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The next-to-leading ordefNLO) Brodsky-Lepage-MackenziéBLM) scale for the pion transition form
factor is determined. To achieve that, a consistent calculation up-froportional next-to-next-to-leading
order contributions to both the hard-scattering amplitude and the perturbatively calculable part of the pion
distribution amplitude is performed. By combining and matching the results obtained for these two amplitudes,
a proper cancellation of collinear singularities is established angdlambiguity problemrelated to the use
of the dimensional regularization methad resolved by using the naive; as well as the 't Hooft—Veltman
(HV) schemes. It is demonstrated that the prediction for the pion transition form factor is independent of the
factorization scalep,zz at every order in the strong coupling constant, making it possible to use the simplest
choice,u§=Q2 at the intermediate steps of the calculation. Assuming the pion asymptotic distribution ampli-
tude and working in théVS scheme, we find the BLM scale to hek= 13, ,~Q?/9. Based on the same
distribution, the complete NLO prediction for the pion transition form factor is calculated inraefinition
of the QCD coupling renormalized at3=uZ=e>%u3, ,,~Q?/2. It is in good agreement with the presently
available experimental data.
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I. INTRODUCTION ment. In the standard hard-scattering appro&iSA), a
hadron is regarded as consisting only of valence Fock states;
The pion transition form factor plays a crucial role in transverse quark momenta are negledizallinear approxi-
testing QCD predictions for exclusive processes. It appear@iation as well as quark masses.
in the amplitude that relates two, in general virtual, photons Although the LO predictions in the sHSjas well as in
with the lightest hadron, the pion/* y* — #°. Historically,  the modified hard-scattering approachHSA) in which the
this process attracted much interest since the axial anomaRgpllinear approximation is abandongfi] ] have been ob-
[1] fixes the value of the form factor when both virtualities of tained for many exclusive processes, only a few processes
the photons are zeroyfy— 7°). For large virtualities of the have been analyzed at next-to-leading or@rO): the pion
photons (or at least for one of themperturbative QCD €lectromagnetic form factdi6—8], the pion transition form
(PQCD is applicable[2]. A specific feature of this process is factor[7,9,10 (and[11] in the mHSA, and the procesgy
that the leading-ordefLO) prediction is zeroth order in the —MM (M=,K) [12].
QCD coupling constant, and one expects that PQCD for this It is well known that, unlike in QED, one cannot rely
process may work at accessible values of spacelike photampon the LO predictions in PQCRhe expansion parameter,
virtualities [3]. Experimentally, the most favorable situation i.e., the running coupling constant is rather large at current
is when one of the photons is reay{y— 7°). energieg and that higher-order corrections are important.
The framework for analyzing exclusive processes at largeThe size of the NLO correction as well as the size of the
momentum transfer within the context of PQCD was initi- expansion parameter, i.e. the QCD running coupling con-
ated and developed in the late 197@s2]. It was demon- stant, can serve as sensible indicators of the convergence of
strated to all orders in perturbation theory that exclusivethe expansion. However, as the truncation of the perturbative
amplitudes at large-momentum transfer factorize into a conexpansion at any finite order causes the residual dependence
volution of a process-dependent and perturbatively calcuef the prediction on the choice of the renormalization scale
lable hard-scattering amplitude, with a process-independerind scheme, these choices introduce an ambiguity in the in-
distribution amplitudé€DA), one for each hadron involved in terpretation of the finite-order perturbative prediction. In
the amplitude. Whereas the DA is intrinsically nonperturba-general, including higher-order corrections has a stabilizing
tive and its form is determined by some nonperturbativeeffect (see[8], for illustration reducing the dependence of
methods, the DA evolution is subject to a perturbative treatthe predictions on the schemes and scédewe the all-order
prediction is independent of the scheme and scale choice
However, to assess the convergence of the perturbative ex-
*On leave of absence from the Rudjer Rosic Institute, Zagreb, pansion, it is necessary not only to extend the calculation

Croatia. Electronic address: melic@thphys.irb.hr beyond the LO(which is a very demanding task in many
"Electronic address: nizic@thphys.irb.hr casey but also to optimize the choices of the scale and
*Electronic address: passek@thphys.irb.hr scheme according to some sensible criteria.
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In the Brodsky-Lepage-Mackenzi¢BLM) procedure form factor is independent of the factorization sc,’alé at
[13,14, all vacuum-polarization effects from the QCB  every order in the strong coupling constant. Finally, we have
function are resummed into the running coupling constantbeen able to justify the natural choim%:Q2 for the fac-
Since the coefficient8,,81, . . . are functions ofi; (num-  torization scale and to determine the renormalization scale
ber of flavors, according to the BLM procedure, the renor- using the BLM scale setting method.
malization scale best suited to a particular process in a given The plan of the paper is as follows. Section Il is devoted
order can be, in practice, determined by computing vacuumto some preliminary considerations. In Sec. Il the calcula-
polarization insertions in the diagrams of that order, and bytional procedure is briefly outlined. In Sec. IV the LO, NLO,
setting the scale demanding that-proportional terms and theng-proportional NNLO unrenormalized contributions
should vanish. The renormalization scales in the BLM0 both the hard-scattering amplitude and the perturbatively
method are physical in the sense that they reflect the medfticulable part of the pion distribution amplitude are ob-
virtuality of the gluon propagators and the important advan{@ined. Renormalization of the UV divergences and factor-
tage of this method is “pre-summing” the largeB{as)"” |zat|on_of the collm_ear Q|v¢rggnces present in the hard-
terms, i.e., the infrared renormalons associated with the Couc,_cattenng and the pion d|str|but|on.ampl|tude are _perfo.rmed
pling constant renormalizatio 15] and references thergin Ir?a'szc. V;heerllegttsh];oLt\)?tshcﬁgnnggtugﬁz igemo?;?énleeda:;nth?

The optimization of the renormalization scale and SChem?WiI;/t ;yr?al ti(gl expression for the ié)n transitio[?] form facltc?r
for exclusive processes by employing the BLM scale fixin y b b

. ) gup to n¢-proportional NNLO terms is obtained in Sec. VI.
was elaborated in Ref15]. It was stated that exclusive pro- ection VIl is devoted to determining the BLM scale for the
cesses are especially sensitive to the choice of the renorm

N . X ) ion transition form factor based on which the complete
ization scale for the underlying hard-scattering amplitudey; o nymerical predictions are then obtained in M8 and
and since each external momentum entering an exclusive

o " ay renormalization schemes. The concluding remarks are
reaction is partitioned among many propagators of the unde

ving h . i he phvsical les th Ejiven in Sec. VII. Theys problem is addressed in detall in
ying hard-scattering amplitude, the physical scales that cona e ix A. In Appendix B the Feynman rules for the per-

trol these processes are inevitably much softer than the ovefs haiively calculable part of the distribution amplitude are

all momentum transfer. The BLM method was applied to thederived. Finally, in Appendix C, we clarify some often ob-

scured points on the coupling constant renormalization and
justify our renormalization convention.

pion electromagnetic form factor and they— =" 7~ pro-
cess. For the pion transition form factor, the size of the BLM
scale was only assumétaken the same as for the pion elec-
tromagnetic form factgr Since the LO prediction for the
pion transition form factor is zeroth order in the QCD cou-
pling constant, the NLO correctiorig,9,10 represent lead- The pion transition form factofF ,, y,,(QZ) for a pseudo-
ing QCD corrections and the vacuum polarization contribuscalar mesonr? is defined in terms of the amplitud&*” for
tions appearing at the next-to-next-to-leading ordé€xLO) v*(q, ») + y(k,v)— 7(P), as
are necessary for determining the BLM scale for this process.

The purpose of this work is to determine the BLM scale I#'=ie?F ., (Q?) e PP q,. 2.9
for the pion transition form factor, i.e., for thg* y— 7 pro- 5 5
cess. Although the structure of the process is simple, thEOr large-momentum transf€“= —q°, the form factor can
calculation of higher-order corrections to the hard-scatterin®® 'epresentef#,2] as a convolution
amplitude is complicated by thg, ambiguity, which appears 2Nk 2 2 2
when using dimensional regularization. In our calculation we Fyryn( Q)= @7 (6 1) ® T, Q% 1), 22
use dimensional regularization D=4—2¢ dimensions 10 here® stands for the usual convolution symbol defined by
regularize both ultraviolefUV) and collinear singularities.
We have obtained the LO, NLO, amg-proportional NNLO 1
terms for the hard-scattering amplitude using the Feynman A(2)®B(z)= fo dz A(2)B(2). 23

gauge and modified minimal-subtraction scheme Y M$

which a suitable compact form has been adopted. In order ttn Eq. (2.2), the functionTH(x,Qz,,uﬁ) is the hard-scattering
corre_ctly sub';ract the collinear s_ingularities and also to Ve”fyamplitude for producing a coIIineeqa pair from the initial
th_e right choice of theys prescrlpt_lon, we have also deter- photon pair;d)*(x,,uﬁ) is the pion distribution amplitude
mined the LO, NLO, and;-proportional NNLO terms of the : . ' — .
perturbatively calculabléevolutiona) part of the distribution repr esentmg the ampllt'qde for the final st.qtq; to fuse into
amplitude. Theys ambiguity present in the calculation of the apion, 1.€., the_ probgblllty f';\mpll_tude for f|nd|_ng the valen_ce
hard-scattering part has been resolved by combining anfd F'ock state in the final pion with the constituents carzrylng
matching the results for the hard-scattering amplitude wittfractionsx and (1-x) of the meson’s total momentuRy u.¢

the results for the distribution amplitude part. The properis the factorization(or separationscale at which soft and
cancellation of singularities has been established andi¢he hard physics factorize.

problem has been resolved using both the so-called ngjve- ~ The hard-scattering amplitudi, is obtained by evaluat-
[16] and the 't Hooft-VeltmanHV) schemeg$17,18. It has  ing they* y—qq amplitude, which is described by the Feyn-
been demonstrated that the prediction for the pion transitioman diagrams in Fig. 1, with massless on-shell quarks col-

Il. PRELIMINARIES
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k,v (1-u)P

FIG. 1. Feynman diagram describing méyﬂqaamplitude in

terms of which the hard-scattering amplitude for ttey— & tran-
sition is obtained.

linear with outgoing meson. By definitio is free of

PHYSICAL REVIEW B5 053020

and related tab(x,u2) by

D(x, 12)=Ngpp(x,ud), 2.9

where
Ng = fr (2.9
* 22N, '

is the normalization constant imposed by the leptonitc
—),LL+VM decay,f,=0.131 GeV is the pion decay constant,
andN.(=3) is the number of QCD colors.

It is convenient to expand the distribution amplitu@&)

collinear singularities and has a well-defined expansion i%(x,Mg) (determined at the initial scaleé) in terms of the

ag(nd), with u% being the renormalizatiorfor coupling

Gegenbauer ponnomiaIsCﬁ’z(Zx—l), representing the

constank scale of the hard-scattering amplitude. Thus, onesigenfunctions of the LO evolution kerne}, :

can write
2 2 (0) 2 as(up) (1) 2 2
TH(XIQ vlu‘F):TH (X,Q )+TTH (XvQ 7/"LF)
2, 2
ag(ug)
+ TX,Q% ud i)+ .
(477)2 H HE MR

(2.9
Although the functiorrI)(x,,uﬁ) is intrinsically nonpertur-

bative (containing the effects of confinement, nonperturba-

tive interactions, and meson bound-state dynaitsatis-
fies an evolution equation of the form

d
,u,%—(mzCIJ(x,,u,%)=V(x,u,as(M§))®‘1>(U,M§), (2.5
F

WhereV(x,u,aS(,uE)) is the perturbatively calculable evolu-
tion kernel

ag(uf)
Vl(X,U) +W

as(pd)
4

Vo(x,u)+ - - -,
(2.9

V(x,u, as( ug))=

If the distribution amplitude(I)(x,,uS) is determined at an
initial momentum scale,ug (using some nonperturbative
method$, then the differential-integral evolution equation

(2.5 can be integrated using the moment method to give

®(x,2) at any momentum scajeZ > u3. The one{2] and
two-loop [19-21] corrections to the evolution kernel are

d(x,u2)=6x(1-x) >, B,C¥(2x—1). (2.10
n=0

The nonperturbative input is now contained in Bg coef-
ficients andX " denotes the sum over even indices. The DA
(2.10, when evoluted to the scaﬁeﬁ, is represented by the
perturbative expansion

2
as(uE) NLO 2
T OB+

(2.1

B(X, ud) = P-O(x, ud) +

where

P-O(x, u?)=6x(1-x) X" BLO(u?)CI2x—1),
n=0
(2.12

NOx, uf)=6x(1-x) 2" BY-O(uf)CFA2x—1).
k=2
(2.13

The coefficient8-°(u2) andB}"°(u2) depend on the non-
perturbative inpuB,,, as well as on the scalgs; and 2.
Their exact form can be read from the results obtained from
[23] and listed in[8].1

IIl. CALCULATIONAL PROCEDURE

Before proceeding with the calculation, we would like to

known, but because of the complicated structure of the twopgint out some subtleties connected with the calculational
loop corrections, it was possible to obtain numerically °”|yprocedure thatwe think deserve more explanation.

the first few moments of the evolution kerd@R]. However,

based on the conformal spin expansion, the conformal Ward
identities, and the conformal consistency relation, the com

plete analytical form of the NLO solution of the evolution
equation(2.5 has been obtained in R¢R3].

Instead of usingb(x,,uﬁ), one often introduces the dis-
tribution amplitudeqs(x,,uﬁ) normalized to unity

1
fo dxep(x,u)=1, 2.7

The hard-scattering amplitudg, is obtained by evaluat-
Ing the y* + y—qq amplitude, which contains collinear sin-

gularities, owing to the fact that final state quarks are taken
to be massless and on-shell. Since, by definitibg,is a

11t should, however, be pointed out that, in contrast to the expan-
sion parametens(u,z:)/(mr) from Eg. (2.11), the expansion pa-
rameteras(u2)/m was chosen if8]. Hence, the expressions for
BLO(NLO) from [8] should be modified accordingly.
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finite quantity free of collinear singularities, these singulari- For notational simplicity, here and where appropriate, we use

ties should be subtracted. The + y—>qa amplitude with
the Lorentz structure factored out as in E2.1) and denoted
by T factorizes as

T(U,Q) =Ty(%,Q* P ®Zr calX, Ui uf), (3.1

where, as usualj and 1—-u denote the quark/antiquark lon-
gitudinal momentum fractionmﬁ is a factorization scale at
which the separation of collinear singularities takes plac

and all collinear singularities are factorized4g o, .

On the other hand, a process-independent distribution am-

plitude for a pion in a frame wherP*=P°+P3=1, P~
=P%—pP3=0, andP, =0 is defined2,20,24 as

dz= . _
@(U)ZJEGI(U_(l_U))Z 2

— 'y
(0| W(-2) 2ﬁ59w<z>|w><z+=zﬁo>,
(3.2
where
1
Q=exp[igf dsA*(zs)z‘/Z] (3.3
-1

is a path-ordered factor makinh gauge invariant. The ma-
trix element in Eq.(3.2 contains an ultraviolet divergence

coming from the light-cone singularity at=0 [2,24]. This

the notation in which the convolutiorg() is replaced by the
matrix multiplication inx-y space[unit matrix is given by
1=s(x=y)].

The pion distribution amplitude as given in E§.2), with
|7) being the physical pion state, of course, cannot be deter-
mined using perturbation theory. If the meson staté is
replaced by dqg;t) state composed of a fregollinear,
massless, and on-sheljuark and antiquarkcarrying mo-
ementatP and (1-t)P], the amplitudeg3.2) becomes

~ dz= . _

— i(u—(1—u))z /2
$(u,t) fZWe
n
Y s — .1

Qv (z ) —=.
i (2)|aa;t) NG

(3.6)

X(0|¥(-2)

Taking Eq.(3.6) into account, Eq(3.2) can be written in the
form

®(u)=p(u,t)@(qq;t| ) VN, (3.7

The amplitude(3.6) can be treated perturbatively, making it
possible to investigate the high-energy tail of the pion DA, to
obtainZ, ., and to determine the DA evolution.

The distributioné(u,t) is multiplicatively renormalizable
and the UV singularities that are not removed by the renor-
malization of the fields and by the coupling constant renor-
malization, factorize in the renormalization constapt., at
the renormalization scalﬁﬁ. Apart from UV singularities,
the matrix element in Eq.3.6) contains collinear singulari-

divergence should be regulated, and after renormalizatiorfies (since the initial state quarks are, as before, taken to be

which introduces a renormalization scalg, z° is effec-
tively smeared over a region of ordgf= —z2 ~1/u3. As a
result, the pion distribution amplitud®(v,3) is obtained

corresponding to the pion wave function integrated over the

pion intrinsic transverse momentum up to the sd'aie The
distribution amplitude® (v, x3) is a finite quantity and en-
ters the convolution expressidA.2).

The unrenormalized pion distribution amplitude(u)

given in Eq.(3.2) and the distribution amplitudé (v,u3)
renormalized at the scafeﬁ are(owing to the multiplicative

renormalizability of the composite opera@w* vsQW) re-
lated by a multiplicative renormalizability equation

D(U)=Z 4 ren(U,0;18) @D (v, 13). (3.4

By differentiating this equation with respect fq% one ob-
tains the evolution equatiof2.5), with the evolution poten-
tial V given by

V=—Z,7%n (3.5

- 0 )
MR =% &¢ren|-
IR

massless and on-shellvhich are absorbed id, ., at the
factorization scale.3. Hence, one obtains

AU =Z 4 ren(U,0; 2R @ dy(v,S; 18 12 B Z y ol S,1 13).
(3.8

Upon combining Eqs(3.7) and (3.8), the distribution® (u)
can be written in the form

D(U)=Z 4 ren(U,0;18) ® dy(v,S; 1&, ud) @ D(S, 15).
(3.9

Here,

D(s,18)=Z g col(S,t: ) @(qat| ) YN, (3.10

represents the nonperturbative inpentaining all effects of
collinear singularities, confinement, and pion bound-state dy-

namic$ determined at the scale3, while ¢y (v,s; &, 1)
governs the evolution of distribution amplitude to the scale

L&
D(v,uR) = dy(v,S;nk.ud) @P(s,ud), (310

and satisfies the evolution equation
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taken into account. The subtracti¢separatioin of collinear
divergences at the NNLO is significantly more demanding
than that at the NLO. Owing to the fact that the process
under consideration contains one pseudoscalar meson, the
calculation is further complicated by thgs ambiguity re-
lated to the use of the dimensional regularization method to
treat divergences.

In order to correctly subtract the collinear divergences and
determine the right treatment of the matrix, we determine
the LO, NLO, andn;-proportional NNLO contributions to
the distributiong(u,t) given in Eq.(3.6), and by that, fol-
lowing Egs.(3.7)—(3.9), the renormalization constadt, e

FIG. 2. Pictorial representation of the pion transition form factorand the evolutional party,, of the distribution amplitude
calculational ingredientsT represents the perturbatively calculable ®(u) (3.2). Since there is n@/5s ambiguity in the DA calcu-
hard-scattering amplitude, whil® is the pion distribution ampli-  lation, theys ambiguity present in the hard-scattering calcu-
tude given by Eq(3.2) which can be expressed, as in E8.7), in  |ation is resolved using Eq3.14. As an additional check,
terms of the perturbatively calculable pgrt(3.6) and the perturba- we employ twoys schemes in our calculation. Finally, we
tively uncalculable part. obtain the s scheme independénprediction for the pion
transition form factorF ., up to the n¢-proportional

”‘2i¢ (0,852 12 = V(0.8 T2)® oS 872 1 1i2) NNLO terms, expressed in terms of the finite quantities
HR 2 PV SR RO =V S URIG PV SR T, (x,Q2 uf) and D (x, ).
(3.12

By convoluting the “unrenormalizedin the sense of
collinear singularities hard-scattering amplitudd (u,Q?) IV. LO, NLO, AND n¢-PROPORTIONAL NNLO
with the unrenormalized pion distribution amplitudg(u), UNRENORMALIZED CONTRIBUTIONS
given by Eqs(3.1) and(3.4), respectively, one obtairig a TO THE HARD-SCATTERING
way analogous t42,25]) the following expression for the AND THE DISTRIBUTION AMPLITUDES

ion transition form factof 2): . . .
P 7 ye(Q7) In this section we present the calculation of the LO, NLO,

Foryn(Q) =0T ()@ T(u,Q?). (3.13  and ns-proportional NNLO contributions to the hard-
scattering amplitude and the perturbatively calculable part of

The divergences of (u,Q?) and®(u) cancel foruad=pZ  the distribution amplitude.

Z1 ol U uf) ® Z g ren(U v uf) = S(x—v), (3.14
A. Contributions to the hard-scattering amplitude
and the usual expressid@.2) emerges, where the pion tran-

sition form factor is expressed in a form of the convolution The hard-scattering amplitudgy for the pion transition

of two finite amplitudes: form factor is obtained by evaluating thg 'y—>qa ampli-
tude for the parton subprocess, which is described by the
Fon(Q)=Tu(X,Q% uf) @ d* (X,uf). Feynman diagrams of Fig. 1.

Theqq pair has to be projected into a negative-parity and
It is worth pointing out that the SCQ'ﬂ% representing the  gpin 0 (pseudoscalarstate. This is achieved by introducing
boundary between the low- and high-energy parts in Edthe projection operatoysP/+2 and taking the trace over a
(2.2 is, at the same time, the separation scale for collineafermion loop. On the other hand, the color-singlet nature of

- -y - 2 _
singularities inT(u,Q?), on the one hand, and the renormal- the qq state is taken into account by introducing the factor

ization scale for UV singularities appearing in the perturba-..3 . -
tively calculable part of the distribution amplitude(u), on > «=19es/ Ne: and taking the trace over the color indices.

the other hand. The calculational procedure explained abovR!SO. the flavor function |(|u—'dd)/\/§ 52h°U|d be included.

is illustrated in Fig. 2. The hard-scattering amplitudg(u,Q) can generally be
Our main goal in this work is to determine the BLM scale eXPressed as an expansionas:

for the pion transition form factor. To achieve that, we make N

use of the calculational procedure outlined above and in the 2y_ “T] 0 s

following sections calculate the LO, NLO, and T(u.Q%) 2 [ T+ 47-rT ()

n¢-proportional NNLO contributions to the perturbative ex-

pansions of both the hard-scattering amplitude and the dis- al

tribution amplitude. (4m)? T
This is the first calculation of the hard-scattering ampli-

tudeT(u,Q?) of an exclusive process with the NNLO terms 4.7

3

2
( — _nf)T(zrnf)(u)+ .
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i, d, g R
}————— uP ——— (1-wP '

1 (%,
3 @GGGF% @95
k k SNANN——— S VAV.V. 7,V S —
VWAANN (l1-wy)P "vvrnns——— uP All A22 A33
A B oy %
FIG. 3. Lowest-order Feynman diagrams contributing to the I _’_é_’_ P
¥* y—qq amplitude. . Loos a
1. LO contributions R N A E
In the LO approximation there are only two Feynman A2 AL Al2
diagrams that contribute to the* y—qqg amplitude. They FIG. 4. Distinct one-loop Feynman diagrams contributing to the
are shown in Fig. 3. The contribution of diagrat(after  y* y— qqamplitude, generated from diagraof Fig. 3 by insert-
ieze’“’“BPaqﬁ is factored outis given by ing a gluon line.
Ny 1 The reason for this lies in the fact that the matyix cannot
TA_& 1—u’ (4.2) be unambiguously defined iD# 4 dimensions. In practice,
the difficulty arises in evaluating a trace containing a single
where vs. We address this problem in detail in Appendix A.
In order to make sure that our results for the pion transi-
Nt=2y2N.C,, (4.3)  tion form factor areys scheme independent, we have evalu-
ated all the contributions using two schemes: the naiye-
and schemd 16] and the 't Hooft—\VeltmaniHV) schemd 17,18,
defined by Eqs(Al) and(A3), respectively.
el—ei 2 A few remarks concerning the diagrams with quark self-
Cr= 2 6 (4.4) energy corrections where the quark momentui on-shell

(A11, A22) are in order. Since these corrections modify ex-
ternal legs, each of these diagrams is accompanied with a
factor of 1/2 coming from the expansion of the quark field
renormalization constamfz_z. In dimensional regularization,
the contributions of each of these diagrams turn out to be
proportional to p?) € and, therefore, vanish whep=0.

is the factor taking into account the flavor content of q?p
pair. The contribution of diagrarB is obtained by making
the replacemenu—(1—u) in Eq. (4.2. Therefore, the

lowest-orde(QED) contribution to they* y—>qaamplitude,

. 2 . . .
i.e., toT(u,Q%) given in Eq.(4.1), is On closer inspection, however, one finds that this vanishing
1 is a result of the cancellation of a UV pole with collinear
TO(U) = 1—+(u—>1—u). (4.5  pole. The UV pole contributes to the renormalization of the
-u

quark fields(already taken into account by the factgz,)

and eventually leads to a correct running of the coupling
2. NLO contributions constant.

At NLO there are 12 one-loop Feynman diagrams contrib-  The contribution of any of the diagrarddj shown in Fig.

uting to they* y—qq amplitude. They can be generated by4 can be generally expressed as
inserting an internal gluon line into the lowest-order dia-
grams of Fig. 3. We use the notation whekg is the dia-
gram obtained from diagrarmA by inserting the gluon line
connecting the lines andj, wherei,j=1,2,3. Since NLO,
and all higher-order, diagrams generated from diagBatan  where C=4/3 is the color factorthe same for all dia-
be obtained from the corresponding diagrams generated fro@}ams) while T »;; is defined by
diagramA by using the substitutiomn— (1—u), the total ' All

number of NLO diagrams to be evaluated is 6. They are

_NT 1 Qag ~
TAij_EmECFTAijr (4.6a

€

2

L ~ 1 . 1 . M
shown in Fig. 4. Tai={ TX(e) TWV4TO(e) —TIR || = ,
These diagrams contain ultraviol@tV) singularities, and Al Wi1—2e AT T IRTTT1-26 AT 92
owing to the fact that the final state quarks are massless and (4.6b

on shell they also contain collinear singularities. To regular-
ize these singularities, we use dimensional regularization itvith the following abbreviations:
D=4-2¢ space-time dimensions.

As is well known, dimensional regularization leads to an
ambiguity when dealing with the pseudoscalar matyix

T'(1—e)T(1—¢)

rUe=T(O—F71 24

(4m)*,

053020-6
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TABLE I. ContributionsT3Y andT)f}; [defined in Eq(4.6)] of Feynman diagrams shown in Fig. 4. Apart
from the result denoted by 12,, the listed results correspond to the results obtained using the HV scheme,
or equivalently, to the results obtained in the najsescheme withys being outside the contracting
matrices. The result denoted bys12 has been obtained using the naiwgscheme withys placed between

the contractingy matrices and between two Dirac slashed loop momenta.

i Ty i
1 1
11(22) —5(1—5)(1—5)(1—u)*f —5(1—6)(1— §>(1—u)"
33 —(1—e€)(1-u)~¢ 0
23 (1-e)(1—u)~¢ (2+e€)(1—u) "¢
1 2 1

13 (1-e) (1—u)‘f+a(1—(1—u)‘f)} (2+e)(1-u) | —+e a(1—(1—u)—f)}
1250 0 —2(1+e€) %+2 %(1—(1—@_5)

11-u e
1254 0 _2(1_6)27(1—(1—u) )

F(—e)l'(1—¢) remaining ambiguity in diagrarAl2 is parameterized by,

I'P(e)=I(1+e) T (4m)c. (473  taking the value 0 for the first choice for handling in

diagramAl12, and 1 for the second. Our results listed in
The first " function on the right-hand side of Eqt.7) Table | are in agreement wifli0] (but see the comments in
originates from the loop momentum integration, while theAPPeNdix A. L _
integration over Feynman parameters produésscollected The NLO contributionT™(u) from Eq. (4.1) is of the
in a fraction. Consequently, the singularity containe@(g)  form
appearing in Eq(4.73 is of UV origin, while the singularity
contained inI'(—€) appearing in Eq(4.73 is of infrared
(IR) origin. It should be pointed out, however, that none of T(u)=
the diagrams of Fig. 4 contains a s¢fenuine IR singular-
ity, so that, here and in the following, the subscriahd/or
the superscriptIR signifies the collinear singularity. If the
relation

(1-2¢)

1
TE(u)

1
TR TR T,

(0)
Tuvle) 1-2¢

, (4.10a

rzor(i-2z=

4.9

sinmz where

is taken into account in Eq4.7), one finds that

rQe)=-T(e). 49  TRW=Cei— (1-9

c 1 —€ ! 1-(1 —€
5 (1w H 5 A=(1-uw )
Nevertheless, we continue to keep track of the origin of the +(u—1-u), (4.10b
UV and collinear singularities.

The contributiond 3 andT)\y; of the individual diagrams
are given in Table I. Following the explanations and notatiorA"d
given in Appendix A, we list the contributions obtained using
the HV scheme, which are equivalent to the results obtained
in the naiveys scheme withys being positioned outside the ﬂple)(U)ZCF
contractedy matrices. For diagramA12 we also list the con- 1-u
tribution obtained in the naives scheme corresponding to
the case where matrices are contracted through the string +
of y matrices of the formyst. As elaborated in Appendix A,
the y5 ambiguity in diagram#\11, A22, A33, A23, andA13
has been resolved with the help of QED Ward identities. The

442 13 121 €
+2e— _§E+§6 (1—u)

2 4 er(ao-3 Y2y
S-4-era5-3)- " (2+¢)

X(A=(1-u) 9|+ (u—=1—u). (4.100

053020-7
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Ty, P, Ty Ty

2 2

g p? o\
1(12)= [ 3e)— —(1—
> =l | |39 “a-om,
199
N Y e —— WM— VoYV 7.V, S —" 1 F(l_e)r(l_e) €
x P& —fi—pg (47"
1—56)(1—26)

T e Ty 4.12
OD@

and, due to gauge invariance of the complete finite order
contribution(which we have used as an additional check of
our calculation, it can effectively be described by

fa"a@

2
AN VWAAANS

N
3
2
AN D

FIG. 5. Distinct vacuum-polarization two-loop Feynman dia-
grams contributing to the/* y—qqg amplitude, which have been
obtained from the one-loop diagrams of Fig. 4 by inserting the
vacuum-polarization bubbles.

K\

P)
g2 g —2 11(12). (413
12+in in

12+

We are interested only in the;-proportional parifrom the

3. ny-proportional NNLO contributions quark loops inserted in the gluon propagator

2
By inserting the vacuum polarization bubbles in the NLO 11, (|2) ( — En ; 9 fo(e,u?), (4143
diagrams of Fig. 4, the NNLO diagrams displayed in Fig. 5 (12+in)¢ (4m)? "
are obtained. The vacuum polarization insertion(irs the ) ,
Feynman gaugegiven by the replacement wheref, is defined by
2 €
P _
0 flew)=| ——— 5 r{de).
/)
—i K)\lz—-—>_l<gk}\ |2—>|2 H(|2) (41]) (1_56)(1_26)
+1n +1y +I (4.14b
The contributions of the two-loop Feynman diagrams
where shown in Fig. 5 can then be generally written as

TABLE II. Same as Table | but for contributiorix|;) andT(3, [defined in Eq(4.15], correspond-
ing to the Feynman diagrams shown in Fig. 5.

IJ -’I\-PA\{j)nf :I\-I(iij)nf
. (1—6)2(1—2) ) (1—5)2(1—5)
11(22) - é 6) (1*U)72€ - E (6—3 (1*U)72€
(14‘5 (1*56) 1+§) (1*56)
1— 2
33 _%(1_“)_26 0
(1‘56)
1-¢)? 2—e—26)
23 (—;(l_u)*Ze ( 63 ( _u)72e
-2 -3¢
_ 3 _
13 ¢ 36) l1(u,€) (—)[26(1 e)ly(U,e)—(2—e—2€)U I3(u,€)]
34 -39
125_ 0 —2(1+€)[— (1—u) % —2¢el,(u,e€)
—(1-é€)ulz(u,e)](1—u)
125-1 0 —2(1-e[—(1-u)**~(1-eul3u,e](1-u)

053020-8
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Ny 1 ag 2\ have been introduced.
Taif), = ?i-u MT)ZCF( - §nf)T(Aij)nf7 (4.153 The contributions‘AI'%’A\fj')F:f of the individual diagrams are
listed in Table Il. The integralk (u,€) (i=1,2,3) appearing
where in this table are defined as
?(Aii)nf l1(u,e)=I(u;e,2¢) 4.17
(1—e) - | =I(u;e,1+2 4.1
= [ TOTE(e) -I-(UA\{J_)nf 2(U,€)=1(u;e, €) (4.19
(1‘56)(1‘26)(1‘35) l3(U,€)=1(U;1+ €, 1+ 2¢), (4.19
(1—¢) 5 where
+T U TR (e) > I(iij)nf
(1—§6)(1—26)(1—36)
I(u;a c)—f y————
u?) % (1- uy)°
=/ (4.15b
° —1 Fi(c,1+a,2 ) (4.20
= c,1+a,2+au). .
while, similarly to Eq.(4.7), the abbreviations 1+a??
W)= I'(2e) T'(1-2€6)'(1~¢) Py 416 As far as theys-scheme dependence of the NNLO diagram
UV(e)_r(1+ €) I'(1-3€) (4) (4.16a contributions is concerned, it is the same as for the NLO
diagrams from Table I.
I'(l+2¢) I'(—2e)I'(1—- The n;-proportional NNLO contributiorm?)(u) from Eq.
()= (1+2¢) [(—2¢)I( e)(%)e (4.16b i-prop ny (U) q
I'(l+e) I'(1-3e¢) (4.1) takes the form
|
1_
TEM(u)=| TR(TG(e) e Tov(u)
(1—56)(1—26)(1—36)
©)( () (1~¢ —2ny) w2\
+Tyu(e)R(e) TR W =] (4.21a9
(1—§6>(1—26)(1—36)
where
1__
1 (1-e¢)? 2
TEMW (u)= Ceqm u( 3) (1= e)li(u,e) = — (1-w) > | +(u—1-u) (4.21b
1-e 1+
2
5 9 1
1 1+ 56—562——63
TEW ()= Criyg . +2[1—(26—-1)€l(1—u) | (1—u) 2%
1+§ 1—56
(1-¢)?
+2¢ 3~ (26-2)(1+e)(1-u) |Ix(u.€)
1—56
€
1 f-afao
-2 3 —[1-(26-1)€](1—€)(1—u) |ulz(u,e) p +(u—1—u). (4.210
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tP

Our results are expressed in a compact form in which the
complete functional dependence on the dimensional param-
etere is retained. This is in contrast to the expansion aver
often encountered in the literature. In this expansion, non-
leading terms ine are neglected before renormalization and
factorization of collinear singularities. As we show in Sec. V, (1-t) P
it is advantageougboth for the simplicity and accuracy
check of the calculatiomot to expand the functiorE{); | FIG. 6. The LO diagram contributing to thi(u,t) distribution
over e. (3.6), i.e., Eq.(B3).

B. Contributions to the perturbatively calculable part 1. LO contribution
of the distribution amplitude The contribution of the LO Feynman diagram displayed
In Sec. Il we have defined the distribution amplitudein Fig. 6 reads
$(u,t) (3.6) representing the perturbatively calculable part

of the pion distribution amplitude. Following20], we have $O(u,t)=8(u-1). (4.23
rederived the Feynman rules for this operator in the Feynman o
gauge. They are listed in Appendix B. 2. NLO contributions

We now proceed to calculate LO, NLO, and At NLO there are 5 one-loop Feynman diagrams contrib-
n¢-proportional NNLO contributions to thé(u,t) distribu-  uting when the Feynman gauge is used. They are displayed
tion amplitude defined in Eq.3.6), or equivalently in Eq. in Fig. 7. The general form of these individual contributions

(B3). (denoted byX) is given by
Contrary to[20,24], we use dimensional regularization to
regularize both UV and collinear singulariti&3his enables - as (4m?| [ d® 1
us to combine these results with the hard-scattering results?x(uvt):EKx(”=t) i ef (ZT)DW '

also obtained by employing the dimensional regularization.
Compared to the hard-scattering amplitude calculation, cal- (4.24

culation of the¢ amplitude is complicated by the fact that where
noncovariant ™, |~ andé-function termgsee Eqs(B4) and .
(B5)] appear in the loop-momenta. To deal with these types _ .

of terms and in order to simplify the expressions we follow Kx(u,t)=2 CFfo dy Fx(u.ty), 4.29
the prescription given ifi20].

The presence of tways matrices in the traces has en-
abled their unambiguous treatment in the naj¢e-
scheme(see Appendix A Additionally, we have obtained
the results using the HV scheme, which, however, introduces
the “spurious” anomalous terms, and hence the additional
renormalization is required. The corresponding renormaliza-
tion constant will be determined by comparing the results

(IT19171g!

obtained in the naives with those obtained in the HV A
scheme.
The perturbatively calculableb(u,t) amplitude can be T
represented as a seriesdnl
as 0‘% S
P =5 + %M + S
D=+ 7D+ o5
Bl1 B2
2 $2ng)
X —§nf (U t)+ |+ (422
666?@2\
(Al
— §
°The evolutional behavior of the DA can be extracted from Eq. §
(3.6) even when using dimensional regularization for both UV and 20555
mass singularities. We introduce the auxiliary sd@feand we in- c1 )

sist on discriminating between UV and collinear singularities. Oth-
erwise, the UV and collinear part of higher-order corrections would  FIG. 7. The one-loop diagrams contributing to t#éu,t) dis-

cancel, leading t@h(u,t) = S(u—t). tribution (3.6), i.e., Eq.(B3) (in the Feynman gauge

053020-10
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d®I 1
2¢
# f(sz (12+i7)?

1 €
Fuv“)m(l‘z)

and theFy(u,t;y) and Ky(u,t) contributions can be read
from Table Ill. The notatioru;=u, u,=1—u has been in- —i(4m)?
troduced, as well as the usual definition of the”*form

1
{F(le)}+E F(ny)_ 5(X_y) jO dZ F(Z:Y): (426)

€

2
Ll Y

Q2

1 €
”'R“)m(l‘z)

the presence of which reflects the chiral symmetry conserva- hered? h i |
tion. This “,.” form is a consequence of the fact that the whereQ">0 repre_ser?tsf(le) auxtiary sc_a € .
axial current is conserved in the chiral limit, and represents a The NLO contributiong'*'(u,t), to which Feynman dia-

general all-order properti21]. grams of Fig. 7 contribute, can then be expressed by
By definition, theD dimensional integral in Eq(4.29 1 c
gives_ zero i_n dimensional regulariza_tion, bl_Jt only_if we do  $M(u,t)=|T{R(e) 1—26(1_ E)K(l)(u’t)
not distinguish between UV and collinear singularitieBy
discriminating between the singularities of different origin, 1 € u?\
we obtain the following expression: +T9(e) 1- = | KO, || =] .
1-2e¢ 2 02
(4.28
where the functiorK® calculated in the naives scheme
amounts to
) u 1 u—1l-u
3The D dimensional integrals appearing in E¢4.24 and (4.30 K =2Cr t (1=e)+ t—u o(t—u)+ t-1-t/] -
are of the form (4.29
— ,,2€ le 1
= a @m)P (12+ip* 3. ng-proportional NNLO contributions

_ By inserting the vacuum polarizations in the NLO dia-
By employing grams of Fig. 7, we obtain the NNLO diagrams displayed in
ZEJ' dPI (I-p)? Fig. 8. Then¢-proportional contributiorfsof these diagrams,
K @mP (2+in*(1—p)2+in) evaluated using Eq$4.13 and(4.14), read

=

p2+#0

2
~ S

and insisting on distinguishing thié functions obtained from the ¢(x)m(U,t): —4 2( - §nf) K(X)nf(U,t)(1+ f)fnf(fyﬂz)
loop-momentum integrations and functions from the Feynman (4)

parameter integration, it can be shown that 2 D
i 1 am? | X[(%) ,U«zef ¢ .1 ]
o) = I 2 2. a2 727,u. | @mP> (F+im®e
(4m)” (p*+in) “\—p°—in (4.30

I'(a—2+e) ['(B—a—¢e)l'(2—¢) ) . i . .
T(a) T5—a—29) (2—e) The fljlnct.|onfnf(e,/¢2) is defined in Eq.(4.14h, while

[(a—1+6 T(2—a—el'(3—¢) Koo, 1S given by
T(a) T(5—a—2e)

1
K, (Ut) =2 CFJ'O dy yFx(u,t;y), (4.31
Here, the first fraction in the terms containihgfunctions corre-

sponds to the loop-momentum integration possibly resulting in UVand Fx(u,t;y) and K(X)n,(uit) can be read from Table III.

singularities, while the second fraction corresponds to the integra- Similarly to Eq.(4.27), the D dimensional integral from
tion over Feynman parameters and consequently, to collinear singLEq_ (4.30 gives '

larities. Fora<2+'€, wheree=0 or <, only the UV singularities

appear, while fora>2+'¢, only the collinear singularities appear.

The two terms in the bracket cancel in both cases,$9,,7 <

=0. However, fora=2+'¢, both UV and collinear singularities are ~ 4There are more two-loop diagrams containing quark loops, but
present, and the cancellation can occur only if we abandon distinthey contribute to then;-proportional NNLO part of the meson
guishing them. singlet distribution amplitude.
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TABLE lII. ContributionsFy appearing in Eqs4.25 and(4.31 and corresponding to the diagrai®§ displayed in Fig. 7 and Fig. 8.
We list also the general results for the integrals appearing in @25 and (4.31), and parameterized by=0 and«= €, respectively.

X Fx(u,t;y) [S3dy YFx(u,t;y) -0,
“ fu;—u
A (1-e)[uro(ur—y ty) +ud(uz—y t) | (1—6):—10(t1—u1)(l:—1) +( ! 2”
1 1 t—ty
U]_ U]_ « U1—>U2
A+B1+B2 (1= e){usd(us—y ty) +uz8(uz—y o)} (= g, M=u| o)+
1 1 172 /)
u u 1 up\“
C1 [Ulltl 5(“1)’t1)]+ [Etl—ul a(tl_ul)(ﬁ) ]+
dPI 1 1 u?\ €
i 4 2 Zef — — -
A P i i | &
1 < 1 <
1-€ 2 1-€ 2
(1) (1)
X[ Tyvle) ( 3 1+E+FIR(6) ( 3\ 1+€ |’
(1-3¢)| 1—s€ (1-3¢)|1— s €
2 2
(4.32

whereQ?>0 represents the auxiliary scale.
The n;-proportional NNLO contribution of the diagrams displayed in Fig. 8 takes the form

(1—6)2( 1- g)
K@) (u,t)

M, =| TR(T(e)
(1— 56)(1—26)(1—36)( 1- 7€

2e

, (4.33

u
62

(1—6)2( 1- g)
K@M (u,t)

+TOerE(e)

(1—56)(1—26)(1—36)(1—56

where the functiork > calculated in the naives scheme the A diagram from Fig. 7 and the corresponding “bubble”

amounts to diagram from Fig. 8 differ from the naives results, and are
given by
) u 1 |fu\© ~Hv ~ ~
K@M (u,t)=2Ce Tld-a+ =l 7] ot-w A (U= da(U,t) +Ada(u,t)

u—1l-u €

+( )} . (4.34 _ 1+7
t=1-t/), =¢ga(u,t)| 1+4e c )

(1— > (1—e€)
4. The HV scheme results

(4.395

The preceding results have been calculated in the naive-
vs scheme. When the HV scheme is used, only the results faind
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1+
4

u0t
Et( u)

2

KI=2Cg{ 4e

u—1l-u

+K@), 4.3
t—1—t (4.37

KEM(u,t)=2Ce | 4e

< and
K@) 1 jufu\¢
—(?) 6(t—u)

+ K@), (4.39

KK 1—
@ +(u—> u

3 t—1-t
#7
respectively. These results, obviously, bear the signature of
FIG. 8. Distinct two-loop Feynman diagrams contributing to the chiral symmetry violation.

$(u,t) distribution (3.6), i.e., Eq.(B3), which have been obtained
by inserting the vacuum polarization bubbles in the one-loop dia-
grams of Fig. 7.

V. RENORMALIZATION AND FACTORIZATION OF
COLLINEAR SINGULARITIES

A. General renormalization procedure

bimy, (U =), (U + AP (U,D) Since in this work we present the calculatignp to
n¢-proportional NNLO contributionsof the hard-scattering
1 amplitude T(u,Q?) (4.1), as well as of the perturbatively
=, (Ub| 1+de———|. calculable part of the DA)(u,t) (4.22), both containing UV
1— E)(l— €) and collinear singularities, here we outline the general pro-
2 cedure for the renormalization of UV and the factorization of
(4.36  collinear singularities.
We introduce the amplitud& [having the same form of
Hence, when using the HV scheme, the functi®d and  the perturbative expansion as the amplitudés,Q?) and

K" in Egs.(4.28 and(4.33 get replaced by d(u,)]:

2
o @ 2
O TSy TS 2 @)y e,
M=MO+ =M +(4W)2[( 3nf)/vt R R (5.1a
where
2

MO={TQ)(e)[agV+ a7V +e%ayV+0(e%)]+ TR (e)[ag + eaf + e?al +O<e3>1}(—2> : (5.1b

M(an)_{r(o)(e l-‘Ejl\)/( )[bnf + brlf UV €2bgfvuv+o(63)]

2 2€

+T (TR by R+ eb] R+ 0] 'R+ O( 3)]}( ) : (5.10
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with a”V(R andb”V("® representing general coefficients in whereB,=11—2/3n;. The inclusion of the factoe I'{))(€)

the expansion ovet. in Eqg. (5.3 turns out to be very suitable for this type of
As a first step, we perform the coupling constant renor-calculation, in which both UV and IR singularities are regu-

malization in theMS renormalization scheme. Note that in larized by the dimensional regularization method. The el-

the functionsI‘(UO\),(e) and F(O)(E) defined by Eq(4.7), the ~€gance and advantage introduced in the calculation by the

Singu|arities are contained in ChOice(5.3) becomes clear when one notes that

. m 1 77_2 3 (1) )
MOl (1-e)=g——=_+5e+0(e) TN (e)= (€)+0(€?), (5.49
=—T(—e)l'(1+¢), (5.23
rPe)= —F(O)(e) +0(éd). (5.4b)

while the remaining artifacts of dimensional regularization

can be found in

So, one can see that the presence of the facttff)(e) in

Eq. (5.3 is natural in the sense that it contains the combina-
tions of I''s that naturally emerge in this calculation, and

leads to their cancellation without expanding the whole re-

I'(l—e¢)

mmw)f: 1+ e(— y+In(4m))+0O(€?)

(5.2b

[and similarly for'{}}, and T'{}) functions (4.16)]. By ex-
pandingl’ functions overe, in relation(5.1), an unnecessary
complication of keeping track of varioug, 72, and In4r

sult overe. That is in contrast to “artificial” choices like
exple(— y+In4m)) and (4)€/T'(1— €) found in the litera-
ture (for example[26,27] and[28], respectively.

terms, would be introduced. Instead, we make use of the By substituting Eq.(5.4) into Eq. (5.1), and performing

freedom in defining thé1S scheme beyon®(°), which is

explained in detail in Appendix Qalong with some other
conventions and “misconventiony” and define the bare
coupling constantag in terms of the running coupling

as(ug) by

4 O¢
(5.3

2\ € 2 1
af(%)[ T%(e)]” asz)( s 1R )

M(l)—[ [aov—l— eaL1JV+ O(e?)]+

n¢g ,UV 2\ —€ ng ,UV 2\ —€
/\A/l(Zv”f):[i (bo | £R agv) +6(b1 - E)
2 2 Q2 2 QZ
€
n¢,IR - n¢,IR
1 b0f I“% ‘ IR blf IU“EQ
+— —| =] af|+e -1 =
— 2 2 Q? 2 Q?

[ao +ea1 +O(62)]]

—€

the coupling constant renormalization according to (&B),
one obtains

2 2, 2
as(4R) ag( ) 2\ .
M= Oy ISR by, S_"‘F; ( _ ‘”f)M%)“L L
40 (4) 3
+oee, (5.5a
where
2 €
(5.5b
bnf,UV qu —€
aUV)+eZ(—2 =] av]+o'(ed
1 2 Q2
bnf,IR #2 —€ ,LL2 2e
' 2 |\ Q
(5.50

Note that the only artifact of dimensional regularization jzaple composite operator from(u,t) (3.6). The UV singu-
we are left with is the dimensional parameterThe result |arities are then factorized in the renormalization constant
(5.9 is given in a simple and compact form in which all Z,, ... After all UV divergences are properly renormalized,
terms in the expansion over are still retained. Also, the the remaining 1/ ¢) and 1/(— €?) collinear poles should be,
distinction between the singularities of UV and IR origin is at some factorization scale, factorizedn, -
still preserved.

If the coefficients of the Fand 1k poles of UV origin
are different from zero, the additional renormalization should We shall now apply the results of the preceding subsec-
be performed, as in the case of the multiplicatively renormaltion to the renormalization of our results for the hard-

B. Renormalization of the hard-scattering amplitude T
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TABLE IV. The NLO coefficientsa;’V('® defined in Eq(5.10 and determined faM (V=TM(u) (4.10.
The ng-proportional NNLO coefﬂuentsb”fUV'R) defined in Eq.(5.10 and determined forA (21
=T(@(u) (4.2D.

uv 1 /1 1
a; CFlTU §+aln(1—u) +(u—1-u)

oV 11 1 )
a; CFE 5 E__ In(1— u)——ln A—u)|+(u—1—u)
I 1
a Cr—4[3+2N(A-u)]+(u—1-u)
1 86—6 5

a; CFE 2 —(86—-7)+ In(1—u)—In%1—u) |+ (u—1—u)
a c 1 37+ 406729Jr 205—-15 85—7 856—6 21 N 1I 31 N 1

2 Fl_U 7 2 n u T 2u ne(1—u) é n°*(1-u)]+(@u—1-u)
bnf,UV 0

ng UV 1 2
blf CFE(]J‘Gln(l*U))‘F(U—»l*U)

111 25 2

by Y co—— (2——>In(l u)——In (1) +5 Lip(w) |+ (u—1-u)
1-u| 3

pt IR

0o cFli—u[3+2 In(1—u)]+(u—1—u)

R oo b 3—9+(—24“’°_34+ 245_18)In(1—u)—2Inz(l—u)+2Li ()| +(u—1-u)
! F1-u| 2 3 3u 2
YR o B 3_11+(_4085—347+4085—270)I 1w (245—34_245—18)m2(1_u)+i1Ing(l_u)
2 Fl-u| 4 9 9u 3 3u 3
245—52 245—-18\ _
+|— 3 + 30 )le(u)—ZLls(u)+4SL2(u) +(u—1-u)

scattering amplitudd@ given by Eqs(4.1), (4.5), (4.10, and
(4.22). By comparing Egs(4.1) and (5.18, we can identify Sy Au)=—Lig(1—u)—In(1—u)Liy(u)— —In(u)ln2(1 u)
M=T(u,Q?)/(N+/Q?) and M D=T0(u).
The NLO coefficientsa’V'® appearing in Eq(5.1b) are w2
determined from Eq(4.10 by expanding the coefficients of + Eln(l_ u)+&(3). (5.7
FUV,R(e) over €, while the n¢-proportional NNLO coeffi-
C|entsbnf UVIR) in Eq. (5.1¢ are obtamed from Eq4.21)
by expandlng the coefficients df(o)(e) uv, IR(e) oVver e. So, after the coupling constant renormalization has been
The special cases of the generalized Nielsen polylogarithmperformed, the hard-scattering amplitu@iéN1/Q?) takes
the form given by Eq(5.5), where the LO contributiof (®)
_ U In(1-x) is given by Eq.(4.5 and the coefficientsa;’"® and
Lio(u) =Sy 4(u)=— f dx— b"UVUR) are listed in Table IV. As expected, the coefficients
0 of the UV poles in Eq(5.5 vanish, since all UV singulari-
ties get removed by the coupling constant renormalization.
lz(X) According to Eq.(3.2), i.e.,

Lig(u)= %ﬂw—Jd

Lru In2(1-x) T(u,Q%) =Ti(x,Q% uf) ® Zr col(X,U; ),
8112( u) :Efo dXT, (56)

the remaining singularities of the collinear type factorize at
appear in these results, and the useful identity is the factorization scala% in
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2 2\ € 2 2\ €
2N . aS(MR) R TIR 2y _ | FF as(,u,:) - E .
2e€ 59
ad(ud) [ u 1 2 (
(47)2 T2 &2 B §nf one can easily demonstrate tizgt ., (X, u; ,u,:) is indeed in-
F dependent of the hard-scattering renormalization s,aéle
nf IR(X U) 2\ —€
Zo T ER)L R as(MF) 1 ~
X ( 2 a2 <X’“>) Zr oi(X,Us 1) = S(X—U) + —7—— a5 (x,U)
B 'R(x,u) ad(u?) 1 2
;_”IR . S\ME - _
+e 5 a; (x,u)| |+ + am)? —& ( Snf)
+ee (5.8 by Fxu)
X T_aloR(X,u)

where the coefficienta/R(x,u) andb"'(x,u) satisfy the

relations b;f"R(x,u) TR }
+€ a; (X,u + ..
TO(x)@aR(x,u)=a/R(u), ?
+oee (5.10
T(O)(x)®k~3i”f"R(x,u)=bi”"'R(u). After factorizing the collinear smgulantles from Eqg.
(5.5by Eq.(5.8), and taking into account thdﬂof af,
With the help of we obtain
|
Th(xQ%ud) o asmR) |y . 7%
W—T (x)+? 2V(x)—afi(x))—ag (x)InQ—+O(e)
2, 2 n¢g ,UV ng,IR
(1R) 2 b (x) by "(x)
+C:Z:;{<—§nf) ( R )—(a V(%) - af(x)
2 2
+ (x) a R(x)— a (x)ln— In—
Q?
IR Mz 1 1“2
— (b7 () - 2a'1R(x))InQ + = ao( )In? Q—-I—O(e) +.e, (5.11)

where theO(€) terms can now be safely neglect@ubtice that we have kept ad" terms until the end of calculation
Finally, having evaluated all the necessary terms, we summarize our result for the hard-scattering amfplitu@é, ,uﬁ)
in the form

2 2
Tk @) T @)+ S 02, 4 OEZ(:;) (—énf)T‘Hz'”f)<x.Q2.ué,ué>+-~. +oo (512
where
TO)(x O2 _Nro _
H(X,Q )—&A (X)+(x—1—Xx), (5.133
2
TM(x,Q?, MF)—Q—; A<1>(x)—Agg>,(x)|nQ—z +(x—1—x) (5.13b
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2 2 2

N 1 M
(2ny) 2 2y__ T | (2ny) F
1g“<nQ%Mwua—55A“mkm+-Aﬂkm A“kme (? Amﬁ<me +2NmﬂﬂnQ2*W**1—@-
(5.130
We have introduced the functios” andA(?,, which are given by
AO)(x)= L (5.14a
1-x’ '
and
1 1-xX
AM(x)=C 1_)([—9—(85— 7) —In(1-x)+ In?(1—x) (5.14b
A2 )= 1 457 [(485—95) (—166+19) i1 13 1 |21 AL
(x)= FIx §+ 18 + ox n(1—x)+ 5 n“(1—x)— —n( X)
(125-26) (46—-4)\ _
+ 3 - Lio(x)+Lig(X)—2S; AX) |, (5.149
while
(1) 1
AL =Cr 7= 3+2In(1-x)), (5.15a
200 1 (245—-8) (—85+6) _
AL (X)) = C,:1 ” 2+ 3 IN(1—x)+2Liy(x)|. (5.15b

The collinearly singular terms removed from E.5) by Eq. (4.22 we identify ME?i)(u,t) and M(i)E’(‘lg(i)(u,t),
Eq. (5.8 correspond to while the Q? scale corresponds to the sc&é. The coeffi-

cients

T&O)(XaQZ)®ZT,00I(X1U;1U‘|2:)

a’V=alR=a;(u,t)

Ny as(pg) 1 ag(pf) 1
= 1 AW+ ——— — AR+

(4m)% —é€°

bpf,uvzbrf"REbi"f(u,t) (5.17

X

2
- §nf) ( - —Ag}}l(u)+ e A(Z”f)(u))

are determined from Eq#4.28 and(4.29 by expanding the
coefficients ofFUV r(€) over e, and from Egs(4.33 and

+eo b4 (Uu—1-u) (5.16 (4.34 by expanding the coefficients df(o)(e)FUV|R(s)
' ' over €, respectively. Although in this work only the

n¢-proportional part of the NNLO contributioﬁgf)(u,t) has
been determined, our symbolic analysis can be extended to
the whole NNLO contributiong®(u,t). In this case the
general coefficients of the order term ¢?(u,t)=M 2

The functionsA!)| (5.19), which appear in Eq(5.16 and as
coefficients of |ﬁ(,u,2:/Q2) in Eq. (5.13, are obviously con-
nected to collinear singularities of the hard-scattering ampli
tudeT.

b’V=b!R=b;(u,t) (5.18

C.R lizati f th turbativel Iculable DA part . N .
enormatization ot the perturbatively caicuiable par appear. After the coupling constant renormalization, the dis-

1. General analysis tribution amplitude(u,t)=M is given by the expression

Next, we proceed to renormalize thigu,t) following the (5.5 with the renormalization scale denoted . The
procedure outlined in Sec. V A. By comparing E§.1) with  complete order3(u2) coefficientM® reads
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. 1|(b A b P ,( P2 P
M(2)=|? (?O— ~—Z ao)+e( 21 Bo ~Z a |+ __,30 ~2 ay|[+0’' ()
~ —€ ~ —€ ~ ~2\ 2¢
1 /o 72 by w2 2 72
“alzelB) ez nlz al)“(—‘% =10 @flge)

(5.19

where Eqs(5.17), (5.18 have already been taken into ac- can make a distinction between the scafe, introduced by

count. . the coupling constant renormalization and the sqzsﬁ@ at
As denoted in Eq(3.8) which the remaining UV singularities are factorized in the
renormalization constai,, .o . It can be easily shown that
the scaleu’ ; vanishes from the end results, i.e., tﬁq,t,en
the remaining UV singularities are multiplicatively renormal- and ¢, depend only on the scaef ,. Hence ug=u% , and
izable and factorize in the renormalization constant,u are the only relevant scales. Also, note thatq(u 2)

E(U,t) =Z4 ren(U,V ;TLZR)@’ dy(v 15;:"% iﬂg)@)zqﬁ,col(svt;ﬂg)

Z 4 ren(U,v; 3) given by =z, ,en(,u ), which is expected, since, in dimensional regu-
~5 5~ larization, =1 when the distinction between UV and col-
as(up) 1 ag(pr) 1 linear singularities is abandoned.
Zoren= I LR e
(4m)* € 2. Remarks on the evolutional part of the DA
% —O—Boao +e E—ﬁoal—aoal +... As explained in Sec. II, the functios(u,t) represents a
2 2 perturbatively calculable part of the unrenormalized pion dis-
tribution amplitude® (u). By taking into account Eq<3.7)
(5.20 A
and (3.8) the distribution®(u) can be expressed by Eq.
with ) (3.9,
bo_ﬁoao_aozo (52])

D(U)=Z ren(U,0; uR) ® by(v,Si 1k, 15) @D (S, 1),
[i.e., Bo(X,y) = Boao(X.y) —ao(x,u)®ap(u,y) =0] emerg-
ing as the condition of multiplicative renormalizability. As Where ®(s,u5) represents the pion distribution amplitude
for the collinear smgulantles they factorize at the factoriza-determined at the scale Its evolution to the scalguR is

tion scaleud in Z coi(S.t; 1) given by determined byg,(v,s; u,13) and given by Eq(3.11):
S osmd) 1 adpp) 1 D(v,1R) = Du(v,5 Uk, 1) P (S, u5).
¢,col— —_do 5
4 € (4m)* —€ The evolution potentiaV/ defined in Eq(2.5) can be ob-
b . tained from(3.5)
0
X _,3030 ag|+e _,Boal_aoal P
v=-27,t | n2—=z :

+oen, (5.22 #.ren MR&M% $.ren

Finally, based on Eq€3.8) and (5.20—(5.22, the function  Using Eq.(5.20, and it reads

dv(v,S; ug,mp) is obtained. It is free of singularities, and - aS(Mé)V . aé(#%)

after thee—0 limit is taken, it takes the form 1 Vot oo (5.243
4 (4)?
as(pR) | ur | @d(pR) h
d)V:l‘l' 471' OI _2+ > where
/'LO (477) V1:ao
0, MR T
X ?In +(b1 Zﬁoal_zaoal)ln? + .. . V2=b1—2,80a1—2a0a1. (524b
0
(5.23 By noting that
~2 ~2
~ o 1 o
Note that the auxiliary scal®? has disappeared after renor- SA(fMR)I M—S— —( S(MR) (as) (5.29
malization and factorization of collinear singularities. We T ug Po as( )
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and by employing the multiplicative renormalizability condi- One can show the agreement between the complete LO pre-

tion (5.21) as well as the result®.24h, the g expansion of  diction given above and the expansi@?26h. The complete

¢y given in Eq.(5.23 can be reorganized and written in the formal solution of the NLO evolution equation was obtained

form in [23] making use of conformal constraints, and the form of
MO can be extracted from the results listed &).

by=p\°+ ¢NLO+ ey (5.268 3. Analytical results up to p-proportional NNLO terms
(obtained using the naiveys scheme)

where After this lengthy general analysis we now turn to dis-
playing the results. Using the multiplicative renormalizabil-

as(ud) nk a%(;'“R) ZMR ity condition (5.21) and the notatior{(5.24h, the renormal-

LO
=1+ In—V,+ V3+ BV =
PV 4w T2t 47-,)2 2 Vit AoV ization constanZ 4 ;en(U,v; 1) from Eq.(5.20 is expressed
by
4. (5.26bH
and Z(ﬁ,ren(u’U;MZR)
~2 2/~ 2
~2 ~92 aS(lu’R) 1 aS(MR) 1
as(ur) =6(u—v)+ =Vi(u,v)+ —
NLo_ TSERT PRy L (5.260 (o)t == SValuw) (41)2 €
Y AT g
. - 2 \[=Vi(up)  Vy'(uwv)
denote the LO and NLO part, respectively. By substituting X —§nf 5 +e€ 5 o
Eq. (5.264 into Eq.(3.11) one obtains
~ - (5.30
D(v,1R) = $y°(v,S kR, 15) @ D(S, 1) _ . .
Here we list only the relevant combinationsaf, b; coeffi-
s(,U«R) ~ cients:
——— (v, S h uh) @D (S, )+

Vi(u,t)=ag(u,t)

—HLOr,, T S(MR) NLO/, T2 u 1 u—1l-u
=0 (v up) + — — P (v pR) zch[_ 1+—}0(t—u)+ ,
t t—u t—1-t
(5.27 +
(5.31a
As it is seen from Eqg5.26h and(5.269, the results of the
two-loop calculation correspond to the first terms of the LO/gf(u,t)=b:f(u,t)—2a1(u,t)
and NLO contributions to the,, function.
The complete LO and NLO behavior gk,(v,s; z3) and, u u
~2 . . :ZCF —1+({ 1+ —]|=+In— H(t—u)
consequently, ofb (v, ) can be determined by solving the t t—u/\3 t
evolution equation(2.5), or equivalently Eq(3.12).
u—1l-u -
+ . .
d t=1-t/)}) ( B
IU'R07~ 5 du(v,s, 1k, o)=V(v,S' , uR)® dy(S',S, 1k, 1uf).
Hr Our results confirm the well-known form of the one-loop
The LO result is of the form kernel V; [2] and the two-loopn¢-proportional kernel\/gf

[19-21]. For later use we also specify the convolution of the
functions given in Eq(5.31) with the frequently encountered
1/(1—x) term:

, v(l
cﬁ’z(zv—l)

V(v,siuk)= ZO

X C3¥42s—-1)

(0)
~ —vn 1B
a§#@ n o

as(ud)

1 1
, (5.28 1= ®V1(xu) Cery B3+2In(1—-u)) (5.323

3/ and
whereN,=(n+1)(n+2)/(4(2n+3)), andC,(2x—1) are

the Gegenbauer polynomials representing the eigenfunctionsy
of the LO kernelV, with the corresponding eigenvalues 1—®V (x,u)

n+1

2 1
A TS CE TR } (5-29 =Criy

i=1

1

YO=C| 3 —+(E—E)In(1—u)+2Li(u) (5.32h
2 13 wu 25
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4. The results obtained using the HV scheme

The functiong calculated in the naives scheme and the
function ™V obtained in the HV scheme are related by

&:ZI:\]/.,UV&HVZIJ\:]/-,COI' (5-33

The factors 2,y yy and 2y o remove the “spurious”

anomalous terms introduced by the presence of dimension-

ally regulated UV and collinear singularities, respectively.
The renormalization of thé" function proceeds analo-

gously to the renormalization @f described in the preceding
subsection. While

alV=a,, biV=bg, (5.34
the coefficients;, b; for i=1 get replaced by
al'V=a,+Aa
biV=b,+Ab;, (5.35

and, according to E(3.8), the UV and collinear singulari-
ties are factorized

¢HV ZqS ren V ZchoI (5'36)

By comparingZ}}Y.,, Zii%, . and ¢y’ with the results
(5.20—(5.23 obtained using the naives scheme, Eq.
(5.36) takes the form

¢HV (Z¢/> renzalv UV)(Zlf-K]/,UV‘f’VZEC/,coI)

X(Zﬁllv,cmZ(/),cm), (5.37
where
Zai\U/EZgi\';,uv
2,72
as(/-LR) 1 Abl
= —| —=——pBoAa;—agAa; |+ 5.3
(477)2 € 2 :80 1 0 1 ( &
and
me ZEG uv
2,72
S(MR) s(,U«R)
=1 Aa;+0O(e))+
A ( l ( )) (47T)2
Ab,
X __BoAaz_aoAaz_alAa1+o(E)
e (5.39

while 28y (u2) = (285:15) ~X(?). The condition of mul-
tiplicative renormalizability of the “spurious” anomalous
terms introduced by the HV scheme reads

(5.40

- ﬁoAal_ ZaoAa]_: 0.

PHYSICAL REVIEW D65 053020

Finally, we list the results obtained by substitutiK 1\),
and KE,?HV (4.37), (4.38 in place ofK®) andK® in Egs.
(4.22), (4.33. The combinations of thaa; andAb; coeffi-

cients, which appear in Eq&.38—(5.42) after Eq.(5.40 is
taken into account, read

u
Aa,(u,t)=2 CF[4?0(t—u)
u—1-u
t—1—-t /|’

u
AbJ(u,t)—2Aay(u,t)=2 CF[?

+ (5.413

8+4I . 0
3 n? (t—u)

u—1l-u
+ .
t—1-—t
The complete renormalization constafit,=
Eq. (5.33 is then given by

(5.41b

Zyy,uy from

Zuy(u,v;pd) = Z30(u,w;nd) ® 200 (w,o; 1d).
(5.42

By utilizing the condition of multiplicative renormalizability
of the “spurious” terms(5.40), it takes the form

s(MR

Zyy(U,v;pd)=du—v)+ (Aay(u,v)+0(e))

a¥(u?) ( 2 )(1—Aa1<u.v>
(4)? 3™\ e 2
Ab]"(u,v) —2Aay(u,v)
+ 5 +0(e) |+
.. (5.43

It is interesting to note that by using the “reduction” formu-
las, which relate the exclusiénonforward”) and inclusive
(“forward” ) kernels[21], the agreement between the renor-
malization constantZy, given above and an analogous
“HV” renormalization constant for the longitudinal spin
structure functiorg, [29] is establishedup to O(e) terms.

For later use we specify the convolution of functions de-
fined in Eq.(5.41) with the 1/(1—x) term:

1 1 1-u
T)(@Aal(x,u):CF - —STIn(l—u) ., (5.443

1 1

and

1
m@[Abzf(x,u)—ZAaz(x,u)]

161—u

Cl
TNFIoy 3

———In(l u)— 8 Li2(u)).

(5.44b
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VI. THE EXPRESSION FOR THE PION TRANSITION where Eq. (6.2, together with Eq.(5.30, determines
FORM FACTOR UP TO n-PROPORTIONALNNLO TERMS  Z . (x,u; 2)| 5_ 1, while takings=1 in Eqs.(5.12—(5.15

. 2 2 .
We now combine the results for the hard-scattering amg'ves’TH(.X'Q A 5=1. .Hereby, we have gonflrmed the,
plitude and the DA obtained in the preceding sections. AftePrescription employed i10] (see Appendix A for further

resolving theys problem and discussing the dependence o etails. ) _ _
the prediction on the factorization scaje?, we finally In the preceding consideration, we have resolvedthe

present the expression for the pion transition form factor uﬁimb'gu'ty of the hard—scatt(_arlng pred|ct|or_1 by adopting the
to n-proportional NNLO terms. naive ys-scheme and by using the unambiguous DA results

(along with the QED Ward identiti¢go single out the cor-
) o rect prediction.
A. Resolving the ys ambiguity

In Sec. V B and V C, we have presented the results of the 2. HV scheme

perturbative treatment of the hard-scattering amplitude | et us now present the calculation performed in the HV
T(u,Q? and the distribution amplitudé (u), respectively. scheme. Continuing t® dimensions and adopting the HV
Along the lines outlined in Sec. Ill, we now proceed to COM-gscheme leads to unique resu]tS, but the “Spurious" anoma-
bine these results to obtain the finite aythCheme indepen- lous terms, which violate chiral symmetry, appear and addi-
dent expression for the pion transition form factortional renormalization is required, both for the DA and the
Fox 77T(QZ), up to theng-proportional NNLO contributions.  hard-scattering amplitude.

The lack of the ambiguity in the DA results along with the  The results for the hard-scattering amplitude obtained in

fact that the prEdiCtion for the pion transition form factor the HV scheme Correspond to tle=0 choice |n(512_

should not depend on the choice of the-scheme make it (516, and the notatiorm™V, TV, ZHV | has been intro-

possible to resolve the ambiguity of the treatment in the  guced. The fact that the UV singularities appearing in the
hard-scattering calculation. hard-scattering amplitude get completely renormalized by
the coupling constant renormalization indicates that, contrary
to the DA case, only the presence of collinear singularities
The appearance of twgs matrices imposes the use of the along with the nonanticommuting nature #f matrix intro-
naive-ys scheme in the DA calculation and the correspond-duces “spurious” anomalous terms.
ing results are presented in Eq5.26—(5.31). The y5 ma- The corresponding renormalization constant for the DA
trix present in the hard-scattering amplitude can also be&enoted byZHV=Zﬂ'\",ZL'3 and displayed in Eq95.38—
treated in the naives scheme in which case a number of (5.43 has been determined by comparing the “correct” re-
results emerge. After the Ward identities of QED are takersults obtained in the naives with the corresponding results
into account, the remaining ambiguity in the hard-scatteringpbtained using the HV scheme. As a result, one finds that the
amplitude result5.12—(5.16 is parameterized by the pa- unrenormalized DA in the HV schem&"V(u’), and the

1. Naive yg-scheme

rameterd (as explained in Appendix A and Sec. IV A unrenormalized DA in the naivgs scheme®(u), are re-
Matching Eqs.(5.195 and(5.32 one observes that lated by
1 o=z, o 6.5
T OVitw=AB() (6.1 v (
Similarly, the renormalization constan; ., and Zi\.,

1 determined in the naives and the HV schemes, respec-
m®V2f(x,u)=A(ci’r')(u)|5:1. (6.1 tively, are related by
Z¢,ren:Zg|i\U/_lzt;¥en’ (6.6

If these relations are taken into account in Eg16), then a
comparison with Eq(5.30, for ui=uf [i.e., for the DA while the additional finite “HV” renormalization of the
®(u) renormalized at the.Z scald, gives renormalized distributiod®"V(v',2) calculated in the HV
scheme, is needed to obtain the renormalized @, 1.3)

_—-—1
Zt.coll5=1=Z g rens 6.2 free of “spurious” anomalies:
i.e., the relation(3.14) is satisfied and the singularities in Eq. P = zfin —1gpHV. 6.7)
(3.13 cancel for thes parameter taking the value 1. Hence, HY
we obtain The prediction for the pion transition form factor cannot
) 5 depend on the choice of the scheme and chiral symmetry is
Z1 col(X,Us wE) = Z coi(X,Us w) | 5=1, (6.3 restored for the complete result, i.e.,

and, consequently, Fooyn=TOT=T 25 Z2,®'

Tr(%, Q2 ud)=Tu(x,Q% ud)| 5-1, (6.9 =THVHVT (6.9
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or equivalently P
. i1 fin s pE— (v, S,ut ud)=V(v,S' , ud)® (S’ .S, uf uf).
Fy*’y‘lT:TH® :TH(ZHV) ZHV® a/'LF
:TEV(DHV*_ (6.9 The 2dependence oTH(x,QZ,,uE) on the factorization
scaleug can be determined analogously to thé depen-
On the basis of Eq¥5.44 and (5.38—(5.43, along with  dence of the DA. Thus, by differentiating E(.1) with re-

Egs.(5.12—(5.16), it can easily be shown that spect touf and taking into account Eq3.5) and(3.14 one
finds thatTH(x,Qz,,uﬁ) satisfies the equation

T=T"Z,, (6.10
J
while u%&—MZTHu.QZ.ME): ~Th(y, Q% ) @V(Y, X uf),
F
Tu=TH'ZI, (6.10 6.19
which, as it is seen, is analogous to the DA evolution equa-
and tion (2.5). Therefore, just as in the case of the DA, any finite
. . 2
2 MV i 6.12 order solution onEq2(6.14)' coptalns the comple.t;eF depen-
T.col™ “T,col"HV s ' dence ofTy(x,Q%, ug) which is not the case with the expan-

with Ty andZt ¢, being given by Eqs(6.4) and(6.3), re- Zlgcno(uSr;g'zE)qtzgr_];;fd at the same orcamd not taking into

spectively, andil=TyZ . ; ; 2 2 ;
IOHence){ we hqveHreTétcnclJ\l{ed the ambiguity appearin'g in tenTirr:etr?: ;i;i?gign%:nmp“tu%(x’(g #7) can be writ
the hard-scattering amplitude calculation by consistently
treating, in either the naives or the HV scheme, both the 2 2y 2 2_A2 2 2
hard—s?:attering amplitudeafemd the distribution amplitude T QO MR =TH(Y, Q7 ke = Q) @ du(yx.Q M?éﬁ)
(which, actually, is free of the/s ambiguity).
with ¢y(y,x,Q? u2) containing all itsu? dependence. This
B. Discussing the factorization scale dependence can easily be demonstrated if use is madeTgfand ¢y
determined up ton;-proportional NNLO terms[see Egs.

After the y5 ambiguity is resolved, and the collinear sin- (5.26, (5.32, and (C3b)]. On the other hand, using Eq.

gularities present in th&(u,Q?) and®(u) amplitudes can- (3.12 one can show by partial integration that H6.15

qel, we are left with the finite prediction for the pion transi- indeed represents the solution of the evolution equation
tion form factor (6.14)

F oo, (Q2)=Ty(x,Q% u2) @ ®* (x, u2) . 6.1 When calculating to any finite order g, it is inappro-
7yl Q)= TH(x.Q% k) (pp). (613 priate to convolute theb(x,u2) distribution obtained by
The hard-scattering amplitudg, (x,Q?, u2), evaluated up to solving the evolution eqzuat2|0r62.5)_[|.e., given by Egs.
n-proportional NNLO terms, is given by Eq5.12—(5.15 (2.8—(2.13] with Ty(x,Q%,uf) obtained by the truncation
with 6=1. of the expansiort5.12. Namely, in the latter function, only
The distribution amplitudeb* (x, 2) is determined by the partial erendence qrg is included, in contrast to the
evoluting <I>*(x,,u§) (obtained at the scalﬁé using some former. Notice that when the complete dependencgpbn

2 . . . .
nonperturbative methodo the scaleu? according to Eq. HE 'S taken into account even the LO term in E@.19 is
(3.1 ug dependent, in contrast ®® given in Eq.(2.4), and this
leads to thm,% independent LO prediction for the pion tran-
sition form factor.

(v, up)= dy(v,S; uE 1) @P(S, 1),
(v 1R) = Pulv,SiuE 10) © B(S, o) Substituting Eqs(6.15 and (3.11) into Eq. (6.13 and

i.e., Eq.(5.27) taking into account that

: (¥, %, Q% 1) ® py(x,8,u2 , ud) = puly,s,Q% ud),
D (v, uf) = ¢yO(v,S; uf ,ud) @ D(S, 1) DU XQUAE) B OV E o) = vl “6.16

2

as(ME) -
4 34; NLO(y, s p2 ) @ D(S, )+ - - - . one obtains
_ _ _ Fyryn(Q)=Tu(y,Q% Q%) @ ¢y(y,s,.Q% ud) @ P* (s, ).

In Sec. V C we have analyzed in detail the evolutional part (6.17

¢y, and as noted there, the two-loop DA calculation explic-

itly gives only the first few terms of the LO and NLO con- The relation(6.16 is valid at every order of perturbative
tributions, while the complete LO and NLO behavior of the calculation[to NLO this can easily be checked by substitut-
DA is determined by solving the evolution equati@h5), or  ing (5.28 and the NLO results of Ref23] into Eq.(6.16)].
equivalently Eq(3.12 It represents the resummation of theqﬁl(ug) logarithms
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over the intermediatquﬁ scale, performed in such a way
that, first, the logarithms Ip@/u3) originating from the per-

turbative part of the DA are resummed, and then the summa-

tion of |n(Q2/,u,2:) logarithms from the hard-scattering part is
performed. Therefore, the summations of flag logarithms
can be accomplished with any choice ,of:, because the
effect in the final prediction, at every order, is the same as i
the complete renormalization-group resummation
In(QZ/,ué) logarithms has been performed.

Consequently, th& « . prediction(2.2) (as well as the

prediction for any other exclusive quantity obtained in the

standard hard-scattering pictuis independent of the factor-
ization scalauﬁ at every order inxg, provided bothT and
& are consistently treated regarding uhé dependence. The

intermediate scale at which the short- and long-distance dy-

namics separate, the factorization sqa}?_e disappears from
the final prediction at every order ing and therefore does

not introduce any theoretical uncertainty into the PQCD cal-

culation for exclusive processes.

We would like to point out here that by adopting the com-
mon choiceu=Q?, one avoids the need for the resumma-
tion of the In@Q%u2) logarithms in the hard-scattering part,

making the calculation simpler and hence, for practical pur-

poses, the preferable form 6f « y,,(QZ) is given by

Foryn(Q3)=Tu(x,Q% Q%)@ ®*(x,Q%).  (6.18

C. Presenting the final results

Finally, we summarize. Taking into account E¢5.12—

of

PHYSICAL REVIEW B5 053020

2
m
AR (x)+ AD(x)In —F;

N
2 T
TEM (x,Q% u2=Q% ud)= @

+(X—1-x), (6.200

and

f

1
O)(x)y= ——
AC)= 7=,

- (6.21a

A(l)(x) =C

1—X
-9- Tln(l—x)+ln2(1—x) ,
(6.210
1

F1—x

+(13 1)Inz(l x)——In3(l X)

AN)(x) =

(6.219

14 .
= Li2(0)+Lis(x)=281x) |.

To obtain the distribution amplitudé(x,Q?) one evo-
lutes CI)(x,,uS), determined using some nonperturbative
methods at the scalg3, to the scaleQ? according to Egs.
(2.9—(2.13.

By substituting Eqgs.(6.19, (2.8), and (2.10 into Eg.
(6.18 and taking Eq(C3b) into account the pion transition
form factor F ... expressed as a perturbative series in

7 YT
as(u?) reads

(5.15 and the results of the precedmg subsections, the hard-

scattering amplitud@(x,Q?, u2=Q?), free of all effects of
collinear singularities (the terms containing functions

AWIN"u2/Q? factorized ingy), takes the form

Th(x,Q? u2=Q?)

)
(4)?

ag(ud)
.

=TPxQ) + ———TP(x,Q% uE=Q%) +

X

2
B §nf)Tf‘lz'nf)(leZIMIZ::QZIMEQ)_F BRI e ’

(6.19
where
TO(x 02)= N A©) _
P QY= AP+ (10, (6.208
N
T,(})(X,QZ,,u,ZFQZ):Q—;A(l)(x)+(x—>1—x), (6.208

S(MR) as(MR)
FV* VW(QZ) F(VO)VW(Q2)+ 41 (‘Yl)W(QZ) (477)2
% _En> (2nf)(Q2 )+ + ...
31 yrym KR ’
(6.22
where
F(Q)=TP(x,Q3)ed2(x,Q?), (6.233
FO(Q)=TP(x,Q%Q) @ 2°(x,Q?)
+TO(x,02) @ ®"O(x,Q?),  (6.23b

2)=T&"(x,Q2,Q% u2)® ®-°(x,Q?)

2
MR
+T‘H°>(x,Q2>®<DNL°<x,Q2)In§

(2 n¢) (Q2

7777

(6.230

As it is seen, we are left with one expansion parameter:
as(,uﬁ). The scale,u% actually represents the renormaliza-
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tion scale of the complete perturbatively calculable part ofconstant rather than into the coefficients of the perturbative

the pion transition form facto(6.17), i.e., of expansion. In practice, this amounts to computing quark-loop
b, 2 by , 2 insertions in the diagrams of that ordésince By=11
Th(y, Q% up) =Th(y,Q%Q%) ® dy(y,s,Q%, o). —2/3n;, ...) andsetting the scale by demanding that the

(6.249  coefficients of the perturbative expansion ayéndependent.

Although the physical pion transition form facter ,, (Q?) Hence, a<|:cording o |thfe BI;]M scale setting pfrescrifption,
. T e renormalization scale for the pion transition form factor
does not depend on the choice of the renormalization scalté]ntering at the NLO is determined from the NNLO

KR, when calc;ulatmg to "’“?y finite order a residual depen n¢-proportional terms, and is fixed by the requirement
dence on theug scale remains.

(2ng)
Fo " (Q4ud)=0. (7.
VII. NUMERICAL PREDICTIONS vy
A. Fixing the renormalization scale according Note that in the present calculation the effective naturﬁﬁ)f
to the BLM procedure has been implicitly assumed, i.es% has been treated as

The d d £ fini q dict h independent of the momentum fractionthroughout the pa-
e dependence of finite order predictions on the renor, e ohenwise the factorization of singularities would take a
malization scale introduces a theoretical uncertainty in thei umbersome forniif manageable at all Apart from that we
interpretation(see[8] for a detailed discussionwhich is 14 be faced with the problem of a clear separation of the

especially evident in calculations to lowest order in ordergy . ang long-distance effedt30]

ag. It would be advantageous to optimize the scale choice Therefore, the only consistent way to assess the BLM

according to some sensible criteria. The BLM procedure;.gie is to solve Eq(7.1), resulting in some mean value
[13-15 offers such criteria. The essence of the BLM proce-g| M scale

dure is that all vacuum-polarization effedtgluon vacuum

polarization contribu_tiorjs, analogous to QED, as well as wi=ud y=agm(Q? Q2 (7.29
quark vacuum polarization and vertex correctjofiem the

QCD g function are incorporated into the running coupling where

AR ()@ D o(x,Q?)
ADX) @D o(x,Q%) + A (X) @ Dy o(X,Q?) ]

aBLM(QZ)ZEXP( - (7.2b

As it is seen, the scalg3, \, depends on the specific form of the distribution amplitude.

In Sec. Il the nonperturbative input, i.e., the distribution amplitdxﬂg,,ué) =®(X,u0)/N, determined at the scaﬁeﬁ, has
been presented in the form of an expansion over Gegenbauer polyndghidls The evolution to the scalﬁﬁ has been
described by Eqs2.11), (2.13. Retaining only the first three terms in the general expansion of the pion DA given in Eq.
(2.10,

(X, 1ud)=6x(1—x)[1+B,C342x— 1) +B,C342x—1)],

(7.3
the LO and NLO contributions tQ?F ,«..(Q? take the form
Q¥ (Q%)=2C,f.{3[1+B5°(Q%) +B;°(Q)]} (7.4
295 10487 -
2 (1) 2y — _ “IYRL0 A2 LO;/ ~2 'NLO, ~2
while then; proportional NNLO contribution amounts to
QZF(;“;}T(QZ)=2C7,f,T (—43.47+78.4B5°(Q?) +197.16B°(Q?))
295 10487 ui - u’
. S9N L0, ~2 LO, ~2 ~R ' pNLO, ~2 ~R
+| —20+ 7gB5%(Q%) + —5-Bi°(Q ))In Q2+ 3k§=)2 BY Q%) |In—|. (7.6
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Therefore, on the basis of Egg.1) and(7.6) one finds that the BLM scale for the pion transition form factor is given by
Eq. (7.29 with

—43.47+78.47 B5°(Q?) +197.165 BL°(Q?)

a Ay=exp| — _ 7.
BLM(Q ) P — 20+ ESBLO(QZ) + 10487BLO(Q2) + 32 /BNLO(QZ) ( 7)
18 2 225 4 &, Tk
|
Expression$6.22) and(7.4)—(7.6), representing the com- as(,u%)
plete NLO prediction for the pion transition form factor, to- QZFy* VW(Q2)=0.185+ (—0.309+---.
gether with the expression3.2g and (7.7), specifying the m (7.10

corresponding BLM scale, are valid for an arbitrary distribu-
tion amplitude (with the evolutional effects includedand

represent the main results of this paper. This prediction obtained with the asymptotic distribution

and theMS definition of the strong coupling renormalized at
the BLM scale given by Eq(7.9 is displayed in Fig. 9,
along with the CLEO experimental data. For comparison
Based on the general expressions derived in a precedingso included in Fig. 9 is the NLO prediction obtained by
subsection, we now proceed to obtain numerical predictiongmploying the widely used choige3=Q?. The usual one-
for the pion transition form factor using two specific distri- joop formula for the QCD running coupling constait5)
bution amplitudes: the asymptotic DA and the CZ distribu-has been used with = Ags=0.2 Ge\,.
tion amplitude. As it is seen from Fig. 9, the NLO results for the pion
There is increasing theoretical evidence coming from difransition form factor display the following features. First,
ferent calculationg31-34 that the low energy pion distri- inclusion of the NLO contributions decreases the LO predic-
bution amplitude does not differ much from its asymptotiction. Second, predictions based on the asymptotic distribu-
form ¢,(x)=6x(1—x) [which represents the solution of tion are in reasonably good agreement with currently avail-
the evolution equatiori2.5) for uZ—o]. The distribution able experimental data.
¢(x,,u§)= ¢a4(X) is characterized by the fact that at the LO  In comparison with the ChOiCﬁé=Q2, the BLM scale
it has no evolution, while the NLO evolutional effects are choice increases the absolute value of the ratio of the NLO to
tiny [8], and for the purpose of this calculation these effectd O prediction by~11—6% for the values of)? between 6
can safely be neglected. and 20 GeVY. As an extension of the BLM scale-fixing pre-
The expression for the pion transition form factor scription to all orders in perturbation theory, [iB5] all the
Q%F «,.(Q?), based on Egs(6.22 and (7.4—(7.6), and  (B,as)" contributions to the pion transition form factor were
corresponding to the asymptotic distribution then reads ~ resummed under the assumption of “naive non-
Abelianization” (NNA). Our results cannot be directly com-

2 2, 2 : oL
as(1R) as(uR) pared with[35], but there are indications that the usual BLM
QZFV*yﬁ(QZ):ZCWfﬂ{3+ 2. (T20+

B. Numerical predictions in the MS and ay schemes

(4m)?
0-5 T T
2 B&
X —gnf —43.47—20In(¥ +--- 04 | = CLEO (1998) j
_ —— Lo,
> i ——— NLO, (1309 |
0.3 s
+ - ] . (78) (3. ,,,,,,,,,,,,,,, NLO (FE:H: )
— as —FBLM
_ o _ o2t N .
The n;-proportional NNLO contribution determines the e :4% ,,,,,,,,,,,,,,,,
value of the BLM scale o e
0.1 - T
Q2
K= (1gm)°~0.114 Q*~ —-. 79 0.0 ' ‘ ‘ :
0 4 12 16 20

One notes that this scale is considerably softer than the tota

momentum transfe@?, which is consistent with partitioning FIG. 9. The LO and NLO predictions for the pion transition
of Q% among the pion constituents. It should be pointed out¢om factor (scaled withQ?) Q°F ,«,.(Q?), obtained using the
however, that in theMS scheme the BLM scale does not asymptotic DA. The NLO predictions are obtained using the BLM
reflect the mean gluon momenta. Based on Eg8), the  scaleu?=u3 y=Q%9 (7.9 and the commonly used choiqek
NLO prediction amounts to =Q?. The experimental data are taken fr¢&8].
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0.5 ‘ ‘ (7.9 satisfy the requirementg(u3)<0.5 for Q=6 Ge\?.
=CLEO(1998) |0 It should be pointed out, however, that there is an intrinsic
disadvantage in using thEIS running coupling[given by
Eqg. (C5] as an expansion parameter, since it has a simple

o
=
T
L

——— NLO, (HzFFQz)

— 2 2

30 NLOg (st | | pole atu2=A2 This does not reflect the nonperturbative
% - behavior ofag(u3) for small w3, and a number of proposals
Gzl o = have been suggested for the form of the coupling constant in
u_i _ ';i f | this regime[39,40, but its implementation demands caution
S o1 ;ﬂr"ﬂ**' [8]. For a recent application ¢#0] to the calculation of the

pion transition form factor, segll].
So far nothing has been said concerning the renormaliza-
0.0 ‘ ‘ ] ‘ ‘ tion scheme dependence of the predictions. It is known that
0 4 802 GoV? 12 16 20 the renormalization scheme dependence can be avoided by
[Ge¥'] considering relations between physical observables, which
FIG. 10. The LO and NLO predictions for the pion transition Must be independent of the choice of the scheme and scale to
form factor(scaled withQ?) Q2F ,,.(Q?), obtained using the Cz  any fixed orde_r of perturbation theory. This requirement can
distribution amplitude. The NLO predictions are obtained using thed€ expressed in the form of “commensurate scale relations”
BLM scale determined from Eq7.7), and the commonly used (CSR), in which the BLM scale-setting method is used to fix
choice u=Q?. The experimental data are taken fr¢&8]. the renormalization scalfl4]. In practice, a CSR for two
observables is obtained by relating their respective perturba-

scale-setting overestimates the size of higher-order contribfive predictions calc_ulated |_n,_for _example, tvES _scheme,

tions associated with the one-loop running couplia]. and then by algebraically ehmmatu_quS. The_ ch0|ce of the
The complete NLO prediction for the pion transition form BLM scale ensures that the resulting CSR is independent of

factor corresponding to the end-point concentra@ dis- the choice of the intermediate renormalization scheme. Fol-

tribution amplitude{37], given by Eqs(7.4—(7.6) with the lowing this approach, if15] the exclusive hadronic ampli-
coefficientsB,=2/3 andB,=0, is shown in Fig. 10. Owing tudes were calculated in th®, scheme, in which the effec-

] . . . . 2 . .
to the fact that the LO and NLO evolutional corrections totlV€ coupling ay(x7) is defined from the heavy-quark
the CZ distribution are considerab[@], they have been PotentialV(u?). The ay scheme is a natural, physically
taken into account. The BLM scale for the CZ distribution is Pased scheme, which by definition automatically incorpo-
higher than the BLM scale for the asymptotic DA, and it fates vacuum polarization effects into the coupling. Tt

varies from Q2/1.84 to Q%2.37 for Q% between 2 and Scale which then appears in the, coupling reflects the
20 Ge\2. mean virtuality of the exchanged gluons.

As it is evident from Fig. 10, the complete NLO predic- If use is made of the scale-fixed relation between the cou-
tion for the pion transition form factor derived from the Cz Plings ays and ay [15]
distribution exceeds the experimental data significantly. This

result can be considered as a serious failure of the CZ distri- 53 2 ) ay(ud) 8Cp
bution amplitude. Comparing Figs. 9 and 10, one observes ~ams(€ ~“ay) =av(uy)| 1+ ————=+--- |,
that the difference between our results for the asymptotic and (7.1D

CZ distribution amplitudes is sufficiently large for an unam-

b@gl_Jous experimental discrimination betV\_/een _the_ two poSSi'Ehen, to the order we are calculating, the prediction for the

b|!|t|es. _Therefore, one expects that the pion distribution am'pion transition form factor takes the form

plitude is closer to the asymptotic form than to the strongly

end-point concentrated DA's like CIB3].
The size of higher-order QCD corrections represents the 2y_(0) 2 (1) 2.

missing ingredient in assessing the validity of the perturba- Fyryal QD =Fow, (O + 4w ynl QO+,

tive prediction and the convergence of the expansion. One (7.12

hopes that the BLM prescription offers a systematic way to

choose the renormalization scale and minimize higher-ordegith the “V” scale being given by

contributions. In order to check this for the case of the pion

transition form factor, one would have to evaluate the com-

plete NNLO contribution, which is a very demanding task.

Another sensible indicator of the applicability of the pertur- , ,
bative calculation is the size of the expansion parametelOW: On the basis of Eqs7.9) and(7.13 one finds that the

as(,u%)- The rather low BLM scale given in E¢7.9), and Vv sca!e, corresponding to the asymptotic Qistribution and
consequently the Iarg@s(,uéLM), guestions the applicability reflecting the meatNLO) gluon momentum, is

of the perturbative prediction at experimentally accessible
momentum transfers. Namely, the NLO predictions obtained
in this paper assuming the asymptotic DA and the BLM scale

av(,U«\z/)

2 2

QZ

2vas__ 2.
(19)*°~0.6025Q%~ 7.

(7.19
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0.5 ' ' sponding BLM scale. Derived in thélS schemdfor which
= CLEO (1998) the suitable compact forifb.3) has been adoptédhese ex-
04 | LO,. 1 pressions are valid for an arbitrary form of the distribution
~~~~~~ NLO,, - o, (1) amplitude (with the evolutional effects taken into accoynt

and represent the main result of the present paper.
It has been demonstrated that the prediction for the
leading-twist perturbative QCD prediction for the pion tran-
—— sition form factor is independent of the factorization scale
——;i.'.ﬁﬂ'rf L ,uﬁ at every order in the strong coupling constan{ pro-
- - vided both the hard-scattering amplitude and the pion distri-
bution amplitude are treated consistently regarding th@ir
0.0 . \ . \ dependence. The factorization scale disappears from the final
8 , 12 16 20 prediction at every order img without introducing any the-
Q" [GeV'] oretical uncertainty. Consequently, for practical purposes the
simplest and commonly used choiy:ézQ2 is justified at

o
w
\
|

Y
‘
!

2 2 2
Q*F, (Q") [GeV’]
o

o
-
I

FIG. 11. The LO and NLO predictions for the pion transition . . .
form factor (scaled withQ?) Q?F ,«.,.(Q?), obtained correspond- the intermediate steps of the CalC_UIat'on'
ing to the asymptotic DA in thex, scheme withu2~Q?%1.7 Based on the general expressid622 and (7.4—(7.6),
(7.14. The experimental data are taken fr§8g]. the NLO predictions for the pion transition form factor have
been obtained using the asymptotic and the CZ distribution

Just for comparison, it is worth mentioning here that theamplitudes, with the renormalization scales being given by

. . . the respective BLM scales determined from E@s2a and
correspondlngu\z, scale for the pion electromagnetic form - A i
factor amounts t@?2/20 [15.8]. (7.7). These predictions are shown in Figs. 9 and 10, respec

Furthermore, sincery is an effective running coupling tively. By comparing these figures, one observes that, while,

i . . e on one hand, the prediction derived from the asymptotic dis-
defined from the physical observable it must be finite at low, ibution is i d th th | ilabl
momenta, and the appropriate parameterization of the Iowt-rI ution is in good agreement with the presently available
ener re, ion should in princiole be included NeverthelesseXpe”memal data, on the other hand, the prediction obtained
in thgyenegr region we gre in?erested in the.usual One_Iooassuming the CZ distribution exceeds the data significantly,

gy reg ! glearly demonstrating the inadequacy of the CZ distribution.

conventional solution of the renormalization group equationThiS is in accordance with the conclusions reachefBin-
for the QCD couplingC5) can be employed. The numerical 34], according to which the distribution amplitude is closer

f,\r”o_ncw) prédlsctlo(r; f102r)1r27e f!‘)on gﬁgS'tf;(j&;r?e;aac\:\:itﬁbflned to the asymptotic form than to the end-point concentrated
as: : ) Y . distribution of the CZ type. The renormalization scaué

=0.16 GeV is depicted in Fig. 11. As can be seen, it is in .. ) : - -
good agreement with experimental data. The LO QCD Cor]‘|xed_acc:ord|ng to the BLM scale setting prescription within

rection, i.e., the NLO contribution, lowers the LO prediction (€ MS scheme and corresponding to the as%/mptouc pion
for ~16% for Q2~6 Ge\2, i.e., for ay(u2)~0.3. Q|str|but|qn amplitude, turns out to breR‘B,_M~Q /9. Thus,
in the region 0fQ?<8 Ge\?, in which the experimental data
exist,,uéLM<1 Ge\2. Consequently, the prediction obtained
VIil. SUMMARY AND CONCLUSIONS with u2=pu2 ,, cannot, in this region, be considered reli-

In this paper we have determined the NLO Brodsky-aPle. _ .
Lepage-MackenziéBLM) scale and obtained the complete I addition to the results calculated with the asymptotic
NLO prediction for the pion transition form factor. distribution andMS renormalization scheme, the numerical

To determine the NLO BLM scale, a consistent and de-rediction assuming the same distribution but in g
tailed calculation of both the hard-scattering and the perturscheme, with the renormalization scal§=ug=e"*ud,
batively calculable part of the pion distribution amplitude ~Q?%2, has also been obtained. It is displayed in Fig. 11
has been performed up to-proportional NNLO contribu- and as seen, is in good agreement with experimental data.
tions. The calculation has been carried out in the FeynmaBue to the fact that the scale\z, reflects the mean gluon
gauge. To control both the UV and collinear divergences thenomentum in the NLO diagrams, it is to be expected that the
dimensional regularization method has been employed. Bhigher-order QCD corrections are minimized, so that the
combining, according to Ed3.13, and matching the results leading order QCD term gives a good approximation to the
for the hard-scattering amplitude with the corresponding reecomplete sum.
sults obtained for the distribution amplitude, a proper cancel-
lation of collinear singularities has been established and the
vs ambiguity problem(related to the use of dimensional
regularization has been resolved using the naivgas well One of us(B.M.) acknowledges the support by the Alex-
as the 't Hooft-Veltman(HV) schemes. As a result, the com- ander von Humboldt Foundation and the hospitality of the
plete leading-twist NLO prediction for the pion transition theory groups at the Institut fuPhysik, Universita Mainz
form factor has been obtained as given by BE@s22 and and Institut fu Theoretische Physik, Universitavurzburg.
(7.4—(7.6), and Egs(7.2a and(7.7), specifying the corre- This work was supported by the Ministry of Science and
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Technology of the Republic of Croatia under Contract No.man [17], and further systematized by Breitenlohner and
00980102. Maison[18]. In this scheme, which we refer to as the HV
scheme, the anticommutativity ofs is abandoned and re-
APPENDIX A: 5 PROBLEM placed by

1. General remarks {7V, vst=0 for u=0,...,4

When using dimensional regularization, one runs into
trouble with quantities that have the well-defined properties [Vu,vs]=0 for u=4,...D. (A3)
only in D=4 space-time dimensions, that is, with the Levi-
Civita tensore,,, ., Which is a genuine 4 dimensional ob-
ject, and consequently with the pseudoscatarDirac ma-
trix. The generalization of thes matrix in D dimensions

For calculational purposes, it proves useful to introduce the
following notation[18]:

represents a problem, since it is not possible to simulta- 9ur=9ur T Gurs (Ada)
neously retain its anticommuting and trace properties. In X
practice, the ambiguity arises when evaluating a trace con- Yu=Yut Yur (Adb)

taining a+ys and pairs of contractegt matrices and/or pairs
of Dirac slashed loop momenta. |

! _ _ L=, (A4c)
To deal with ays matrix, several possible schemes have
been proposed in the literature. Following the previous calyhere
culation of the pion transition form factdrl0], we have
compared two of them in the present calculation. Jh=4 Ght=D-—4 A5
In the so-called naives schemd 16], the anticommuta- 9u=% Qu ' (AS)
tion property ofys and
) =0 Al Kk A vV )
s} (AD 0,850, 80 (10=%(00.  (AB)
is retained, while the cyclicity of the trace is abandoned, sq , )
that, for example, The relation(A3) can then be written as
Tl yséy, bedy*]=(D—6)Tr ysabed], (A2a) Vu¥s=— Vs ¥ut ¥sVu- (A7)
Tr[ y*ysay, bed]=(2—D)Tr[ ys&beéd]. This prescription forys violates the Ward identities and in-

(A2b)  troduces “spurious” anomalies which violate chiral symme-
) ) ) . try. To restore the Ward identities, finite counterterms should
The traces obtained by cyclic permutation of the matrices)e added order by order in perturbation theptg]. In this

Ys: & vu, b, €, d, y* can be divided into two classes, scheme, the cyclicity of the trace is retained and the traces
depending on the location ofs with respect to the con- given in Eq.(A2) become

tracted vy matrices: those in whichys is outside the con-

tracted pair as in EqA2a), and those where’s are con- T ys&y, bedy*]=Ti y* ysdy,bed]
tracted throughys as in Eqg.(A2b). As is seen, the result
(A2a) and the result(A2b), in which the anticommuting =(D—6)Tr] ysabéd]. (A8)

property(Al) of y5 had to be used before the contraction of
y matrices can be performed, differ By—4. Consequently, As is seen, the resulA8), obtained in the HV scheme, cor-
if the trace is multiplied by a pole iD —4, there appears a responds to the resulA2a), obtained using the naives
finite ambiguity in the result. schemé.
An alternative scheme has been proposed in the original If a trace contains an even number of matrices, then
paper on the dimensional regularization by 't Hooft and Velt-the propertyy2=1 can be used to eliminatgs’s from the
trace, and the Ward identities are preserved if the naive-
scheme(Al) is used[16] (the cyclicity of the trace is re-
5The presence of a pair of Dirac slashed loop momenta leads istored and the corresponding results are unambigu@rs
fact to the appearance of a pair of contracjethatrices, since the
loop integration

o) P GAs_ stat_ed in[17],_ shou_ld we allow to anticommutes before
f _ =g T+ - continuation toD dimensions and after that use the HV scheme
(27)P (Denominatoy 9 defined by Eq(A3), different results would emerge and ambiguity
would reappear. We would again obtain two classes of results: the

transformd “I7y,.- - -y, into y,.- - - ¥yl g+ - - -. Apart from the con-  result(A8) for yg outside the contracting pair of matrices, and the
tracting y matrices and pairs of Dirac slashed loop momenta, theesult(A2b) for anticommuting the matrixss in between the con-
rest of the trace elements could be treated as 4 dimensional, so thefacting y's. In this sense, the HV scheme would also lead to am-
(anticommutation withys does not make a difference. biguous results.

053020-28



BRODSKY-LEPAGE-MACKENZIE SCALE FOR THE PION . .. PHYSICAL REVIEW B5 053020

the other hand, in the HV scheme the “spurious” anomaliescontractingy's and pairs ot’s, as in Eq.(A9a). Correspond-
can occur owing to the non-anticommuting propertyygf’ ing to the case whef's are contracted through the matrix

As for the traces containing an odd numbergfmatri-  is §=1. For ys not being placed between the pairst&f, as
ces, we are left with the above mentioned ambiguities in thén Eqg. (A9b), § =0, while for y5 placed between the pairs
results. V's, as in Eq.(A9c), & =1. The contributions obtained using

the HV scheme correspond ®=0. The contributions de-
fined in Eqg.(4.68 of the individual NLO diagrams of Fig. 4

can then be parametrized by
There are two approaches one can take in order to resolve

the ys ambiguity problem in practical calculatiorisuch as 1 1
the calculation of the hard-scattering amplitude of the pion  Ta11(22=| — 5[y +28]-1) = 5([mr=26]+1)
transition form factor. For each diagram, one can determine

2. The y5 ambiguity in the y* y—»qaamplitude

the way of manipulating the/s matrices so that the Ward +0(e) (A10)
identities are preservef®,10]. Alternatively, one can per-
form the calculation using the HV scheme, and then intro- Tas=[—[7uv+28]+In(1—u)—1]+0(e) (A1l

duce an additional renormalization constant which eliminates

the “spurious” anomalies introduced by this prescription. In

[10], the counterterm at the NLO order was calculated for the Tazs=[[nuv+28(1+ &)1+ 2mr+In(1—u)—4]
special case of the hard-scattering amplitude already convo-

luted with the asymptotic distribution amplitude. +0(e) (A12)

We have calculated the LO, NLO, anu-proportional
NNLO terms to the hard-scattering amplitude using both the ~
naive and the HV prescription foys. By combining these Ta13=
results with the results for the distribution amplitude ob-
tained in the same order, ambiguity in the najsescheme
has been resolved and the HV renormalization constant de-
termined.

Although our end NLO result for the hard-scattering am-
plitude agrees with the result given|[ih0] [determined up to
O(€%], the same is not true for the contributions of the
individual one-loop diagrams of Fig. 4 when calculated using
the naive prescription fots. 1-u 1-u

Namely, owing to the fact that the relative positionaf ———1In?(1-u)+10——In(1—u)
with respect to the Dirac slashed loop momenta was ignored, u u
classes of terms appearing in the contribution of individual (A14)
diagrams were omitted ifl0].

For example, the trace corresponding to the diagk®  where to facilitate the comparison with the results of Ref.
of Flg 4 leads to three different results depending on thg10], we have introducedy = 1/e+In u2Q? nr=—1le
position of ys: —Inu?Q? and 1E=1/e— y+In(4m). In [10] the results cor-

T ysP Y (XP= ) (XP=d—1) " (~(Lp=t)y']  EPONTGIOY L I R4S A0 and(ALS, as well as 10
(A9a) It was argued irf10] that since the quark propagator and
A - AV (— (] — _ the photon vertex corrections were related by the Ward iden-
FTLY ysPy (XP= @) (P d=h y" (= (1P~ b)] tity of QED, they should be calculated as if they were not
(A9b) part of the trace withys. This then determines the choice
T (= (1=X)P—H) Y ysPy“(XP— ) 7, (XP—g—1) "] 6=0 in diagramsAl1, A22, A33, A23, andA13. The re-
(A90) maining ambiguity associated with the [Bollineap pole in
diagramA12 was resolved by repeating the calculation in the

In Ref.[10], however, only the results for trac€89a) “equal-mass regularization,” in which the quark and the
and (A9b) were given. To conveniently describe thkg am-  gluon were given the same small massit was found that
biguity present in the contributions @23 and other dia- the correct choice for diagraml?2 corresponded to the result
grams, we have introduced the paramet&rand §’. Thus, obtained by contracting thgs throughvys, and forys placed
5=0 corresponds to the situation wheyg lies outside the between thet’s (although the latter requirement was not

stressed i110]), that is, foré=1 and ' =1.
We have confirmed these choices by our calculation. In
Again, should we allow to anticommutg, before continuing to ~ Presenting our results in Sec. IV, we have already adopted
D dimensions and then to use the HV scheme, different classes dhe 6=0 choice (or, equivalently, the HV resulisfor dia-
results could be obtained, depending on the positiopssf. Hence, gramsAl1l, A22, A33, A23, andA13, as well as for the
in this scheme, the ambiguity would still be present. diagrams obtained from these by inserting the quark vacuum

1
[7]UV+25(1+ 5,)]+27]|R 1+ aln(l_u)>

+0(e)

1 ) 3—u
+ Gln (1—u)— Tln(l—u)—4
(A13)

~ 1—u
Tar= —ZTIn(l—u)[n,R+ 25(1+6")]

+0(e),
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polarization loop. The ambiguity present in diagrad2 and In Sec. Il the distribution amplitud@(u,t) for a state
the corresponding vacuum polarization diagram, is paramcomposed of a free quark and antiquark has been introduced
eterized only bys, with & taken as 1. (3.6):
A remark concerning the presentation of théy—qq
amplitude in the form given by Eq2.1) is in order. But)= J' [u—(1-uw]z /2
The multiplication of the amplitude by the factor
1/(ie?)N €,,. 5P q?" and the contraction of the Levi- .
Civita tensors before the loop integrals are evaluated simpli- ><<O|‘?(—z) Y s Q‘I’(Z)MEUL
fies the calculatiorfsince then at most three-point Feynman 22 "IN

integrals appear Since the generalization of the Levi-Civita

tensors toD dimensions is not unique, caution should bewith z"=z, =0. The quark and antiquark carry the momenta

exercised when contracting these tensors. When using ti& and (1-t)P, respectlvely, and the frame in whidh*

HV scheme, the relatiofil8] =P%+pP3=1, P =P%°-P3=0, P, =0 has been chosen.
The path-ordered factdi (3 3,

4
PRBIE, | = > sgnm Hl g’v‘;(i) (A15)

TeSy

1

Q=exp[igJ dsA*(zs)z‘/Z],
-1

should be employed, in which cade=2/Q*. Note that the

loop integrals with terms in the numerator of the integrand
will be encountered. Only the one-loop integrals containin

12 terms are different from the correspondmg counterparts = (ig)"

1 n
— + -
with | in place ofI while the presence of thes. . - J#n Q_n:o n! J_ll_k[ dsA™(s2)Z /2. (B1)

terms does not alter the usual results. When using the naive-
R, H e : H + £
ys scheme, theg”  from Eq. (A15) can be replaced by The path-ordering is |Tmater|al singe” fields commute. In
e V(i) 4 the light-cone gaugeX™ =0), this operator is unity, but gen-
9 and then N=2[(D-2)(D-3)]2/Q". We have erally (for example, in the Feynman gauge we are using

checked our results by evaluating the contributions with andntroduces extra diagrams. Theth order term in the(B1)

without the Levi-Civita contraction. The results agree. series will correspond to diagrams with gluon lines at-
tached to the operator vertex. By inserting the term

makesé(u,t) gauge invariant, and it can be expanded in
gperturbation theory as

APPENDIX B: FEYNMAN RULES a1
FOR THE PERTURBATIVELY CALCULABLE PART B(1—s)6(1+s,) =i f — e (e =) (B2
OF THE DA 2w

In this section we list the Feynman rules for th¢u,t)  the limits of the integration in EqB1) are changed, and the
operator(3.6) rederived following[20]. function ¢(u,t) takes the form

n 1 (=
¢(U t)_f el (u=(1-u)z” /22 (Ig) f;j; ?(eilr_elr)fi dSl-“dSne'r(Sl*'“*S")
X (0|W(—2) ? 75A+(s 2)---AT(s,2) ¥ (2)] 7<—Z)n—1 (B3)
22 ! " a2 NG

The fields in Eq.(B3), along with the standard quark- Feynman diagrams. The vertex has a quark line entering
gluon interaction insertions, are contracted in all possibleand leaving the® vertex, and an arbitrary number of at-
ways, yielding different Feynman diagrams contributions.tached gluon linesA™ field can be contracted only with ™,

Here we list the Feynman rules derived from Eg3). so the gluon line does not re-enter the vertex
The operator The general form of the vertex withn gluons attached
to it is given by
(O ¥(-2 2 Lw(z)
22 v s d
e's” ’2H <|g>—<1 e? 9), (B4a
from Eq.(B3) will be represented by the crossed circlein 2\2 Q;
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where ture, and we also introduce our specific representato8)
N for the MS renormalization used in this calculation.
S=u—(1-u)—k; —k3 - > q, (B4b)
=1 1. Coupling constant renormalization
and qy,- - -,q, are 4-momenta of the gluons entering the It is well known that inD =4 dimensions, the QCD cou-

circle, while k; and k, are the 4-momenta of the quarks Pling strengthg is a dimensionless quantig]=M® (M
entering and leaving the circle, respectively. The form giverflénotes the mass upiwhile in D=4-2e dimensiong g]

in [20] is slightly different and incomplete regarding the =M *. Obviously, the dimension 2°f the “bare”coupling con-
gluon 4-momenta sign convention. In the special case wheﬁtam“szrelated to “bare’g by g“=4mas, corresponds to
there are no gluons attached to thevertex, and the notation [@s]=M“*. The renormalized coupling, i.e., the running

k,=k andk,=k—P is used, the expressiciB4) takes the coupling as(?), is, naturally, a dimensionless quantity and
form the coupling constant renormalization introduces the addi-

tional scalen?, whose presence balances the dimensions in

¥ ¥e the renormalization equationvgu ™ 2¢=ag(u?)Z,. The
S(u—k™). (B5) scale introduced by the renormalization of the coupling con-
2 stant is often referred to as the renormalization coupling

constank scale and denoted by, while the renormaliza-
tion of the coupling constant in the MS schefiige simplest
renormalization schemeeads

The gluon propagator for the gluon attached to the
vertex(stemming from the\™ A, contraction takes the form

+
9, as(pr) 1
g (B6) as=pgas(pk)| 1-—;—Bo_+0(ad)|, (CD
so after theg; y” contraction, the gluon-quark vertex for a where 8,= 11— 2/3n;.
gluon attached to the vertex becomes In practical calculations, the additional scalé is often
N introduced before the coupling constant renormalizattbe
—igy*f, (B7) presence ofu? in Feynman integrals is quite standgrd

which corresponds to introducing the dimensionlesas(

_ _ =MO% *“bare” coupling constantag related tog by g2
We will not specify here the usual Feynman rules already=4wasluze and consequentlyrs~ 4~ 2. The “bare” and

used in the calculation of the hard-scattering amplitude. Lelenormalized coupling constants are then related day

us just note that similarly to the calculation of the hard'=as(,u2)z and, if we choose to renormalize the coupling

scattering amplitude, the correct spin and parity state of the, "o\ rmalization scale? different from the scalgs?

qq state has been projected by multiplying the diagrams byjntroduced by regularization, the renormalization in the MS
scheme reads

2

(,U«R
CYS: _2
Y73

We adopt the latter definition of the “bare” coupling con-
af (B9) stant as a dimensionless quantity, and neglectCDlﬁe{g)
a=1 N terms in further considerations.

o From Eq.(C2) one ftrivially obtains the scale changing
and consequently the trace over color indices must be takeRa|ation

The result should be multiplied by an extra factofNL [see

vsy~ _ vsP

22 2

and taking the trace. The color singlet nature ofq@state
is taken into account by including the factor

(B8)

) (k) 1
aswé)(l— O By +0(ad) .

(C2

3.5

Eq. (B3)], which takes into account that(u,t) is normal- 2\ € as(pd) 1[[wd)€
ized to give the LO resul(u—t) (i.e., normalized tal). as(u?)=| = ag(ud)| 1+ S TR 0_( _': _1)
Finally, note that we are investigating the meson flavor non- M am €\ u
singlet distribution amplitude. (C3a
APPENDIX C: ON THE COUPLING CONSTANT 5 Uls(Mgz) ,U«%
RENORMALIZATION =as(pp)| 1+ —— Bo'nﬁ +0(e), (C3b

In this section we briefly resume the relevant ingredients
of the coupling constant renormalization, which are fre-
guently obscured in practical applications found in the literathe 8 function
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and the choicef(e)=1=fyg(€) corresponds to the MS

ﬁ(as(ﬂz),f)zﬂzizas(luz) scheme. Equation&C3)—(C5) get modified byBo— Bof(€).
p The MS scheme is defined by
a?(p? fus(€)=1+ e(— y+In(4m))+O(€?), (C8Y
_ 2 s\H )
=—eas(w) = = —ho, €4 and, to the order we are calculating, tBe?) terms are
arbitrary. Different definitions can be found in the literature:
and, consequently, the running coupling the original definition of theMS scheme[43] fys(e)=1

+e[—vy+In(d4m)] or the choices fys(e)=exge(—y
+In(4w)] and fys(e)=(4m)IT'(1—€) (for example,

4 . \ -
ag(p?) = 2776 __°m - +0(e). (C5H) [26,27] and [2r18], rr:aspecu%/ily whlch mimic theg depen-
o 1 o dence of they", In"4, (74)" proportional terms introduced
Bo P e BO'”P by dimensional regularization. Although they are all valid

choices leading to the sam&18) result(after renormaliza-
tion and factorization of singularitigsthey unnecessarily
complicate the calculation, since the intermediate results
should be expanded overand since they do not contain the
(I") functions originally introduced by dimensional regular-
ization. A more appropriate choice would be the one that
contains combinations of's that naturally emerge in the
calculation. For this calculation, in which both UV and IR
singularities were regularized by dimensional regularization,
the appropriate choice [see Eqs(5.1) and(5.4)]

Next we turn to the choice of the renormalization scheme fy(e)=el'(e)I'(1—€) [(1-e)
and the representations of that choice. I'(1-2¢)
One can introduce different renormalization schemes b30vhi|e for example, for the calculation in which only UV

modifying the renormalization constast, to Z, as a func-  singularities were regularized by dimensional regularization,
tion of the choicefys(€) = eI’ (€) would be appropriate.
V=14 efDy 2f@ 4 ... cé Alternatively, we can represent the dependence of the
(€) € € ' (Ce) coupling constant renormalization on the renormalization
scheme bywsf (€)= ag(u?)Z, (see, for exampld27]). The
€eneralization of Eq(C2) is then given by

It is safe to ignore theD(e) terms in Eq.(C5), since the
expression for the running coupling is usually introduced
after all singularities have been removéy renormalization
and/or factorization Generally, one cannot neglect tb¢e€)
terms in Eq{(C2) or Eq.(C3) (neither in orderg nor in ag),
and the use of the compact forrf32) and(C33q is preferred
until all singularities are removéd.

2. Renormalization schemes

(4m)¢=el'O(e), (CY)

wheref(€) defines the renormalization scheme choice, whil
as=ag(u?) Z,. Equation(C2) is then generalized to

2\ € 2
_ as(pr) 1
2\ € 2 as= _z [f(e)] 1“5(#%)(1_ i ,30—), (C10
MR 2 a’S(/“’R) 1 y72 4 €
as=| = | as(uR)| 1-——Bof (6|, (CD)
M and it represents a representation alternative to (EJ).

Equations(C3)—(C5) are valid for the(C10) representation.

6 o _ ) Since By (and B;) does not depend on the choice of the

One of the motivations for this short summary on the couplingrenormalization scheme, the renormalization scheme and
constant reqormallzat|on_was_the appearance of dlff(_arent forms cgcale dependence can be described, to the order we are cal-
ag renormalization equations in the literature. The quite often use%ulating, only by one parametéor example, the scaleThe
form renormalization scheme and the renormalization scale are
treated on the same footing in representaticoh0 and their
equivalence is explicit. For example, by substitutipg
=u2[f(e)]Ye, A?=AZ% Jf(€)]¥ into Eq.(C10), the renor-
represents an “effective” expression, which can be strictly usedmalization equatioriC2) in the MS scheme is obtained.
only for calculations in which there are no singularities apart from  The other advantage of th€€10) representation is that
those that get renormalized by this coupling constant renormaliza@fter the coupling constant renormalization is performed, the
tion. The curious lookingxs renormalization procedure given in, dimensional parameter remains as the only artifact of di-
for example,[26], presumably represents an attempt to generalizdnensional regularization. Consequently, when using Eqg.
the above given “effective” form to all orders ia. In the presence (C7), the renormalization and factorization constants
of additional UV or IR singularities, the terms containing both ZurensZ,col CONtAINY", In"4r, (%)™ proportional terms
scalesu? and u? remain after thews renormalization, which is apart from the 1" poles. In contrast, when using E€10
clearly inconsistent. The final finite results are correct since thes& v ren»Z1.col CONtaiIN only simple X" poles.
curious looking terms are moved to renormalization and/or factor- In this work the representatiai€10) along with the defi-
ization constants. nition (C9) of the MS scheme is used.

2 2
agmug) (1 MR
L= Pl

2
as=ag(pg) >
€

74
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