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Abbreviations:   

ACR: acrolein  

ALE: aldehydic end-products 

Cu,Zn-SOD: copper,zinc-superoxide dismutase 

DNP: 2,4-dinitrophenylhydrazine DNP 

FRR: free radical reaction 

4-HNE: trans-4-hydroxy-2-nonenal  

HRV: heart rate variability 

LO• :lipid alkoxyl radical 

LOO• : lipid peroxyl radical 

LOOH: lipid hydroperoxide  

LPO: lipid peroxidation 

MDA: malondialdehyde  

(•NO): nitric oxide 

N2O3: dinitrogen trioxide 

nitro-OS: nitro-oxidative stress 

NO+: nitrosonium ion 

Nrf2: Nuclear factor (erythroid-derived 2)-like 2 

•O2
-: superoxide ion 

OMP: oxidatively modified protein 
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4-ONE: trans-4-oxo-2-nonenal  

ONOO-: peroxynitrite 

OS: oxidative stress 

PERK: Protein kinase RNA-like endoplasmic reticulum kinase 

PUFA: polyunsaturated fatty acids 

RNS: reactive nitrogen species 

ROS: reactive oxygen species 

TBARS: thiobarbituric acid reactive substances 

UPR: unfolded protein response 

 

Abstract 

Macromolecule oxidation in response to reactive oxygen species (ROS) is associated with a variety of diseases. 

The recognition of NO as a key regulator of redox signalling has more recently led to the discovery that 

reactive nitrogen species (RNS) also elicit modifications of macromolecules which are also involved in 

pathophysiological processes. 

This article provides an overview of key biomarkers used to assess oxidation, peroxidation and 

nitration/nitrosation signaling, stressing the necessity to analyse multiple biomarkers to understand the redox 

mechanisms involved in biological responses. 

 

Introduction 

Thirty years ago, Sies and Cadenas [1,2] introduced oxidative stress (OS) as a concept which associates 

oxidative chemistry with biological stress responses in redox biology and medicine. 

This complex field of biochemistry which plays a key role in homeostasis through the regulation of a variety of 

enzymes involved in essential signalling pathways, is now often referred to as "redox signalling"[3] (Fig. 1) and 

has become a major area of investigation in chemistry, life sciences and medicine. 

An aspect which is often neglected when addressing redox signalling or OS, is the role of nitric oxide (•NO) 

which is the primary substrate of the original reactive oxygen species (ROS), superoxide (•O2
-). Indeed, the 

reaction rate of •NO with •O2
-, estimated at 9 x 109 mol-1.s-1, is 3 to 4 times faster than its catalysis by Cu,Zn-

SOD (2.4 x 109 mol-1.s-1) and 2 to 4 orders of magnitude faster than its reaction with macromolecules such as 

aminoacids (≈ 106 - 107 mol-1.s-1), proteins (≈ 5 x 106 mol-1.s-1 for albumin),  lipids (≈ 106 mol-1.s-1 for palmitate) 

and DNA (≈ 5 x 105 mol-1.s-1)[4–6]. This reaction generates peroxynitrite (ONOO-), a highly reactive nitrogen 

species (RNS) responsible among others for nitration and nitrosation (figure 1) which play important 

pathophysiological roles [3,7,8]. It should be noted that in vivo, protein nitrosation essentially affects thiol 

groups of cysteine residues and is referred to as S-nitrosation. In vivo N-nitrosation of proteins has not been 

conclusively demonstrated except in the gastrointestinal tract by the bacterial flora. S-, N-, C- and O-
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nitrosation can also affect small molecules such as ethanol or compounds containing thiol, phenol, indole, 

amino and amido groups, in vivo and mainly in the gastrointestinal tract. Among these, N-nitroso compounds 

(NOC), especially nitrosamines and nitrosamides have been extensively investigated because of their 

carcinogenic potential (Kobayashi, 2017). Besides triggering nitration and nitrosation, ONOO- which is also a 

strong oxidant, can also induce DNA deamination and oxidation [9], methionine sulfoxidation [10], zinc finger 

oxidation [11] and lipid oxidation and peroxidation [12]. Peroxynitrite has also been reported to oxidize 

glutathione thereby leading to glutathiolation of selected cysteine residues [13]. There is thus a •NO/•O2
- 

system [3] which plays an important role in cell homeostasis through redox signalling mechanisms (figure 1).  

The •NO concentrations being three orders of magnitude higher under physiological conditions, it serves as a 

"sink" for •O2
-, thereby preventing oxidative mechanisms. When under pathophysiological conditions, •O2

- and 
•NO concentrations rise, nitrosation, nitration and potentially nitrative stress can occur, preceding OS [14,15]. 

OS appears when •O2
- reaches equimolar or higher concentrations than •NO. OS and nitro-OS which have a 

negative connotation and should in our view only be used in pathological conditions. 

Since nitro-OS and OS are involved in a large variety of disorders encompassing most chronic as well as some 

acute diseases, it is of primary interest to be able not only to detect them but also to follow them in order to 

monitor the evolution of the disease and the efficiency of treatment. 

Whereas over seventy OS biomarker assays have been developed [16,17], very few have yet been proposed 

and validated for monitoring nitrosation and nitration [18,19].  

 

Biomarkers of protein S-nitrosation and nitration 

The major RNS in eukaryotes are peroxynitrite (ONOO-), dinitrogen trioxide (N2O3), nitrogen dioxide (•NO2) and 

probably the elusive nitrosonium ion (NO+). Daiber and Ullrich [14] elegantly demonstrated that the 

posttranslational modifications elicited by RNS depend on the relative fluxes of •NO and  •O2
-. Thus, as long as 

the •NO concentration remains 3-fold higher than the •O2
- concentration, •NO reacts with the generated 

ONOO- to yield N2O3 which, through the formation of NO+, S-nitrosates (R-SNO) defined cysteine residues. This 

modification is rapidly reversible by reduction and therefore depends on the redox status of the biological 

system. It is therefore essentially a physiological event which may exert protective actions.  Indeed, S-

nitrosation of homocysteine has been reported to prevent its conversion to its toxic thiolactone metabolite 

[20]. Deleterious effects of S-nitrosation only seem to appear when the R-SNO groups cannot be reduced to R-

SH.  

As the •O2
- generation further increases to equimolar concentrations of •NO, most of the latter is oxidized to 

ONOO- and can no longer generate N2O3. The main RNS are now ONOO- and its reduction product •NO2. 

ONOO- induces nitration (R-NO2) of selected tyrosine residues, a covalent modification which appears to be 

enzymatically reversible. Nitration can lead to nitrative stress if it exceeds the cells' or organism's ability to 

denitrate the target proteins. •NO2 is a potent toxic oxidant which irreversibly peroxidizes lipids, carbonylates 

proteins and forms dityrosines often leading to cell death. 

 

Detection of S-nitrosation 

As indicated above, S-nitrosation is a rapidly reversible process which solely depends on the redox status. In 

addition the low dissociation energy of the RS-NO bond makes S-nitrosothiols unstable rendering the 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4  

assessment of the potential S-nitrosation of cysteine residues in biological samples uncertain with a serious 

risk of being artefactually generated or reversed during sample preparation due to changes in redox potential.  

This risk is further increased by the biotin-switch technique [21] currently used to detect the S-nitrosated 

cysteines as the multiple steps involved, increase the risk of RSNO hydrolysis. Moreover the lack of specificity 

of the nitrosocysteine reduction step by ascorbic acid can result in the labelling of sulfenic acids (RSHO) and 

disulfides as well. A recent modification involving derivatization with NEM called d-switch, allows 

simultaneous detection and most importantly, identification of both S-nitrosated and non-nitrosated cysteines 

by MS [22]. 

Chemiluminescence-based assays like the tri-iodide and the 3C methods carry the same risk of artefactual 

cysteine-SNO generation and hydrolysis. In addition, these methods do not allow the identification of the S-

nitrosated residues. 

Recently, the direct detection of cysteine-SNO residues by MS allowing simultaneous determination of the 

redox status of defined proteins has been described for thioredoxin [23]. Unfortunately, this type of approach 

can obviously not be applied to complex biological samples. 

The current research on novel RSNO chemistry and direct labelling techniques is however progressing. Indeed, 

triarylphosphines, which react with organic RSNOs to yield S-substituted aza-ylides (RS-N=PR3) without 

reacting with disulphide bonds are of real potential interest as they should allow direct labelling and 

detections of cysteine-SNOs without the risk of artificial modifications  [24]. This method also allows the 

differential labelling of nitroxyl (HNO) groups [25]. 

Very recently, Daiber's team has developed an assay using salicylaldehyde as a probe to measure very low 

fluxes of peroxynitrite generation compatible with in vivo concentrations [19]. This approach opens the way to 

a novel method allowing the determination of peroxynitrite generation in vivo. 

 

Detection of nitration 

As opposed to S-nitrosation, nitration can be investigated much more easily being a stable covalent 

modification. In eukaryotes nitration mainly affects tyrosine residues yielding 3-nitrotyrosine (3-NT) [8], but it 

can apparently also modify tryptophan residues, giving rise essentially to 6-nitrotryptophan residues under 

certain pathophysiological conditions [26].  

Although tyrosine nitration is not direct enzymatically driven, tyrosine residues are not randomly nitrated 

under pathophysiological conditions, i.e. when peroxynitrite fluxes remain at µM levels [27,28].  

The easiest way to detect protein nitration in cells or tissues is by immunoblotting and immunohistochemistry 

provided the antibodies used are specific for nitrotyrosine residues. In order to exclude cross-reactivity with 3-

aminotyrosine, 3-chlorotyrosine, orthophosphotyrosine or nitrotryptophan, controls should be performed by 

reducing nitrotyrosine to aminotyrosine with thiosulfate which should result in total disappearance of the 

signal. This obviously precludes the use of sulphur reducing conditions for SDS-PAGE.  

Nitrotyrosine residues can now also be identified by mass spectrometry but this requires prior derivatization 

of the 3-NT residues and subsequent enrichment of the nitropeptides as only a very reduced fraction of the 

proteins of interest are usually nitrated [29,30]. 
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The most common biomarker for studying "nitrative stress" used to be free 3-nitrotyrosine [31,32], but since 

most of the circulating free nitrotyrosine comes from nitration of dietary proteins in the gastrointestinal tract 

[33,34] it cannot serve as a reliable indicator of endogenous systemic nitration. For the same reason, this is 

also true for peptide-bound nitrotyrosine which, like free nitrotyrosine, can be measured by HPLC. In addition, 

artificial nitration during the assay [35,36] is another serious drawback of this approach. The same holds for 

the 3-nitrotyrosine metabolite  

Another biomarker, 3-nitro-4-hydroxyphenylacetic acid which has been proposed is no better as it is not only a 

metabolite of 3-nitrotyrosine but also the nitration product of para-hydroxyphenylacetic acid, a metabolite of 

tyrosine [37,38].  

Thus only circulating proteins nitrated endogenously outside the gastrointestinal tract an be considered 

reliable biomarkers for exploring systemic nitration. Several plasma nitroproteins have been identified [39] but 

so far only a quantitative ELISA for nitroalbumin has been analytically and clinically validated [15,40]. Plasma 

nitroalbumin has been shown to correlate with the severity of neonatal encephalopathy [40] in perinatal 

asphyxia, a condition reported to be associated with increased protein nitration in the human brain [41,42]. In 

neonatal hypoglycaemia, it was shown to correlate with the number and severity of hypoglycemic events [15] 

which have been reported to potentially impair psychomotor development. 

 

Lipid peroxidation 

Lipid peroxidation (LPO) is an autocatalytic reaction cascade producing reactive aldehydes such as 4-

hydroxynonenal (HNE), malondialdehyde (MDA) and acrolein [43,44]. These aldehydes further react with 

other molecules thereby regulating redox signaling or, if present in high concentrations, irreversibly damaging 

(extra)cellular macromolecules resulting in protein carbonyls [45]. Consequently, these products emerged as 

possible biomarkers of different pathologies [17,46]. 

Detection methods for oxidatively modified proteins include carbonyls and hydroperoxides which have great 

diversity and are therefore, detected not so specifically, while other methods measure single LPO product 

bound to proteins, or even more specifically to specific protein side chain. To demonstrate, one of the 

methods for MDA was the popular TBARS (thiobarbituric acid) assay [47]. TBARS assay was further improved 

by HPLC, for which the inter-laboratory study from 2010 showed to be the method of choice for LPO 

measurements [48]. Still, good detection method does not indicate the relevance of the measured product   

[48]. In addition, the mentioned inter-laboratory study also included  GC-MS analysis of isoprostanes (F2-

IsoPs) and non-commercial ELISA for HNE-protein adducts which was developed for cell culture research 

[48,49] and gave high inter-laboratory variation indicating need to adjustments for plasma measurements. 

 

4-HNE-His ELISA 

In 2013, the modifications the 4-HNE-His ELISA genuine using genuine non-commercial and also commercially 

available monoclonal antibodies were described for human plasma and sera samples showing that 

commercially available antibodies were less sensitive [50]. Nevertheless, in both cases the 50% increase of the 

HNE-His products in the blood was detected for apparently healthy obese young to mid-aged men [50].  
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 It is also important to mention that further work introduced modifications of the 4-HNE-His ELISA enabling to 

measure HNE in murine tissue homogenates which had 50%  increase in 4-HNE-His adducts in liver if rats were 

fed by PUFA enriched diet [51].  

The Importance of 4-HNE-His adducts as biomarker of OS is shown by Japanese researchers whose labeling 

with the fluorescent probe 2-aminopyridine found that HNE-His adducts were dominant in Cu2+-oxidized 

human LDL [52]. The genuine 4-HNE-His monoclonal antibodies are applicable in broad spectrum of samples, 

from cell cultures (Figure 2), tissue homogenates, to plasma and sera, taking important part in LPO research. 

Consequently, 4-HNE-His adducts are often reffered as the major biomarkers of OS, as was recently verified by 

a serious of clinical trials combining HNE-His immunochemistry with metabolomics/lipidomics in patients with 

rheumatoid arthritis, encephalitis, neuroborreliosis, metabolic syndrome and liver cancer [53–58], while in 

patients with lung malignancies it was verified by lipidomics and by PET/CT [59,60].  

 

Qualitative analysis of 4-HNE-His adducts        

The advantage of HNE-His adducts in addition to visualization by immunohistochemistry lies in the stability of 

the complex in formalin-fixed samples, which last for years. The advantages, disadvanages and technical 

features of all the methods for LPO biomarker detection were recently detail reviewed  in several review 

papers  [17,61,62], while the comprehensive update reviewing benefits of immunohistochemistry for HNE-His 

adducts in clinical studies has just been published by Zarkovic K. et al.  [63], who summarized these benefits 

briefly as follows: 

• Immunohistochemistry specific for HNE-protein adducts, mostly for HNE-histidine epitopes, is valuable 

qualitative and semi-quantitative method to study pathophysiology of oxidative stress and lipid peroxidation. 

• Immunohistochemical studies confirm association of HNE with major human diseases. 

• Formation of HNE-protein adducts is not irreversible, but correlates with the age of patients and the 

severity of respective degenerative, metabolic or inflammatory diseases. 

• In case of carcinogenesis HNE can play undesirable, pro-carcinogenic role, but it could also cause the 

desirable decay of cancer. 

• Non-malignant stromal cells and the cells in the vicinity of cancer can generate HNE to defend the 

organism from cancer invasion. 

 

Protein carbonyls 

Mild oxidative stress is stimulative, while high levels cause molecular and cellular damage [64], oxidizing 

proteins and forming carbonyl groups (aldehyde and ketone) on variety of amino acid side chains [65,66]. 

Carbonylation often occurs due to reaction with reactive aldehydes produced by lipid peroxidation. These 

aldehydes bind to lysine, histidine and cysteine side chains and forming advanced lipoxidation end products 

(ALEs) [43]. Other amino acid side chains, such as proline, methionine, valine, threonine, alanine aspartate, 

thryptophane and isoleucine side chains can be directly attacted by ROS also forming protein carbonyls [65]. 

Glycation is also possible mechanism of protein carbonylation, which oocurs via reaction of side chains which 

glucose of fructose, which is also succeptible for ROS attact with resulting advanced glycoxidation end 

products (AGE) [67]. Protein carbonyls are considered to be irreversible [68], and as such change protein 

structure and function. Due to different mechanisms of production and realtively high levels makes prtoein 

carbonyls often used as a measure of oxidative stress [69], but these facts also reduce their relevance in their 

use as biomarkers of oxidative stress [70]. 
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Protein carbonyls are detected by immunological techniques, spectrofotometric/fluorimetric and 

chromatographic tehniques and by mass spectrometry (Figure 3) [68]. Immunological and 

spectrophotometric/fluorimetric assays are based on raction of derivatization with different agents such as 

2,4-dinitrophenylhydrazine (DNP), 7-hydrazino-4-nitrobenzo-2,1,3-oxadiazole (NBDH) [65,71]. The drawback of 

these methods are the indirect measurements of the target molecules, being work-intensive and time 

consuming. Due to complicated procedures with numerous washing steps these methods are not convenient 

for high throughtput measurements. In addition, nucleic acid could also provide signals as they may contain 

carbonyl groups [65]. HLPC and mass spectrometry may overcome some of these problems but still these 

methods are expensive and time consuming. Currently, newly developed procedures for mass spectrometry 

seem promising in the research of protein carbonyls but the diversity in protocoles and labeling conditions are 

too wide to combine and adequately compare results from different studies [68]. 

 

Conclusions and perspectives 

In conclusion, redox signalling is vital for the maintenance of homeostasis from the organelle to the organism. 

The reactive species are merely composed of oxygen, nitrogen and hydrogen and their generation and 

degradation are regulated by a very limited number of enzymes which affect most of the essential cell 

functions from proliferation, metabolism and differentiation to death. Thus these mechanisms, which have 

long been considered as pathological, clearly play essential physiological roles. This has confirmed by several 

interventional studies using various “antioxidants” aimed at preventing various diseases and which at best 

have shown little or no effects at low doses and deleterious effects at higher doses [72–77].  

It is therefore crucial to better understand the molecular mechanisms of action not only of ROS and RNS, but 

also of the many "antioxidants" whose prescription and customary consumption has been dramatically 

increasing during the last years. 

Biomarkers should be useful to monitor the real redox potential of these compounds in vivo in order to better 

evaluate their potential benefit, but also whether their beneficial or detrimental effects are directly linked to 

their redox potential or to distinct mechanisms. 

There is still a desperate need for validated biomarkers to study nitro-oxidative status and stress which 

precede oxidation in most pathological conditions.  

At a time where nutritional supplements have become trendy to improve health and ageing despite a cruel 

and desperate lack of scientifically proven benefit [78,79], this area of research obviously appears to be of 

primary importance. 
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Legend to the figures 

 

Figure 1. Nitro-oxidation  reactions and posttranslational protein modifications. 

 

Figure 2. Immunocytochemical detection of HNE-His adducts. Upper panel: HeLa cells after HNE-treatment 

show membrane blebbing. Lower panel: immunocytochemical staining for HNE-His adducts. 

 

Figure 3. Overview of protein carbonyl detection methods. Except for MS, all other methods for protein 

carbonyl detection need derivatization step in the process of measurement. 
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Highlights 

In redox signalling, nitric oxide is the primary substrate of the original reactive oxygen 

species, superoxide. 

The 
•
NO concentrations being three orders of magnitude higher under physiological 

conditions, it serves as a "sink" for 
•
O2

-, thereby preventing oxidative mechanisms. When 

under pathophysiological conditions, 
•
O2

- and 
•
NO concentrations rise, peroxynitrite is 

generated and S-nitrosation and nitration occur, preceding oxidative stress. 

Whereas over seventy oxidative stress biomarker assays have been developed, very few 

have yet been proposed and validated for monitoring S-nitrosation and nitration. 

4-HNE-His adducts are often referred to as the major biomarkers of oxidative stress, as 

recently confirmed by a series of clinical trials combining HNE-His immunochemistry 

with metabolomics/lipidomics. 

At a time where nutritional supplements have become trendy to improve health and 

ageing despite a cruel and desperate lack of scientifically proven benefit research in the 

area of redox signalling is of primary importance. 
 


