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In this work, we use a recast of the Run II search for invisible Higgs decays within Vector Boson

Fusion to constrain the parameter space of the Inert Doublet model, a two Higgs doublet model

with a dark matter candidate. When including all known theoretical as well as collider constraints,

we find that the above can rule out a relatively large part in the mH , λ345 parameter space, for

dark scalar masses mH ≤ 100 GeV. Including the latest dark matter constraints, a smaller part

of parameter space remains which is solely excluded from the above analysis. We also discuss the

sensitivity of monojet searches and multilepton final states from Run II.
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I Introduction

I. INTRODUCTION

The Inert Doublet model (IDM) is one of the most straighforward extensions of the Standard Model (SM) [1–3]. It

belongs to the class of Two Higgs Doublet Models (2HDM) which contain two SU(2) doublets in the scalar sector. One

of these doublets, φS , has a nonvanishing vacuum expectation value (vev) which is responsible for the spontaneous

breaking of electroweak symmetry in the Standard Model while the second scalar doublet φD by construction does

not acquire such a vev. This second doublet is hence not involved in the spontaneous mass generation in the Standard

Model and does not couple to the SM fermions.

Within this model we impose an additional Z2 symmetry, labelled D-symmetry, defined via the transformation

φD → −φD, φS → φS , SM→ SM, (1)

which should be respected by the Lagrangian and the vacuum.

As electroweak symmetry breaking in this model proceeds completely analogous to the SM without the second

doublet, φS provides the SM-like Higgs particle and is assumed to be even under the D symmetry. The second inert

or dark doublet contains two charged and two neutral scalars and as they are odd under the imposed D-parity, its

lightest neutral component provides a natural candidate for dark matter (DM). It provides a “perfect example” of a

WIMP [4–7], and leads to an interesting pattern for the evolution of the Universe, towards the Inert phase as given by

the IDM, with one, two or three phase transitions [8]. Furthermore, the IDM can provide a strong first-order phase

transition [9–13] as required by the Sakharov conditions to generate a baryon asymmetry of the Universe. After the

discovery of a SM-like Higgs particle in 2012, many studies have been performed in the context of the IDM which use

Higgs measurements as well as astrophysical observations, see e.g. [14–23].1 In addition, proposals were made how to

search for dark scalars at the LHC in leptonic final states [15, 22, 28–31] and in single or dijet channels [32, 33].

Recently, also the important issue of vacuum (meta-) stability in the IDM has been discussed, and it was found

that additional, possibly heavy scalars can have a strong impact on it [19, 34–36].2

While the model is intruiging per se and in spite of benchmark scenarios for the current LHC run [22, 39], it has

not yet been studied explicitly by the LHC collaborations. However, recasts of other BSM searches with similar

topologies have been presented in the literature, with prominent examples for searches for supersymmetric particles

at LEP [40] as well as the first LHC run [20].

In this work, we present a recast of the Run II analyses presented in Ref. [41] by the CMS collaboration which

target an invisibly decaying SM-like Higgs boson produced in vector boson fusion (VBF), and Ref. [42] by the ATLAS

collaboration which focusses on monojet final states. We reinterpret the results of these searches within the IDM by

making use of the CheckMATE [43, 44] framework.

The regions considered in this work are tested against all currently available theoretical and experimental con-

straints, with scan procedure and limits as described in Refs. [22, 23, 45].

We explore the reach of the above searches for the model’s parameter space and identify regions which cannot be

excluded by any of the other tested constraints. Finally, we briefly comment on other experimental BSM searches at

LHC Run II that could be used as recasts for the IDM and are expected to yield further constraints on its parameter

space.

1 Recent analyses for models which extend the IDM by an additional singlet have been performed in [24–27].
2 Similar solutions can be found in a simple singlet extension of the SM Higgs sector, cf. e.g. [37, 38] and references therein.
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II The model

II. THE MODEL

Imposing symmetry under the D-transformation given in Eq. (1), the full scalar potential of the IDM is given by

V (φS , φD) =

−1

2

[
m2

11(φ†SφS)+m2
22(φ†DφD)

]
+
λ1

2
(φ†SφS)2

+
λ2

2
(φ†DφD)2 +λ3(φ†SφS)(φ†DφD)+λ4(φ†SφD)(φ†DφS)

+
λ5

2

[
(φ†SφD)2+(φ†DφS)2

]
. (2)

In this formulation, all parameters are real (see e.g. [8]).

Depending on the signs and values of the individual parameters in V (φS , φD), the minimisation conditions may

result in different vacuum configurations where none, one or both vevs of φS or φD are non-vanishing. Within this

work, we focus on the IDM realisation 〈φS〉 6= 0, 〈φD〉 = 0, for which the decomposition around the vacuum state is

given by

φS =

(
φ+

1√
2

(v + h+ iξ)

)
, φD =

(
H+

1√
2

(H + iA)

)
. (3)

Here, v = 246 GeV denotes the SM vacuum expectation value and the scalar field component of φS contains the

SM-like Higgs boson h with mass

m2
h = λ1v

2 = m2
11, (4)

fixed by the experimentally observabed value of 125.1 GeV.

In addition to the components known from the Standard Model, the second scalar doublet of the IDM, φD, contains

four dark or inert scalar field components H, A, H± with masses given as follows:

m2
H± =

1

2

(
λ3v

2 −m2
22

)
, (5)

m2
A = m2

H± +
1

2
(λ4 − λ5) v2 =

1

2
(λ̄345v

2 −m2
22), (6)

m2
H = m2

H± +
1

2
(λ4 + λ5) v2 =

1

2
(λ345v

2 −m2
22), (7)

where we have defined

λ345 := λ3 + λ4 + λ5; λ̄345 := λ3 + λ4 − λ5.

While their interactions with the Standard Model vector bosons can be derived from the gauge kinetic term in the

Lagrangian, the absence of any gauge invariant Yukawa-like interaction between φD and the Standard Model fermion

sector prohibits any tree level interactions between these four dark particles and the SM fermions. Moreover, due

to the exact D-symmetry the lightest neutral scalar cannot decay and may therefore provide a candidate for dark

matter.3 Note that, contrarily to generic Two-Higgs-Doublet-Models which denote H/A as the scalar/pseudoscalar

components of a doublet, we cannot make such a unique idenfication here as there is no interaction of φD with the

Standard Model fermions. In fact, we can swap the roles of H and A by making the replacement λ5 ↔ −λ5, cf.

Appendix A.

3 Charged DM has been strongly limited by astrophysical analyses [46].
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III Constraints A Theoretical constraints

Within this work, we make the choice mH < mA,mH± and assume H to be the DM candidate. According to

Eqs. (5-7), this choice implies the relations λ5 < 0 and λ45 := λ4 + λ5 < 0. The parameters λ345 and λ̄345 are

related to the triple and quartic coupling between the SM-like Higgs h and the DM candidate H or the scalar A,

respectively. λ3 is relevant for the h interaction with the charged scalars H±. Lastly, the parameter λ2 describes the

quartic self-couplings of dark particles. A list of all relevant Feynman rules for this model is provided in Appendix A.

Starting from the general scalar potential in Eq. (2), the IDM has 7 degrees of freedom. As φS plays the same role

as the SM Higgs doublet for electroweak symmetry breaking, the two parameters mh and v are fixed by the Higgs

mass measurement and electroweak precision data, respectively. We are therefore left with 5 degrees of freedom which

we choose to be the physical parameters

(mH ,mA,mH± , λ2, λ345).

From these the corresponding dependent values of the other theory parameters can be derived by applying the relations

given above.

III. CONSTRAINTS

As has been widely discussed in the literature, the IDM is subject to numerous constraints which can be derived

from both theoretical grounds as well as experimental results. We briefly remind the reader of these constraints here

and refer to the literature [2, 4–6, 15, 21–23, 28, 30–33, 45, 47–67] for further details.

The constraints we use in this work have been extensively discussed in Refs. [22, 23, 45] and we refer the reader to

these references for more detailed explanations. Here, we only summarise all relevant constraints and point to updates

on experimental limits whenever applicable. The calculation of the IDM spectrum and tests of several of the below

bounds have been obtained using 2HDMC [68].

A. Theoretical constraints

We apply the following theoretical constraints:

• The vacuum of the model needs to be bounded from below.4 These lead to the conditions

λ1 > 0, λ2 > 0, λ3 +
√
λ1λ2 > 0, λ345 +

√
λ1λ2 > 0 (8)

• All couplings must allow for a perturbative discussion which is why we restrict all couplings to be smaller than

4π.

• All 2 → 2 scalar scattering processes must not violate perturbative unitarity and we apply standard bounds as

implemented in 2HDMC.

• In generic Two Higgs Doublet Models, several vacua can coexist. The tree level condition to be in the inert

vacuum has been calculated in

[8, 55, 56]

m2
11√
λ1

≥ m2
22√
λ2

(9)

4 The conditions are applied at tree level; see e.g. Refs. [19, 35] for a discussion of changes using higher-order predictions.
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III Constraints B Experimental constraints

Here, m11 and m22 can directly be derived from Eqs. (4) - (7) and the above condition translates to

λ345 ≤
√
λ2mh v + 2m2

H

v2

The above constraint links the value of λ345 and the dark scalar mass to the coupling λ2 which describes self-

couplings in the scalar sector and has no influence on collider phenomenology (see e.g. the discussion in [45]).

Requiring the Higgs self-coupling vertices to acquire maximally allowed values of 4π leads e.g. to λ2 . 4 [22].

This bound, in the parameter region with relatively light dark scalars with masses mH . 100 GeV, would result

in λ345 ≤ O(1). Note, however, that this bound is not completely mandatory. Several minima may coexist (see

e.g. [69, 70]) and the inert one may only be a local one as long as the transition time to the global non-inert

minimum is sufficiently large. Moreover, the above condition may be significantly altered at next-to-leading

order, see e.g. Refs. [60, 71]. The next-to-leading order effects are however quite involved and can not easily be

generalized, but need to be recalculated on a case-by-case basis 5. In this work, we focus on current constraints

from LHC searches that are independent of λ2; we therefore also consider values of λ345 & 1. In case of a

discovery, a detailed analysis would be needed in order to correctly evaluate the above condition beyond leading

order, see e.g. related studies in Refs. [71, 72].

B. Experimental constraints

In addition to the theoretical bounds listed above, several experimental observations put tight constraints on the

parameter space of the IDM:

• We fix the mass of the SM-like Higgs boson h to

mh = 125.1 GeV (10)

in agreement with the results from the LHC experiments [73]. Note that this has already been accounted for

when we chose (mH ,mA,mH± , λ2, λ345) as the five degrees of freedom of the IDM.

• We furthermore require the total width of the 125 GeV Higgs to obey Ref. [74]

Γtot ≤ 9 MeV

which is applicable in those regions of parameter space which predict additional decays of the SM-like Higgs

boson.

• Furthermore, we take into account strong bounds from the measured total widths of the electroweak SM gauge

bosons, cf. e.g. Ref. [75], by forbidding potentially dangerous kinematic mass configurations via the following

hard constraints:

mA,H +mH± ≥ mW , (11)

mA +mH ≥ mZ , (12)

2mH± ≥ mZ . (13)

• We furthermore require a 2σ, i.e. 95% C.L., agreement with electroweak precision observables, parameterized

through the electroweak oblique parameters S, T and U [76–79].

5 We thank P. Ferreira and B. Swiezewska for useful discussions regarding this point.
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III Constraints B Experimental constraints

• In order to evade bounds from long-lived charged particle searches, we conservatively set an upper limit on the

charged scalar lifetime of τ ≤ 10−12 s, to guarantee decay before the innermost detector layer. This translates to

a lower bound on the total decay width of the charged scalar H± of Γtot ≥ 6.58 × 10−13 GeV. Mass dependent

bounds on the charged scalar lifetime have been studied in detail in Ref. [67].

• A bound on the lower mass of mH± has been derived in Ref. [80]. Although a more dedicated analysis of this

bound within the current models’ framework would be required, we take mH± ≥ 70 GeV as a conservative

lower limit.

• We also require agreement with the null-searches from the LEP, Tevatron, and LHC experiments using

HiggsBounds-5.2.0beta [81–84], including all experimental bounds up to Moriond 2017.6

• We update the limits on the invisible decay of mh and take the results presented in Ref. [86] which require

BRh→ inv ≤ 0.24.

• Furthermore, we apply new limits on the branching ratio h → γ γ taken from [87] and require µ = 1.14+0.19
−0.18.

Since within the IDM the production cross sections of the SM-like Higgs are unaffected, we use the bound on µ

in combination with the Standard Model value [39] of BR (h → γ γ) = 2.270 × 10−3 and require

BR (h → γ γ) ∈ [1.77; 3.45]× 10−3 (14)

at the two-sigma level.

• In addition, we require agreement within 2σ for the 125 GeV Higgs signal strength measurements. For this, we

make use of the publicly available tool

HiggsSignals-2.2.1beta [88], and require ∆χ2 ≤ 11.3139, corresponding to the 95% confidence level of a

5-dimensional fit.7

• We also include limits on the model’s parameter space that have been obtained in previous reinterpretations

of collider dark matter searches, predominantly within supersymmetric scenarios. Major limits stem from the

reinterpretation of a LEP analysis [40] within the IDM framework [52]. This particularly rules out all regions

where

mA ≤ 100 GeV, (15)

mH ≤ 80 GeV, (16)

∆m(A,H) ≥ 8 GeV (17)

are simultaneously fulfilled.

• After taking into account all the above limits we are outside of the region excluded due to the recent reinter-

pretation of the SUSY analysis from LHC Run I [20].

• We apply dark matter relic density limits obtained by the Planck experiment [89]:

Ωc h
2 = 0.1200 ± 0.0012 (18)

In this work, we do not require the dark matter candidate of the IDM to provide the full relic density, but use

it as an upper limit8. Being conservative, we require

Ωc h
2 ≤ 0.1224, (19)

6 Please see the tool’s documentation material in Ref. [85] for a detailed discussion of the included limits.
7 We used a combination of Run I combination, Run II, and simplified template cross sections within HiggsSignals.
8 In such a scenario, additional dark matter candidates would be needed in order to account for the missing relic density; cf. e.g. Ref. [90]

for a dedicated discussion of such scenarios within a supersymmetric setup.
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IV LHC Analysis of VBF and Monojets A Features of the VBF Channel

which corresponds to not overclosing the universe at 95 % confidence level. In addition to this bound, we

specifically identify those regions which reproduce the observed DM density within the 2 σ interval around the

above best fit value value. The dark matter relic density has been calculated using MicrOmegas version 4.3.5

[91].

• Regarding direct detection dark matter constraints, we compare to the most recent results of XENON1T [92].9

As before, we consider the possibility of a multi- component dark matter scenario in which the IDM only makes

up for a fraction of the total dark matter relic density. In this case, the upper limit from direct detection

depends on the actual DM relic density for the specific point in parameter space; therefore, we have to introduce

a rescaling factor, leading to the (relic density dependent) limit

σ (mH , {. . .}) ≤ σXENON1T(mH)× ΩPlanck

Ω(mH , {. . .})
, (20)

where mH now denotes the dependence on the mass of our dark matter candidate H and {. . .} is short for all

other parameters specifying the respective IDM parameter point.10 Direct detection cross sections are again

obtained using MicrOmegas.

The scan setup has been described in great detail in Ref. [22]. To determine allowed regions in parameter space,

we follow the procedure discussed therein, including the experimental updates listed above.

IV. LHC ANALYSIS OF VBF AND MONOJETS

In this work, we choose to constrain ourselves to cases for dark matter candidate masses mH ≤ 100 GeV. Due to

the relatively high production cross section in such cases, these will be the regions which are most sensitive to collider

searches (see e.g. [30, 32, 33, 98] for recent work on low mass scenario studies at the LHC).

We here concentrate on the 13 TeV CMS search for an invisibly decaying Higgs [41] produced through vector boson

fusion (VBF) and a 13 TeV ATLAS search [42] for dark matter candidates in the monojet channel. These respectively

lead to the collider signatures

p p → j j + /ET , (VBF) (21)

p p → j + /ET , (Monojet). (22)

In this study, we mainly focus on the VBF channel which, as we show later, provides the strongest sensitivity. We

however also determine bounds on the IDM using a monojet reinterpretation for comparision. A dedicated exploration

of this channel including sensitivity prospects of the high luminosity LHC can be found in Ref. [32].

A. Features of the VBF Channel

The two jets in the VBF channel typically have a large separation in pseudorapidity. The corresponding cuts used

in the above analysis are listed in table I. These form a “Cut-and-Count analysis” and a “Shape analysis”. The former

is designed for a large signal-to-background ratio and requires a large value for the invariant mass mjj of the jet pair,

whilst the latter defines several signal regions binned in mjj and used collectively in a fit. Using these signatures,

the CMS collaboration finds an upper limit on the invisible Higgs branching ratio of BRmax
h→ inv = 0.53 using the

9 We here use the data available from Ref. [93] in a digitalized format. In our code, we use an approximation function which reproduces

these constraints on the per-cent level.
10 See also Refs. [90, 94–97].
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IV LHC Analysis of VBF and Monojets A Features of the VBF Channel

Requirement Cut-and-Count Shape

Leading Jet pT >80 GeV

Second Jet pT >40 GeV

Emiss
T >250 GeV

|∆φj,Emiss
T
| >0.5

|∆φjj | <1.5

η1 · η2 <0

|∆ηjj | >4.0 >1.0

mjj >1.3 TeV > 200 GeV (binned)

TABLE I. Summary of the main kinematic requirements in the signal regions in Ref. [41].

cut-and-count analysis and 0.28 for the shape analysis which are both weaker than the upper limit BRmax
h→ inv = 0.24

used as a hard cut in our scan (see section III B). This constraint is only applicable to parameter points in the IDM

for which mH < mh/2. However, points with heavier scalars would also predict additional signal events in the above

analysis due to processes with off-shell h production (pp→ h∗jj → HHjj) and contributions from decay chains with

hadronically decaying final state particles (e.g. pp→ H±H → jjHH). We recast the above mentioned VBF analysis

in the context of these processes to potentially extract additional constraints applicable to regions with larger values

of mH .

B. Simulation and Validation of the VBF Channel

In this work, we concentrate on the above VBF search which has been implemented within the CheckMATE [43, 44]

framework. CheckMATE uses simulated event files for any BSM model, applies detector efficiencies and follows the

event selection procedure of the implemented BSM searches from ATLAS and CMS to determine if any resulting signal

prediction would violate the corresponding experimental bound.11 Validation has been performed by reproducing the

quoted numbers expected from the Standard Model Higgs boson with 100% invisible branching ratio. Following the

procedure described in the experimental publication, we use the POWHEG-Box [100–103] for simulating Monte-Carlo

events at next-to-leading order in QCD and subsequently interface it to Pythia 6.4.21 [104] to account for parton

showering and hadronization of the final state. We perform the simulation separately for vector-boson-fusion (vbf)

and gluon-initiated final states (ggf) which may also pass the aforementioned cuts.

As we are bound to leading order Monte Carlo tools for the simulation of the IDM, we additionally generate tree-

level parton events with MG5 aMC@NLO [105] showered with Pythia 8.219 [106] — the same tools which we use for

our subsequent IDM analysis — to quantify the effect of an LO-only simulation. Both event samples are processed

with CheckMATE and the resulting signal predictions are shown in table II.

As can be seen, our setup reproduces the experimentally quoted results sufficiently well within the experimentally

quoted error margin when using simulated events generated with an NLO-QCD Monte Carlo event generator. A

leading-order Monte Carlo analysis, in comparision, significantly underestimates the signal prediction with a nearly

constant ratio of ≈ 1.7 across all signal regions.

The numbers in Tab. II can be used to derive upper limits on the invisible branching ratio of the Standard Model

Higgs. For this purpose we employ a profile likelihood ratio test paired with the CLs prescription. For the shape

analysis, we make use of the full background covariance matrix provided in Ref. [41]. As no such detailed information

is provided for the signal, we conservatively assume that it is fully correlated across all bins. Our resulting distribution

for the test statistics is shown in Fig. 1. We are able to reproduce this distribution sufficiently well by either using our

11 For more information about how CheckMATE works we refer to the corresponding manuals in Refs. [43, 44]. We implemented the above

mentioned VBF search using the AnalysisManager tool described in Ref. [99].
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IV LHC Analysis of VBF and Monojets B Simulation and Validation of the VBF Channel

Region Data Background SM prediction with BR(h→invisible) = 100 %

CMS CMS Our Simulation

Powheg-Box MG5 aMC@NLO Ratio

CutandCount 2053 1779 ± 96 851 ± 148 758 468 1.6

mjj ∈ [200, 400] GeV 16177 14878 ± 566 591 ± 285 708 390 1.8

mjj ∈ [400, 600] GeV 10008 9401 ± 387 571 ± 232 664 374 1.8

mjj ∈ [600, 900] GeV 7277 6658 ± 271 566 ± 172 737 433 1.7

mjj ∈ [900, 1200] GeV 3138 2994 ± 144 472 ± 131 483 293 1.7

mjj ∈ [1200, 1500] GeV 1439 1283 ± 69 307 ± 64 314 202 1.7

mjj ∈ [1500, 2000] GeV 911 834 ± 51 344 ± 83 319 203 1.6

mjj ∈ [2000, 2750] GeV 408 358 ± 29 228 ± 40 218 126 1.8

mjj ∈ [2750, 3500] GeV 87 73.8 ± 9.4 90.3 ± 18.8 80.1 48.8 1.7

mjj > 3500 GeV 29 30.3 ± 7.4 37.4 ± 9.1 38.2 19.9 1.9

TABLE II. Observed and expected number of events for all regions listed in Table I. SM predictions are determined for an entirely

invisibly decaying Standard Model Higgs boson with mh = 125 GeV produced both in Vector Boson Fusion and Gluon Fusion.

CMS numbers are taken from Ref. [41] and compared to our numbers determined with our analysis implementation in CheckMATE,

using both the LO-QCD generator MG5 aMC@NLO and the NLO-QCD Monte Carlo simulation Powheg-Box. Uncertainties quoted

for CMS include both statistical and systematical uncertainties.
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FIG. 1. Comparision of the log-likelihood-ratio, using the numbers in Tab. II.

results determined with POWHEG or by rescaling the results of our leading-order simulation with a constant K-factor

of 1.7.

From our validation and the comparision of the above results using LO and NLO simulation, we conclude that a

leading order simulation of the IDM signal is expected to systematically underestimate the correct number. However,

a full next-to-leading order simulation of the off-shell VBF channel within the IDM is beyond the scope of this work.
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V Parameter space constraints

We determine results for the IDM at leading order. To be more precise, we simulate

pp→ HHjj (23)

event samples for the IDM within MG5 aMC@NLO and Pythia 8.219 by making use of the UFO model description of

Ref. [19]. We here do not specify intermediate states, i.e. on parton level all processes leading to the final state given

in Eqn. (23) have been taken into account. Besides VBF production of a SM-like scalar with invisible decays, this

also includes e.g. H A or H±H pair-production with the subsequent decay A → H j j, H± → H j j or vector boson

scattering processes with dark scalars in the t−channel. Relative contributions of the latter to the total cross section

become sizeable as |λ345| → 0. We include an invariant mass cut mjj ≥ 130 GeV and a pseudorapidity difference cut

∆ηjj ≥ 0.5 with η1η2 < 0 in our parton event generation. Note that these are weaker than the signal region cuts in

Tab. I.

From our above findings, we expect our resulting bounds to be conservative. However, motivated from the results

in Table II we also discuss the limits we obtain if our signal prediction is upscaled with the global K-factor of 1.7

motivated before to illustrate the potential impact of next-to-leading-order QCD effects.

C. Features and Setup of the Monojet analysis

Nearly any particle model with a dark matter candidate H predicts the standard monojet signature pp → HHj

for the LHC where the jet may originate from initial state radiation or, in some specific models other than ours, from

the hard vertex. It is therefore to be expected that this channel is sensitive to the IDM in which H plays the role of

the dark matter candidate. A detailed analysis of this channel can be found in Ref. [32]. However, as has for example

been shown in Ref. [107] in the context of a different model with similar topology, the vector boson fusion channel is

expected to be significantly more sensitive than the monojet search. We reproduce this finding later.

The analysis of the monojet channel is performed within CheckMATE, similarly to the analysis above. As this analysis

had already been implemented in the public code, we do not provide a separate validation here.12 We simulate the

partonic process qq̄, gg → HHj with MG5 aMC@NLO and apply a pT cut of 200 GeV on the leading jet, in accordance

with the signal region requirement pjT ≥ 250 GeV of this analysis.

V. PARAMETER SPACE CONSTRAINTS

In this section, we present the constraints resulting from the our recast of the searches for an invisibly decaying

Higgs in both the vector boson fusion and the monojet channel. We initially consider parameter points which have

passed all bounds presented in section III, apart from the constraints imposed by dark matter bounds, i.e. dark

matter relic density as well as direct detection, cf. Eqs. (19) and (20). This approach allows for an investigation of

the complementary between astrophysical and collider searches for this model.

Collider Constraints

We now demonstrate the effect of including the searches in Refs. [41], [42] as introduced in the previous section.

Our results are shown in Fig. 2 (left) where we only consider points which pass all prior constraints discussed in

Sec. III.13 The general influence of these constraints has been discussed in detail in Refs. [22, 45] and will not be

12 Validation material for this analysis can be found on the official CheckMATE website, https://checkmate.hepforge.org/AnalysesList/

ATLAS_13TeV.html.
13 We note that the density of points has no theoretical meaning but is just a reflection of a bias in the generation of theoretical parameter

tuples.
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V Parameter space constraints
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FIG. 2. Allowed and excluded points after consideration of VBF and monojet analysis but without dark matter relic density

and direct detection constraints. VBF results are shown using different categories, see in-text discussion. Left: Results in

(mH , λ345) parameter plane. Right: Results in mH -σ plane where σ is the LHC VBF production cross section at 13 TeV

including the partonic cuts given in Sec. IV B.

repeated here. For values mH ≤ mh/2, it is especially the branching ratio limit on h → invisible which leads to the

tight constraint |λ345| . 0.03. For larger mH values, however, λ345 can reach values up to the perturbativity limit

4π which has been imposed as a hard upper cut in the scan setup. Note that we have explicitly verified that the small

stripe for mH > 80 GeV, λ345 > 6 contains no viable parameter points as it is excluded by combining perturbativity

requirements with limits on the electroweak oblique parameters and Rγγ , see e.g. discussion in Ref. [22].

We separately indicate which points are respectively excluded by the monojet and by the VBF search. For the

latter, we explicitly distinguish the following exclusion categories.

• In CutAndCount@LO, we only determine the number of signal events in the cut-and-count signal region of Ref. [41]

and use a single-bin likelihood ratio test to determine whether it is compatible with the numbers of observed

and expected Standard Model events, see Tab. II.

• In Shape Fit@LO we determine the number of signal events in all mjj binned signal regions of Tab. II and use

a joint likelihood, including the background correlation matrix provided in Ref. [41], to determine the overall

p-value.

• Whilst for the above two approaches we use the signal numbers as determined with the Monte Carlo generator

MG5 aMC@NLO at leading order, for Shape Fit@LO*K- Factor we multiply all numbers with the constant K-factor

of 1.7, c.f. discussion in Sec.IV B.

According to our SM validation, we expect LO results to significantly underestimate the number of signal events and

therefore lead to conservative bounds. Showing the results including the K-factor determined from our SM validation

renders an estimate of the impact of higher-order QCD contributions.

In general, we observe that a significant fraction of points can be constrained by the two collider searches considered

in this work. As foreseen in Sec. IV C, the monojet channel shows a significantly reduced sensitivity as compared to
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V Parameter space constraints
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FIG. 3. Parameter space after including dark matter relic density and direct detection constraints. Left: allowed and forbidden

regions in the (mH , λ345) plane. Right: Constraints in the (mH ,Ωch
2) plane. On the right plot, we also show the dominant

annihilation cross section for each parameter point. The “Best Relic Density” point yields Ωch
2 = 0.1141 which is the closest

to the nominal Planck value, c.f. Eq. (18), out of all tested points.

the VBF search.14 Though both channels suffer largely from SM QCD background sources, the VBF channel can

make more precise predictions on the extected kinematics of the jets in the final state. This ultimatively allows for a

higher signal-to-background ratio in the signal bins and thus results in a better sensitivity for many models in which

both channels are present simultaneously.

Whilst monojet studies alone are sensitive to values of λ345 down to 2.5 and mH masses in the range [mh/2 - 70]

GeV, we observe VBF reinterpretations to constrain λ345 down to 1 and extend the sensitivity range on mH values

up to the maximum of 100 GeV we consider. No parameter point with mH < mh/2 can be constrained as the small

values of λ345 predict a far too small cross section. This can also be seen on the right of Fig. 2 where we show our

bounds in terms of the VBF cross section, including the partonic cuts described in Sec. IV B. In fact, this region is

largely constrained by the cut on BRh→ inv ≤ 0.24 which we discuss in Sec. III B. As the VBF channel consists of

one sub-measurement of this observable, it is evident that it cannot provide additional, stronger bounds than the one

on the invisible branching ratio which has been used to generate our parameter samples.

Note that, though the bound is clearly very much dependent on the size of the cross section, we observe on the

right of Fig. 2 that it is not flat in the mH -σ-plane. This can be explained by differences in the signal efficiency

from additional, small IDM contributions like pp→ H±H,H± → jjH which, in addition to mH , also depend on the

masses of the other inert scalars. The fact that the bound is not only dependent on the total cross section shows the

importance of dedicated Monte Carlo recast analyses including off-shell effects.

14 Our results appear to be compatible with former monojet sensitivity studies shown in Ref. [32] which show no sensitivity for a benchmark

point with λ345 = 1.7 using an older version of the monojet search with only 10% of the integrated luminosity that our analysis uses.

12
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FIG. 4. Parameter space after including all constraints (see also explanations below Fig. 3)

Dark Matter Constraints

We now impose the dark matter constraints specified by Eqs. (19) and (20) on the parameter space. As has been

noted in Refs. [23, 45], it is especially direct detection constraints which have improved by an order of magnitude

with respect to the previous study in Ref. [22] which used the 2013 LUX results, c.f. Ref. [108]. The parameter space

is severely constrained, as is demonstrated in Fig. 3 where we now discuss the dark matter bounds on our parameter

space without applying the VBF/Monojet limits. Fig. 3, left, shows the results in the mH -λ345 plane and Fig. 3,

right, displays the relic density abundance Ωch
2 in dependence on mH . The second figure also labels the dominant

annihilation channel for each tested parameter point as determined via MicrOmegas.15 We also indicate the point in

our sample whose predicted value of Ωch
2 = 0.1141 is closest to the Planck value in Eq. (18). This point yields 95 %

of the required cold dark matter relic density. Especially for masses mH ≥ 63 GeV, we find that |λ345| needs to be

small, . 0.14 for mH ≈ 100 GeV and even tighter bounds for lighter mH . However, there also exists a small mass

window, mH ∈ [mh/2; 63 GeV] which allows for values of λ345 up to our theoretical limit of 4π. As can be seen in the

right of Fig. 3, this region predicts particularly small values of Ω and therefore avoids both relic density and direct

detection constraints, see Eq. (20). When the intermediate SM-like Higgs boson h is on shell, the annihilation cross

section HH → b b̄ is enhanced and results in a considerably smaller dark matter relic density (see also discussion in

[22, 98]).

15 For relatively small mass differences between the two dark neutral scalars A and H, typically of a few GeV, the co-annihilation channel

AH → d d̄ becomes dominant. As this requires a relatively fine-tuned scenario, our scan only tested 2 such points. See also the

discussion in [22, 98].
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VI Null Results from other recast channels

Combination

Finally, in Fig. 4, we show the allowed and excluded parameters mH and λ345, as well as Ωch
2, after all the above

constraints are taken into account. As can be seen, collider results start to close the annihilation window, mH ≈ mh/2,

which could bypass direct detection constraints by significantly reducing the predicted relic density Ωch
2. Here, only

collider searches can put bounds on values of λ345 above 1. However, this only constrains points with very small Ωch
2;

therefore still a large number of points in this kinematic window remain allowed, including our “Best Relic Density”

point discussed above. Moreover, for values of mH significantly larger than mh/2, collider limits may yield important

bounds. However in the IDM we find that these are always already excluded by direct detection limits.

It must be noted, though, that if the lightest IDM scalar H couples to an extended dark sector and in fact decays

to the actual, lighter dark matter candidate, relic density and direct detection constraints can change significantly

while the above collider bounds are typically unaffected if H has further invisible decays (see e.g. Ref. [109] in the

context of the so-called “radiative seesaw model” which extends the IDM with an additional Majorana neutrino

dark matter candidate). Therefore, even though in the pure IDM collider limits seem to hardly provide additional

sensitivity compared to direct detection limits, they still constitute an important analysis channel complementary to

dark matter findings.

VI. NULL RESULTS FROM OTHER RECAST CHANNELS

The above VBF and monojet analyses focus on the dark matter candidate H and thus are largely independent

of the masses mA,mH± of the other two scalar particles and their decay rates. However, within our scan we only

considered dark masses ≤ 500 GeV. Thus the question may arise if any of the many other BSM searches performed

by ATLAS and CMS could result in additional, stronger constraints than the one considered.

In Fig. 5 we display the masses mH± ,mA for all points that are allowed by our previous scan. Similar to findings

in Refs. [22, 45], we observe a relatively strong mass degeneracy of these two heavier dark scalars. We also show the

corresponding mass differences mA−(mH +mZ) and mH±−(mH +mW±) of the allowed points. This quantity can be

used to roughly estimate the kinematics of the expected decays for the heavier scalars A and H±. For mass differences

larger/smaller than 0, we expect on/off-shell decays into gauge bosons, e.g. A → HZ(∗), with 100% branching ratio

due to the absence of any other lighter D-odd particles. We focus on the leptonic decay modes of the gauge bosons

as within the analyses we consider, hadronic modes are typically harder to distinguish from QCD background.

The larger the mass difference, the more energy is expected to be passed on to the daughter particles. A high-

momentum H in the final state is expected to produce missing transverse momentum (MET) in the event, a key

observable for BSM signals. However, as can be seen in Fig. 5, viable IDM points only predict large mass differences

for parameter points if also the absolute masses of mA and mH± are increased. Points with a large mass splitting and

good final state efficiency therefore in turn suffer from respectively smaller expected LHC production cross sections.

Therefore, a dedicated Monte Carlo recast procedure is necessary in order to identify which points are subject to

constraints from direct LHC searches.

Fortunately, CheckMATE bears the great advantage of being capable of quickly testing many such analyses simul-

taneously. We hence used it to perform a more inclusive scan of other potentially relevant final states. To be more

precise, we considered the two body final states

pp→ HA, HH±, AA, AH± and H+H−. (24)

We simulated all above processes in MG5 aMC@NLO, including a full consideration of the 2- and 3-body decays of

A and H± into H and a set of Standard Model particles. These events are subsequently tested against all 13 TeV

analyses implemented in CheckMATE — a list is given in appendix B.

It turns out that none of our > 10, 000 considered parameter tuples appear to be excluded by any search other than

the already considered VBF and monojet channels.
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FIG. 5. Allowed combinations of the scalar masses mH± , mA and mH which are relevant for collider analysis of the channels

pp→ HA and pp→ H±A.

Note that though we inclusively test all possible final states, the highest sensitivity is expected from leptonic final

states, i.e.

pp→AH,A→ Z
(∗)
lepH (25)

pp→AH±, A→ Z
(∗)
lepH,H

± →W±lepH. (26)

The first signature is covered by Ref. [110] which searches for final state with invisible particles produced in association

with a leptonically decaying Z-boson.16 We refer to this analysis as “2`” in the following. In contrast, the second

example signature is covered17 by Ref. [111] — for short “3`” in the following text — which looks for various leptonic

(and hadronic) final states in supersymmetric electroweakino production, i.e. χ̃+
1 χ̃
−
1 and χ̃±1 χ̃

0
2. The expected final

state for mixed chargino-neutralino production is experimentally identical to the aforementioned AH± decay chain

and thus may be used to constrain the IDM.

To understand the reason for the non-sensitivity of current electroweakino searches, we show our results for the

AH-channel and the H±A channel in Fig. 6. In each subplot, we show the respective r-value of the analysis, defined

as the ratio of the signal predicted by CheckMATE for the most sensitive signal region and the model-independent

upper limit on a signal in this signal region. Most importantly, r scales with the predicted signal cross section and a

value of r ≥ 1 can be interpreted as a model point excluded at 95% confidence level.

For the x-axis, we respectively show the mass difference of a heavy inert scalar, A or H±, and the summed masses

of the two particles it decays into, e.g. mA − (mZ + mH) for A → ZH. As explained before, the mass difference

provides an estimate for the typical energy given to the leptons and to the dark matter candidate H in the form of

MET.

As can be seen from the figures, there is no 1:1 correspondence between the aforementioned mass difference and

the model exclusion. This is obvious since the limit also depends on the absolute mass scales which for a given mass

difference can change within ±50 GeV, c.f. Fig. 5. However, one observes an overall rise-and-fall of the sensitivity and

a global maximum near mA − (mH + mZ) ≈ 50 GeV and mH± − (mH + mW±) ≈ 125 GeV. This structure can be

explained from our discussion at the beginning of this section: The larger the mass difference, the higher the expected

16 Note that this final state has been analysed before in Ref. [20] using Run 1 dilepton final states. However, the parameter regions they

consider are excluded after applying constraints from dark matter relic density and the invisible width of the SM Higgs boson.
17 Note that Checkmate, and therefore also our analysis, makes use of preliminary results in Ref. [111] which were subsequently updated

by a full publication in Ref. [112]. However, the published results are identical to those in the preliminary conference note.
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FIG. 6. Results for our LHC reinterpretation of SUSY electroweakino results on the masses of the IDM. The x-axis shows mass

differences which are strongly correlated to the MET distribution in the final state. The y-axis denotes the r-value, defined as

the ratio of the signal prediction divided by the 95 % confidence limit on the signal.

amount of lepton pT and MET in the final state becomes and so the overall signal efficiency increases. However, in

order to obtain higher mass differences, electroweak precision constraints require larger masses for A and H± and

thus generally predicts smaller cross sections for viable IDM realisations. Hence, large mass differences simultaneously

increase the final state efficiency and decrease the expected cross section. For the 2` analysis, this results in a peak

at a mass difference of approximately 30 GeV which is related to the minimum pT cut on the signal leptons and the

MET requirement of this analysis. For the 3` analysis, no overall peak can be determined as the final state consists

of two separate decay chains whose kinematic configurations simultaneously depend on mA and mH± . Still, a similar

behaviour can be observed.

However, as can be seen, the peak values for both analyses still only predict at most 15 % of the required number

of events for the analyses to be sensitive to the signal. Hence, we conclude that electroweakino searches are currently

not sensitive to the IDM and from a statistical point of view, this may only change in the high luminosity limit of

LHC 14. Still, the presented analysis only shows reinterpreted results motivated from different signal models and

therefore not necessarily optimised towards the IDM. It may therefore be possible that a collider search specifically

targeting the IDM may improve upon the results determined here via reinterpretation.

As an example, Fig. 7 illustrates how many events with leptonic final states are respectively expected from the

processes in Eqs. (25), (26), without applying any event selection cuts. Note that for a signal to be observable e.g. in

the 2` analyses one requires at least 200 events after requiring the missing transverse momentum to be at least 90

GeV. It becomes apparent from Fig. 7 that a considerably softer cut on MET would significantly increase the number

of expected signal events after cuts within the IDM. A full sensitivity study would however require the re-evaluation

of SM background after modifying cuts. Such an analysis would provide important complementary information since,

as can be seen from the different categories shown in Fig. 6, many points in the peak region of the direct search are

neither excluded by the VBF channel nor by dark matter direct detection.
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FIG. 7. Predicted number of events in the 2`/3` channels. The x-axis shows mass differences as in Fig. 6. The y-axis denotes

the product of integrated luminosity, total production cross section and leptonic branching ratio of the expected gauge boson(s)

in the final state.

VII. CONCLUSIONS

In this paper, we have considered the Inert Doublet Model, a two Higgs doublet model with a discrete Z2 sym-

metry containing a scalar dark matter candidate. We have included all current theoretical and experimental collider

constraints on this model as discussed in Ref. [45]. Concentrating on the region where mH ≤ 100 GeV, we have

investigated limits on the models’ parameter space from a recast of recent LHC search where the invisibly decaying

SM Higgs is produced either in vector boson fusion, Ref [41], or in association with a hard jet, Ref. [42]. For this,

we have implemented the above searches in the collider phenomenology tool CheckMATE and tested their sensitivity

compared to constraints from dark matter and direct detection.

We observe that the VBF channel outperforms the monojet analysis and is sensitive to a large fraction of IDM

parameter space and a proper recast of this analysis results in important bounds on the IDM model. Our search can

significantly constrain a specific window in parameter space with dark matter masses ∼ 62 − 63 GeV which evades

dark matter limits due to an enhanced annihilation rate and leads to a significantly reduced relic abundance. This

softens constraints from direct detection experiments like XENON1T. For larger masses, the VBF channel still provides

relevant bounds which however do not improve direct detection limits within the pure IDM. The latter, however,

could be avoided by coupling the lightest IDM scalar to a lighter dark matter sector which would have nearly no

consequence for our presented collider analysis.

As no direct search for IDM scalars exist, we further reinterpret searches for BSM particles with the same experi-

mental signature and conclude that these do not put further constraints on the IDM. We trace this back to the effect

that either the cross section is too small or the mass splitting is not large enough to predict sufficiently high-energetic

final state particles. In this context, it might be interesting to pursue whether a dedicated search for the inert scalars

could enhance the expected LHC sensitivity and eventually provide complementary information to the VBF channel

and dark matter direct detection, especially about the other scalar masses of the dark sector.
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Appendix A: IDM Feynman rules and other relations

The parameters m2
22, λ3, λ4, λ5 can be re-expressed in terms of our input parameters:

m2
22 = λ345 v

2 − 2m2
H ,

λ3 = λ345 −
2

v2

(
m2
H −m2

H±

)
, λ4 =

m2
A +m2

H − 2m2
H±

v2
,

λ5 =
m2
H −m2

A

v2
.

For completeness, we list the relevant Feynman rules of the IDM scalars in Tables III,IV and V, omitting Goldstone

modes as we are working in the unitary gauge at tree level. Note that the second, inert doublet neither participates

in electroweak symmetry breaking nor in the generation of fermion masses. Hence, the couplings of the SM-like Higgs

h to electroweak gauge bosons as well as fermions are given by their SM values, see e.g. [113], with the convention

ghW+
µ W

−
ν

= ie2v/2sW
2gµν .

vertex coupling

hHH λ345 v

hAA λ̄345 v

hhh 3λ1 v

hH+H− λ3 v

TABLE III. Triple scalar vertices

vertex coupling

hhhh 3λ1

H+H+H−H− 2λ2

HHAA λ2

HHHH 3λ2

AAAA 3λ2

H+H−AA λ2

H+H−HH λ2

hhH+H− λ3

hhHH λ345

hhAA λ̄345

TABLE IV. Quartic scalar vertices

vertex coupling

H−H+ γ i e

H−H+ Z i g
2

cos (2θW )
cos θW

HH±W∓ ∓ i g
2

AH∓W± − g
2

H AZ − g
2 cos θW

TABLE V. Gauge-scalar vertices

Appendix B: List of Applied CheckMATE Analyses

Table VI gives the full list of used CheckMATE analyses with a centre-of-mass energy of
√
s = 13 TeV. The first

column shows the CheckMATE idenitifer, the second the purpose for which the analysis was designed for. The last three

columns show the number of signal regions in the corresponding analysis (marked #SR), the integrated luminosity for

that analysis and the reference to the publication or conference notes from the experimental collaborations. We mark
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B List of Applied CheckMATE Analyses

CheckMATE identifier Search designed for #SR Lint Ref.
atlas 1602 09058 Supersymmetry in final states with jets and two SS leptons or 3 leptons 4 3.2 [114]
atlas 1604 01306 New phenomena in events with a photon and /ET 1 3.2 [115]
atlas 1604 07773 New phenomena in final states with an energetic jet and large /ET 13 3.2 [116]
atlas 1605 03814 q̃ and g̃ in final states with jets and /ET 7 3.2 [117]
atlas 1605 04285 Gluinos in events with an isolated lepton, jets and /ET 7 3.3 [118]
atlas 1605 09318 Pair production of g̃ decaying via t̃ or b̃ in events with b-jets and /ET 8 3.3 [119]
atlas 1606 03903 t̃ in final states with one isolated lepton, jets and /ET 3 3.2 [120]
atlas 1609 01599 Measurement of ttV cross sections in multilepton final states 9 3.2 [121]
atlas conf 2015 082 Supersymmety in events with leptonically decaying Z, jets and /ET 1 3.2 [122]
atlas conf 2016 013 Vector-like t pairs or 4 t in final states with leptons and jets 10 3.2 [123]
atlas conf 2016 050 t̃ in final states with one isolated lepton, jets and /ET 5 13.3 [124]
atlas conf 2016 054 q̃, g̃ in events with an isolated lepton, jets and /ET 10 14.8 [125]
atlas conf 2016 076 Direct t̃ pair production and DM production in final states with 2` 6 13.3 [126]
atlas conf 2016 078 Further searches for q̃ and g̃ in final states with jets and /ET 13 13.3 [127]
atlas conf 2016 096 Supersymmetry in events with 2` or 3` and /ET 8 13.3 [128]
atlas conf 2017 022 q̃, g̃ in final states with jets and /ET 24 36.1 [129]
atlas conf 2017 039 Electroweakino production in final states with 2 or 3 leptons 37 36.1 [111]
atlas conf 2017 040 Dark Matter or invisibly decaying h, produced in associated with a Z 2 36.1 [130]
atlas conf 2017 060 New phenomena in final states with an energetic jet and large /ET 13 36.1 [131]
cms pas sus 15 011 New physics in final states with an OSSF lepton pair, jets and /ET 47 2.2 [132]
cms pas hig 17 023 Search for invisible decays of h produced through VBF 10 36.1 [41]

TABLE VI. Full list of all
√
s = 13 TeV CheckMATE analyses used for this study. Entries in boldface are relevant for the model

studied in this work and are discussed in the main text. The column labelled #SR yields the number of signal regions. Entries

for the integrated luminosities Lint are given in fb−1.

all analyses discussed in our main discussion in boldface. Note that Checkmate regularly implements preliminary

results published as conference notes by the experimental LHC collaborations and use the corresponding conf-note

identifiers. Often, these are published at a later stage by the collaborations without any changes to analysis procedure

or results. More details on the individual analyses can be found in their respective references and corresponding

validation material, if not provided in this work, can be found on http://checkmate.hepforge.org.
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