbles.
05302
P~ l 2!5
g2

~4p!2 S m2

2 l 22 ih
D eF ~523e!2

2

3
~12e!nf G

3
1

S 12
2

3
e D ~122e!

G~e!
G~12e!G~12e!

G~122e!
~4p!e,

~4.12!

and, due to gauge invariance of the complete finite ord
contribution~which we have used as an additional check
our calculation!, it can effectively be described by

2 igkl
dab

l 21 ih
→2 igkl

dab

l 21 ih
P~ l 2!. ~4.13!

We are interested only in thenf-proportional part~from the
quark loops inserted in the gluon propagator!

Pnf
~ l 2!5S 2

2

3
nf D 1

~ l 21 ih!e

g2

~4p!2
f nf

~e,m2!, ~4.14a!

where f nf
is defined by

f nf
~e,m2!5S m2

212 ih8
D e

12e

S 12
2

3
e D ~122e!

GUV
(0)~e!.

~4.14b!

The contributions of the two-loop Feynman diagram
shown in Fig. 5 can then be generally written as

e

TABLE II. Same as Table I but for contributionsT̂(Ai j )n f

UV andT̂(Ai j )n f

IR @defined in Eq.~4.15!#, correspond-
ing to the Feynman diagrams shown in Fig. 5.

i j T̂(Ai j )n f

UV T̂(Ai j )n f

IR

11(22) 2
1

2

~12e!2S12
e

2D
S11

e

2DS12
3

2
eD ~12u!22e 2

1

2

~12e!2S12
e

2D
S11

e

2D S12
3

2
eD ~12u!22e

33 2
~12e!2

S12
3

2
eD ~12u!22e

0

23
~12e!2

S12
3

2
eD ~12u!22e

~22e22e2!

S12
3

2
eD ~12u!22e

13
~12e!3

S12
3

2
eD I1~u,e!

~12e!

S12
3

2
eD @2e~12e!I2~u,e!2~22e22e2!u I3~u,e!#

12d50 0 22(11e)@2(12u)22e22eI 2(u,e)
2(12e)u I3(u,e)#(12u)

12d51 0 22~12e!@2~12u!22e2~12e!u I3~u,e!#~12u!
0-8



m
LO

BRODSKY-LEPAGE-MACKENZIE SCALE FOR THE PION . . . PHYSICAL REVIEW D65 053020
T(Ai j )n f
5

NT

Q2

1

12u

aS
2

~4p!2
CFS 2

2

3
nf D T̃(Ai j )n f

, ~4.15a!

where

T̃(Ai j )n f

5S GUV
(0)~e!GUV

(1)~e!
~12e!

S 12
2

3
e D ~122e!~123e!

T̂(Ai j )n f

UV

1GUV
(0)~e!G IR

(1)~e!
~12e!

S 12
2

3
e D ~122e!~123e!

T̂(Ai j )n f

IR D
3S m2

Q2D 2e

, ~4.15b!

while, similarly to Eq.~4.7!, the abbreviations

GUV
(1)~e!5

G~2e!

G~11e!

G~122e!G~12e!

G~123e!
~4p!e ~4.16a!

G IR
(1)~e!5

G~112e!

G~11e!

G~22e!G~12e!

G~123e!
~4p!e ~4.16b!
05302
have been introduced.
The contributionsT̂(Ai j )n f

UV,IR of the individual diagrams are

listed in Table II. The integralsI i(u,e) ( i 51,2,3) appearing
in this table are defined as

I 1~u,e![I ~u;e,2e! ~4.17!

I 2~u,e![I ~u;e,112e! ~4.18!

I 3~u,e![I ~u;11e,112e!, ~4.19!

where

I ~u;a,c!5E
0

1

dy
ya

~12uy!c

5
1

11a 2F1~c,11a,21a;u!. ~4.20!

As far as theg5-scheme dependence of the NNLO diagra
contributions is concerned, it is the same as for the N
diagrams from Table I.

Thenf-proportional NNLO contributionTnf

(2)(u) from Eq.

~4.1! takes the form
T(2,nf )~u!5F GUV
(0)~e!GUV

(1)~e!
~12e!

S 12
2

3
e D ~122e!~123e!

T̄UV
(2,nf )~u!

1GUV
(0)~e!G IR

(1)~e!
~12e!

S 12
2

3
e D ~122e!~123e!

T̄IR
(2,nf )~u!G S m2

Q2D 2e

, ~4.21a!

where

T̄UV
(2,nf )~u!5CF

1

12u

~12e!2

12
3

2
e
F ~12e!I 1~u,e!2

12
e

2

11
e

2

~12u!22eG1~u→12u! ~4.21b!

T̄IR
(2,nf )~u!5CF

1

12u H F 11
5

2
e2

9

2
e22

1

2
e3

S 11
e

2D S 12
3

2
e D 12@12~2d21!e#~12u!G ~12u!22e

12eF ~12e!2

12
3

2
e

2~2d22!~11e!~12u!G I 2~u,e!

22F S 12
e

2
2e2D ~12e!

12
3

2
e

2@12~2d21!e#~12e!~12u!G u I3~u,e!J 1~u→12u!. ~4.21c!
0-9
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Our results are expressed in a compact form in which
complete functional dependence on the dimensional par
etere is retained. This is in contrast to the expansion ovee
often encountered in the literature. In this expansion, n
leading terms ine are neglected before renormalization a
factorization of collinear singularities. As we show in Sec.
it is advantageous~both for the simplicity and accurac
check of the calculation! not to expand the functionsGUV,IR

(0,1)

over e.

B. Contributions to the perturbatively calculable part
of the distribution amplitude

In Sec. II we have defined the distribution amplitu
f̃(u,t) ~3.6! representing the perturbatively calculable p
of the pion distribution amplitude. Following@20#, we have
rederived the Feynman rules for this operator in the Feynm
gauge. They are listed in Appendix B.

We now proceed to calculate LO, NLO, an
nf-proportional NNLO contributions to thef̃(u,t) distribu-
tion amplitude defined in Eq.~3.6!, or equivalently in Eq.
~B3!.

Contrary to@20,24#, we use dimensional regularization
regularize both UV and collinear singularities.2 This enables
us to combine these results with the hard-scattering res
also obtained by employing the dimensional regularizati
Compared to the hard-scattering amplitude calculation,
culation of thef̃ amplitude is complicated by the fact th
noncovariantl 1, l 2 andd-function terms@see Eqs.~B4! and
~B5!# appear in the loop-momenta. To deal with these ty
of terms and in order to simplify the expressions we follo
the prescription given in@20#.

The presence of twog5 matrices in the traces has e
abled their unambiguous treatment in the naive-g5
scheme~see Appendix A!. Additionally, we have obtained
the results using the HV scheme, which, however, introdu
the ‘‘spurious’’ anomalous terms, and hence the additio
renormalization is required. The corresponding renormal
tion constant will be determined by comparing the resu
obtained in the naive-g5 with those obtained in the HV
scheme.

The perturbatively calculablef̃(u,t) amplitude can be
represented as a series inaS

f̃~u,t !5f̃ (0)~u,t !1
aS

4p
f̃ (1)~u,t !1

aS
2

~4p!2

3F S 2
2

3
nf D f̃ (2,nf )~u,t !1•••G1••• . ~4.22!

2The evolutional behavior of the DA can be extracted from E
~3.6! even when using dimensional regularization for both UV a

mass singularities. We introduce the auxiliary scaleQ̃2 and we in-
sist on discriminating between UV and collinear singularities. O
erwise, the UV and collinear part of higher-order corrections wo

cancel, leading tof̃(u,t)5d(u2t).
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1. LO contribution

The contribution of the LO Feynman diagram display
in Fig. 6 reads

f̃ (0)~u,t !5d~u2t !. ~4.23!

2. NLO contributions

At NLO there are 5 one-loop Feynman diagrams contr
uting when the Feynman gauge is used. They are displa
in Fig. 7. The general form of these individual contributio
~denoted byX) is given by

f̃X~u,t !5
aS

4p
KX~u,t !H ~4p!2

i Fm2eE dDl

~2p!D

1

~ l 21 ih!2G J ,

~4.24!

where

KX~u,t !52 CFE
0

1

dy FX~u,t;y!, ~4.25!

.

-
d

FIG. 6. The LO diagram contributing to thef̃(u,t) distribution
~3.6!, i.e., Eq.~B3!.

FIG. 7. The one-loop diagrams contributing to thef̃(u,t) dis-
tribution ~3.6!, i.e., Eq.~B3! ~in the Feynman gauge!.
0-10
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and theFX(u,t;y) and KX(u,t) contributions can be rea
from Table III. The notationu15u, u2512u has been in-
troduced, as well as the usual definition of the ‘‘1’’ form

$F~x,y!%1[F~x,y!2d~x2y!E
0

1

dz F~z,y!, ~4.26!

the presence of which reflects the chiral symmetry conse
tion. This ‘‘1’’ form is a consequence of the fact that th
axial current is conserved in the chiral limit, and represen
general all-order property@21#.

By definition, theD dimensional integral in Eq.~4.24!
gives zero in dimensional regularization, but only if we
not distinguish between UV and collinear singularities.3 By
discriminating between the singularities of different orig
we obtain the following expression:

3The D dimensional integrals appearing in Eqs.~4.24! and ~4.30!
are of the form

I[a]5m2eE dDl

~2p!D

1

~l21ih!a
.

By employing

I[a]5Fm2eE dDl

~2p!D

~l2p!2

~l21ih!a„~ l 2p!21 ih…
G

p2Þ0

,

and insisting on distinguishing theG functions obtained from the
loop-momentum integrations andG functions from the Feynman
parameter integration, it can be shown that

I[a]5
i

~4p!2

1

~p21ih!a22 S 4pm2

2p22ih
De

3FG~a221e!

G~a!

G~32a2e!G~22e!

G~52a22e!
~22e!

1
G~a211e!

G~a!

G~22a2e!G~32e!

G~52a22e! G.
Here, the first fraction in the terms containingG functions corre-
sponds to the loop-momentum integration possibly resulting in
singularities, while the second fraction corresponds to the inte
tion over Feynman parameters and consequently, to collinear si

larities. Fora,21 ẽ, whereẽ50 or !, only the UV singularities

appear, while fora.21 ẽ, only the collinear singularities appea
The two terms in the bracket cancel in both cases, soI [aÞ21 ẽ], ẽ!

50. However, fora521 ẽ, both UV and collinear singularities ar
present, and the cancellation can occur only if we abandon di
guishing them.
05302
a-

a

,

2 i ~4p!2Fm2eE dDl

~2p!D

1

~ l 21 ih!2G
5FGUV~e!

1

122e S 12
e

2D
1G IR~e!

1

122eS 12
e

2D G S m2

Q̃2D e

, ~4.27!

whereQ̃2.0 represents the auxiliary scale.
The NLO contributionf̃ (1)(u,t), to which Feynman dia-

grams of Fig. 7 contribute, can then be expressed by

f̃ (1)~u,t !5FGUV
(0)~e!

1

122e S 12
e

2DK (1)~u,t !

1G IR
(0)~e!

1

122e S 12
e

2DK (1)~u,t !G S m2

Q̃2D e

,

~4.28!

where the functionK (1) calculated in the naive-g5 scheme
amounts to

K (1)52 CFH u

t F ~12e!1
1

t2uGu~ t2u!1S u→12u

t→12t D J
1

.

~4.29!

3. nf-proportional NNLO contributions

By inserting the vacuum polarizations in the NLO di
grams of Fig. 7, we obtain the NNLO diagrams displayed
Fig. 8. Thenf-proportional contributions4 of these diagrams
evaluated using Eqs.~4.13! and ~4.14!, read

f̃ (X)n f
~u,t !5

aS
2

~4p!2 S 2
2

3
nf DK (X)n f

~u,t !~11e! f nf
~e,m2!

3H ~4p!2

i Fm2eE dDl

~2p!D

1

~ l 21 ih!21eG J .

~4.30!

The function f nf
(e,m2) is defined in Eq.~4.14b!, while

K (X)n f
is given by

K (X)n f
~u,t !52 CFE

0

1

dy yeFX~u,t;y!, ~4.31!

andFX(u,t;y) andK (X)n f
(u,t) can be read from Table III.

Similarly to Eq. ~4.27!, the D dimensional integral from
Eq. ~4.30! gives

a-
u-

n-

4There are more two-loop diagrams containing quark loops,
they contribute to thenf-proportional NNLO part of the meson
singlet distribution amplitude.
0-11
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2 i ~4p!2Fm2eE dDl

~2p!D

1

~ l 21 ih!21eG5
1

~2Q̃21 ih!e S m2

Q̃2D e

3F GUV
(1)~e!

12e

~123e!S 12
3

2
e D

12
e

2

11e
1G IR

(1)~e!
12e

~123e!S 12
3

2
e D

12
e

2

11e G ,

~4.32!

whereQ̃2.0 represents the auxiliary scale.
The nf-proportional NNLO contribution of the diagrams displayed in Fig. 8 takes the form

f̃ (2,nf )~u,t !5F GUV
(0)~e!GUV

(1)~e!

~12e!2S 12
e

2D
S 12

2

3
e D ~122e!~123e!S 12

3

2
e D K (2,nf )~u,t !

1GUV
(0)~e!G IR

(1)~e!

~12e!2S 12
e

2D
S 12

2

3
e D ~122e!~123e!S 12

3

2
e D K (2,nf )~u,t !G S m2

Q̃2D 2e

, ~4.33!

TABLE III. ContributionsFX appearing in Eqs.~4.25! and~4.31! and corresponding to the diagrams~X! displayed in Fig. 7 and Fig. 8
We list also the general results for the integrals appearing in Eqs.~4.25! and ~4.31!, and parameterized byk50 andk5e, respectively.

X FX(u,t;y) @*0
1dy ykFX(u,t;y)#k50,e

A (12e)@u1d(u12y t1)1u2d(u22y t2)# ~12e!Fu1

t1
u~t12u1!Su1

t1
Dk

1Su1→u2

t1→t2
DG

A1B11B2 (12e)$u1d(u12y t1)1u2d(u22y t2)%1 ~12e!H u1

t1
u~t12u1!Su1

t1
Dk

1Su1→u2

t1→t2
DJ

1

C1 2H u1

u12t1
d~u12y t1!J

1

H u1

t1

1

t12u1
u~t12u1!Su1

t1
DkJ

1

iv
f

’’
where the functionK (2,nf ) calculated in the naive-g5 scheme
amounts to

K (2,nf )~u,t !52 CFH u

t F ~12e!1
1

t2uG S u

t D
e

u~ t2u!

1S u→12u

t→12t D J
1

. ~4.34!

4. The HV scheme results

The preceding results have been calculated in the na
g5 scheme. When the HV scheme is used, only the results
05302
e-
or

the A diagram from Fig. 7 and the corresponding ‘‘bubble
diagram from Fig. 8 differ from the naive-g5 results, and are
given by

f̃A
HV~u,t !5f̃A~u,t !1Df̃A~u,t !

5f̃A~u,t !S 114e

11
e

4

S 12
e

2D ~12e!
D ,

~4.35!

and
0-12
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f̃ (A)n f

HV ~u,t !5f̃ (A)n f
~u,t !1Df̃ (A)n f

~u,t !

5f̃ (A)n f
~u,t !S 114e

1

S 12
e

2D ~12e!D .

~4.36!

Hence, when using the HV scheme, the functionsK (1) and
K (2,nf ) in Eqs.~4.28! and ~4.33! get replaced by

FIG. 8. Distinct two-loop Feynman diagrams contributing to t

f̃(u,t) distribution ~3.6!, i.e., Eq.~B3!, which have been obtaine
by inserting the vacuum polarization bubbles in the one-loop d
grams of Fig. 7.
05302
KHV
(1)52 CFH 4e

11
e

4

12
e

2

Fu

t
u~ t2u!

1S u→12u

t→12t D GJ 1K (1), ~4.37!

and

KHV
(2,nf )~u,t !52 CFH 4e

1

12
e

2

Fu

t S u

t D
e

u~ t2u!

1S u→12u

t→12t D G J 1K (2,nf ), ~4.38!

respectively. These results, obviously, bear the signatur
chiral symmetry violation.

V. RENORMALIZATION AND FACTORIZATION OF
COLLINEAR SINGULARITIES

A. General renormalization procedure

Since in this work we present the calculation~up to
nf-proportional NNLO contributions! of the hard-scattering
amplitude T(u,Q2) ~4.1!, as well as of the perturbatively
calculable part of the DAf̃(u,t) ~4.22!, both containing UV
and collinear singularities, here we outline the general p
cedure for the renormalization of UV and the factorization
collinear singularities.

We introduce the amplitudeM @having the same form o
the perturbative expansion as the amplitudesT(u,Q2) and
f̃(u,t)#:

-

M5M (0)1
aS

4p
M (1)1

aS
2

~4p!2 F S 2
2

3
nf DM (2,nf )1•••G1•••, ~5.1a!

where

M (1)5$GUV
(0)~e!@a0

UV1e a1
UV1e2a2

UV1O~e3!#1G IR
(0)~e!@a0

IR1e a1
IR1e2a2

IR1O~e3!#%S m2

Q2D e

, ~5.1b!

M (2,nf )5$GUV
(0)~e!GUV

(1)~e!@b0
nf ,UV

1e b1
nf ,UV

1e2b2
nf ,UV

1O~e3!#

1GUV
(0)~e!G IR

(1)~e!@b0
nf ,IR

1e b1
nf ,IR

1e2b2
nf ,IR

1O~e3!#%S m2

Q2D 2e

, ~5.1c!
0-13
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with ai
UV(IR) andbi

UV(IR) representing general coefficients
the expansion overe.

As a first step, we perform the coupling constant ren
malization in theMS renormalization scheme. Note that
the functionsGUV

(0)(e) andG IR
(0)(e), defined by Eq.~4.7!, the

singularities are contained in

G~e!G~12e!5
p

sinp e
5

1

e
1

p2

6
e1O~e3!

52G~2e!G~11e!, ~5.2a!

while the remaining artifacts of dimensional regularizati
can be found in

G~12e!

G~122e!
~4p!e511e„2g1 ln~4p!…1O~e2! ~5.2b!

@and similarly for GUV
(1) and G IR

(1) functions ~4.16!#. By ex-
pandingG functions overe, in relation~5.1!, an unnecessary
complication of keeping track of variousg, p2, and ln 4p
terms, would be introduced. Instead, we make use of
freedom in defining theMS scheme beyondO(e0), which is
explained in detail in Appendix C~along with some other
conventions and ‘‘misconventions’’!, and define the bare
coupling constantaS in terms of the running coupling
aS(mR

2) by

aS5S mR
2

m2D e

@e GUV
(0)~e!#21aS~mR

2 !S 12
aS~mR

2 !

4p
b0

1

e D
~5.3!
on

ll

is

ul
a

05302
-

e

whereb051122/3nf . The inclusion of the factore GUV
(0)(e)

in Eq. ~5.3! turns out to be very suitable for this type o
calculation, in which both UV and IR singularities are reg
larized by the dimensional regularization method. The
egance and advantage introduced in the calculation by
choice~5.3! becomes clear when one notes that

GUV
(1)~e!5

1

2
GUV

(0)~e!1O~e2!, ~5.4a!

G IR
(1)~e!5

1

2
G IR

(0)~e!1O~e2!. ~5.4b!

So, one can see that the presence of the factore GUV
(0)(e) in

Eq. ~5.3! is natural in the sense that it contains the combi
tions of G ’s that naturally emerge in this calculation, an
leads to their cancellation without expanding the whole
sult over e. That is in contrast to ‘‘artificial’’ choices like
exp„e(2g1 ln 4p)… and (4p)e/G(12e) found in the litera-
ture ~for example,@26,27# and @28#, respectively!.

By substituting Eq.~5.4! into Eq. ~5.1!, and performing
the coupling constant renormalization according to Eq.~5.3!,
one obtains

M5M (0)1
aS~mR

2 !

4p
M̂(1)1

aS
2~mR

2 !

~4p!2 F S 2
2

3
nf DM̂nf

(2)1•••G
1•••, ~5.5a!

where
M̂(1)5H 1

e
@a0

UV1e a1
UV1O~e2!#1

1

2e
@a0

IR1e a1
IR1O~e2!#J S mR

2

Q2D e

~5.5b!

M̂(2,nf )5H 1

e2 F S b0
nf ,UV

2
2S mR

2

Q2D 2e

a0
UVD 1eXb1

nf ,UV

2
2S mR

2

Q2D 2e

a1
UVC1e2Xb2

nf ,UV

2
2S mR

2

Q2D 2e

a2
UVC1O8~e3!G

1
1

2e2 F Xb0
nf ,IR

2
2S mR

2

Q2D 2e

a0
IRC1eXb1

nf ,IR

2
2S mR

2

Q2D 2e

a1
IRC1e2Xb2

nf ,IR

2
2S mR

2

Q2D 2e

a2
IRC1O8~e3!G J S mR

2

Q2D 2e

.

~5.5c!
ant
d,
,

ec-
d-
Note that the only artifact of dimensional regularizati
we are left with is the dimensional parametere. The result
~5.5! is given in a simple and compact form in which a
terms in the expansion overe are still retained. Also, the
distinction between the singularities of UV and IR origin
still preserved.

If the coefficients of the 1/e and 1/e2 poles of UV origin
are different from zero, the additional renormalization sho
be performed, as in the case of the multiplicatively renorm
d
l-

izable composite operator fromf̃(u,t) ~3.6!. The UV singu-
larities are then factorized in the renormalization const
ZM,ren . After all UV divergences are properly renormalize
the remaining 1/~2e! and 1/(2e2) collinear poles should be
at some factorization scale, factorized inZM,col .

B. Renormalization of the hard-scattering amplitudeT

We shall now apply the results of the preceding subs
tion to the renormalization of our results for the har
0-14
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TABLE IV. The NLO coefficientsaj
UV(IR) defined in Eq.~5.1b! and determined forM (1)[T(1)(u) ~4.10!.

The nf-proportional NNLO coefficientsbj
n f ,UV(IR) defined in Eq. ~5.1c! and determined forM (2,nf )

[T(2,nf )(u) ~4.21!.

a0
UV 0

a1
UV

CF

1

12u S121
1

u
ln~12u!D1~u→12u!

a2
UV

CF

1

12u F122S122
1

uDln~12u!2
1

2u
ln2~12u!G1~u→12u!

a0
IR

CF

1
12u

@312 ln(12u)#1(u→12u)

a1
IR

CF

1

12u F19

2
1S2~8d27!1

8d26

u Dln~12u!2ln2~12u!G1~u→12u!

a2
IR

CF

1

12uF37

2
1S240d229

2
1

20d215

u D ln~12u!1S8d27

2
2

8d26

2u Dln2~12u!G1 1

3
ln3~12u!]1~u→12u!

b0
nf ,UV 0

b1
nf ,UV

CF

1

12u S11
2

u
ln~12u!D1~u→12u!

b2
nf ,UV

CF

1

12u F11

3
2S22

25

3uD ln~12u!2
2

u
ln2~12u!1

2

u
Li2~u!G1~u→12u!

b0
nf ,IR

CF

1
12u

@312 ln(12u)#1(u→12u)

b1
nf ,IR

CF

1

12u F39

2
1S2 24d234

3
1

24d218

3u D ln~12u!22 ln2~12u!12Li2~u!G1~u→12u!

b2
nf ,IR

CF

1

12u F311

4
1S2408d2347

9
1

408d2270

9u D ln~12u!1S24d234

3
2

24d218

3u D ln2~12u!1
4

3
ln3~12u!

1S2 24d252

3
1

24d218

3u DLi2~u!22Li3~u!14S1,2~u!G1~u→12u!
f

m
een

ts

on.

at
scattering amplitudeT given by Eqs.~4.1!, ~4.5!, ~4.10!, and
~4.21!. By comparing Eqs.~4.1! and ~5.1a!, we can identify
M[T(u,Q2)/(NT /Q2) andM ( i )[T( i )(u).

The NLO coefficientsaj
UV(IR) appearing in Eq.~5.1b! are

determined from Eq.~4.10! by expanding the coefficients o
GUV,IR

(0) (e) over e, while the nf-proportional NNLO coeffi-
cientsbj

n f ,UV(IR) in Eq. ~5.1c! are obtained from Eq.~4.21!
by expanding the coefficients ofGUV

(0)(e)GUV,IR
(1) (e) over e.

The special cases of the generalized Nielsen polylogarith

Li2~u!5S1,1~u!52E
0

u

dx
ln~12x!

x
,

Li 3~u!5S2,1~u!5E
0

u

dx
Li2~x!

x
,

S1,2~u!5
1

2E0

u

dx
ln2~12x!

x
, ~5.6!

appear in these results, and the useful identity is
05302
s

S1,2~u!52Li3~12u!2 ln~12u!Li2~u!2
1

2
ln~u!ln2~12u!

1
p2

6
ln~12u!1j~3!. ~5.7!

So, after the coupling constant renormalization has b
performed, the hard-scattering amplitudeT/(NT /Q2) takes
the form given by Eq.~5.5!, where the LO contributionT(0)

is given by Eq. ~4.5! and the coefficientsaj
UV(IR) and

bj
n f ,UV(IR) are listed in Table IV. As expected, the coefficien

of the UV poles in Eq.~5.5! vanish, since all UV singulari-
ties get removed by the coupling constant renormalizati
According to Eq.~3.1!, i.e.,

T~u,Q2!5TH~x,Q2,mF
2 ! ^ ZT,col~x,u;mF

2 !,

the remaining singularities of the collinear type factorize
the factorization scalemF

2 in
0-15
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ZT,col~x,u;mF
2 !5d~x2u!1

aS~mR
2 !

4p S mR
2

mF
2 D e

1

2e
ã0

IR~x,u!

1
aS

2~mR
2 !

~4p!2 S mR
2

mF
2 D 2e

1

2e2 H S 2
2

3
nf D

3F Xb̃0
nf ,IR

~x,u!

2
2S mR

2

mF
2 D 2e

ã0
IR~x,u!C

1eS b̃1
nf ,IR

~x,u!

2
2ã1

IR~x,u!D G1•••J
1••• ~5.8!

where the coefficientsãi
IR(x,u) and b̃i

nf ,IR(x,u) satisfy the
relations

T(0)~x! ^ ãi
IR~x,u!5ai

IR~u!,

T(0)~x! ^ b̃i
nf ,IR

~x,u!5bi
nf ,IR

~u!.

With the help of
05302
aS~mR
2 !5S mF

2

mR
2 D e

aS~mF
2 !F11

aS~mF
2 !

4p
b0

1

e XS mF
2

mR
2 D e

21CG ,

~5.9!

one can easily demonstrate thatZT,col(x,u;mF
2) is indeed in-

dependent of the hard-scattering renormalization scalemR
2 :

ZT,col~x,u;mF
2 !5d~x2u!1

aS~mF
2 !

4p

1

2e
ã0

IR~x,u!

1
aS

2~mF
2 !

~4p!2

1

2e2
H S 2

2

3
nf D

3F S b̃0
nf ,IR

~x,u!

2
2ã0

IR~x,u!D
1eS b̃1

nf ,IR
~x,u!

2
2ã1

IR~x,u!D G1•••J
1••• . ~5.10!

After factorizing the collinear singularities from Eq
~5.5!by Eq. ~5.8!, and taking into account thatb0

nf ,IR
5a0

IR ,
we obtain
TH~x,Q2,mF
2 !

NT /Q2
5T(0)~x!1

aS~mR
2 !

4p F „a1
UV~x!2a1

IR~x!…2a0
IR~x!ln

mF
2

Q2
1O~e!G

1
aS

2~mR
2 !

~4p!2 H S 2
2

3
nf D F S b2

nf ,UV
~x!

2
2

b2
nf ,IR

~x!

2
D 2„a2

UV~x!2a2
IR~x!…

1S a1
UV~x!2a1

IR~x!2a0
IR~x!ln

mF
2

Q2D ln
mR

2

Q2

2„b1
nf ,IR

~x!22a1
IR~x!…ln

mF
2

Q2
1

1

2
a0

IR~x!ln2
mF

2

Q2
1O~e!G1•••J 1•••, ~5.11!

where theO(e) terms can now be safely neglected~notice that we have kept allen terms until the end of calculation!.
Finally, having evaluated all the necessary terms, we summarize our result for the hard-scattering amplitudeTH(x,Q2,mF

2)
in the form

TH~x,Q2,mF
2 !5TH

(0)~x,Q2!1
aS~mR

2 !

4p
TH

(1)~x,Q2,mF
2 !1

aS
2~mR

2 !

~4p!2 F S 2
2

3
nf DTH

(2,nf )~x,Q2,mR
2 ,mF

2 !1•••G1•••, ~5.12!

where

TH
(0)~x,Q2!5

NT

Q2
A(0)~x!1~x→12x!, ~5.13a!

TH
(1)~x,Q2,mF

2 !5
NT

Q2 S A(1)~x!2Acol
(1)~x!ln

mF
2

Q2D 1~x→12x! ~5.13b!
0-16
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TH
(2,nf )~x,Q2,mR

2 ,mF
2 !5

NT

Q2 FA(2,nf )~x!1S A(1)~x!2Acol
(1)~x!ln

mF
2

Q2D ln
mR

2

Q2
2Acol

(2,nf )~x!ln
mF

2

Q2
1

1

2
Acol

(1)~x!ln2
mF

2

Q2G1~x→12x!.

~5.13c!

We have introduced the functionsA( i ) andAcol
( i ) , which are given by

A(0)~x!5
1

12x
, ~5.14a!

and

A(1)~x!5CF

1

12x F292~8d27!
12x

x
ln~12x!1 ln2~12x!G ~5.14b!

A(2,nf )~x!5CF

1

12x F2
457

24
1S ~48d295!

18
1

~216d119!

6x D ln~12x!1S 13

6
2

1

2xD ln2~12x!2
1

3
ln3~12x!

1S ~12d226!

3
2

~4d24!

x DLi2~x!1Li3~x!22S1,2~x!G , ~5.14c!

while

Acol
(1)~x!5CF

1

12x
„312 ln~12x!…, ~5.15a!

Acol
(2,nf )~x!5CF

1

12x F1

2
1S ~24d28!

3
1

~28d16!

x D ln~12x!12Li2~x!G . ~5.15b!
pl

d to

is-
The collinearly singular terms removed from Eq.~5.5! by
Eq. ~5.8! correspond to

TH
(0)~x,Q2! ^ ZT,col~x,u;mF

2 !

5
NT

Q2 H A(0)~u!1
aS~mF

2 !

4p

1

2e
Acol

(1)~u!1
aS

2~mF
2 !

~4p!2

1

2e2

3F S 2
2

3
nf D S 2

1

2
Acol

(1)~u!1e
1

2
Acol

(2,nf )~u! D1•••G
1•••J 1~u→12u!. ~5.16!

The functionsAcol
( i ) ~5.15!, which appear in Eq.~5.16! and as

coefficients of lnn(mF
2/Q2) in Eq. ~5.13!, are obviously con-

nected to collinear singularities of the hard-scattering am
tudeT.

C. Renormalization of the perturbatively calculable DA part

1. General analysis

Next, we proceed to renormalize thef̃(u,t) following the
procedure outlined in Sec. V A. By comparing Eq.~5.1! with
05302
i-

Eq. ~4.22! we identify M[f̃(u,t) and M ( i )[f̃ ( i )(u,t),
while theQ2 scale corresponds to the scaleQ̃2. The coeffi-
cients

ai
UV5ai

IR[ai~u,t !

bi
nf ,UV

5bi
nf ,IR

[bi
nf~u,t ! ~5.17!

are determined from Eqs.~4.28! and~4.29! by expanding the
coefficients ofGUV,IR

(0) (e) over e, and from Eqs.~4.33! and
~4.34! by expanding the coefficients ofGUV

(0)(e)GUV,IR
(1) (e)

over e, respectively. Although in this work only the
nf-proportional part of the NNLO contributionf̃nf

(2)(u,t) has

been determined, our symbolic analysis can be extende
the whole NNLO contributionf̃ (2)(u,t). In this case the
general coefficients of the orderaS

2 term f̃ (2)(u,t)[M (2)

bi
UV5bi

IR[bi~u,t ! ~5.18!

appear. After the coupling constant renormalization, the d
tribution amplitudef̃(u,t)[M is given by the expression
~5.5! with the renormalization scale denoted bym̃R

2 . The

complete orderaS
2(m̃R

2) coefficientM̂(2) reads
0-17
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M̂(2)5H 1

e2 F Xb0

2
2b0S m̃R

2

Q̃2D 2e

a0C1eXb1

2
2b0S m̃R

2

Q̃2D 2e

a1C1e2Xb2

2
2b0S m̃R

2

Q̃2D 2e

a2C1O8~e3!G
1

1

2e2F Xb0

2
2b0S m̃R

2

Q̃2D 2e

a0C1eXb1

2
2b0S m̃R

2

Q̃2D 2e

a1C1e2Xb2

2
2b0S m̃R

2

Q̃2D 2e

a2C1O8~e3!G J S m̃R
2

Q̃2D 2e

,

~5.19!
c-

l-
n

s
a

d

r-
e

he
t

u-

l-

is-

.

e

where Eqs.~5.17!, ~5.18! have already been taken into a
count.

As denoted in Eq.~3.8!

f̃~u,t !5Zf,ren~u,v;m̃R
2 ! ^ fV~v,s;m̃R

2 ,m0
2! ^ Zf,col~s,t;m0

2!

the remaining UV singularities are multiplicatively renorma
izable and factorize in the renormalization consta
Zf,ren(u,v;m̃R

2) given by

Zf,ren511
aS~m̃R

2 !

4p

1

e
a01

aS
2~m̃R

2 !

~4p!2

1

e2

3F S b0

2
2b0a0D1eS b1

2
2b0a12a0a1D G1•••,

~5.20!

with
b02b0a02a0

250 ~5.21!

@i.e., b0(x,y)2b0 a0(x,y)2a0(x,u) ^ a0(u,y)50# emerg-
ing as the condition of multiplicative renormalizability. A
for the collinear singularities, they factorize at the factoriz
tion scalem0

2 in Zf,col(s,t;m0
2) given by

Zf,col511
aS~m0

2!

4p

1

2e
a01

aS
2~m0

2!

~4p!2

1

2e2

3F S b0

2
2b0a02a0

2D1eS b1

2
2b0a12a0a1D G

1••• . ~5.22!

Finally, based on Eqs.~3.8! and ~5.20!–~5.22!, the function
fV(v,s;m̃R

2 ,m0
2) is obtained. It is free of singularities, an

after thee→0 limit is taken, it takes the form

fV511
aS~m̃R

2 !

4p
a0ln

m̃R
2

m0
2

1
aS

2~m̃R
2 !

~4p!2

3Fb0

2
ln2

m̃R
2

m0
2
1~b122b0a122a0a1!ln

m̃R
2

m0
2G1••• .

~5.23!

Note that the auxiliary scaleQ̃2 has disappeared after reno
malization and factorization of collinear singularities. W
05302
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can make a distinction between the scalem̃R,1
2 introduced by

the coupling constant renormalization and the scalem̃R,2
2 at

which the remaining UV singularities are factorized in t
renormalization constantZf,ren . It can be easily shown tha
the scalem̃R,1

2 vanishes from the end results, i.e., thatZf,ren

andfV depend only on the scalem̃R,2
2 . Hence,m̃R[m̃R,2

2 and
m0

2 are the only relevant scales. Also, note thatZf,col(m
2)

5Zf,ren
21 (m2), which is expected, since, in dimensional reg

larization, f̃51 when the distinction between UV and co
linear singularities is abandoned.

2. Remarks on the evolutional part of the DA

As explained in Sec. II, the functionf̃(u,t) represents a
perturbatively calculable part of the unrenormalized pion d
tribution amplitudeF(u). By taking into account Eqs.~3.7!
and ~3.8! the distributionF(u) can be expressed by Eq
~3.9!,

F~u!5Zf,ren~u,v;m̃R
2 ! ^ fV~v,s;m̃R

2 ,m0
2! ^ F~s,m0

2!,

where F(s,m0
2) represents the pion distribution amplitud

determined at the scalem0
2. Its evolution to the scalem̃R

2 is

determined byfV(v,s;m̃R
2 ,m0

2) and given by Eq.~3.11!:

F~v,m̃R
2 !5fV~v,s;m̃R

2 ,m0
2! ^ F~s,m0

2!.

The evolution potentialV defined in Eq.~2.5! can be ob-
tained from~3.5!

V52Zf,ren
21 S m̃R

2 ]

]m̃R
2

Zf,renD ,

using Eq.~5.20!, and it reads

V5
aS~m̃R

2 !

4p
V11

aS
2~m̃R

2 !

~4p!2
V21•••, ~5.24a!

where

V15a0

V25b122b0a122a0a1 . ~5.24b!

By noting that

aS~m̃R
2 !

4p
ln

m̃R
2

m0
2

5
1

b0
S 12

aS~m̃R
2 !

aS~m0
2!
D 5O~aS

0! ~5.25!
0-18
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and by employing the multiplicative renormalizability cond
tion ~5.21! as well as the results~5.24b!, theaS expansion of
fV given in Eq.~5.23! can be reorganized and written in th
form

fV5fV
LO1

aS~m̃R
2 !

4p
fV

NLO1•••, ~5.26a!

where

fV
LO511

aS~m̃R
2 !

4p
ln

m̃R
2

m0
2

V11
aS

2~m̃R
2 !

~4p!2
ln2

m̃R
2

m0
2

1

2
~V1

21b0V1!

1••• ~5.26b!

and

fV
NLO5

aS~m̃R
2 !

4p
ln

m̃R
2

m0
2

V21••• ~5.26c!

denote the LO and NLO part, respectively. By substitut
Eq. ~5.26a! into Eq. ~3.11! one obtains

F~v,m̃R
2 !5fV

LO~v,s;m̃R
2 ,m0

2! ^ F~s,m0
2!

1
aS~m̃R

2 !

4p
fV

NLO~v,s;m̃R
2 ,m0

2! ^ F~s,m0
2!1•••

5FLO~v,m̃R
2 !1

aS~m̃R
2 !

4p
FNLO~v,m̃R

2 !1••• .

~5.27!

As it is seen from Eqs.~5.26b! and~5.26c!, the results of the
two-loop calculation correspond to the first terms of the L
and NLO contributions to thefV function.

The complete LO and NLO behavior offV(v,s;m̃R
2) and,

consequently, ofF(v,m̃R
2) can be determined by solving th

evolution equation~2.5!, or equivalently Eq.~3.12!.

m̃R
2 ]

]m̃R
2

fV~v,s,m̃R
2 ,m0

2!5V~v,s8,m̃R
2 ! ^ fV~s8,s,m̃R

2 ,m0
2!.

The LO result is of the form

fV
LO~v,s;m̃R

2 !5 ( 8
n50

`
v~12v !

Nn
Cn

3/2~2v21!

3Cn
3/2~2s21!S aS~m̃R

2 !

aS~m0
2!
D 2gn

(0)/b0

, ~5.28!

whereNn5(n11)(n12)/„4(2n13)…, andCn
3/2(2x21) are

the Gegenbauer polynomials representing the eigenfunct
of the LO kernelV1 with the corresponding eigenvalues

gn
(0)5CFF31

2

~n11!~n12!
24(

i 51

n11
1

i G . ~5.29!
05302
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One can show the agreement between the complete LO
diction given above and the expansion~5.26b!. The complete
formal solution of the NLO evolution equation was obtain
in @23# making use of conformal constraints, and the form
fV

NLO can be extracted from the results listed in@8#.

3. Analytical results up to nf-proportional NNLO terms
(obtained using the naive-g5 scheme)

After this lengthy general analysis we now turn to d
playing the results. Using the multiplicative renormalizab
ity condition ~5.21! and the notation~5.24b!, the renormal-
ization constantZf,ren(u,v;m̃R

2) from Eq.~5.20! is expressed
by

Zf,ren~u,v;m̃R
2 !

5d~u2v !1
aS~m̃R

2 !

4p

1

e
V1~u,v !1

aS
2~m̃R

2 !

~4p!2

1

e2

3F S 2
2

3
nf D S 2V1~u,v !

2
1e

V2
nf~u,v !

2
D 1•••G1••• .

~5.30!

Here we list only the relevant combinations ofai , bi coeffi-
cients:

V1~u,t !5a0~u,t !

52 CFH u

t F11
1

t2uGu~ t2u!1S u→12u

t→12t D J
1

,

~5.31a!

V2
nf~u,t !5b1

nf~u,t !22a1~u,t !

52 CFH u

t F11S 11
1

t2uD S 5

3
1 ln

u

t D Gu~ t2u!

1S u→12u

t→12t D J
1

. ~5.31b!

Our results confirm the well-known form of the one-loo
kernel V1 @2# and the two-loopnf-proportional kernelV2

nf

@19–21#. For later use we also specify the convolution of t
functions given in Eq.~5.31! with the frequently encountere
1/(12x) term:

1

12x
^ V1~x,u!5CF

1

12u
„312 ln~12u!… ~5.32a!

and

1

12x
^ V2

nf~x,u!

5CF

1

12u F1

2
1S 16

3
2

2

uD ln~12u!12Li2~u!G . ~5.32b!
0-19
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4. The results obtained using the HV scheme

The functionf̃ calculated in the naive-g5 scheme and the
function f̃HV obtained in the HV scheme are related by

f̃5ZHV,UV
21 f̃HVZHV,col

21 . ~5.33!

The factorsZHV,UV
21 and ZHV,col

21 remove the ‘‘spurious’’
anomalous terms introduced by the presence of dimens
ally regulated UV and collinear singularities, respectively

The renormalization of thef̃HV function proceeds analo
gously to the renormalization off̃ described in the precedin
subsection. While

a0
HV5a0 , b0

HV5b0 , ~5.34!

the coefficientsai , bi for i>1 get replaced by

ai
HV5ai1Dai

bi
HV5bi1Dbi , ~5.35!

and, according to Eq.~3.8!, the UV and collinear singulari-
ties are factorized

f̃HV5Zf,ren
HV fV

HVZf,col
HV . ~5.36!

By comparing Zf,ren
HV , Zf,col

HV , and fV
HV with the results

~5.20!–~5.23! obtained using the naive-g5 scheme, Eq.
~5.36! takes the form

f̃HV5~Zf,renZHV,UV
div !~ZHV,UV

f in fVZHV,col
f in !

3~ZHV,col
div Zf,col!, ~5.37!

where

Z HV
div[ZHV,UV

div

511
aS

2~m̃R
2 !

~4p!2

1

e S Db1

2
2b0Da12a0Da1D1••• ~5.38!

and

Z HV
f in[ZHV,UV

f in

511
aS~m̃R

2 !

4p
„Da11O~e!…1

aS
2~m̃R

2 !

~4p!2

3S Db1

2
2b0Da22a0Da22a1Da11O~e! D

1•••, ~5.39!

while ZHV,col
div, f in(m2)5(ZHV,UV

div, f in)21(m2). The condition of mul-
tiplicative renormalizability of the ‘‘spurious’’ anomalou
terms introduced by the HV scheme reads

Db12b0Da122a0Da150. ~5.40!
05302
n-

Finally, we list the results obtained by substitutingKHV
(1)

and Knf ,HV
(2) ~4.37!, ~4.38! in place ofK (1) and K (2) in Eqs.

~4.22!, ~4.33!. The combinations of theDai andDbi coeffi-
cients, which appear in Eqs.~5.38!–~5.42! after Eq.~5.40! is
taken into account, read

Da1~u,t !52 CFH 4
u

t
u~ t2u!

1S u→12u

t→12t D J , ~5.41a!

Db1
nf~u,t !22Da2~u,t !52 CFH u

t S 8

3
14 ln

u

t D u~ t2u!

1S u→12u

t→12t D . ~5.41b!

The complete renormalization constantZHV[ZHV,UV from
Eq. ~5.33! is then given by

ZHV~u,v;m̃R
2 !5Z HV

div~u,w;m̃R
2 ! ^ Z HV

f in ~w,v;m̃R
2 !.

~5.42!

By utilizing the condition of multiplicative renormalizability
of the ‘‘spurious’’ terms~5.40!, it takes the form

ZHV~u,v;m̃R
2 !5d~u2v !1

aS~m̃R
2 !

4p
„Da1~u,v !1O~e!…

1
aS

2~m̃R
2 !

~4p!2
F S 2

2

3
nf D S 1

e

2Da1~u,v !

2

1
Db1

nf~u,v !22Da2~u,v !

2
1O~e!D 1•••G

1••• . ~5.43!

It is interesting to note that by using the ‘‘reduction’’ formu
las, which relate the exclusive~‘‘nonforward’’ ! and inclusive
~‘‘forward’’ ! kernels@21#, the agreement between the reno
malization constantZHV given above and an analogou
‘‘HV’’ renormalization constant for the longitudinal spin
structure functiong1 @29# is established@up to O(e) terms#.

For later use we specify the convolution of functions d
fined in Eq.~5.41! with the 1/(12x) term:

1

12x
^ Da1~x,u!5CF

1

12u S 28
12u

u
ln~12u! D , ~5.44a!

and

1

12x
^ @Db1

nf~x,u!22Da2~x,u!#

5CF

1

12u S 2
16

3

12u

u
ln~12u!28

12u

u
Li2~u! D .

~5.44b!
0-20
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VI. THE EXPRESSION FOR THE PION TRANSITION
FORM FACTOR UP TO nf-PROPORTIONAL NNLO TERMS

We now combine the results for the hard-scattering a
plitude and the DA obtained in the preceding sections. A
resolving theg5 problem and discussing the dependence
the prediction on the factorization scalemF

2 , we finally
present the expression for the pion transition form factor
to nf-proportional NNLO terms.

A. Resolving theg5 ambiguity

In Sec. V B and V C, we have presented the results of
perturbative treatment of the hard-scattering amplitu
T(u,Q2) and the distribution amplitudeF(u), respectively.
Along the lines outlined in Sec. III, we now proceed to co
bine these results to obtain the finite andg5-scheme indepen
dent expression for the pion transition form fact
Fg* gp(Q2), up to thenf-proportional NNLO contributions.

The lack of the ambiguity in the DA results along with th
fact that the prediction for the pion transition form fact
should not depend on the choice of theg5-scheme make it
possible to resolve the ambiguity of theg5 treatment in the
hard-scattering calculation.

1. Naiveg5-scheme

The appearance of twog5 matrices imposes the use of th
naive-g5 scheme in the DA calculation and the correspon
ing results are presented in Eqs.~5.26!–~5.31!. The g5 ma-
trix present in the hard-scattering amplitude can also
treated in the naive-g5 scheme in which case a number
results emerge. After the Ward identities of QED are tak
into account, the remaining ambiguity in the hard-scatter
amplitude result~5.12!–~5.16! is parameterized by the pa
rameterd ~as explained in Appendix A and Sec. IV A!.

Matching Eqs.~5.15! and ~5.32! one observes that

1

12x
^ V1~x,u!5Acol

(1)~u! ~6.1a!

1

12x
^ V2

nf~x,u!5Acol
(2,nf )~u!ud51 . ~6.1b!

If these relations are taken into account in Eq.~5.16!, then a
comparison with Eq.~5.30!, for m̃R

25mF
2 @i.e., for the DA

F(u) renormalized at themF
2 scale#, gives

ZT,colud515Zf,ren
21 , ~6.2!

i.e., the relation~3.14! is satisfied and the singularities in E
~3.13! cancel for thed parameter taking the value 1. Henc
we obtain

ZT,col~x,u;mF
2 ![ZT,col~x,u;mF

2 !ud51 , ~6.3!

and, consequently,

TH~x,Q2,mF
2 ![TH~x,Q2,mF

2 !ud51 , ~6.4!
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where Eq. ~6.2!, together with Eq. ~5.30!, determines
ZT,col(x,u;mF

2)ud51, while takingd51 in Eqs.~5.12!–~5.15!
givesTH(x,Q2,mF

2)ud51. Hereby, we have confirmed theg5

prescription employed in@10# ~see Appendix A for further
details!.

In the preceding consideration, we have resolved theg5
ambiguity of the hard-scattering prediction by adopting t
naiveg5-scheme and by using the unambiguous DA resu
~along with the QED Ward identities! to single out the cor-
rect prediction.

2. HV scheme

Let us now present the calculation performed in the H
scheme. Continuing toD dimensions and adopting the HV
scheme leads to unique results, but the ‘‘spurious’’ anom
lous terms, which violate chiral symmetry, appear and ad
tional renormalization is required, both for the DA and t
hard-scattering amplitude.

The results for the hard-scattering amplitude obtained
the HV scheme correspond to thed50 choice in ~5.12!–
~5.16!, and the notationTHV, TH

HV , ZT,col
HV has been intro-

duced. The fact that the UV singularities appearing in
hard-scattering amplitude get completely renormalized
the coupling constant renormalization indicates that, contr
to the DA case, only the presence of collinear singularit
along with the nonanticommuting nature ofg5 matrix intro-
duces ‘‘spurious’’ anomalous terms.

The corresponding renormalization constant for the D
denoted byZHV5Z HV

div Z HV
f in and displayed in Eqs.~5.38!–

~5.43! has been determined by comparing the ‘‘correct’’ r
sults obtained in the naive-g5 with the corresponding result
obtained using the HV scheme. As a result, one finds that
unrenormalized DA in the HV scheme,FHV(u8), and the
unrenormalized DA in the naive-g5 scheme,F(u), are re-
lated by

F5Z HV
21FHV. ~6.5!

Similarly, the renormalization constantsZf,ren and Zf,ren
HV

determined in the naive-g5 and the HV schemes, respe
tively, are related by

Zf,ren5Z HV
div 21Zf,ren

HV , ~6.6!

while the additional finite ‘‘HV’’ renormalization of the
renormalized distributionFHV(v8,m̃R

2) calculated in the HV

scheme, is needed to obtain the renormalized DAF(v,m̃R
2)

free of ‘‘spurious’’ anomalies:

F5Z HV
f in 21FHV. ~6.7!

The prediction for the pion transition form factor cann
depend on the choice of the scheme and chiral symmetr
restored for the complete result, i.e.,

Fg* gp5T F†5T Z HV
21Z HVF†

5THVFHV †, ~6.8!
0-21
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or equivalently

Fg* gp5THF* 5TH~Z HV
f in !21Z HV

f inF*

5TH
HVFHV * . ~6.9!

On the basis of Eqs.~5.44! and~5.38!–~5.43!, along with
Eqs.~5.12!–~5.16!, it can easily be shown that

T5THVZHV , ~6.10!

while

TH5TH
HVZ HV

f in , ~6.11!

and

ZT,col5ZT,col
HV Z HV

div , ~6.12!

with TH and ZT,col being given by Eqs.~6.4! and ~6.3!, re-
spectively, andT5THZT,col .

Hence, we have resolved theg5 ambiguity appearing in
the hard-scattering amplitude calculation by consisten
treating, in either the naive-g5 or the HV scheme, both the
hard-scattering amplitude and the distribution amplitu
~which, actually, is free of theg5 ambiguity!.

B. Discussing the factorization scale dependence

After the g5 ambiguity is resolved, and the collinear si
gularities present in theT(u,Q2) andF(u) amplitudes can-
cel, we are left with the finite prediction for the pion trans
tion form factor

Fg* gp~Q2!5TH~x,Q2,mF
2 ! ^ F* ~x,mF

2 ! . ~6.13!

The hard-scattering amplitudeTH(x,Q2,mF
2), evaluated up to

nf-proportional NNLO terms, is given by Eqs.~5.12!–~5.15!
with d51.

The distribution amplitudeF* (x,mF
2) is determined by

evoluting F* (x,m0
2) ~obtained at the scalem0

2 using some
nonperturbative method! to the scalemF

2 according to Eq.
~3.11!

F~v,m̃R
2 !5fV~v,s;mF

2 ,m0
2! ^ F~s,m0

2!,

i.e., Eq.~5.27!

F~v,mF
2 !5fV

LO~v,s;mF
2 ,m0

2! ^ F~s,m0
2!

1
aS~mF

2 !

4p
fV

NLO~v,s;mF
2 ,m0

2! ^ F~s,m0
2!1••• .

In Sec. V C we have analyzed in detail the evolutional p
fV , and as noted there, the two-loop DA calculation exp
itly gives only the first few terms of the LO and NLO con
tributions, while the complete LO and NLO behavior of th
DA is determined by solving the evolution equation~2.5!, or
equivalently Eq.~3.12!
05302
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mF
2 ]

]mF
2

fV~v,s,mF
2 ,m0

2!5V~v,s8,mF
2 ! ^ fV~s8,s,mF

2 ,m0
2!.

The dependence ofTH(x,Q2,mF
2) on the factorization

scalemF
2 can be determined analogously to themF

2 depen-
dence of the DA. Thus, by differentiating Eq.~3.1! with re-
spect tomF

2 and taking into account Eqs.~3.5! and~3.14! one
finds thatTH(x,Q2,mF

2) satisfies the equation

mF
2 ]

]mF
2

TH~x,Q2,mF
2 !52TH~y,Q2,mF

2 ! ^ V~y,x;mF
2 !,

~6.14!

which, as it is seen, is analogous to the DA evolution eq
tion ~2.5!. Therefore, just as in the case of the DA, any fin
order solution of Eq.~6.14! contains the completemF

2 depen-
dence ofTH(x,Q2,mF

2) which is not the case with the expan
sion ~5.12! truncated at the same order@and not taking into
account Eq.~5.25!#.

The hard-scattering amplitudeTH(x,Q2,mF
2) can be writ-

ten in the factorized form

TH~x,Q2,mF
2 !5TH~y,Q2,mF

25Q2! ^ fV~y,x,Q2,mF
2 !,
~6.15!

with fV(y,x,Q2,mF
2) containing all itsmF

2 dependence. This
can easily be demonstrated if use is made ofTH and fV
determined up tonf-proportional NNLO terms@see Eqs.
~5.26!, ~5.32!, and ~C3b!#. On the other hand, using Eq
~3.12! one can show by partial integration that Eq.~6.15!
indeed represents the solution of the evolution equa
~6.14!.

When calculating to any finite order inaS , it is inappro-
priate to convolute theF(x,mF

2) distribution obtained by
solving the evolution equation~2.5! @i.e., given by Eqs.
~2.8!–~2.13!# with TH(x,Q2,mF

2) obtained by the truncation
of the expansion~5.12!. Namely, in the latter function, only
the partial dependence onmF

2 is included, in contrast to the
former. Notice that when the complete dependence ofTH on
mF

2 is taken into account even the LO term in Eq.~6.15! is
mF

2 dependent, in contrast toT(0) given in Eq.~2.4!, and this
leads to themF

2 independent LO prediction for the pion tran
sition form factor.

Substituting Eqs.~6.15! and ~3.11! into Eq. ~6.13! and
taking into account that

fV~y,x,Q2,mF
2 ! ^ fV~x,s,mF

2 ,m0
2!5fV~y,s,Q2,m0

2!,
~6.16!

one obtains

Fg* gp~Q2!5TH~y,Q2,Q2! ^ fV~y,s,Q2,m0
2! ^ F* ~s,m0

2!.
~6.17!

The relation~6.16! is valid at every order of perturbativ
calculation@to NLO this can easily be checked by substitu
ing ~5.28! and the NLO results of Ref.@23# into Eq. ~6.16!#.
It represents the resummation of the ln(Q2/m0

2) logarithms
0-22
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over the intermediatemF
2 scale, performed in such a wa

that, first, the logarithms ln(mF
2/m0

2) originating from the per-
turbative part of the DA are resummed, and then the sum
tion of ln(Q2/mF

2) logarithms from the hard-scattering part
performed. Therefore, the summations of themF

2 logarithms
can be accomplished with any choice ofmF

2 , because the
effect in the final prediction, at every order, is the same a
the complete renormalization-group resummation
ln(Q2/m0

2) logarithms has been performed.
Consequently, theFg* gp prediction~2.2! ~as well as the

prediction for any other exclusive quantity obtained in t
standard hard-scattering picture! is independent of the factor
ization scalemF

2 at every order inaS , provided bothTH and
F are consistently treated regarding themF

2 dependence. The
intermediate scale at which the short- and long-distance
namics separate, the factorization scalemF

2 , disappears from
the final prediction at every order inaS and therefore does
not introduce any theoretical uncertainty into the PQCD c
culation for exclusive processes.

We would like to point out here that by adopting the co
mon choicemF

25Q2, one avoids the need for the resumm
tion of the ln(Q2/mF

2) logarithms in the hard-scattering par
making the calculation simpler and hence, for practical p
poses, the preferable form ofFg* gp(Q2) is given by

Fg* gp~Q2!5TH~x,Q2,Q2! ^ F* ~x,Q2!. ~6.18!

C. Presenting the final results

Finally, we summarize. Taking into account Eqs.~5.12!–
~5.15! and the results of the preceding subsections, the h
scattering amplitudeTH(x,Q2,mF

25Q2), free of all effects of
collinear singularities ~the terms containing function
Acol

(n) lnnmF
2/Q2 factorized infV), takes the form

TH~x,Q2,mF
25Q2!

5TH
(0)~x,Q2!1

aS~mR
2 !

4p
TH

(1)~x,Q2,mF
25Q2!1

aS
2~mR

2 !

~4p!2

3F S 2
2

3
nf DTH

(2,nf )~x,Q2,mF
25Q2,mR

2 !1•••G1•••,

~6.19!

where

TH
(0)~x,Q2!5

NT

Q2
A(0)~x!1~x→12x!, ~6.20a!

TH
(1)~x,Q2,mF

25Q2!5
NT

Q2
A(1)~x!1~x→12x!, ~6.20b!
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TH
(2,nf )~x,Q2,mF

25Q2,mR
2 !5

NT

Q2 S A(2,nf )~x!1A(1)~x!ln
mR

2

Q2D
1~x→12x!, ~6.20c!

and

A(0)~x!5
1

12x
, ~6.21a!

A(1)~x!5CF

1

12x F292
12x

x
ln~12x!1 ln2~12x!G ,

~6.21b!

A(2,nf )~x!5CF

1

12x F2
457

24
2S 47

18
2

1

2xD ln~12x!

1S 13

6
2

1

2xD ln2~12x!2
1

3
ln3~12x!

2
14

3
Li2~x!1Li3~x!22S1,2~x!G . ~6.21c!

To obtain the distribution amplitudeF(x,Q2) one evo-
lutes F(x,m0

2), determined using some nonperturbati
methods at the scalem0

2, to the scaleQ2 according to Eqs.
~2.8!–~2.13!.

By substituting Eqs.~6.19!, ~2.8!, and ~2.10! into Eq.
~6.18! and taking Eq.~C3b! into account the pion transition
form factor Fg* gp expressed as a perturbative series
aS(mR

2) reads

Fg* gp~Q2!5Fg* gp
(0)

~Q2!1
aS~mR

2 !

4p
Fg* gp

(1)
~Q2!1

aS
2~mR

2 !

~4p!2

3F S 2
2

3
nf DF

g* gp

(2,nf ) ~Q2,mR
2 !1•••G1•••,

~6.22!

where

Fg* gp
(0)

~Q2!5TH
(0)~x,Q2! ^ FLO~x,Q2!, ~6.23a!

Fg* gp
(1)

~Q2!5TH
(1)~x,Q2,Q2! ^ FLO~x,Q2!

1TH
(0)~x,Q2! ^ FNLO~x,Q2!, ~6.23b!

F
g* gp

(2,nf ) ~Q2,mR
2 !5TH

(2,nf )~x,Q2,Q2,mR
2 ! ^ FLO~x,Q2!

1TH
(0)~x,Q2! ^ FNLO~x,Q2!ln

mR
2

Q2
.

~6.23c!

As it is seen, we are left with one expansion parame
aS(mR

2). The scalemR
2 actually represents the renormaliz
0-23
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tion scale of the complete perturbatively calculable part
the pion transition form factor~6.17!, i.e., of

TH~y,Q2,m0
2!5TH~y,Q2,Q2! ^ fV~y,s,Q2,m0

2!.
~6.24!

Although the physical pion transition form factorFg* gp(Q2)
does not depend on the choice of the renormalization s
mR

2 , when calculating to any finite order a residual depe
dence on themR

2 scale remains.

VII. NUMERICAL PREDICTIONS

A. Fixing the renormalization scale according
to the BLM procedure

The dependence of finite order predictions on the ren
malization scale introduces a theoretical uncertainty in th
interpretation~see @8# for a detailed discussion!, which is
especially evident in calculations to lowest order in ord
aS . It would be advantageous to optimize the scale cho
according to some sensible criteria. The BLM proced
@13–15# offers such criteria. The essence of the BLM proc
dure is that all vacuum-polarization effects~gluon vacuum
polarization contributions, analogous to QED, as well
quark vacuum polarization and vertex corrections! from the
QCD b function are incorporated into the running couplin
05302
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constant rather than into the coefficients of the perturba
expansion. In practice, this amounts to computing quark-lo
insertions in the diagrams of that order~since b0511
22/3nf , . . . ) andsetting the scale by demanding that t
coefficients of the perturbative expansion arenf independent.

Hence, according to the BLM scale setting prescriptio
the renormalization scale for the pion transition form fac
entering at the NLO is determined from the NNL
nf-proportional terms, and is fixed by the requirement

F
g* gp

(2,nf ) ~Q2,mR
2 !50. ~7.1!

Note that in the present calculation the effective nature ofmR
2

has been implicitly assumed, i.e.,mR
2 has been treated a

independent of the momentum fractionsx throughout the pa-
per; otherwise the factorization of singularities would take
cumbersome form~if manageable at all!. Apart from that we
would be faced with the problem of a clear separation of
short- and long-distance effects@30#.

Therefore, the only consistent way to assess the B
scale is to solve Eq.~7.1!, resulting in some mean valu
BLM scale

mR
25mBLM

2 5aBLM~Q2!Q2, ~7.2a!

where
Eq.
aBLM~Q2!5expS 2
A(2,nf )~x! ^ FLO~x,Q2!

A(1)~x! ^ FLO~x,Q2!1A(0)~x! ^ FNLO~x,Q2!
D . ~7.2b!

As it is seen, the scalemBLM
2 depends on the specific form of the distribution amplitude.

In Sec. II the nonperturbative input, i.e., the distribution amplitudef(x,m0
2)5F(x,m0)/Nf determined at the scalem0

2, has
been presented in the form of an expansion over Gegenbauer polynomials~2.10!. The evolution to the scalemF

2 has been
described by Eqs.~2.11!, ~2.13!. Retaining only the first three terms in the general expansion of the pion DA given in
~2.10!,

f~x,m0
2!56x~12x!@11B2C2

3/2~2x21!1B4C4
3/2~2x21!#,

~7.3!

the LO and NLO contributions toQ2Fg* gp(Q2) take the form

Q2Fg* gp
(0)

~Q2!52Cp f p$3@11B2
LO~Q2!1B4

LO~Q2!#% ~7.4!

Q2Fg* gp
(1)

~Q2!52Cp f pF S 2201
295

18
B2

LO~Q2!1
10487

225
B4

LO~Q2! D13(
k52

`

8Bk
NLO~Q2!G , ~7.5!

while thenf proportional NNLO contribution amounts to

Q2F
g* gp

(2,nf ) ~Q2!52Cp f pF „243.47178.47B2
LO~Q2!1197.165B4

LO~Q2!…

1S 2201
295

18
B2

LO~Q2!1
10487

225
B4

LO~Q2! D ln
mR

2

Q2
1S 3(

k52

`

8Bk
NLO~Q2!D ln

mR
2

Q2G . ~7.6!
0-24
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Therefore, on the basis of Eqs.~7.1! and~7.6! one finds that the BLM scale for the pion transition form factor is given
Eq. ~7.2a! with

aBLM~Q2!5expS 2
243.47178.47 B2

LO~Q2!1197.165 B4
LO~Q2!

2201
295

18
B2

LO~Q2!1
10487

225
B4

LO~Q2!13(
k52

`

8Bk
NLO~Q2!D . ~7.7!
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Expressions~6.22! and~7.4!–~7.6!, representing the com
plete NLO prediction for the pion transition form factor, to
gether with the expressions~7.2a! and ~7.7!, specifying the
corresponding BLM scale, are valid for an arbitrary distrib
tion amplitude~with the evolutional effects included! and
represent the main results of this paper.

B. Numerical predictions in the MS and aV schemes

Based on the general expressions derived in a prece
subsection, we now proceed to obtain numerical predicti
for the pion transition form factor using two specific dist
bution amplitudes: the asymptotic DA and the CZ distrib
tion amplitude.

There is increasing theoretical evidence coming from d
ferent calculations@31–34# that the low energy pion distri
bution amplitude does not differ much from its asympto
form fas(x)56x(12x) @which represents the solution o
the evolution equation~2.5! for mF

2→`#. The distribution
f(x,m0

2)5fas(x) is characterized by the fact that at the L
it has no evolution, while the NLO evolutional effects a
tiny @8#, and for the purpose of this calculation these effe
can safely be neglected.

The expression for the pion transition form fact
Q2Fg* gp(Q2), based on Eqs.~6.22! and ~7.4!–~7.6!, and
corresponding to the asymptotic distribution then reads

Q2Fg* gp~Q2!52Cp f pH 31
aS~mR

2 !

4p
~220!1

aS
2~mR

2 !

~4p!2

3F S 2
2

3
nf D S 243.47220ln

mR
2

Q2D 1•••G
1•••J . ~7.8!

The nf-proportional NNLO contribution determines th
value of the BLM scale

mR
25~mBLM

2 !as'0.114 Q2'
Q2

9
. ~7.9!

One notes that this scale is considerably softer than the
momentum transferQ2, which is consistent with partitioning
of Q2 among the pion constituents. It should be pointed o
however, that in theMS scheme the BLM scale does n
reflect the mean gluon momenta. Based on Eq.~7.8!, the
NLO prediction amounts to
05302
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Q2Fg* gp~Q2!50.1851
aS~mR

2 !

p
~20.309!1•••.

~7.10!

This prediction obtained with the asymptotic distributio
and theMS definition of the strong coupling renormalized
the BLM scale given by Eq.~7.9! is displayed in Fig. 9,
along with the CLEO experimental data. For comparis
also included in Fig. 9 is the NLO prediction obtained b
employing the widely used choicemR

25Q2. The usual one-
loop formula for the QCD running coupling constant~C5!
has been used withL5LMS50.2 GeV2.

As it is seen from Fig. 9, the NLO results for the pio
transition form factor display the following features. Firs
inclusion of the NLO contributions decreases the LO pred
tion. Second, predictions based on the asymptotic distr
tion are in reasonably good agreement with currently av
able experimental data.

In comparison with the choicemR
25Q2, the BLM scale

choice increases the absolute value of the ratio of the NLO
LO prediction by'1126% for the values ofQ2 between 6
and 20 GeV2. As an extension of the BLM scale-fixing pre
scription to all orders in perturbation theory, in@35# all the
(b0as)

n contributions to the pion transition form factor we
resummed under the assumption of ‘‘naive no
Abelianization’’ ~NNA!. Our results cannot be directly com
pared with@35#, but there are indications that the usual BL

FIG. 9. The LO and NLO predictions for the pion transitio
form factor ~scaled withQ2) Q2Fg* gp(Q2), obtained using the
asymptotic DA. The NLO predictions are obtained using the BL
scalemR

25mBLM
2 'Q2/9 ~7.9! and the commonly used choicemR

2

5Q2. The experimental data are taken from@38#.
0-25
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scale-setting overestimates the size of higher-order contr
tions associated with the one-loop running coupling@36#.

The complete NLO prediction for the pion transition for
factor corresponding to the end-point concentratedCZ dis-
tribution amplitude@37#, given by Eqs.~7.4!–~7.6! with the
coefficientsB252/3 andB450, is shown in Fig. 10. Owing
to the fact that the LO and NLO evolutional corrections
the CZ distribution are considerable@8#, they have been
taken into account. The BLM scale for the CZ distribution
higher than the BLM scale for the asymptotic DA, and
varies from Q2/1.84 to Q2/2.37 for Q2 between 2 and
20 GeV2.

As it is evident from Fig. 10, the complete NLO predi
tion for the pion transition form factor derived from the C
distribution exceeds the experimental data significantly. T
result can be considered as a serious failure of the CZ di
bution amplitude. Comparing Figs. 9 and 10, one obser
that the difference between our results for the asymptotic
CZ distribution amplitudes is sufficiently large for an unam
biguous experimental discrimination between the two po
bilities. Therefore, one expects that the pion distribution a
plitude is closer to the asymptotic form than to the stron
end-point concentrated DA’s like CZ@33#.

The size of higher-order QCD corrections represents
missing ingredient in assessing the validity of the pertur
tive prediction and the convergence of the expansion. O
hopes that the BLM prescription offers a systematic way
choose the renormalization scale and minimize higher-o
contributions. In order to check this for the case of the p
transition form factor, one would have to evaluate the co
plete NNLO contribution, which is a very demanding tas
Another sensible indicator of the applicability of the pertu
bative calculation is the size of the expansion param
aS(mR

2). The rather low BLM scale given in Eq.~7.9!, and
consequently the largeaS(mBLM

2 ), questions the applicability
of the perturbative prediction at experimentally access
momentum transfers. Namely, the NLO predictions obtain
in this paper assuming the asymptotic DA and the BLM sc

FIG. 10. The LO and NLO predictions for the pion transitio
form factor~scaled withQ2) Q2Fg* gp(Q2), obtained using the CZ
distribution amplitude. The NLO predictions are obtained using
BLM scale determined from Eq.~7.7!, and the commonly used
choicemR

25Q2. The experimental data are taken from@38#.
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~7.9! satisfy the requirementaS(mR
2),0.5 for Q2>6 GeV2.

It should be pointed out, however, that there is an intrin
disadvantage in using theMS running coupling@given by
Eq. ~C5!# as an expansion parameter, since it has a sim
pole at mR

25L2. This does not reflect the nonperturbativ
behavior ofaS(mR

2) for smallmR
2 , and a number of proposal

have been suggested for the form of the coupling constan
this regime@39,40#, but its implementation demands cautio
@8#. For a recent application of@40# to the calculation of the
pion transition form factor, see@41#.

So far nothing has been said concerning the renormal
tion scheme dependence of the predictions. It is known
the renormalization scheme dependence can be avoide
considering relations between physical observables, wh
must be independent of the choice of the scheme and sca
any fixed order of perturbation theory. This requirement c
be expressed in the form of ‘‘commensurate scale relatio
~CSR!, in which the BLM scale-setting method is used to fi
the renormalization scale@14#. In practice, a CSR for two
observables is obtained by relating their respective pertu
tive predictions calculated in, for example, theMS scheme,
and then by algebraically eliminatingaMS. The choice of the
BLM scale ensures that the resulting CSR is independen
the choice of the intermediate renormalization scheme. F
lowing this approach, in@15# the exclusive hadronic ampli
tudes were calculated in theaV scheme, in which the effec
tive coupling aV(m2) is defined from the heavy-quar
potential V(m2). The aV scheme is a natural, physicall
based scheme, which by definition automatically incorp
rates vacuum polarization effects into the coupling. ThemV

2

scale which then appears in theaV coupling reflects the
mean virtuality of the exchanged gluons.

If use is made of the scale-fixed relation between the c
plings aMS andaV @15#

aMS~e25/3mV
2 !5aV~mV

2 !S 11
aV~mV

2 !

4p

8CA

3
1••• D ,

~7.11!

then, to the order we are calculating, the prediction for
pion transition form factor takes the form

Fg* gp~Q2!5Fg* gp
(0)

~Q2!1
aV~mV

2 !

4p
Fg* gp

(1)
~Q2!1•••,

~7.12!

with the ‘‘V’’ scale being given by

mV
25e5/3mBLM

2 . ~7.13!

Now, on the basis of Eqs.~7.9! and~7.13! one finds that the
V scale, corresponding to the asymptotic distribution a
reflecting the mean~NLO! gluon momentum, is

~mV
2 !as'0.6025Q2'

Q2

1.7
. ~7.14!

e

0-26
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Just for comparison, it is worth mentioning here that t
correspondingmV

2 scale for the pion electromagnetic for
factor amounts toQ2/20 @15,8#.

Furthermore, sinceaV is an effective running coupling
defined from the physical observable it must be finite at l
momenta, and the appropriate parameterization of the l
energy region should in principle be included. Neverthele
in the energy region we are interested in, the usual one-l
conventional solution of the renormalization group equat
for the QCD coupling~C5! can be employed. The numeric
NLO prediction for the pion transition form factor obtaine
from Eqs. ~7.12!–~7.14! and calculated with LV
50.16 GeV2 is depicted in Fig. 11. As can be seen, it is
good agreement with experimental data. The LO QCD c
rection, i.e., the NLO contribution, lowers the LO predictio
for '16% for Q2'6 GeV2, i.e., for aV(mV

2)'0.3.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have determined the NLO Brodsk
Lepage-Mackenzie~BLM ! scale and obtained the comple
NLO prediction for the pion transition form factor.

To determine the NLO BLM scale, a consistent and d
tailed calculation of both the hard-scattering and the per
batively calculable part of the pion distribution amplitud
has been performed up tonf-proportional NNLO contribu-
tions. The calculation has been carried out in the Feynm
gauge. To control both the UV and collinear divergences
dimensional regularization method has been employed.
combining, according to Eq.~3.13!, and matching the result
for the hard-scattering amplitude with the corresponding
sults obtained for the distribution amplitude, a proper canc
lation of collinear singularities has been established and
g5 ambiguity problem~related to the use of dimension
regularization! has been resolved using the naive-g5 as well
as the ’t Hooft-Veltman~HV! schemes. As a result, the com
plete leading-twist NLO prediction for the pion transitio
form factor has been obtained as given by Eqs.~6.22! and
~7.4!–~7.6!, and Eqs.~7.2a! and ~7.7!, specifying the corre-

FIG. 11. The LO and NLO predictions for the pion transitio
form factor ~scaled withQ2) Q2Fg* gp(Q2), obtained correspond
ing to the asymptotic DA in theaV scheme withmV

2'Q2/1.7
~7.14!. The experimental data are taken from@38#.
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sponding BLM scale. Derived in theMS scheme@for which
the suitable compact form~5.3! has been adopted#, these ex-
pressions are valid for an arbitrary form of the distributi
amplitude~with the evolutional effects taken into accoun!,
and represent the main result of the present paper.

It has been demonstrated that the prediction for
leading-twist perturbative QCD prediction for the pion tra
sition form factor is independent of the factorization sca
mF

2 at every order in the strong coupling constantaS pro-
vided both the hard-scattering amplitude and the pion dis
bution amplitude are treated consistently regarding theirmF

2

dependence. The factorization scale disappears from the
prediction at every order inaS without introducing any the-
oretical uncertainty. Consequently, for practical purposes
simplest and commonly used choicemF

25Q2 is justified at
the intermediate steps of the calculation.

Based on the general expressions~6.22! and ~7.4!–~7.6!,
the NLO predictions for the pion transition form factor ha
been obtained using the asymptotic and the CZ distribu
amplitudes, with the renormalization scales being given
the respective BLM scales determined from Eqs.~7.2a! and
~7.7!. These predictions are shown in Figs. 9 and 10, resp
tively. By comparing these figures, one observes that, wh
on one hand, the prediction derived from the asymptotic d
tribution is in good agreement with the presently availa
experimental data, on the other hand, the prediction obta
assuming the CZ distribution exceeds the data significan
clearly demonstrating the inadequacy of the CZ distributi
This is in accordance with the conclusions reached in@31–
34#, according to which the distribution amplitude is clos
to the asymptotic form than to the end-point concentra
distribution of the CZ type. The renormalization scalemR

2

fixed according to the BLM scale setting prescription with
the MS scheme and corresponding to the asymptotic p
distribution amplitude, turns out to bemR,BLM

2 'Q2/9. Thus,
in the region ofQ2,8 GeV2, in which the experimental data
exist,mBLM

2 ,1 GeV2. Consequently, the prediction obtaine
with mR

25mBLM
2 cannot, in this region, be considered re

able.
In addition to the results calculated with the asympto

distribution andMS renormalization scheme, the numeric
prediction assuming the same distribution but in theaV

scheme, with the renormalization scalemR
25mV

25e5/3mBLM
2

'Q2/2, has also been obtained. It is displayed in Fig.
and as seen, is in good agreement with experimental d
Due to the fact that the scalemV

2 reflects the mean gluon
momentum in the NLO diagrams, it is to be expected that
higher-order QCD corrections are minimized, so that
leading order QCD term gives a good approximation to
complete sum.
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APPENDIX A: g5 PROBLEM

1. General remarks

When using dimensional regularization, one runs in
trouble with quantities that have the well-defined propert
only in D54 space-time dimensions, that is, with the Le
Civita tensoremnlk , which is a genuine 4 dimensional ob
ject, and consequently with the pseudoscalarg5 Dirac ma-
trix. The generalization of theg5 matrix in D dimensions
represents a problem, since it is not possible to simu
neously retain its anticommuting and trace properties.
practice, the ambiguity arises when evaluating a trace c
taining ag5 and pairs of contractedg matrices and/or pairs
of Dirac slashed loop momenta.5

To deal with ag5 matrix, several possible schemes ha
been proposed in the literature. Following the previous c
culation of the pion transition form factor@10#, we have
compared two of them in the present calculation.

In the so-called naive-g5 scheme@16#, the anticommuta-
tion property ofg5

$gm ,g5%50 ~A1!

is retained, while the cyclicity of the trace is abandoned,
that, for example,

Tr@g5a”gmb”c”d”gm#5~D26!Tr@g5a”b”c”d” #, ~A2a!

Tr@gmg5a”gmb”c”d” #5~22D !Tr@g5a”b”c”d” #.
~A2b!

The traces obtained by cyclic permutation of the matri
g 5 , a” , gm , b” , c” , d” , gm can be divided into two classes
depending on the location ofg5 with respect to the con
tractedg matrices: those in whichg5 is outside the con-
tracted pair as in Eq.~A2a!, and those whereg ’s are con-
tracted throughg5 as in Eq.~A2b!. As is seen, the resul
~A2a! and the result~A2b!, in which the anticommuting
property~A1! of g5 had to be used before the contraction
g matrices can be performed, differ byD24. Consequently,
if the trace is multiplied by a pole inD24, there appears a
finite ambiguity in the result.

An alternative scheme has been proposed in the orig
paper on the dimensional regularization by ’t Hooft and Ve

5The presence of a pair of Dirac slashed loop momenta lead
fact to the appearance of a pair of contractedg matrices, since the
loop integration

E dDl

~2p!D

l kl t

~Denominator!
5gktI g1•••

transformsl kl tgk•••gt into gk•••gkI g1•••. Apart from the con-
tracting g matrices and pairs of Dirac slashed loop momenta,
rest of the trace elements could be treated as 4 dimensional, so
~anti!commutation withg5 does not make a difference.
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man @17#, and further systematized by Breitenlohner a
Maison @18#. In this scheme, which we refer to as the H
scheme, the anticommutativity ofg5 is abandoned and re
placed by

$gm ,g5%50 for m50, . . . ,4

@gm ,g5#50 for m54, . . . ,D. ~A3!

For calculational purposes, it proves useful to introduce
following notation@18#:

gmn5 ĝ̂mn1ĝmn , ~A4a!

gm5 ĝ̂m1ĝm , ~A4b!

l m5 l̂̂ m1 l̂ m , ~A4c!

where

ĝ̂m
m54, ĝm

m5D24, ~A5!

and

gmkĝn
k5ĝmn , ĝmngn~ l n!5ĝm~ l̂ m!. ~A6!

The relation~A3! can then be written as

gmg552g5ĝ̂m1g5ĝm . ~A7!

This prescription forg5 violates the Ward identities and in
troduces ‘‘spurious’’ anomalies which violate chiral symm
try. To restore the Ward identities, finite counterterms sho
be added order by order in perturbation theory@42#. In this
scheme, the cyclicity of the trace is retained and the tra
given in Eq.~A2! become

Tr@g5a”gmb”c”d”gm#5Tr@gmg5a”gmb”c”d” #

5~D26!Tr@g5a”b”c”d” #. ~A8!

As is seen, the result~A8!, obtained in the HV scheme, cor
responds to the result~A2a!, obtained using the naive-g5
scheme.6

If a trace contains an even number ofg5 matrices, then
the propertyg5

251 can be used to eliminateg5’s from the
trace, and the Ward identities are preserved if the naiveg5
scheme~A1! is used@16# ~the cyclicity of the trace is re-
stored and the corresponding results are unambiguous!. Onin

e
eir

6As stated in@17#, should we allow to anticommuteg5 before
continuation toD dimensions and after that use the HV schem
defined by Eq.~A3!, different results would emerge and ambigui
would reappear. We would again obtain two classes of results:
result~A8! for g5 outside the contracting pair ofg matrices, and the
result ~A2b! for anticommuting the matrixg5 in between the con-
tractingg ’s. In this sense, the HV scheme would also lead to a
biguous results.
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the other hand, in the HV scheme the ‘‘spurious’’ anomal
can occur owing to the non-anticommuting property ofg5.7

As for the traces containing an odd number ofg5 matri-
ces, we are left with the above mentioned ambiguities in
results.

2. The g5 ambiguity in the g* g\qq̄ amplitude

There are two approaches one can take in order to res
the g5 ambiguity problem in practical calculations~such as
the calculation of the hard-scattering amplitude of the p
transition form factor!. For each diagram, one can determi
the way of manipulating theg5 matrices so that the War
identities are preserved@9,10#. Alternatively, one can per
form the calculation using the HV scheme, and then int
duce an additional renormalization constant which elimina
the ‘‘spurious’’ anomalies introduced by this prescription.
@10#, the counterterm at the NLO order was calculated for
special case of the hard-scattering amplitude already co
luted with the asymptotic distribution amplitude.

We have calculated the LO, NLO, andnf-proportional
NNLO terms to the hard-scattering amplitude using both
naive and the HV prescription forg5. By combining these
results with the results for the distribution amplitude o
tained in the same order, ambiguity in the naive-g5 scheme
has been resolved and the HV renormalization constant
termined.

Although our end NLO result for the hard-scattering a
plitude agrees with the result given in@10# @determined up to
O(e0)#, the same is not true for the contributions of t
individual one-loop diagrams of Fig. 4 when calculated us
the naive prescription forg5.

Namely, owing to the fact that the relative position ofg5
with respect to the Dirac slashed loop momenta was igno
classes of terms appearing in the contribution of individ
diagrams were omitted in@10#.

For example, the trace corresponding to the diagramA23
of Fig. 4 leads to three different results depending on
position ofg5:

Tr@g5P” gm~xP” 2q” !gl~xP” 2q”2 ł !gn
„2~12x!P” 2 ł …gl#

~A9a!

ÞTr@glg5P” gm~xP” 2q” !gl~xP” 2q”2 ł !gn
„2~12x!P” 2 ł …#

~A9b!

ÞTr@„2~12x!P” 2 ł …glg5P” gm~xP” 2q” !gl~xP” 2q”2 ł !gn#.

~A9c!

In Ref. @10#, however, only the results for traces~A9a!
and ~A9b! were given. To conveniently describe theg5 am-
biguity present in the contributions ofA23 and other dia-
grams, we have introduced the parametersd and d8. Thus,
d50 corresponds to the situation whereg5 lies outside the

7Again, should we allow to anticommuteg5 before continuing to
D dimensions and then to use the HV scheme, different classe
results could be obtained, depending on the position ofg5’s. Hence,
in this scheme, the ambiguity would still be present.
05302
s

e

lve

n

-
s

e
o-

e

-

e-

-

g

d,
l

e

contractingg’s and pairs ofł ’s, as in Eq.~A9a!. Correspond-
ing to the case wheng’s are contracted through theg5 matrix
is d51. Forg5 not being placed between the pairs ofł ’s, as
in Eq. ~A9b!, d850, while for g5 placed between the pair
ł ’s, as in Eq.~A9c!, d851. The contributions obtained usin
the HV scheme correspond tod50. The contributions de-
fined in Eq.~4.6a! of the individual NLO diagrams of Fig. 4
can then be parametrized by

T̃A11(22)5F2
1

2
~@hUV12d#21!2

1

2
~@h IR22d#11!G

1O~e! ~A10!

T̃A335@2@hUV12d#1 ln~12u!21#1O~e! ~A11!

T̃A235@@hUV12d~11d8!#12h IR1 ln~12u!24#

1O~e! ~A12!

T̃A135F @hUV12d~11d8!#12h IRS 11
1

u
ln~12u! D

1
1

u
ln2~12u!2

32u

u
ln~12u!24G1O~e!

~A13!

T̃A125F22
12u

u
ln~12u!@h IR12d~11d8!#

2
12u

u
ln2~12u!110

12u

u
ln~12u!G1O~e!,

~A14!

where to facilitate the comparison with the results of R
@10#, we have introducedhUV51/ê1 ln m2/Q2, h IR521/ê
2 lnm2/Q2, and 1/ê51/e2g1 ln(4p). In @10# the results cor-
responding tod851 in Eqs.~A12! and ~A14!, as well as to
d850 in Eq. ~A14!, were omitted.

It was argued in@10# that since the quark propagator an
the photon vertex corrections were related by the Ward id
tity of QED, they should be calculated as if they were n
part of the trace withg5. This then determines the choic
d50 in diagramsA11, A22, A33, A23, andA13. The re-
maining ambiguity associated with the IR~collinear! pole in
diagramA12 was resolved by repeating the calculation in t
‘‘equal-mass regularization,’’ in which the quark and th
gluon were given the same small massm. It was found that
the correct choice for diagramA12 corresponded to the resu
obtained by contracting theg’s throughg5, and forg5 placed
between theł ’s ~although the latter requirement was n
stressed in@10#!, that is, ford51 andd851.

We have confirmed these choices by our calculation.
presenting our results in Sec. IV, we have already adop
the d50 choice ~or, equivalently, the HV results! for dia-
gramsA11, A22, A33, A23, andA13, as well as for the
diagrams obtained from these by inserting the quark vacu

of
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polarization loop. The ambiguity present in diagramA12 and
the corresponding vacuum polarization diagram, is para
eterized only byd, with d ‘ taken as 1.

A remark concerning the presentation of theg* g→q̄q
amplitude in the form given by Eq.~2.1! is in order.

The multiplication of the amplitude by the facto
1/(ie2)N emna8b8P

a8qb8 and the contraction of the Levi
Civita tensors before the loop integrals are evaluated sim
fies the calculation~since then at most three-point Feynm
integrals appear!. Since the generalization of the Levi-Civit
tensors toD dimensions is not unique, caution should
exercised when contracting these tensors. When using
HV scheme, the relation@18#

em1m2m3m4en1n2n3n4
52 (

pPS4

sgnp)
i 51

4

ĝ̂np( i )

m i ~A15!

should be employed, in which caseN52/Q4. Note that the

loop integrals withl̂̂ terms in the numerator of the integran
will be encountered. Only the one-loop integrals contain

l̂̂ 2 terms are different from the corresponding counterpa

with l in place of l̂̂ , while the presence of thel̂̂ m1
••• l̂̂ mn

terms does not alter the usual results. When using the na

g5 scheme, theĝ̂np( i )

m i from Eq. ~A15! can be replaced by

gnp( i )

m i , and then N52/@(D22)(D23)#2/Q4. We have

checked our results by evaluating the contributions with a
without the Levi-Civita contraction. The results agree.

APPENDIX B: FEYNMAN RULES
FOR THE PERTURBATIVELY CALCULABLE PART

OF THE DA

In this section we list the Feynman rules for thef̃(u,t)
operator~3.6! rederived following@20#.
-
bl
ns
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In Sec. II the distribution amplitudef̃(u,t) for a state
composed of a free quark and antiquark has been introdu
~3.6!:

f̃~u,t !5E dz2

2p
ei [u2(12u)]z2/2

3^0uC̄~2z!
g1g5

2A2
VC~z!uqq̄;t&

1

ANc

with z15z'50. The quark and antiquark carry the momen
tP and (12t)P, respectively, and the frame in whichP1

5P01P351, P25P02P350, P'50 has been chosen
The path-ordered factorV ~3.3!,

V5expH igE
21

1

dsA1~zs!z2/2J ,

makesf̃(u,t) gauge invariant, and it can be expanded
perturbation theory as

V5 (
n50

`
~ ig !n

n! E
21

1

)
k

n

dskA
1~skz!z2/2. ~B1!

The path-ordering is immaterial sinceA1 fields commute. In
the light-cone gauge (A150), this operator is unity, but gen
erally ~for example, in the Feynman gauge we are usin!
introduces extra diagrams. Then-th order term in the~B1!
series will correspond to diagrams withn gluon lines at-
tached to the operator vertex. By inserting the term

u~12sk!u~11sk!5 i E dr

2p
eirsk

1

r
~e2 ir 2eir ! ~B2!

the limits of the integration in Eq.~B1! are changed, and th
function f̃(u,t) takes the form
f̃~u,t !5E dz2

2p
ei „u2(12u)…z2/2(

n50

`
~ ig !n

n!
i E dr

2p

1

r
~e2 ir 2eir !E

2`

`

ds1•••dsneır (s11•••1sn)

3^0uC̄~2z!
g1g5

2A2
A1~s1z!•••A1~snz!C~z!uqq̄&S z2

2 D n 1

ANc

. ~B3!
g
t-
The fields in Eq.~B3!, along with the standard quark
gluon interaction insertions, are contracted in all possi
ways, yielding different Feynman diagrams contributio
Here we list the Feynman rules derived from Eq.~B3!.

The operator

^0uC̄~2z!
g1g5

2A2
C~z!

from Eq. ~B3! will be represented by the crossed circle^ in
e
.

Feynman diagrams. Thê vertex has a quark line enterin
and leaving thê vertex, and an arbitrary number of a
tached gluon lines (A1 field can be contracted only withA2,
so the gluon line does not re-enter the vertex!.

The general form of thê vertex withn gluons attached
to it is given by

g1g5

2A2
E dz2

2p
eiSz2/2)

j 51

n

~ ig !
i

qj
1

~12eiz2qj
1

!, ~B4a!
0-30
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where

S5u2~12u!2k1
12k2

12(
j 51

n

qj
1 , ~B4b!

and q1 ,•••,qn are 4-momenta of the gluons entering t
circle, while k1 and k2 are the 4-momenta of the quark
entering and leaving the circle, respectively. The form giv
in @20# is slightly different and incomplete regarding th
gluon 4-momenta sign convention. In the special case w
there are no gluons attached to the^ vertex, and the notation
k15k and k25k2P is used, the expression~B4! takes the
form

g1g5

2A2
d~u2k1!. ~B5!

The gluon propagator for the gluon attached to the^

vertex~stemming from theA1An contraction! takes the form

2 i
gn

1

q21 ih
dab , ~B6!

so after thegn
1gn contraction, the gluon-quark vertex for

gluon attached to thê vertex becomes

2 igg1
la

2
. ~B7!

We will not specify here the usual Feynman rules alrea
used in the calculation of the hard-scattering amplitude.
us just note that similarly to the calculation of the har
scattering amplitude, the correct spin and parity state of
qq̄ state has been projected by multiplying the diagrams

g5g2

2A2
5

g5P”

A2
~B8!

and taking the trace. The color singlet nature of theqq̄ state
is taken into account by including the factor

(
a51

3
dab

ANc

~B9!

and consequently the trace over color indices must be ta
The result should be multiplied by an extra factor 1/ANc @see
Eq. ~B3!#, which takes into account thatf̃(u,t) is normal-
ized to give the LO resultd(u2t) ~i.e., normalized to1).
Finally, note that we are investigating the meson flavor n
singlet distribution amplitude.

APPENDIX C: ON THE COUPLING CONSTANT
RENORMALIZATION

In this section we briefly resume the relevant ingredie
of the coupling constant renormalization, which are f
quently obscured in practical applications found in the lite
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ture, and we also introduce our specific representation~5.3!
for the MS renormalization used in this calculation.

1. Coupling constant renormalization

It is well known that inD54 dimensions, the QCD cou
pling strengthg is a dimensionless quantity@g#5M0 (M
denotes the mass unit!, while in D5422e dimensions@g#
5M e. Obviously, the dimension of the ‘‘bare’’coupling con
stantaS , related to ‘‘bare’’g by g254paS , corresponds to
@aS#5M2e. The renormalized coupling, i.e., the runnin
couplingaS(m2), is, naturally, a dimensionless quantity an
the coupling constant renormalization introduces the ad
tional scalem2, whose presence balances the dimension
the renormalization equationaSm22e5aS(m2)Za . The
scale introduced by the renormalization of the coupling c
stant is often referred to as the renormalization~or coupling
constant! scale and denoted bymR

2 , while the renormaliza-
tion of the coupling constant in the MS scheme~the simplest
renormalization scheme! reads

aS5mR
2eaS~mR

2 !S 12
aS~mR

2 !

4p
b0

1

e
1O~aS

2! D , ~C1!

whereb051122/3nf .
In practical calculations, the additional scalem2 is often

introduced before the coupling constant renormalization~the
presence ofm2 in Feynman integrals is quite standard!,
which corresponds to introducing the dimensionless (@aS#
5M0) ‘‘bare’’ coupling constantaS related to g by g2

54paSm2e, and consequentlyaS;m22e. The ‘‘bare’’ and
renormalized coupling constants are then related byaS
5aS(m2)Za , and, if we choose to renormalize the couplin
at the renormalization scalemR

2 different from the scalem2

introduced by regularization, the renormalization in the M
scheme reads

aS5S mR
2

m2D e

aS~mR
2 !S 12

aS~mR
2 !

4p
b0

1

e
1O~aS

2! D .

~C2!

We adopt the latter definition of the ‘‘bare’’ coupling con
stant as a dimensionless quantity, and neglect theO(aS

3)
terms in further considerations.

From Eq. ~C2! one trivially obtains the scale changin
relation

aS~m2!5S mR
2

m2D e

aS~mR
2 !F11

aS~mR
2 !

4p
b0

1

e XS mR
2

m2D e

21CG
~C3a!

5aS~mR
2 !S 11

aS~mR
2 !

4p
b0ln

mR
2

m2D 1O~e!, ~C3b!

the b function
0-31



ed

m

b

il

e:

lid

ults
e
r-
hat

R
on,

on,

the
ion

e
and

cal-

are

t
the
-
Eq.
ts

ing
s
se

e
om
liz
,
liz

th

es
to
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b„aS~m2!,e…5m2
]

]m2
aS~m2!

52e aS~m2!2
aS

2~m2!

4p
b0 , ~C4!

and, consequently, the running coupling

aS~m2!5
4p

b0XS m2

L2D e

21C1e
5

4p

b0ln
m2

L2

1O~e!. ~C5!

It is safe to ignore theO(e) terms in Eq.~C5!, since the
expression for the running coupling is usually introduc
after all singularities have been removed~by renormalization
and/or factorization!. Generally, one cannot neglect theO(e)
terms in Eq.~C2! or Eq.~C3! ~neither in orderaS nor in aS

2),
and the use of the compact forms~C2! and~C3a! is preferred
until all singularities are removed.8

2. Renormalization schemes

Next we turn to the choice of the renormalization sche
and the representations of that choice.

One can introduce different renormalization schemes
modifying the renormalization constantZa to Z̄a as a func-
tion of

f ~e!511e f (1)1e2f (2)1•••, ~C6!

wheref (e) defines the renormalization scheme choice, wh
aS5aS(m2) Z̄a . Equation~C2! is then generalized to

aS5S mR
2

m2D e

aS~mR
2 !S 12

aS~mR
2 !

4p
b0f ~e!

1

e D , ~C7!

8One of the motivations for this short summary on the coupl
constant renormalization was the appearance of different form
aS renormalization equations in the literature. The quite often u
form

aS5aS~mR
2!F12

aS~mR
2!

4p
b0S1

e
2ln

mR
2

m2DG
represents an ‘‘effective’’ expression, which can be strictly us
only for calculations in which there are no singularities apart fr
those that get renormalized by this coupling constant renorma
tion. The curious lookingaS renormalization procedure given in
for example,@26#, presumably represents an attempt to genera
the above given ‘‘effective’’ form to all orders ine. In the presence
of additional UV or IR singularities, the terms containing bo
scalesmR

2 and m2 remain after theaS renormalization, which is
clearly inconsistent. The final finite results are correct since th
curious looking terms are moved to renormalization and/or fac
ization constants.
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and the choicef (e)51[ f MS(e) corresponds to the MS
scheme. Equations~C3!–~C5! get modified byb0→b0f (e).

The MS scheme is defined by

f MS~e!511e„2g1 ln~4p!…1O~e2!, ~C8!

and, to the order we are calculating, theO(e2) terms are
arbitrary. Different definitions can be found in the literatur
the original definition of theMS scheme@43# f MS(e)51
1e@2g1 ln(4p)# or the choices f MS(e)5exp@e(2g
1ln(4p)# and f MS(e)5(4p)e/G(12e) ~for example,
@26,27# and @28#, respectively!, which mimic thee depen-
dence of thegn, lnn4p, (p2)n proportional terms introduced
by dimensional regularization. Although they are all va
choices leading to the same (MS) result~after renormaliza-
tion and factorization of singularities!, they unnecessarily
complicate the calculation, since the intermediate res
should be expanded overe and since they do not contain th
(G) functions originally introduced by dimensional regula
ization. A more appropriate choice would be the one t
contains combinations ofG ’s that naturally emerge in the
calculation. For this calculation, in which both UV and I
singularities were regularized by dimensional regularizati
the appropriate choice is@see Eqs.~5.1! and ~5.4!#

f MS~e!5eG~e!G~12e!
G~12e!

G~122e!
~4p!e5eGUV

(0)~e!, ~C9!

while, for example, for the calculation in which only UV
singularities were regularized by dimensional regularizati
the choicef MS(e)5eG(e) would be appropriate.

Alternatively, we can represent the dependence of
coupling constant renormalization on the renormalizat
scheme byaSf (e)5aS(m2)Za ~see, for example,@27#!. The
generalization of Eq.~C2! is then given by

aS5S mR
2

m2D e

@ f ~e!#21 aS~mR
2 !S 12

aS~mR
2 !

4p
b0

1

e D , ~C10!

and it represents a representation alternative to Eq.~C7!.
Equations~C3!–~C5! are valid for the~C10! representation.

Sinceb0 ~andb1) does not depend on the choice of th
renormalization scheme, the renormalization scheme
scale dependence can be described, to the order we are
culating, only by one parameter~for example, the scale!. The
renormalization scheme and the renormalization scale
treated on the same footing in representation~C10! and their
equivalence is explicit. For example, by substitutingmR

2

5m̃R
2@ f (e)#1/e, L25LMS

2 @ f (e)#1/e into Eq. ~C10!, the renor-
malization equation~C2! in the MS scheme is obtained.

The other advantage of the~C10! representation is tha
after the coupling constant renormalization is performed,
dimensional parametere remains as the only artifact of di
mensional regularization. Consequently, when using
~C7!, the renormalization and factorization constan
ZM,ren ,ZM,col containgn, lnn4p, (p2)n proportional terms
apart from the 1/en poles. In contrast, when using Eq.~C10!
ZM,ren ,ZM,col contain only simple 1/en poles.

In this work the representation~C10! along with the defi-
nition ~C9! of the MS scheme is used.
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