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Next-to-next-to-leading order prediction for the photon-to-pion transition form factor
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We evaluate the next-to-next-to-leading order corrections to the hard-scattering amplitude of the photon-to-
pion transition form factor. Our approach is based on the predictive power of the conformal operator product
expansion, which is valid for a vanishingb function in the so-called conformal scheme. The Wilson coeffi-
cients appearing in the nonforward kinematics are then entirely determined from those of the polarized deep
inelastic scattering known to next-to-next-to-leading order accuracy. We propose different schemes to include
explicitly also the conformal symmetry breaking term proportional to theb function and discuss numerical
predictions calculated in different kinematical regions. It is demonstrated that the photon-to-pion transition
form factor can provide a fundamental testing ground for our QCD understanding of exclusive reactions.
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I. INTRODUCTION

At a sufficiently large scale, exclusive QCD reactions fa
torize into a perturbative calculable partonic hard-scatter
amplitude and universal hadron distribution amplitud
@1–3#. The study of such reactions offers the possibility
directly exploring nonperturbative features of hadrons at
amplitude level, as well as of testing our understanding
the amplitude factorization. Unfortunately, exclusive rea
tions are still challenging to both experimentalists and th
reticians, and the onset of the perturbative approach is a
troversial topic in the literature.

The photon-to-pion transition form factor, appearing
the two-photon amplitude of the processg* (q1)g (* )(q2)
→p0(P), can serve for a thorough study of the mention
problem. In this process the partonic content of a meso
probed only by the electromagnetic interaction. Furthermo
since we require that the meson is produced at lightlike
tances, i.e., that at least one photon is far off shell, this p
cess belongs to quite a large class of two-photon proce
calculable by means of the operator product expans
~OPE! @4#. Deeply virtual Compton scattering~DVCS!,
deeply inelastic lepton-hadron scattering~DIS!, and the pro-
duction of various hadronic final states by photon-pho
fusion belong to this class of processes. Such processes
be described by a general scattering amplitude given by
time-ordered product of two electromagnetic currents sa
wiched between the hadronic states. For a specific proc
the generalized Bjorken kinematics at the light cone can
reduced to the corresponding kinematics, while the partic
hadron content of the process is reflected in the nonpertu
tive part of the amplitude. Hence, the generalized ha
scattering amplitude enables us to relate predictions of
ferent two-photon processes on the partonic level.

*On leave of absence from the Rudjer Bosˇković Institute, Zagreb,
Croatia.
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In the leading twist-2 approximation, the light-cone OP
approach is equivalent to the collinear factorization sche
@1–3#. The transition form factor factorizes as a convoluti
of the hard-scattering amplitudeT and the pion distribution
amplitudef, with respect to the momentum fractionx:

Fgp~v,Q!5 f pT~v,x,Q,m f ! ^ f~x,m f !, ^ [E
0

1

dx,

~1.1!

where

Q252
~q12q2!2

4
, v5

q1
22q2

2

q1
21q2

2
.

In the above, the resolution scaleQ2 is large and the asym
metry parameterv is fixed, i.e.,uvu<1, while m f represents
the factorization scale. Because of Bose symmetry the t
sition form factor is symmetric inv. The perturbative ex-
pansion of the hard-scattering amplitude reads

T~v,x,Q,m f !5
A2

6Q2 FT(0)~v,x!1
as~m r !

2p
T(1)S v,x,

Q

m f
D

1
as

2~m r !

~2p!2
T(2)S v,x,

Q

m f
,

Q

m r
D

1O~as
3!1$x→12x%G , ~1.2!

wherem r is the renormalization scale and the leading-ord
~LO! contribution is given by

T(0)~v,x!5
1

12v~2x21!
. ~1.3!
©2003 The American Physical Society13-1
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The normalization ofT given above corresponds tof(x,m f)
normalized to 1 andf p5131 MeV. Note that a residual de
pendence on the renormalization scalem r appears in the
truncated perturbative expansion of the hard-scattering
plitude. The next-to-leading order~NLO! correction to the
hard-scattering amplitude has been calculated in the mod
minimal subtraction (MS) scheme@5–7#. In the next-to-
next-to-leading order~NNLO!, only the contributions com-
ing from the quark-bubble insertions have been evalua
@8–10#, again using theMS scheme. The pion distributio
amplitudef(x,m f) is intrinsically a nonperturbative quantit
and cannot be determined from the perturbation the
However, its evolution is governed by the evolution equat

m f
2 d

dm f
2
f~x,m f !5V~x,u,m f ! ^ f~u,m f !, ~1.4!

in which the evolution kernel has a perturbative expansion

V~x,y,m f !5
as~m f !

2p
V(0)~x,y!1

as
2~m f !

~2p!2
V(1)~x,y!1O~as

3!.

~1.5!

The evolution kernel has been estimated to NLO accur
using theMS scheme@11–13# and the corresponding solu
tion of the evolution equation was obtained@14–16#. The
latter can be expressed in the form

f~x,m f um0!5f (0)~x,m f um0!1
as~m f !

2p
f (1)~x,m f um0!

1O~as
2!, ~1.6!

where the scalem0 denotes some low scale at which th
nonperturbative input was obtained. The solution~1.6! satis-
fies the initial conditionf(x,m0um0)5f (0)(x,m0um0) and
for m f→` takes the asymptotic formf(x,m f→`um0)
56x(12x). We stress that the evolution equation as defin
by ~1.4! and~1.5! corresponds to the simplified scheme fix
by the preference that the distribution amplitudef should
have no residual dependence on the renormalization sca1

The photon-to-pion transition form factor has been m
sured at largeQ2 by the CELLO@17# and CLEO@18# Col-
laborations, where one photon is almost on shell, while
second one has a virtuality up to 9 GeV2. Different authors
have analyzed the data@19–26#, and it is often stated that th
pion distribution amplitude is close to its asymptotic sha
for previous work, see also@27–29#. However, in this kine-
matics, the shape of the distribution amplitude can be c

1Note that, in general, such a residual dependence appears
with the evolution kernel depending on two scales:

V~x,y,mf!5
as~mr!

2p
V(0)~x,y!1

as
2~mr!

~2p!2 FV(1)~x,y!2
b0

2
V(0)~x,y!lnSmr

2

mf
2DG

1O~as
3!.
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strained only from the scaling violation that arises from t
evolution of the distribution amplitude. In the smalluvu re-
gion, perturbative QCD gives a parameter-free prediction
the photon-to-pion transition form factor, and in the interm
diate region, one might extract the few lowest moments
the distribution amplitude and confront them with nonpert
bative results~see Ref.@30#!. However, both high-precision
data as well as a precise understanding of perturbative
nonperturbative effects are necessary for this analysis.

Thus, the computation of both perturbative and pow
suppressed contributions is an important task. In this way,
can gain insight into the perturbative approach to exclus
processes. However, calculations of exclusive amplitudes
yond the leading order are quite cumbersome. In addition
the photon-to-meson transition form factor and similar exc
sive two-photon processes, the perturbative next-to-lead
order predictions are known only for the pion form fact
@31–37# and for the amplitude of charged meson pair p
duction in two-photon collisions for the case of equal m
menta sharing meson distribution amplitude@38#. Fortu-
nately, in the perturbative sector massless QCD is invar
under conformal transformation provided the coupling ha
fixed point, so that theb function, the renormalization group
coefficient of the running coupling, vanishes. In the lowe
order ofas , the conformal symmetry breaking part, which
consequently proportional tob/g5b0as/(4p)1O(as

2), can
be determined by calculating the Abelian part of the glu
self-energy proportional to the number of quarksnf . Addi-
tional subtleties may appear owing to the factorization p
cedure and they can be resolved by a finite renormaliza
of the hard-scattering and distribution amplitudes. Maki
use of conformal symmetry constraints, together with
explicit calculation of terms proportional to theb function,
offers a considerable simplification of the perturbative cal
lation and, in our case, gives the possibility of going beyo
the NLO approximation.

Indeed, for the photon-to-pion transition form factor w
can take advantage of this symmetry and its predictive po
@39,40# by means of the conformal OPE~COPE! @41,42#, in
which the form of the Wilson coefficients is constrained. T
normalization of these coefficients can be recovered in
forward kinematics from the DIS results for the nonsing
coefficient function of the polarized structure functiong1
known to NNLO @43#. This field-theoretical approach ha
been explored@15,16,44–46# and tested to NLO@47#, where
the b function is absent in the Wilson coefficients. We em
phasise that the ‘‘conformal symmetry breaking’’ due to t
factorization procedure in theMS scheme and the restora
tion of conformal symmetry by finite renormalization a
well understood at NLO. Further consistency checks
based on comparison with explicit results~e.g., hard-
scattering amplitudes for two-photon processes in the lig
cone dominated region, the flavor nonsinglet kernel, qua
bubble insertions in singlet kernels!, and with constraints
coming from theN51 super Yang-Mills theory@48#.

In this paper we apply the COPE combining the NNL
result for the nonsinglet coefficient function of the polariz
structure functiong1 @43# with the explicit result for thenf-
~i.e., b0-!proportional NNLO contribution to the hard

ng
3-2
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scattering amplitude of the photon-to-pion transition fo
factor @9,10#, both being evaluated in theMS scheme, to
obtain a full NNLO result for the photon-to-pion transitio
form factor in the so-called conformal factorization schem
Alternatively, we propose a scheme in which the ha
scattering amplitude can already be constructed from
knowledge of the nonsinglet coefficient function ofg1 and
the corresponding anomalous dimensions.

The paper is organized as follows. For the convenienc
the reader, in Sec. II we review the predictive power of co
formal symmetry relevant to the photon-to-pion transiti
form factor. We then propose two treatments of terms p
portional to theb function and discuss the remaining fre
dom in the choice of the factorization procedure. The gen
structure of the hard-scattering amplitude in theMS scheme
and the NNLO term that is proportional tob0 are analyzed in
Sec. III. For the phenomenologically important case in wh
one photon is quasireal, we evaluate conformal moments
the hard-scattering amplitude and by making use of
NNLO results for theg1 function we obtain the NNLO pre
diction for the photon-to-pion transition form factor in th
conformal factorization scheme. We extend this procedur
other values of photon virtualities and present a detailed
vestigation of the conformal partial wave decomposition
the transition form factor in differentv regions. Based on
these results, in Sec. IV we analyze the size of the NLO
NNLO effects for one quasireal photon and in the small a
intermediateuvu regions. Finally, a summary and concl
sions are given in Sec. V. The Appendixes are devoted
technical details: the Feynman-Schwinger representatio
the hard-scattering amplitude, a consistency check at NN
between the nf-proportional MS results for the hard-
scattering amplitude of the photon-to-pion transition fo
factor and the results for the nonsinglet coefficient funct
of the DIS polarized structure functiong1, evaluation of the
conformal moments of the hard-scattering amplitude,
Taylor expansions inv, and the prescription for reconstruc
ing the hard-scattering amplitude in the momentum fract
space from the known conformal moments.

II. OUTLINING THE CONFORMAL SYMMETRY
FORMALISM

In the physical sector, massless QCD at the tree leve
invariant under conformal transformations, i.e., under spa
time transformations containing the Poincare´ transforma-
tions, dilatation, and special conformal transformations. T
latter are composed of translation, inversion, and transla
again. Conformal symmetry implies an improvement of t
energy-momentum tensor, which then becomes trace
Owing to this symmetry, one has additional constraints
field-theoretical quantities, e.g., for Green’s functions. T
subject was intensively studied in the 1960s and 1970
four-dimensional field theory. In QCD, conformal symmet
is manifested in the Crewther relation@49# and in the solu-
tion for the mixing problem of composite operators und
renormalization@50,15,46#. The reduced matrix elements o
the conformal operatorsO, sandwiched between the vacuu
uV& and one-pion̂ p(P)u states, are pertinent to the expa
01401
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sion of the distribution amplitude2

f~x,m f !5(
j 50

`

8
x~12x!

Nj
Cj

3/2~2x21!^p~P!uOj j ~m f !uV& red,

Nj5
~ j 11!~ j 12!

4~2 j 13!
. ~2.1!

Here Cj
3/2 are the Gegenbauer polynomials with indexn

53/2 of orderj and the sum runs over evenj. In this repre-
sentation, the transition form factor reads

Fgp~v,Q!5 f p(
j 50

`

8Tj~v,Q,m f !^p~P!uOj j ~m f !uV& red,

~2.2!

where Tj denotes thej th conformal moment of the hard
scattering amplitude:

Tj~v,Q,m f !5E
0

1

dxT~v,x,Q,m f !
x~12x!

Nj
Cj

3/2~2x21!

5
A2

3Q2 FTj
(0)~v!1

as~m r !

2p
Tj

(1)S v,
Q

m f
D

1
as

2~m r !

~2p!2
Tj

(2)S v,
Q

m f
,

Q

m r
D1O~as

3!G .

~2.3!

As reviewed in Sec. II A, the operator mixing proble
under renormalization beyond the one-loop level is solved
the restoration of conformal symmetry. In Sec. II B this a
lows us to employ conformal symmetry in the OPE of tw
electromagnetic currents, and to fix the hard-scattering
plitude ~2.3! in the conformal limit. Additionally, we include
b-proportional terms and in Sec. II C we discuss the cor
sponding ambiguities of this procedure. The solution of
renormalization group equation to NNLO is worked out
Sec. II D.

A. Renormalization properties of conformal operators and the
conformal scheme

Let us start with the constraints for the renormalization
composite operators. In the flavor nonsinglet and parity o
sector the twist-2 operators read@51–53#

2It is common in the literature that the distribution amplitude
expanded in the form

f~x,mf!56(
j50

`

8x~12x!Bj~mf!Cj
3/2~2x21!,

whereBj ( j 52,4, . . . ) essentially represent the nonperturbative
put. Comparing with our definition ~2.1!, we have
^p(P)uOj j (m f)uV& red56NjBj (m f), where ^p(P)uO00(m f)uV& red

5B051 is a renormalization group invariant quantity.
3-3
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Oj l 5c̄~x!~n•g!g5Cj
3/2S n•DJ

n•]
D ~ in•]! lc~y!U

x5y50

,

~2.4!

where]5]W1]Q , DJ5DW 2DQ , andn is a lightlike vector that
makes these operators symmetric and traceless. The Ge
bauer polynomialsCj

3/2 arise from the group-theoretical con
struction of the operators and they are of orderj, where this
label is related to the conformal spinj 11, i.e., the eigen-
value of the Casimir operator of the so-called collinear c
formal group. These operators have spinl 11 and canonical
dimensionl 13. In other words, we have different infinit
irreducible representations of the conformal algebra, ca
towers, that are characterized by the conformal spinj 11,
while the members of each representation are labeled by
spin l 11. The conformal operators withl 5 j are the lowest
members of each conformal tower, and we can climb
tower by acting with the generator of translation.

Employing Poincare´ invariance, the general form of th
renormalization group equation for the operators introdu
above reads

m
d

dm
Oj l 52 (

k50

j

g jkOkl . ~2.5!

In the conformally invariant theory operators of differe
conformal towers do not mix under renormalization. Inde
the anomalous dimension matrix

g jk5
as

2p
d jkg j

(0)1
as

2

~2p!2
g jk

(1)1
as

3

~2p!3
g jk

(2)

1O~as
4! with g j[g j j ~2.6!

is diagonal at LO. This property is induced by conform
symmetry at the tree level. The fact that these operators
mix beyond LO even for the vanishingb function in theMS
scheme, has been considered as an unexpected breakdo
conformal symmetry. Note that the appearance of the ano
lous dimension already requires a ‘‘redefinition’’ of the co
formal representation at the tree level, i.e., the scaling dim
sions of the operators change.
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The understanding of this subtlety is the key for the a
plication of conformal symmetry inall orders of perturbation
theory. It is well known that, on the quantum level, confo
mal symmetry is broken owing to the regularization of ultr
violet divergences, which shows up in the trace anomaly
the~improved! energy-momentum tensor. This trace anom
is given as a linear combination of different renormaliz
operators. In the dimensionally regularized theory w
space-time dimensionn5422e, it reads

Qmm~x!5
be

2g
„Gmn

a ~x!…21•••, ~2.7!

where theb function in the regularized theory is defined a

be[m
]g

]m
52

42n

2
g1b with

b

g
5

as

4p
b01O~as

2!

~2.8!

andb05(2/3)nf2(11/3)CA . In addition to the square of the
renormalized field strength tensorGmn

a multiplied by theb
function, the trace anomaly~2.7! contains equations of mo
tion and BRST-exact operators. Therefore, it is sometim
believed that in the physical sector of the theory the break
of conformal symmetry is in general proportional to theb
function. However, if one deals with composite operato
the operator product and the trace anomaly of these opera
contain additional ultraviolet divergences. Since they
multiplied by the (42n) contribution inbe , these UV di-
vergences produce finite symmetry breaking terms that
not proportional to theb function. The appearance o
anomalous dimensions of composite operators can also
understood in this way.

A detailed analysis shows that the nondiagonality of
anomalous dimension matrix observed in theMS scheme at
NLO originates from such an effect of conformal symme
breaking. It already appears at LO in the Ward identities
these operators with respect to the special conformal tra
formation. The calculation of this special conformal anoma
matrix ĝc( l )5(as/2p)ĝc(0)( l )1O(as

2) results in

ĝc(0)~ l !52b̂~ l !ĝ (0)1ŵ, ~2.9!

where
bjk~ l !5H 2~ l 1k13!d jk22~2k13!, j 2k>0 and even,

0 otherwise,

and

wjk5CFH 24~2k13!~ j 2k!~ j 1k13!FAjk2c~ j 12!1c~1!

~k11!~k12!
1

2Ajk

~ j 2k!~ j 1k13!G , j 2k.0 and even,

0 otherwise

Ajk5cS j 1k14

2 D2cS j 2k

2 D12c~ j 2k!2c~ j 12!2c~1!, ~2.10!
3-4
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with c(z)5(d/dz)ln G(z) and CF54/3. It induces off-
diagonal entries in the anomalous dimension matrix~2.6!:

g jk
MS(1)52

@ ĝc(0)1b0b̂,g (0)# jk

a~ j ,k!
for j .k, ~2.11!

wherea( j ,k)52( j 2k)( j 1k13). The prediction~2.11! co-
incides with the moments of the explicitly calculated evo
tion kernel at NLO@11–13#. On the other hand, the diagon
part of the anomalous dimension matrix~2.6!

g j j [g j5
as

2p
g j

(0)1
as

2

~2p!2
g j

(1)1
as

3

~2p!3
g j

(2)1O~as
4!

~2.12!

coincides with the anomalous dimensions of the opera
that are restricted to the forward kinematics and are kno
as the moments of the splitting kernels in DIS.

As we can see, there is a complete understanding of c
formal symmetry breaking in theMS scheme. Now the ques
tions arise: Can we find a scheme at which conformal sy
metry holds true? Can we then use the predictive powe
conformal symmetry?

The first question has a positive answer in the case
the b function has a fixed point. Instead of relying on th
hypothetical fixed point, we simply freeze the coupling
hand, which impliesb50. It is then possible to find a
scheme in which the renormalized conformal operators~2.4!
form an irreducible representation of the collinear conform
group, i.e., their special conformal anomaly and anomal
dimension matrices are simultaneously diagonal. The r
tion from theMS to such a scheme, which we call the co
formal subtraction~CS! scheme, is given by the matrixB̂
defined by

O CS5B̂21O MS, Bjk5d jk1
as

2p
Bjk

(1)1O~as
2!.

~2.13!

The NLO termBjk
(1) is entirely determined by the speci

conformal anomaly~2.9! and reads

Bjk
(1)52u~ j .k!

g jk
c(0)

a~ j ,k!
5u~ j .k!$d̂ĝ (0)2ĝ% jk .

~2.14!

Here we introduce the notationdjk5bjk /a( j ,k) and gjk
5wjk /a( j ,k). In the case of a nonvanishingb function, an
additional off-diagonal term appears, and thus the comp
anomalous dimension in the CS scheme reads@15,16#

g jk
CS5H B̂21ĝMSB̂1B̂21Fm d

dm
B̂G J

jk

5d jkg j1u~ j .k!
b

g
D jk . ~2.15!

The addendum of the anomalous dimension matrix~2.15! is
known in the lowest order ofas @40#:
01401
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D jk5
as

2p
D jk

(0)1
as

2

~2p!2
D jk

(1)1O~as
3! with

D jk
(0)5Bjk

(1)2@ d̂,ĝ (0)# jk . ~2.16!

Note that the diagonal part~2.12!, which corresponds to the
moments of the splitting kernels, also includ
b-proportional terms. The moments of the splitting kern
are completely known to two-loop accuracy@54–57# and the
first 13 entries at three-loop level are given in@58#. Their
scheme dependence is fixed by the fact that they are ev
ated in theMS scheme. This implies that the diagonal pa
of B̂ is given by the identity matrix.

B. Conformal operator product expansion

Let us now turn to the second question we have raised
we discussed in the preceding subsection, one advantag
the conformal scheme is that, up to off-diagonal terms p
portional tob, the anomalous dimensions are fixed by t
DIS results, and, in the conformal limit, they are part
known to NNLO order.3 Furthermore, the class of two
photon processes that are light-cone dominated, i.e., forQ2

large, can be treated by means of OPE. That includes
evaluation of the corresponding nonforward Wilson coe
cients. Under the assumption that conformal symmetry ho
true, these coefficients are fixed up to normalization fact
that coincide with the Wilson coefficients appearing in t
deep inelastic scattering structure functionsF1 and g1
@41,42#. Hence, in the conformal scheme, taking the conf
mal limit in which conformal symmetry holds true, we ca
use this predictive power of the COPE to avoid cumberso
higher-order calculations. Indeed, the NLO coefficient fun
tions for the hadronic tensor in the general off-forward kin
matics were predicted in this way@44# and they coincide,
after rotation to theMS scheme, with explicitly calculated
ones@60–62#.

For the photon-to-pion transition form factor, the leadi
twist-2 result of OPE is given by Eq.~2.2!, where the con-
formal momentsTj of the hard-scattering amplitude corre
spond to the Wilson coefficientsCj , which are convention-
ally normalized as

Tj~v,Q,m!5
A2

3Q2
Cj„vuas~m!,Q/m…. ~2.17!

As we have mentioned, in the formal conformal limit th
Wilson coefficients are constrained in the CS scheme by
predictive power of the COPE:

as~m!⇒as* -fixed

implies the reduction

3In principle, we then also know the Efremov-Radyushki
Brodsky-Lepage~ERBL! evolution kernels, which can be obtaine
from the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP! ker-
nels through an integral transformation@59#.
3-5
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Cj„vuas~m!,Q/m…⇒C̄j~vuas* ,Q/m!,

whereC̄j (vuas* ,Q/m) is given by@39#

C̄j5cj~as* !S m2

Q2D g j /2 2~2v! j

~11hv! j 111g j /2
B~ j 11,j 12!

3 2F1S j 111
1

2
g j , j 121

1

2
g j

2S j 121
1

2
g j D U 2hv

11hvD .

~2.18!

In the limit h→1, one obtains the result for the productio
of a ~pseudo!scalar meson by two virtual photons, while fo
h50 the forward case is reproduced.4 Note thatCj (v) is an
even~odd! function of v for even~odd! j, which is guaran-
teed by the linear transformation properties of the hyperg
metric functions 2F1. The normalizationcj (as) coincides
with the flavor nonsinglet Wilson coefficients of the pola
ized structure functiong1 taken atm5Q. It is given as a
perturbative expansion:

cj~as!5cj
(0)1

as

2p
cj

(1)1
as

2

~2p!2
cj

(2)1O~as
3! with cj

(0)51,

~2.19!

and is known to NNLO in theMS scheme@43#. Strictly
speaking, this coincidence appears just at the hypothe
fixed point as5as* . However, since we know the forwar
anomalous dimensions and the Wilson coefficients pertu
tively in the MS scheme, we can easily resto
b-proportional terms in these quantities beyond the con
mal limit.

Conformal symmetry breaking terms proportional to t
b function alter the COPE result~2.18! in the full theory.
Obviously, in the irreducible conformal representation us
the b term cannot be fixed from the requirement of confo
mal invariance. Thus, the definition of the conformal sche

CCS
„as~m!,Q/m…5CMS

„as~m!,Q/m… B̂„as~m!…

with

CCS~as* ,Q/m!5C̄~as* ,Q/m! ~2.20!

is ambiguous and, consequently, theB̂ matrix is uniquely
defined only up tob-proportional terms that are off diagona
At the two-loop level,C containsb0-proportional terms ap-

4The Wilson coefficients appearing in the deep inelastic scatte
structure functionsF1 andg1 are derived in the usual DIS operato
basis, which differs in the normalization from the definition for t
basis of conformal operators. Hence, these Wilson coefficients
fer slightly from theh50 limit of Eq. ~2.18!.
01401
o-

al

a-

r-

,
-
e

pearing in bothcj
(2) andg j

(2) . Let us first set such terms t
zero and, with the help of this, single out allb0-proportional
terms inCCS:

CCS5CMSB̂ub501
b

g
dC

5C̄ub501
b

g
dC with

dC5
g

b
~CMSB̂2CMSB̂ub50!, ~2.21!

andas remains running. At LO ab0 term does not appear in
CMS; thus, the perturbative expansion

dCj5dCj
(0)1

as

2p
dCj

(1)1O~as
2! ~2.22!

holds true. Note that sinceBjk
(0)5d jk @Eq. ~2.13!# the LO

coefficientCMS(0)[C(0) is independent of the scheme. Sim
larly to Eq. ~2.21!, we can write the matrixB̂ in the general
form

B̂5B̂ub501
b

g
dB̂ with

dB̂5dB̂(0)1
as

2p
dB̂(1)1O~as

2!. ~2.23!

If we defineB̂ so that it contains nob0 term at orderas , i.e.,
if we take dB̂(0)50 as in our definition of the CS schem
~2.13!, ~2.14!, the coefficientsdC up to NNLO read

dC(0)50, dC(1)5
2

b0
~CMS(2)2CMS(2)ub050!1C(0)dB̂(1).

~2.24!

Since we have required that the diagonal entries ofB̂ should
be 1, the normalization coefficientscj coincide in the for-
ward limit with the Wilson coefficients ofg1 calculated in
the MS scheme.

C. Ambiguities in the definition of the conformal scheme

As we have discussed, the ambiguity left in the definiti
of the conformal scheme in the full theory resides in t
b-proportional off-diagonal terms, i.e., in the choice ofdB̂ in
Eq. ~2.23!. Adopting the definitions~2.13! and~2.23!, we set
dB̂(0)50 and in the following discuss different choices
dB̂(1), restricting ourselves to NNLO.

1. Defining CS andCS schemes

The naive choice is to set

dB̂(1)50, ~2.25!

g

if-
3-6
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which means that theb0-proportional term in the NNLO
Wilson coefficients, i.e.,dC(1), is entirely evaluated in the
MS scheme. Since the conformal symmetry breaking p
appearing in the COPE has to be proportional to theb func-
tion, we can calculatedC(1) by evaluating the contribution
proportional to thenf piece ofb0, i.e., from the one-loop
Feynman graphs with an additional quark-bubble insertio

In this naive scheme~2.25!, which we denote by CS, bot
the conformal operators and the Wilson coefficients will m
under renormalization to NLO accuracy owing to the ru
ning of the coupling. Let us consider this in more deta
Since the transition form factor is invariant under renorm
ization, i.e.,

m
d

dm
Fgp~v,Q!50, ~2.26!

these effects will compensate one another. Thus, the re
malization group equation for the Wilson coefficients rea

Fm ]

]m
1b

]

]gGCj
CS5Fas~m!

2p
g j

(0)1
as

2~m!

~2p!2
g j

(1)GCj
CS

1
b

g (
i 5 j 12

`

8
as~m!

2p
Ci

CSD i j
(0)

1O~as
3!, ~2.27!

where the addendumD i j
(0) is defined in Eq.~2.16!. SinceCj

CS

is conformally covariant to the NLO approximation, i.e.,
contains no partial waves~2.18! with a conformal spin larger
than j 11, the off-diagonal entries on the right-hand si
~RHS! arise from the explicitm dependence ofCj

CS(2),
which has been taken from theMS scheme.

In the alternative conformal scheme, denoted in the
lowing by CS, this intermediate mixing is avoided by th
complete diagonalization of the renormalization group eq
tion. This can be achieved by including an explicitm depen-
dence in theB̂ matrix, i.e., by taking

dBjk
(1)5 lnS m* 2

m2 D D jk
(0)u~ j .k!1•••. ~2.28!

In the order we are considering, the matrixB̂ now reads

Bjk5d jk1
as~m!

2p
Bjk

(1)1
as

2~m!

~2p!2 H Bjk
(2)1

b0

2

3F lnS m* 2

m2 D D jk
(0)u~ j .k!1•••G J 1O~as

3!.

~2.29!

This choice introducesgCS given by Eqs.~2.15!, ~2.16! with
D jk

(0)→D jk
CS(0)50, i.e., the LO addendum to the anomalo

dimension matrix vanishes in this scheme. However, for
mensional reasons the choice~2.29! additionally introduces a
01401
rt

.

-
.
-

or-

l-

-

i-

new residual scale dependencem* . The meaning of this pro-
cedure is obvious. We do not resum the remaining o
diagonal lnm terms through the renormalization group equ
tion; rather, we include them in the Wilson coefficien
where they will be annulled. This is indeed on the sa
footing with what we have already discussed in theb50
case, where the off-diagonal entries present in
MS scheme have been removed by a finite, however,m in-
dependent renormalization. Consequently, both the opera
and the Wilson coefficients

O CS5B̂21O MS, CCS5CMSB̂, ~2.30!

where B̂ is defined by Eq.~2.29!, now satisfy the desired
renormalization group equations in theas

2 approximation:

m
d

dm
O j l

CS~m!52Fas~m!

2p
g j

(0)1
as

2~m!

~2p!2
g j

(1)

1O~as
3!GO j l

CS~m!, ~2.31!

Fm ]

]m
1b

]

]gGCj
CS
„as~m!,Q/m…

5Fas~m!

2p
g j

(0)1
as

2~m!

~2p!2
g j

(1)1O~as
3!G

3Cj
CS
„as~m!,Q/m…. ~2.32!

Note that the forward anomalous dimensionsg j remain ex-
plicitly m independent. However, both the off-diagonal pie
of the anomalous dimensions and the Wilson coefficie
now possess a residualm* dependence at the ordersas

3 and
as

2 , respectively.
To restore them dependence of the Wilson coefficient, w

perturbatively solve its renormalization group equati
~2.32!. Up to an integration constantdC8, its solution to
two-loop accuracy can be expressed by the Wilson coe
cient ~2.18!, appearing in the COPE,

Cj
CS
„as~m!,Q/m…5C̄j„as~m!,Q/m…1

as
2

~2p!2

b0

2
dC8,

~2.33!

which now depend on the running coupling:

C̄j5cj S as~m!,
Q

m
,

]

]g j
D S m2

Q2D g j /22~2v! jB~ j 11,j 12!

~11v! j 111g j /2

3 2F1S j 111
1

2
g j , j 121

1

2
g j

2S j 121
1

2
g j D U 2v

11vD . ~2.34!
3-7
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The running ofas(m), appearing in the lowest approximation of bothg j andcj , is compensated by introducing a logarithm
change of them dependence in the normalization factors:

cj S as~m!,
Q

m
,

]

]g j
D5cj

(0)1
as~m!

2p
cj

(1)1
as

2~m!

~2p!2
cj

(2)1
as~m!

2p

b0

2
lnS Q2

m2D
3H as~m!

2p Fcj
(1)1cj

(0)
g j

(0)

4
lnS Q2

m2D G1cj
(0)g j

(0) ]

]g j
(0)J 1O~as

3!. ~2.35!
on
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Equation~2.34! should be understood in the sense of a c
sequent expansion with respect toas up to orderas

2 .
So far we have found a rather natural way to include

effects of the running coupling in the structure of the CO
result, with the advantage that the conformal operators
not mix under renormalization in NLO. It remains to fix th
integration constantdC8, which vanishes in the kinematica
forward limit. We can identify it with the noncovariant pa
calculated in theMS scheme, in an analogous way to o
discussion in the case of the CS scheme. On the other h
it is rather appealing that the Wilson coefficien
Cj„as(m),Q2/m2

… contain only conformally covariant term
to NNLO. For the scheme we callCS, we adopt this pre
scription, i.e., we putdC850. In the NNLO approximation,
we then have a partial wave decomposition of the transi
form factor with respect to the ‘‘good’’ quantum number—
conformal spin. This in principle allows us to extract th
conformal moments of the distribution amplitude with
well-defined conformal spin for experimental data.

2. Calculational prescriptions

Let us comment on the renormalization scale depende
and give the calculational prescription for the schemes
have proposed.

First, we introduced a naive recipe~CS scheme! which
combines the COPE result with the one explicitly calcula
l-
he
n
th

01401
-

e

o

nd,

n

ce
e

d

in the MS scheme. Now we extend our analysis by dist
guishing between the renormalization scalem r ~the argument
of as in the Wilson coefficients! and the factorization scale
m f . We require that the matrix elements of conformal ope
tors should depend only on the factorization scalem f . Thus,
the scheme transformation now reads

CCS
„as~m r !,Q/m f ,Q/m r…

5CMS
„as~m r !,Q/m f ,Q/m r… B̂„as~m f !….

Employing the scale-changing relation

as~m f !5as~m r !F11
as~m r !

2p

b0

2
lnS m f

2

m r
2D 1O~as

2!G ,

~2.36!

we expand the rotation matrix

B̂„as~m f !…5B̂„as~m r !…1
as

2~m r !

~2p!2

b0

2
lnS m f

2

m r
2D B̂(1)1O~as

3!.

~2.37!

Hence, in this scheme, the Wilson coefficients read to NN
accuracy
CCS5C̄„as~m r !,Q/m f…ub501
b0

2

as
2~m r !

~2p!2 F2Cb
MS (2)

„as~m r !,Q/m f ,Q/m r…1 lnS m f
2

m r
2D C(0)B̂(1)G1O~as

3!, ~2.38!
he
ly
will

ate
ing
o-
n-

ew
rt is
whereCb
MS(2) denotes the (2b0/2)-proportional contribution

evaluated in theMS scheme, while the structure ofC̄ is
fixed by Eqs.~2.18! and ~2.19!.

Alternatively, in theCS scheme, we employed renorma
ization group invariance to incorporate the running of t
coupling into the generic structure of the COPE result a
used a finite renormalization to preserve the structure of
COPE to NNLO accuracy:

Cj
CS
„as~m!,Q/m…5C̄j„as~m!,Q/m…, ~2.39!
d
e

whereC̄j is defined by Eqs.~2.34! and ~2.35!. The form of
the Wilson coefficients in which the distinction between t
scalesm r andm f is introduced can be obtained analogous
to the previously discussed case of the CS scheme, and
be presented in Sec. III C.

In Sec. IV we employ both of these schemes to estim
the size of NNLO effects at a given input scale. The miss
ingredient for a consistent NNLO analysis including the ev
lution of the distribution amplitude is the anomalous dime
sion matrix at the three-loop level. Whereas the first f
diagonal entries have been calculated, the off-diagonal pa
3-8
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unknown. It could be read off from thenf-proportional part
of the special conformal anomaly matrix in the two-loo
approximation. Also, generally, the trace anomaly will affe
the COPE at NNLO accuracy@see Eq.~2.7!#. We rather make
use of the freedom to rotate the conformal symmetry bre
ing piece from the perturbative sector to the nonperturba
one, as has been done in theCS scheme, or the revers
However, we expect that the mixing effect in theCS scheme
will be negligibly small and its detailed investigation is b
yond the scope of this paper.

D. Evolutional behavior of conformal operators

We end this section with a short review of the evolution
behavior of the conformal operators from which that of t
distribution amplitudef(x,m) can easily be established. Fo
the convenience of the reader, we repeat here the basic
for solving the renormalization group equation~1.4! and
present the results in a form convenient for phenomenol
cal analysis@15,16,40#.

The renormalization group equation~2.5! is an inhomoge-
neous first-order partial differential equation and after sa
wiching the conformal operators between the hadronic st
of interest we obtain the evolution equation for the reduc
matrix elements:

m
d

dm
^p~P!uOj j ~m!uV& red

52g j j ~m!^p~P!uOj j ~m!uV& red

2 (
k50

j 22

g jk~m!^p~P!uOkk~m!uV& red. ~2.40!

The solution can be achieved by the ansatz

^p~P!uOj j ~m!uV& red

5 (
k50

j

8Bjk~m,m0!expH 2E
m0

m dm8

m8
gk~m8!J

3^p~P!uOkk~m0!uV& red, ~2.41!

with the initial condition

Bjk~m5m0 ,m0!5d jk . ~2.42!

The recursive solution of this set of differential equation
starting with the homogeneous one forj 50, has been writ-
ten for an arbitrary scheme in a compact form~see Ref.
@15#!:
01401
t

k-
e

l

eps

i-

-
es
d

,

Bjk5
d jk

d jk2Lg jk
ND

5d jk1Lg jk
ND1L~gNDLĝND! jk1•••,

~2.43!

whereĝND represents the triangular off-diagonal matrix

g jk
ND5H g jk for j .k,

0 otherwise,
~2.44!

and the operatorL is an integral operator whose action
defined by

Lg jk
ND52E

m0

m dm8

m8
g jk

ND~m8!

3expH 2E
m8

m dm9

m9
@g j~m9!2gk~m9!#J .

~2.45!

In the MS or CS scheme, the anomalous dimensions~2.6!
depend only implicitly on the scalem via the running cou-
pling as(m). For theb function, we employ the expansio
@63#

b

g
5

as~m!

4p
b01

as
2~m!

~4p!2
b11

as
3~m!

~4p!3
b21O~as

4!,

b05
2

3
nf211, b15

38

3
nf2102,

b252
325

54
nf

21
5033

18
nf2

2857

2
. ~2.46!

Since the off-diagonal entries of the anomalous dimensi
give only subleading logs, which will not be resummed, w
expand theB matrix in powers ofas :

Bjk~m,m0!5d jk1
as~m!

2p
B jk

(1)~m,m0!1
as

2~m!

~2p!2
B jk

(2)~m,m0!

1O~as
3!. ~2.47!

Performing the integrations in Eq.~2.43!, we obtain the de-
sired results for
3-9
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B jk
(1)52Rjk~m,m0u1!

g jk
ND(1)

b0
, ~2.48!

B jk
(2)5@Rjk~m,m0u1!2Rjk~m,m0u2!#Fg j

(1)2gk
(1)

b0
2

b1

2b0

g j
(0)2gk

(0)

b0
Gg jk

ND(1)

b0
1Rjk~m,m0u2!

3F b1

2b0

g jk
ND(1)

b0
2

g jk
ND(2)

b0
G1 (

m5k12

j 22

8
g jm

ND(1)

b0

Rmk~m,m0u1!2Rjm~m,m0u2!

11~g j
(0)22gm

(0)1gk
(0)!/b0

gmk
ND(1)

b0
,

where

Rjk~m,m0un!5
b0

nb01g j
(0)2gk

(0) F12S as~m0!

as~m! D (nb01g j
(0)

2gk
(0))/b0G . ~2.49!

The leading logs associated with the diagonal entries are resummed, while the subleading ones are expanded with
as :

expH 2E
m0

m dm8

m8
gk~m8!J 5F as~m!

as~m0!G
2gk

(0)/b0F11
as~m!

2p
A k

(1)~m,m0!1
as

2~m!

~2p!2
A k

(2)~m,m0!1O~as
3!G , ~2.50!

where

A k
(1)~m,m0!5F12

as~m0!

as~m! GF b1

2b0

gk
(0)

b0
2

gk
(1)

b0
G ,

A k
(2)~m,m0!5

1

2
@A k

(1)~m,m0!#22F12
as

2~m0!

as
2~m!

G Fb1
22b2b0

8b0

gk
(0)

b0
2

b1

4b0

gk
(1)

b0
1

gk
(2)

2b0
G . ~2.51!

To the considered order, the evolution of the matrix elements then reads

^p~P!uOj j ~m!uV& red5 (
k50

j

8F as~m!

as~m0!G
2gk

(0)/b0H d jk1
as~m!

2p
@d jkA k

(1)1B jk
(1)#~m,m0!

1
as

2~m!

~2p!2
@d jkA k

(2)1B jk
(1)A k

(1)1B jk
(2)#~m,m0!1O~as

3!J ^p~P!uOkk~m0!uV& red. ~2.52!

The off-diagonal entries are known only at NLO and are given in theMS scheme in Eq.~2.11!. In the CS scheme, they ar
proportional tob0, as given in Eq.~2.15!, whereas in theCS scheme they are equal to zero by definition. Therefore, the mi
of operators is anas

2 suppressed effect:

B jk
(1)50,

B jk
(2)5

D jk
(0)

2

g j
(0)2gk

(0)

b01g j
(0)2gk

(0) Fb01g j
(0)2gk

(0)

b0
lnS m2

m* 2D Rjk~m,m0u2!1 lnS m2

m0
2D S Rjk~m,m0u2!

12as~m0!/as~m!
21D G

2
1

2
Rjk~m,m0u2!D jk

CS(1), ~2.53!
n

e

.,

li-
or-
whereD jk
(0) is defined in Eq.~2.16!. Here we have taken into

account the explicitm dependence in the anomalous dime
sions, induced by the transformation~2.29!. The addendum
D jk

CS(1)52g jk
CS(2)/b0, which is presently unknown, has to b

evaluated atm5m* . Note that theas power counting re-
mains correct as long as the scalesm* , m, andm0 are of the
01401
-
order ofQ@LQCD. The auxiliary scale can now be set, e.g
to m* 5m.

Let us remark that the evolution of the distribution amp
tude can be formally obtained by resummation of the conf
mal partial waves given in Eq.~2.1!. Taking into account the
evolution of the reduced matrix element in Eq.~2.52!, one
3-10
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finds the eigenfunctions of the evolution equation, expan
with respect to the Gegenbauer polynomials@15#.

III. HARD-SCATTERING AMPLITUDE TO NNLO
ACCURACY

In the preceding section we outlined the structure of
conformal predictions in the conformal momentum spa
and in this one we analyze the structure of the NNLO res
in the momentum fraction representation. In Sec. III A w
derive a convolution representation of the NNLO term p
portional to b0 and also give the general structure of t
hard-scattering amplitude in theMS scheme up to the
NNLO order. Furthermore, in Sec. III B we consider the ph
nomenologically important case of the asymmetry param
uvu equal to 1 and in Sec. III C we then present the NNL
result for the conformal moments in the CS a
CS schemes. In Sec. III D we analogously present the res
at small and the intermediate values ofuvu.

A. b0-proportional NNLO terms and the general structure
of the NNLO results in the MS scheme

First, we consider the term proportional tonf , i.e., b0,
appearing in the NNLO calculation of the two-photon ha
scattering amplitude~1.2!. For the case of general Bjorke
kinematics, the result has been given in Ref.@9# and is easily
restricted to the kinematics of a particular process, i.e., in
case, to the kinematics of the photon-to-pion transition fo
factor ~see Appendix B for the definitions of generalize
Bjorken kinematics!. In the special caseuvu51 ~one photon
on shell!, these results coincide with the results from R
@10#.

The authors of Ref.@9# presented the regularized result
terms of hypergeometric functions2F1. It is instructive to
rewrite it as a convolution of the amplitude

T(0)~v,xue!5
1

@12v~2x21!#11e
, ~3.1!

with the kernels

va~x,yue!5u~y2x!S x

yD 11e

1H x→ x̄

y→ ȳ
J , ~3.2!

vb~x,yue!5u~y2x!S x

yD 11e 1

y2x
1H x→ x̄

y→ ȳ
J ,

~3.3!

g~x,yue,s!5u~y2x!
1

y S 12
x

yD 211e1s

3BS x

y
,11s,2e2s D1H x→ x̄

y→ ȳ
J , ~3.4!

where B(x,a,b)5*0
xdyya21(12y)b21 is the incomplete

Beta function. Heres ande are the dimensional regulariza
tion parameters (n5422s@e#) associated with the quark
01401
d

e
e
ts

-

-
er

lts

-

r

.

bubble insertion and the overall loop, respectively. The k
nels @va(x,yue)#1 and @vb(x,yue)#1 are diagonal with
respect to the Gegenbauer polynomialsCj

3/21e(2x21) and
they are regularized with the usual@•••#1 prescription:

@v~x,y!#15v~x,y!2d~x2y!E
0

1

dzv~z,y!. ~3.5!

Their eigenvalues are

v j
a5

11e

~11 j 1e!~21 j 1e!
2

1

21e
,

v j
b52c~21e!22c~21e1 j !. ~3.6!

The g kernel is not diagonal with respect to the Gege
bauer polynomials and is responsible for the apparent bre
ing of conformal symmetry in theMS scheme. Its expansio

g~x,yue,s!5g~x,y!1g8~x,y!e1ġ~x,y!s1O~e2,s2,es!

reads

g~x,y!52
u~y2x!

y2x
lnS 12

x

yD1H x→ x̄

y→ ȳ
J ,

g8~x,y!52
u~y2x!

y2x

1

2
ln2S 12

x

yD1H x→ x̄

y→ ȳ
J ,

~3.7!

ġ~x,y!5
u~y2x!

y2x FLi2S 12
x

yD2Li2~1!G
1H x→ x̄

y→ ȳ
J 1g8~x,y!.

There is a similar expansion of thev i kernels (i 5a,b)

v i~x,yue!5v i~x,y!1 v̇ i~x,y!e1
1

2
v̈ i~x,y!e21O~e3!,

where

v i~x,y!5u~y2x! f i~x,y!1H x→ x̄

y→ ȳ
J ,

v̇ i~x,y!5u~y2x! f i~x,y!lnS x

yD1H x→ x̄

y→ ȳ
J , ~3.8!

v̈ i~x,y!5u~y2x! f i~x,y!ln2S x

yD1H x→ x̄

y→ ȳ
J ,

and the functionsf i can be read off from Eqs.~3.2!, ~3.3!.
The LO kernel of Eq.~1.5! is expressed in terms of thev i

kernels introduced above:

V(0)~x,y!5CF@v~x,y!#1 , v~x,y!5va~x,y!1vb~x,y!.

~3.9!

For the NLO kernel we use the color decomposition
3-11
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V(1)~x,y!5CFFCFvF~x,y!2
b0

2
vb~x,y!

2S CF2
CA

2 D vG~x,y!G
1

. ~3.10!

In the following we particularly need theb0-proportional
kernel

vb~x,y!5 v̇~x,y!1
5

3
v~x,y!1va~x,y!. ~3.11!

The unrenormalized NLO and NNLO corrections to t
hard-scattering amplitude are of the form

T̂(1)~v,x!5CFT̂F
(1)~v,x!,
01401
T̂(2)~v,x!5CFFCFT̂F
(2)~v,x!2

b0

2
T̂b

(2)~v,x!

2S CF2
CA

2 D T̂G
(2)~v,x!G . ~3.12!

Employing the integral representation of the hypergeome
functions, one can express the regularized results of Ref@9#

T̂F
(1)~v,x!5M~v,xue,0!, ~3.13!

T̂b
(2)~v,x!523

G~e!G~22e!2

G~422e!
M~v,xue,e! ~3.14!

in terms of convolutions
LN
M~v,xue,s!5
G~e1s!G~22e!G~12e2s!

G~322e2s!G~11s! S 4pm2

Q2 D e1sE
0

1

dyT(0)~v,yue1s!H 2
~12e!~124e23s!

11s
d~x2y!

1
~12e!@222e~12e!1s~12s!#

11s
va~y,xus!1

~12e!@22e12e~e1s!#2es~e1s!

12e

3~@vb~y,xus!#12~e1s!@g~y,xue,s!#1!J . ~3.15!

The results given above contain UV and collinear singularities, which are removed by renormalization~introduces the scale
m r) and factorization~at the scalem f) of collinear singularities. The renormalization procedure in theMS scheme~for details
see Ref.@10#! induces the following general structure of NLO and NNLO corrections present in the expansion~1.2!:

T(1)~v,x,Q/m f !5CFTF
(1)~v,x!1 lnS Q2

m f
2D @T(0)

^ V(0)#~v,x!, ~3.16!

T(2)~v,x,Q/m f ,Q/m r !5CFFCFTF
(2)2

b0

2
Tb

(2)2S CF2
CA

2 DTG
(2)G~v,x!

1 lnS Q2

m f
2D H T(0)

^ V(1)1FCFTF
(1)1

1

2
lnS Q2

m f
2D T(0)

^ V(0)G ^ V(0)J ~v,x!

1
b0

2
lnS Q2

m r
2D T(1)~v,x,Q/m f !2

b0

4
ln2S Q2

m f
2D @T(0)

^ V(0)#~v,x!, ~3.17!

where

TF
(1)~v,x!5T(0)~v,y! ^ $T F

(1)~y,x!1LN~v,y!@v~y,x!#1%, ~3.18!

TF
(2)~v,x!5T(0)~v,y! ^ H T F

(2)~y,x!1LN~v,y!~@vF~y,x!#11T F
(1)

^ @v#1~y,x!!1
1

2
LN2~v,y!@v#1 ^ @v#1~y,x!J , ~3.19!

Tb
(2)~v,x!5T(0)~v,y! ^ H T b

(2)~y,x!1LN~v,y!~@vb#12T F
(1)!~y,x!2

1

2
LN2~v,y!@v~y,x!#1J , ~3.20!

TG
(2)~v,x!5T(0)~v,y! ^ $T G

(2)~y,x!1LN~v,y!@vG~y,x!#1%, ~3.21!

while LN(v,x)5 ln@11v22xv# andT(0)(v,x) is given by Eq.~1.3!. For a detailed discussion of the appearance of the
terms, see Appendix A.
3-12
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The explicit calculation provides us with the kernels

T F
(1)~x,y!5F2

3

2
vb1gG

1

~x,y!2
3

2
d~x2y!, ~3.22!

T b
(2)~x,y!5F29

12
va1 v̇a2

209

36
v2

7

3
v̇2

1

4
v̈1

19

6
g1ġG

1

~x,y!23d~x2y!. ~3.23!
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As we see, theseT kernels are built up ofv and g kernels
also appearing in the evolution kernel. While theg and v̇
kernels appear at NLO, theġ andv̈ ones show up for the firs
time at NNLO. For the missing two entries, namely,T F

(2) and
T G

(2) , we expect a similar structure, but with additional a
unknown building blocks that are related to theg kernel.

Making use of the fact that both the photon-to-pion tra
sition form factor and the forward Compton scattering b
long to the class of light-cone dominated two-photon p
cesses, which can be described by a general scatte
amplitude, we have performed a consistency check betw
the previously presented results for the hard-scattering
plitude of the photon-to-pion transition form factor~known
up to b0-proportional NNLO terms! and the corresponding
results for the nonsinglet coefficient function of the DIS p
larized structure functiong1 @43#. The procedure is presente
in detail in Appendix B.

A few comments regarding the LN(v,x) terms are in or-
der. In NLO, we observe that the LN(v,x) term matches the
ln term indicated in Eq.~3.16!, i.e., we can absorb it in Eq
~3.18! by an appropriate choice of the scale:

m i
2→m̃ i

25m i
2~11v22xv!21 with i 5$ f ,r %.

~3.24!

The explicit NNLO result for theb-proportional terms satis
fies the same rule for the scale redefinition, which indicate
general property of the hard-scattering amplitude evalua
in the MS scheme. This is shown in Appendix A. The term
proportional to LN(v,x) are vanishing in the limituvu→0
and for uvu→1 provide a logarithmic enhancement in th
end-point region. However, a resummation of such ter
through an appropriate scale setting is misleading, si
other logarithmically enhanced terms also appear. For
stance, at NLO we have

ln~12y!

12y
^ @v~y,x!#15

ln2~12x!12 ln~12x!

12x

1O„ln~12x!…, ~3.25!

while the contribution ofT F
(1)(x,y) is @see Eq.~3.22!#

1

12y
^ T F

(1)~y,x!52
ln2~12x!13 ln~12x!19

2~12x!

1O„ln~12x!…, ~3.26!
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so that only a partial cancellation of the ln2(12x)/(12x) term
appears.

B. Limit zvz\1 and corresponding conformal moments in the
MS scheme

Of special interest is the limituvu→1, since different
~pseudoscalar! meson-to-photon transition form factors a
measured in this kinematical region. We can trivially perfo
this limit in Eqs.~1.3!, ~3.18!, and~3.20! and after convolu-
tion we present the result in the form of Ref.@10#:

T(0)~x!5
1

2~12x!
, ~3.27!

TF
(1)~x!5

1

2~12x! F2
9

2
2

12x

2x
ln~12x!1

1

2
ln2~12x!G ,

~3.28!

Tb
(2)~x!5

1

2~12x! F2
457

48
2S 47

36
2

1

4xD ln~12x!

1S 13

12
2

1

4xD ln2~12x!2
1

6
ln3~12x!2

7

3
Li2~x!

1
1

2
Li3~x!2S12~x!G , ~3.29!

where the polylogarithms are defined by

Lin~x!5E
0

x

dy
Lin21~y!

y
with Li1~x!52 ln~12x!,

S12~x!5
1

2E0

x

dy
ln2~12y!

y

5
1

2
ln2~12x!ln~x!1 ln~12x!Li2~12x!

2Li3~12x!1z~3!. ~3.30!

Here we introduce for the special caseuvu51 a more con-
venient notation in which the ln(2) terms arising from th
3-13
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LN(v51,x) functions present in Eqs.~3.18!–~3.20! are ab-
sorbed in ln(2Q2/mf,(r)

2 )5ln(2q1
2/mf,(r)

2 ). We do not list here
the terms proportional to these logs but refer to Ref.@10# for
their explicit expressions.
to
on
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e

l

l
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g
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01401
The conformal moments of the individual terms we e
counter in Eqs.~3.27!–~3.29! are given in Appendix C. Here
we list the conformal moments ofT(0)(x), TF

(1)(x), and
Tb

(2)(x) calculated in theMS scheme:
Tj
(0)5

2 j 13

~ j 11!~ j 12!
, ~3.31!

TF, j
(1)5

2 j 13

~ j 11!~ j 12! F2
9

2
1

324S1~ j 11!

2~ j 11!~ j 12!
1

1

~ j 11!2~ j 12!2
12S1

2~ j 11!G , ~3.32!

Tb, j
(2)5

2 j 13

~11 j !~21 j ! F2
457

48
2

1

2
z~3!2

7

3
z~2!1

1

~ j 11!~ j 12! S 115

36
2

~21! j

2
z~2!2

1

3
S1~ j 11!22S1

2~ j 11!

2~21! jS22~ j 11! D2
128S1~ j 11!

2~ j11!2~ j 12!2
2

5

2~ j11!3~ j 12!3
1

19

9
S1~ j 11!1

10

3
S1

2~ j 11!1
4

3
S1

3~ j 11!1
2

3
S3~ j 11!G .

~3.33!
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After inspection of Eqs.~3.16! and ~3.17! one notes that the
conformal moments of the terms proportional
ln(2Q2/mf,(r)

2 ) can be conveniently expressed using the c
formal moments of the kernelsv andvb . For the definition
of conformal moments of the kernels, we refer to Appen
C, Eq. ~C7!. The conformal moments of the diagonal kern
@v(x,y)#1 , given in Eq.~3.9!, are denoted byv j[v j j :

v j522S1~ j 11!1
3

2
1

1

~11 j !~21 j !
. ~3.34!

The conformal moments ofT(0)
^ @v#1 , determined using

Eq. ~C10!, are given byTj
0v j . On the other hand, the kerne

@vb#1 in Eq. ~3.11! is nondiagonal, and as shown in Eq.~C8!
both the diagonalvb, j[vb, j j as well as the nondiagona
vb,k j (k. j andk2 j even! conformal moments contribute t
the conformal moments ofT(0)

^ @vb#1 , i.e., one obtains
(k. jTk

0vb,k j . After performing the convolution and makin
use of the results for the conformal moments summarize
Appendix C, one can express the conformal moment
T(0)

^ @vb#1 in the form Tj
0vb, j

S , where we introduce the
‘‘effective’’ conformal moment of thevb kernel amounting
to

vb, j
S 5

5

3
v j1z~2!2

9

4
2

1

~11 j !2~21 j !2
. ~3.35!

Finally, we summarize ourMS results. The LO contribu-
tion is given in Eq.~3.31!, the NLO contribution takes the
form
-

x
l

in
f

Tj
(1)5TF, j

(1)1 lnS 2Q2

m f
2 D 2 j 13

~ j 11!~ j 12!
v j , ~3.36!

while the (2b0/2)-proportional NNLO term is given by

Tb, j
(2)1 lnS 2Q2

m f
2 D 2 j 13

~ j 11!~ j 12! Fvb, j
S 1

1

2
lnS 2Q2

m f
2 D v j G

2 lnS 2Q2

m r
2 D Tj

(1) . ~3.37!

Note that, owing to the fact thatvb is nondiagonal, even the
lowest partial wave, i.e.,j 50, of the NNLO correction de-
pends on the factorization scale as well as the renorma
tion one.

C. NNLO result in the CS and CS schemes
in the limit zvz\1

Let us now turn to the conformal schemes CS andCS. We
make a distinction between the renormalization and fac
ization scales. Consequently, the argument of the couplin
the Wilson coefficients depends onm r and, as discussed in
Sec. II C, we require that the matrix elements of conform
operators depend only on the scalem f . We use the COPE
where foruvu51 the Wilson coefficients~2.18! simplify to
3-14
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C̄j5cj„as~m r !…

3S m f
2

2Q2D g j /2 G~ j 11!G~ j 12!G~2 j 141g j !

G~ j 121g j /2!G~ j 131g j /2!G~2 j 13!
.

~3.38!

The anomalous dimensions are given by

g j5
as~m r !

2p
g j

(0)1
as

2~m r !

~2p!2
g j

(1)1O~as
3!

522H as~m r !

2p
CFv j1

as~m r !

~2p!2
CFFCFvF, j2

b0

2
vb, j

2S CF2
1

2
CAD vG, j G1O~as

3!J , ~3.39!

wherev j , vF, j , vG, j , andvb, j are the diagonal conforma
moments of the evolution kernels@v(x,y)#1 , @vF(x,y)#1 ,
@vG(x,y)#1 , and @vb(x,y)#1 , respectively, and they coin
cide with the moments of the DGLAP kernels. The LO m
ments are given by Eq.~3.34!, while other entries can be
found in Refs.@54–57#. Analogously, we decompose the no
malization factor

cj511
as

2p
CFcj

(1)1S as

2p D 2

CFFCFcF, j
(2)2

b0

2
cb, j

(2)

2S CF2
1

2
CAD cG, j

(2) G1O~as
3!. ~3.40!
01401
-

Its NLO contribution reads

cj
(1)5S1

2~11 j !1
3

2
S1~ j 12!2

9

2
1

322S1~ j !

2~ j 11!~ j 12!

2S2~ j 11!, ~3.41!

while the NNLO contributions can be determined from t
Mellin moments of the coefficient functions calculated fro
theas

2 corrections to the polarized structure functiong1 @43#.
A consistency check of theb0-proportional part of these re
sults is given in Appendix B.

As discussed in Sec. II C, the Wilson coefficients in t
CS scheme are obtained in a straightforward manner
means of Eq.~2.38!, whereCb, j

MS(2)
„as(m r),Q/m f ,Q/m r… is

given by the expression~3.37!. Taking into account the
proper normalization, i.e., identifyingT( i ) with C( i ) by Eq.
~2.17!, the expansion ofC̄j , defined by Eq.~3.38!, leads to
the complete NNLO result for the hard-scattering amplitu

Tj
CS~Q,m f !5

A2

3Q2 FTj
(0)1

as~m r !

2p
Tj

CS(1)~Q/m f !

1
as

2~m r !

~2p!2
Tj

CS(2)~Q/m f ,Q/m r !1O~as
3!G ,

~3.42!
where

Tj
CS(1)5CFFTF, j

CS(1)1
2 j 13

~ j 11!~ j 12!
lnS 2Q2

m f
2 D v j G , ~3.43!

Tj
CS(2)5CFH CFTF, j

CS(2)2
b0

2
Tb, j

(2)2S CF2
1

2
CADTG, j

CS(2)1 lnS 2Q2

m f
2 D 2 j 13

~ j 11!~ j 12!

3H CFFvF, j1cj
(1)v j1v j

2@S1~ j 11!1S1~ j 12!22S1~2 j 13!#1
v j

2

2
lnS 2Q2

m f
2 D G2

b0

2
vb, j

CS,S2S CF2
1

2
CAD vG, jJ

1
b0

2
lnS 2Q2

m r
2 D Tj

CS(1)~Q/m f !2
b0

4
ln2S 2Q2

m f
2 D 2 j 13

~ j 11!~ j 12!
v jJ , ~3.44!

and

TF, j
CS(1)5

2 j 13

~ j 11!~ j 12!
$cj

(1)1v j@S1~ j 12!1S1~ j 11!22S1~2 j 13!#% ~3.45!

TF, j
CS(2)5

2 j 13

~ j 11!~ j 12! H cF, j
(2)1~cj

(1)v j1vF, j !@S1~ j 11!1S1~ j 12!22S1~2 j 13!#1
v j

2

2
@„S1~ j 11!1S1~ j 12!

22S1~2 j 13!…21S2~ j 11!1S2~ j 12!24S2~2 j 13!12z~2!#J , ~3.46!
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TG, j
CS(2)5

2 j 13

~ j 11!~ j 12!
$cG, j

(2) 1vG, j@S1~ j 11!1S1~ j 12!22S1~2 j 13!#%, ~3.47!

while Tb, j
(2) corresponds to theMS result given by Eq.~3.33!. Note that, in accordance with the renormalization gro

invariance, the off-diagonal part of the anomalous dimension matrix proportional tob0 has been changed and, consequen
also the conformal moments

vb, j
S ⇒vb, j

CS,S5vb, j
S 1

~ j 11!~ j 12!

2 j 13
~TF, j

CS(1)2TF, j
(1)!. ~3.48!
io
m

e-

io
gs

ter-
d
ects

ents
the

x-
nts
e-

on

the

the
Finally, we present the result for theCS scheme, in which
the conformal covariance of the partial wave decomposit
is preserved. The modification concerns only the ter
proportional to b0 in which the off-diagonal entries in
Eq. ~3.44! are removed by making the following replac
ments:

vb, j
CS,S⇒vb, j ,

Tb, j
(2)⇒Tb, j

CS(2)5
2 j 13

~ j 11!~ j 12!
$cb, j

(2)1vb, j@S1~ j 11!

1S1~ j 12!22S1~2 j 13!#%

1 ln~2!FTF, j
CS(1)1Tj

(0) 1

2
ln~2!v j G . ~3.49!

The ln(2) terms appear here artificially from the absorpt
of such terms into the factorization and renormalization lo
i.e., ln(Q2/mi

2)→ln(2Q2/mi
2)2ln(2) @see Eq.~2.35!#. All other

expressions in Eqs.~3.43!–~3.47! remain unchanged, e.g.,

Tj
CS(1)5Tj

CS(1), TF, j
CS(2)5TF, j

CS(2), TG, j
CS(2)5TG, j

CS(2).

~3.50!
01401
n
s
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D. NNLO predictions for small and intermediate values ofzvz

Based on numerical observations on the small and in
mediateuvu behavior of the transition form factor predicte
by perturbation theory, interesting phenomenological asp
have been pointed out in Ref.@30#. Unfortunately, for these
configurations both photons are virtual@cf. Eq. ~1.1!# and
thus the statistics is rather low. Therefore, no measurem
has been done yet, although they could be possible at
existinge1e2 machines of the Babar, Belle, and CLEO e
periments. In the following we want to add some comme
on the pion transition form factor in the small and interm
diate uvu regions and to give predictions at NNLO.

From the representation~2.34! it follows that thej th con-
formal moments foruvu,1 are suppressed byv j . In addi-
tion, the hypergeometric functions appearing in the Wils
coefficients are sharply peaked atuvu51 owing to a loga-
rithmic enhancement caused by the ln@(12v)/(11v)# term.
For fixed uvu,1, one finds for growingj an increasing sup-
pression of the hypergeometrical functions, in addition to
powerlike suppression due tov j . To study this behavior in
more detail, we employ the integral representation for
hypergeometrical functions:
2 j 111g j /2

~11v! j 111g j /2
2F1S j 111

1

2
g j , j 121

1

2
g j

2S j 121
1

2
g j D U 2v

11vD
5

G~412 j 1g j !

G~21 j 1g j /2!2E0

`

dsse2s2/2e[(11 j 1g j /2)/2]$2s21 ln(12e2s2
)2 ln(12v2e2s2

)%. ~3.51!

To evaluate this integral for largej, we rely on the saddle point approximation, which is valid as long as the condition

S j 111
g j

2 DA12v2.1 ~3.52!

is satisfied. To clearly illustrate the suppression we mentioned above, we write the Wilson coefficients in the form

C̄j5cj S as~m!,Q/m,
]

]g D S m2

2Q2D g j /2 G~ j 11!G~ j 12!G~2 j 141g j !v
j

G~ j 121g j /2!G~ j 131g j /2!G~2 j 13!
Ej~vug j !. ~3.53!
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Consequently, we have the following normalization for the functionEj (v51ug j )51 @cf. Eq. ~3.38!#. For uvu,1, the ap-
proximation

Ej~vug j !'
ApA2~ j 111g j /2!A12v2

2A11A12v2
expH 2S j 111

g j

2
D ln~11A12v2!J ~3.54!

shows an exponential decrease for (j 11)ln(11A12v2).A2. The value ofEj (vug j ) is then smaller than 1/2. Note tha
perturbative corrections due to the anomalous dimensions, which are positive and grow logarithmically withj, give a loga-
rithmic enhancement of this behavior. In the case of rather smalluvu, the suppression factor is proportional to 22 j 21Aj 11,
which affects even the lowest partial wavej 52. The suppression is already larger than 80% for givenj >6 as long as the
inequality 12uvu.4/( j 11)2 is satisfied. Increasinguvu will then abruptly increase the value ofEj to reach theEj51 limit.
To finish this general discussion, we estimate the partial wave that will be suppressed by a factorE5Ej (v)<1/e depending on
v:

j 11.F2W21„24E 2~11A12v2!ln~11A12v2!/~pA12v2!…

2 ln~11A12v2!
G;F2 ln~4E 2/p!

4~12uvu! G ~3.55!
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whereW21(2x) is the product log function which is rea
valued in the region 0<x<1/e.

To estimate the contribution of the first few nonvanishi
partial waves, we first consider the conformal mome
^p(P)uOj j (m f)uV& red56NjBj . The distribution amplitude
vanishes at the end points@1# and from this behavior it fol-
lows thatNjBj vanishes atj→`:

f~x!;~12x!e for x→1 ⇒ 6NjBj; j 2e

for j→` with e.0. ~3.56!

We want to add that different nonperturbative estimat
based on a lattice calculation, sum rules, or a model calc
tion, give quite different values of 6N2B2 at a scale
Q<1 GeV, varying from;21 to ;11. Here the lower
bound stems from a preliminary lattice calculation@64#,
while the upper one arises from sum rule estimates@65,66#
and is also compatible with previous lattice calculations~see
@64# for references!. There are other estimates that favor
rather small value ofB2. This suggests that the absolute si
of the lowest few conformal moments 6NjBj are of order 1
or even smaller. In the following estimates we consider th
of order 1, which serves us as an upper bound for the c
tribution of the j th partial wave to the transition form facto

In the smalluvu region, i.e.,uvu,0.4, the lowest partia
wave contributes essentially. In LO the relative contributio
of the second and fourth partial waves with respect to
first one for uvu50.2 (0.4) are about 0.08%~2.3%! and
0.004% ~0.05%!, respectively. Thev2 term of the zeroth
partial wave varies in the same order as the relative cor
01401
s

s,
a-

n-

s
e

c-

tion to the second partial wave, which is in addition su
pressed by a relative factor of 2/3. Thus, in the smalluvu
region perturbative QCD provides us an~almost! parameter-
free, factorization scheme independent prediction:

Fgp~v,Q!.
A2 f p

3Q2
c0„as~m r !,Q/m r…S 11

v2

5
1O~v4! D

for uvu,0.4. ~3.57!

The phenomenological consequences are obvious, since
prediction is practically independent ofv and its logarithmi-
cal Q2 dependence is governed only by the running of
coupling.

For intermediate values ofuvu, defined as 0.4<uvu
,0.8, the second partial wave contributes between 2%
13%, while the fourth one is at least more than five tim
suppressed with respect to the second one. On increasinguvu
to the value 0.95, the relative contributions of the second
fourth partial waves grow to 25% and 10%, respective
while the sixth~eighth! partial wave contributes at the 4%
~2%! level. It is illustrative to compare these numbers w
the suppression arising in the limituvu→1 in which the con-
tribution amounts to 39%,24%,18%,14% forj 52,4,6,8 par-
tial waves, respectively.

As we have realized, only the first two nonvanishing p
tial waves are essential for an intermediate value ofuvu. It
could, therefore, be justified to employ the Taylor expans
of the hypergeometric functions atv50 and hence the tran
sition form factor reads in theCS scheme
Fgp~v,Q!.
A2 f p

3Q2 Fc0H 11
v2

5
1

3v4

35 J 1c2S m2

Q2D g2/2
2v2

15 H 11
~81g2!~61g2!

8~91g2!
v2J 6N2B2~m2!1O~v6!G

for 0.4<uvu,0.8, ~3.58!
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where the Wilson coefficientc2„as(m),Q/m,]/]g j… is de-
fined by Eq. ~2.35! to NNLO accuracy and a conseque
expansion inas should be done to this accuracy. Foruvu
50.8, the higher-order terms inO(v6) contribute at the 2%
and 20% level for thej 50 and j 52 partial waves, respec
tively. These contributions can be reduced by a factor o
~4! by taking the orderv6 (v8) corrections into account. Fo
larger values ofuvu, the convergence of the Taylor expansi
at v50 is rather slow for higher partial waves. For instan
to approximate the third nonvanishing partial wave atuvu
50.9 to an accuracy of better than 10%, one has to take
account the first ten nonvanishing terms, i.e., up toO(v24).

For ultralarge values ofuvu, let us sayuvu.0.95, partial
waves with higher conformal spin start to contribute w
increasinguvu. However, as we have discussed, as long
we do not reach theuvu→1 limit, there will be an exponen
tial suppression for higher values ofj. Note that this limit can
never be reached in any experiment at ane1e2 machine,
where the mean value of the virtuality of the untagged p
ton is set by the electron mass and there are further kinem
cal restrictions arising from the detector geometry and ki
matical cuts. Just for illustration, we would like to mentio
that, for uvu50.99 anduvu50.999, the contributions of the
12th and 38th partial waves are reduced by a factore
;0.37 compared to their contributions in the limituvu→1,
while higher ones start to be exponentially suppressed, s
the (j 11)ln(11A12v2).A2 condition is satisfied.

We now present the general result of the photon-to-p
transition form factor foruvu,1 in its expanded form to the
NNLO approximation. Notation analogous to that in E
~3.42! will be used, and the Taylor expansions inv2 for the
contributing terms of the first five nonvanishing part
waves are listed in Appendix D. At leading order the hyp
geometrical functions can be expressed in terms of elem
tary arctanh functions,5 e.g.,

T0
(0)~v!5

3

2v2 F12~12v2!
arctanh~v!

v G ,

T2
(0)~v!5

7

24v2 F15213v2

2~526v21v4!
3 arctanh~v!

v G , ~3.59!

and the expansion inv is given in Eq.~D2!. The radiative
corrections forv5” 0 depend on the factorization schem
even for the lowest partial waves. In comparison with E
~3.43! and~3.44!, here we will not include ln(2) terms in th
factorization and renormalization logs, i.e., instead of 2Q2

5The result can be expressed in terms of ln functions by mean
arctanh(v)51/2 ln@(11v)/(12v)#.
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we rather employ the underlying scaleQ2;1/z2 of the OPE
of two currents at the distancez. Thus, we have for theMS
scheme the NLO result~3.16!

Tj
(1)~v,Q/m f !5CFFTF, j

(1)~v!1Tj
(0)~v!lnS Q2

m f
2D v j G ,

~3.60!

and analogously for the CS scheme. Note that in compar
to this notation the definitions of conformal moments in t
uvu→1 limit, Eqs. ~3.32! and ~3.45!, differ by a
ln(2)-proportional term:

lim
v→1

TF, j
(1)~v!5TF, j

(1)1 ln~2!Tj
(0)v j ,

lim
v→1

TF, j
CS(1)~v!5TF, j

CS(1)1 ln~2!Tj
(0)v j . ~3.61!

Expanding theT(0)(v)LN i(v) terms in Eq.~3.18! provides
after convolution with the corresponding kernels the desi
result in theMS scheme~D8!. In the considered order ofv2,
it coincides with the result of Ref.@30#. The result in the CS
scheme can be easily derived by expanding Eq.~2.18! in
orderas :

TF, j
CS(1)~v!5@c(1)2v j sj

(1)~v!#Tj
(0)~v!, ~3.62!

wherec(1) and v j are given by Eqs.~3.41! and ~3.34!, re-
spectively, andsj

( i )(v) is defined by the expansion

2F1S j 111e, j 121e

2~ j 121e!
U 2v

11v D
~11v! j 111e

5F11sj
(1)~v!e1

1

2
sj

(2)~v!e21O~e3!G

3

2F1S j 11,j 12

2~ j 12!
U 2v

11v D
~11v! j 11

. ~3.63!

The corresponding expansions ofsj
(1) and sj

(2) in v2 are
given for j 52,4,6,8~because of current conservationv050
and, consequently, thej 50 term does not contribute! given
in Eqs.~D5! and~D7!, respectively. The NNLO contribution
in the CS scheme we write analogously to Eq.~3.44! as

of
3-18
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Tj
CS(2)~v!5CFH CFTF, j

CS(2)~v!2
b0

2
Tb, j

(2)~v!2S CF2
1

2
CADTG, j

CS(2)~v!

1 lnS Q2

m f
2D Tj

(0)~v!H CFFvF, j1cj
(1)v j2v j

2sj
(1)~v!1

v j
2

2
lnS Q2

m f
2D G2

b0

2
vb, j

CS,S~v!2S CF2
1

2
CAD vG, jJ

1
b0

2
lnS Q2

m r
2D Tj

CS(1)~v,Q/m f !2
b0

4
ln2S Q2

m f
2D Tj

(0)~v!v jJ . ~3.64!
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In comparison to the definitions in Eqs.~3.46!, ~3.47!, and
~3.33!, one has again to take care of ln(2) terms by mean
the following correspondences:

lim
v→1

TF, j
CS(2)~v!5TF, j

CS(2)1 ln~2!Tj
(0)FvF, j1cj

(1)v j

2v j
2S sj

(1)~v51!1
1

2
ln~2! D G ,

lim
v→1

TG, j
CS(2)~v!5TG, j

CS(2)1 ln~2!Tj
(0)vG, j , ~3.65!

lim
v→1

Tb, j
(1)~v!5Tb, j

(1)1 ln~2!FTj
(0)vb, j

CS,S2TF, j
CS(1)

2
1

2
ln~2!Tj

(0)v j G ,
and similarly for the quantities in theCS scheme. Here we
have also employed the identity~D7! For TF, j

CS(2)(v) and
TG, j

CS(2)(v), the expansion of the Wilson coefficients~2.18!
gives

TF, j
CS(2)~v!5Tj

(0)~v!H cF, j
(2)2~cj

(1)v j1vF, j !sj
(1)~v!

1
v j

2

2
sj

(2)~v!J , ~3.66!

TG, j
CS(2)~v!5Tj

(0)~v!$cG, j
(2) 2vG, j sj

(1)~v!%.
~3.67!

The conformal moments proportional tob0 are obtained
from theMS result given by Eq.~3.20!. The expansion inv2

of the termTb, j
(2) is given by Eq.~D9!. As in theuvu51 case

@see the discussion of expression~3.35!#, we define the con-
formal moments ofT(0)(v) ^ @vb#1 by Tj

(0)(v)vb, j
S (v).

Note that the ‘‘effective’’conformal momentvb, j
S now de-

pends onv and its expansion inv2 is given in Eq.~D10!.
Analogously to Eq.~3.48!, vb, j

CS,S(v) is provided by

vb, j
CS,S~v!5vb, j

S ~v!1
TF, j

CS(1)~v!2TF, j
(1)~v!

Tj
(0)~v!

, ~3.68!
01401
of
and the expansion can easily be obtained by means of
~3.62!, ~D5!, and~D8!.

The b0-proportional NNLO terms in theCS scheme are
obtained by making the replacements

Tb, j
(2)~v!→Tb, j

CS(2)~v!5Tj
(0)~v!$cb, j

(2)2vb, j sj
(1)~v!%

and vb, j
CS,S→vb, j

CS5vb, jTj
(0)~v!, ~3.69!

while the other terms remain the same as in the CS sche

IV. RADIATIVE CORRECTIONS TO THE PHOTON-
TO-PION TRANSITION FORM FACTOR

This section is devoted to a model independent study
radiative corrections to the pion-to-photon transition fo
factor in the case of one quasireal photon (uvu→1) and in
the small and intermediateuvu regions. We also illustrate
how the perturbative QCD approach to exclusive proces
can be tested in a novel way by a sum rule and how the
lowest nontrivial conformal moments of the pion distributio
amplitude could be extracted from experimental data in
intermediateuvu region.

In Sec. IV A we briefly review the features of the radi
tive corrections to the first few conformal moments of t
hard-scattering amplitude in theMS and CS schemes t
NLO. We point out that asymptotic formulas with respect
the conformal spinj 11 provide a very good approximatio
of the moments in question for a rather low value ofj >4.
As a by-product, we propose a simple method for rec
structing the amplitude from its conformal moments, whi
is outlined in Appendix E.

In Sec. IV B we present the numerical values of t
NNLO corrections to the first five non-vanishing conform
moments of the hard-scattering amplitude in the CS andCS
schemes. We point out their general features and discuss
ferent possibilities for treating theb0 terms. In particular, we
consider the lowest conformal partial wave and compare
contribution to the photon-to-pion transition form factor wi
experimental data. We study the influence of radiative c
rections to the sum rule and show that higher-order corr
tions will interfere only slightly in the extraction of the tw
lowest nontrivial conformal moments of the distribution am
plitude.
3-19
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TABLE I. First moments ofTF, j
(0) , TF, j

(1) , and TF, j
CS(1) for uvu51 with m f

252Q2 and for uvu50.8 with
m f

25Q2.

j 0 2 4 6 8 10 12 14 16 18

uvu51 T(0) 1.5 0.58 0.37 0.27 0.21 0.17 0.15 0.13 0.11 0.1

m f
252Q2 TF, j

(1) 23.75 1.2 2.14 2.38 2.42 2.39 2.33 2.26 2.19 2.1

TF, j
CS(1) 22.25 1.91 2.52 2.58 2.51 2.41 2.3 2.19 2.09 2

uvu50.8 T(0) 1.19 0.15 0.03 0.01 — — — — — —

m f
25Q2 TF, j

(1) 22.02 0.14 0.1 0.03 0.01 — — — — —

TF, j
CS(1) 21.78 0.16 0.1 0.03 0.01 — — — — —
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A. Features of radiative corrections at NLO

Let us first compare the NLO corrections in theMS and
CS schemes foruvu→1. The first ten nonvanishing momen
TF, j

(1) andTF, j
CS(1), given by Eqs.~3.32! and~3.45!, are shown

in Table I. From this table we realize that the main differen
between the two schemes is in the first two moments, wh
differ by about 50%, and in a seemingly faster decrease
the moments in the CS scheme for largej. Indeed, in the
large j asymptotics the leading terms are

TF, j
(1)5

2 j 13

~ j 11!~ j 12! H 2S1~11 j !22
9

2
1O„~ j 12!21

…J ,

TF, j
CS(1)5

2 j 13

~ j 11!~ j 12! H S1~11 j !FS1~11 j !1
3

2
14 ln~2!G

2
9

2
2z~2!23 ln~2!1O„~ j 12!21

…J . ~4.1!

Taking into account the largej asymptotics of theS1 func-
tions, given by

lim
j→`

S1~11 j !5 ln~21 j !1gE, ~4.2!

the ratioTF, j
CS(1)/TF, j

(1) slowly approaches 1/2. The difference
caused by the~infinite! resummation of off-diagonal terms i
the MS scheme. The asymptotic formulas~4.1! have a rela-
tive error of less than 2% already forj >4. Thus, by know-
ing a few lowest moments and their asymptotics we gai
complete insight into the radiative corrections foruvu51. In
Appendix E we use this result to make an approximate
construction of the hard-scattering amplitude in the mom
tum fraction representation from its conformal moments. T
consequence of the logarithmic behavior in Eq.~4.2! is ob-
viously an increase of radiative corrections with growi
conformal spin. It is shown in Table II that already forj
58 radiative corrections are of the size of 80% foras /p
.0.1 ~i.e., m r'2 GeV for one-loopas with nf53). From
this point of view, one might conclude that perturbati
theory breaks down for rather large values ofj. Fortunately,
higher conformal spin contributions are suppressed by
01401
e
h
of

a

-
-

e

e

nonperturbative input@see Eq.~3.56!# and so perturbative
QCD remains applicable. In the photon-to-pion transiti
form factor there might also be a cancellation of the low
partial wave with the remainder, which is due to their relati
minus sign. Of course, the net contribution of radiative c
rections depends on the model of the distribution amplitu
itself.

With decreasinguvu, higher conformal partial waves ar
starting to be exponentially suppressed, and, as we h
shown in Sec. III D, radiative corrections logarithmically e
hance this suppression. Also note that off-diagonal contri
tions to each partial wave, which are relatively suppressed
powers ofv2 with respect to the diagonal ones, are beco
ing small. If we approach the equal virtuality case, i.e.,v
50, only a factorization-scheme-independent constant, a
ing from the lowest partial wave, will survive. Thus, by d
creasing uvu the differences between theMS and CS
schemes must be washed out. In Table I we illustrate th
effects foruvu50.8. For the two lowest nonvanishing parti
waves the difference between these two schemes is red
to about614% and for higher ones below 2%. In the C
scheme also the contributions from the functionss( i )(v)
5O(v2) @cf. Eq. ~3.63!# are power suppressed. So one e
pects from Eq.~3.62! that the radiative corrections due to th
normalization factorscj

( i ) are the essential ones, but with on
exception. Since the coefficientc2

(1) is relatively small com-
pared to the anomalous dimensiong2

(1) , O(v2) corrections
remain important for the second partial wave in the interm
diate uvu region.

TABLE II. The ratio of NLO to LO and NNLO to NLO radia-
tive corrections in units ofas /p for uvu51 andm r

25m f
252Q2 in

the MS, CS, andCS schemes.

j
Tj

(1)

2Tj
(0)

Tj
(2)

2Tj
(1)

Tj
CS(1)

2Tj
(0)

Tj
CS(2)

2Tj
CS(1)

Tj
CS (2)

2Tj
CS (1)

0 21.67 — 21 7.23 5.14
2 1.37 — 2.18 4.54 4.13
4 3.88 — 4.58 7.44 6.11
6 5.92 — 6.42 9.21 7.39
8 7.64 — 7.93 10.56 8.39
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TABLE III. The first five nonvanishing Wilson coefficients appearing in the perturbative expansion

Tj
CS and Tj

CS with respect toas /p at NNLO accuracy foruvu51. The results are obtained employingm f
2

5m r
252Q2.

j Tj
(0) CF

2
TF,j

CS(1)
CF

2

4
TF, j

CS(2) 2
CF~2CF2CA!

8
TG, j

CS(2) 2
CFb0

8
Tb, j

(2) 2
CFb0

8
Tb, j

CS(2)

0 1.5 21.5 1.42 20.04 212.23 29.09
2 0.58 1.27 22.28 20.53 8.58 8.06
4 0.37 1.68 20.46 20.60 13.56 11.33
6 0.27 1.72 1.25 20.58 15.17 12.06
8 0.21 1.67 2.54 20.55 15.68 12.05
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B. Predictions to NNLO accuracy

1. The quasireal photon limit

We now turn to the discussion of NNLO effects in the C
andCS schemes starting with the limituvu→1. In Table III
we present the numerical values of the Wilson coefficie
TF, j

CS(2), TG, j
CS(2), Tb, j

CS(2)5Tb, j
(2) , and Tb, j

CS(2) corresponding to
Eqs.~3.46!, ~3.47!, ~3.33!, and~3.49!, respectively. The val-
ues ofTF, j

CS(2), TG, j
CS(2), andTb, j

CS(2) were obtained by means o
the NNLO result for the deep inelastic scattering struct
function g1 @43#.

Let us investigate in more detail the contribution of t
lowest partial wave to the transition form factor, which
scheme dependent forvÞ0 and foruvu51 reads:
in the MS scheme,

Fgp~Q!5
A2 f p

2Q2 H 12
5

3

as~m r !

p
1

as
2~m r !

p2 H •••
2

b0

2 F21.8111
5

6
lnS 2Q2

m r
2 D 20.285 lnS 2Q2

m f
2 D G J

1O~as
3!J , ~4.3!

in the CS scheme,

Fgp~Q!5
A2 f p

2Q2 H 12
as~m r !

p
1

as
2~m r !

p2 H 0.917

2
b0

2 F21.8111
1

2
lnS 2Q2

m r
2 D 10.048 lnS 2Q2

m f
2 D G J

1O~as
3!J , ~4.4!

and in theCS scheme,
01401
s

e

Fgp~Q!5
A2 f p

2Q2 H 12
as~m r !

p
1

as
2~m r !

p2 H 0.917

2
b0

2 F21.3471
1

2
lnS 2Q2

m r
2 D G J 1O~as

3!J . ~4.5!

For as(m r
2)/p50.1, the ratio of the NLO to the LO contri

bution is 217% in theMS scheme and210% in the CS
scheme. This difference arises from the fact that in theMS
scheme off-diagonal terms of the hard-scattering amplit
are resummed. In Eq.~4.3! we see that the ln(2Q2/mf

2) term is
rather small compared to the ln(2Q2/mr

2) one. This is even
more the case in the CS scheme, while in theCS scheme the
ln(2Q2/mf

2) term vanishes completely, since all off-diagon
entries in the NLO evolution have been removed. The s
alternating series of theb0-nonproportional terms is due t
the Sudakov effect; see Ref.@23# for a detailed discussion.

Since factorization-scale-changing effects in the ha
scattering amplitude are quite small for the lowest par
wave, and since they will be compensated by the evolut
of the nonperturbative part~see Sec. II D!, we setm f

252Q2

in the following and discuss the scale setting of the resid
m r dependence. First, let us equatem r

252Q2:

Fgp~Q!5
A2 f p

2Q2 F12
as~2Q2!

p
2H 7.23

5.14J as
2~2Q2!

p2

1O~as
3!G for the H CS scheme,

CS scheme.
~4.6!

Hence, foras(m r
2)/p50.1, the ratio of the NNLO to the LO

contribution is 27.2% and25.1%, and the ratio of the
NNLO to the NLO contribution~the measure of the conver
gence of the perturbative QCD expansion! is '70% and
'50%, in the CS andCS schemes, respectively.

The main part of these rather large NNLO contributio
arises from theb0-proportional term. Owing to the off-
diagonal parts, it is larger by about a factor of 2 in the C
scheme than in theCS scheme. It is appealing to resum th
large contribution by the Brodsky-Lepage-McKenzie~BLM !
proposal@67# ~for application to exclusive processes, see a
3-21
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@68#!, in which all terms proportional tob are absorbed in
the coupling by the scale settingm r5mBLM :

Fgp~Q!5
A2 f p

2Q2 H 12
as~mBLM !

p
10.92

as
2~m r !

p2
1O~as

3!J
~4.7!

with

mBLM
2 52Q2H1/37.43

1/14.78J for the H CS scheme,

CS scheme.
~4.8!

The ratio of the NNLO to the NLO coefficient is now onl
21 and reflects the Sudakov effect in the conformal theo
However, as we realize, combining the COPE result with
MS result of theb0-proportional piece induces a rather lo
scale. For instance, for 2Q254 GeV2 we have mBLM

2

;0.1 GeV2 in the CS scheme and hence nonperturba
behavior of the coupling is needed. If we completely remo
the off-diagonal terms, the BLM scale squared is enlarged
a factor of 2.7 and is now closer to that in theMS scheme
@10# given in Table IV. What one is actually doing here is
combine perturbative QCD with speculations about the n
perturbative behavior of the QCD coupling and so, stric
speaking, one is leaving the perturbative ground on wh
the whole analysis was based. However, one advantag
this proposal is that the result predicted by conformal sy
metry is recovered if we consequently assume a hypothe
fixed point of theb function during our considerations. Wha
we in fact do by the freezing of the coupling is to assu
that this nonperturbative fixed point is atQ250.

In Fig. 1 we compare the experimental data from t
CLEO experiment with the prediction arising from the low
est conformal moment, the only one that survives in
asymptotic limitQ2→`. Without further considerations, w
assume, as has also been done in the method of data ex
tion employed~see Sec. 3 of Ref.@18#!, that the quasirea
photon limit has been reached. The prediction for the asy
totically largeQ2 in this uvu→1 limit is displayed as a dot
ted line. As we have discussed, radiative corrections red
the size of this prediction for realistic values ofQ2. The
dash-dotted line represent the NLO and the solid line
NNLO prediction for the standardMS definition of the cou-

TABLE IV. Ratio aBLM5mBLM
2 /2Q2 of the BLM scale squared

to 2Q2, and the ratio of the NNLO to the NLO coefficient in uni
of as /p for m r

25mBLM
2 , m f

252Q2, anduvu51.

j aBLM
MS aBLM

CS aBLM
CS

Tj
(2)

2Tj
(1)

Tj
CS(2)

2Tj
CS(1)

5
Tj

CS (2)

2Tj
CS (1)

0 1/8.79 1/37.43 1/14.78 — 20.92
2 1/120.08 1/20.1 1/16.76 — 22.22
4 1/68.73 1/36.17 1/20.05 — 20.63
6 1/70.3 1/50.41 1/22.52 — 0.39
8 1/75.29 1/64.4 1/24.54 — 1.19
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pling in the corresponding approximation with the norm
ization as(m r5MZ)50.118. The dashed line is the predi
tion for the BLM scale setting and accumulat
nonperturbative effects by freezing the coupling toas(m r
50)50.6 by adding an effective gluon mass. Let us no
that the scale setting ambiguities at 2Q251 GeV2 are of the
order of 20% if we vary the renormalization scalem r

2 from
0.5 GeV2 to 2 GeV2. This ambiguity can be further reduce
by going to higher orders inas .

This comparison shows that theoretical uncertainties
to higher-order radiative corrections and scale-setting am
guities are much smaller than the error of the experime
data. At larger values ofQ2 there is no significant contribu
tion of higher partial waves. However, there is a significa
discrepancy of the results in Fig. 1 in the region 0.5 Ge2

,2Q2,2 GeV2, which may indicate the presence of high
partial waves. Since evolution effects in this kinematical
gion are rather strong, we could employ them to pin do
the size of higher partial waves. However, the quest
arises: Can we in this kinematical window rely on the lea
ing twist result?

By considering the size of power suppressed contri
tions, we will now argue that the answer to this question
positive. Since the~local! matrix elements of any operato
appearing in the OPE can be built with only the moment
four-vectorsP, Lorentz covariance immediately tells us th
power suppressed contributions are of even power inQ. The
only dimensional parameters that can appear are the ma
the pion mp;0.14 GeV and the QCD scale parameterL
;0.2 GeV. Assuming that multipartonic correlation fun
tions will not have a strong numerical enhancement, we
pect that the contributions proportional tomp

2 will provide a
relative correction of the order of 0.02 GeV2/2Q2. The size
of the remaining nonperturbative corrections arises from a
biguities in summing the perturbative series and can be e
mated in the framework of renormalons. In the conform
scheme, we might again borrow the results from the anal
of the coefficient of the structure functiong1, which gives
for the lowest moment an uncertainty of a similar size~see

FIG. 1. The contribution of the first partial wave to the scal
photon-pion transition form factor 2Q2Fgp(v561,Q) is shown in
LO ~dotted!, NLO ~dash-dotted!, and NNLO ~solid and dashed!
accuracy for theCS scheme. The renormalization scale has been
to m r

252Q2 ~solid! and to the BLM scalem r
252Q2/14.7 ~dashed!.

The data are taken from Refs.@17,18#.
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Ref. @69# and references therein!. Thus, we might conclude
that the nonperturbative effects to the contribution of
zero partial wave are smaller than 10% at a scale of 2Q2

;1 GeV2. Certainly, this rather optimistic speculatio
should be confronted with other methods used. The low
conformal moments of twist-4 quark-gluon-quark operat
have been obtained by means of QCD sum rules@70,71#.
Here it was found that, relative tomp

2 , a certain matrix ele-
ment is numerically enhanced by a factor of 10. This c
tainly would strike our point of view and indicate that th
so-called Wandzura-Wilczek approximation, in which high
multiparton correlations are neglected, fails. Renormalon
duced corrections have been studied in a model-depen
way in Ref.@8#, where their relative size was estimated to
0.2 GeV2/2Q2. Note, however, that in this analysis excit
tions of higher conformal partial waves have been includ
Making it short, we stress that the estimate of higher-tw
contributions has to be made in a consistent framework
is set by the scheme in which one started. Combining e
mates from different approaches is a popular but rather a
ward procedure.

In this process with a quasireal photon higher par
waves are summed. Even if theuvu→1 limit is not reached
in the experiment, a rather large number of terms will co
tribute. Without any knowledge about the shape of the d
tribution amplitude, it is a rather vague assumption to tru
cate this series by hand to extract the values of the low
partial waves from the normalization of the pion-to-phot
transition form factor. Figure 1 clearly shows that the dom
nant contribution, at least for 2Q2.2 GeV2, arises from the
lowest partial wave, and the remainder is small. The fact
the contributions of higher partial waves cancel each othe
not excluded, and it remains a claim that the asympto
shape of the distribution amplitude is established by exp
mental data. In principle, one can gain more information
the remainder if one also employs the evolution of the d
tribution amplitude. However, even if rather high-precisi
data are available, the deconvolution problem is not eas
solve. As we have already mentioned, at NLO the pertur
tive correction will increase with growing conformal spi
The same tendency can be read off from Table II also
NNLO, where theb0-proportional term is the dominant one
This is also reflected by the decrease of the BLM scale
shown in Table IV, where we can also see that the remain
corrections at NNLO are moderate. Note that the BLM sc
is rather low for 2< j in the MS and CS schemes, which
due to off-diagonal terms.

2. What can we learn from the small and intermediatezvz
regions?

As was clearly spelt out in Ref.@30# and explained in a
more general way in Sec. III D, the smalluvu region is suit-
able for a novel test of the perturbative QCD approach to
class of exclusive light-cone dominated processes. As
noted in Sec. IV A, for decreasinguvu the differences be-
tween different schemes will decrease too. This is illustra
for uvu50.8 in Tables V and VI. For the lowest~second!
partial wave we have about a240% ~10%! effect at NNLO
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compared to NLO or a24% (,1%) correction compared
to LO for m r

25m f
25Q2 andas /p.0.1. Altogether, we find

;215% reduction of the LO prediction for the lowest pa
tial wave and an increase of about 7% and 33% for the s
ond and fourth, respectively. The main part of the NNL
correction arises from theb0-proportional term. Its absorp
tion in the running coupling via the BLM scale-setting pr
scription again requires knowledge of the nonperturbat
behavior of as . Table VI shows that then a sign chang
occurs at NNLO, where the BLM scale for the second par
wave is quite low and its remaining NNLO correction
rather large.

Certainly, the resummation of theb-proportional correc-
tions is associated with a new input that is not well know
Thus, in the following discussion concerning the extracti
of nonperturbative conformal moments of the distributi
amplitude we prefer the naive scale-setting prescriptionm r

2

5m f
25Q2. In panels~a! and ~b! of Fig. 2 we display thev

dependence for the scaled photon-to-pion transition fo
factor evaluated in theCS scheme at LO and NNLO, respe
tively. One clearly sees that the prediction is almost indep
dent of v for uvu<0.2 and only a negligible dependenc
arises for 0.2,uvu,0.4. Radiative corrections will only shif
this prediction downward. Note that this shift will slightl
increase if we go to higher orders ofas . For the lowest
partial wave they can be taken from the calculation of
radiative corrections to the Bjorken sum rule, which a
evaluated in the third-loop approximation@72# and roughly
estimated at four loops@73#. Consequently, confronting thes
predictions with experimental measurements would prov
either a novel test of perturbative QCD or an insight into t
size of higher-twist contributions. To enhance statistics, o
can even integrate over the smalluvu region:

TABLE V. Same as Table II foruvu50.8 andm r
25m f

25Q2.

j

Tj
(1)

2Tj
(0)

Tj
(2)

2Tj
(1)

Tj
CS(1)

2Tj
(0)

Tj
CS(2)

2Tj
CS(1)

Tj
CS (2)

2Tj
CS (1)

0 21.14 — 21 4.21 3.58
2 0.6 — 0.7 1.3 0.8
4 2.3 — 2.4 4.6 3.8
6 3.7 — 3.7 5.8 5.1

TABLE VI. Analogous to Table IV for the ratioaBLM

5mBLM
2 /Q2, wherem f

25Q2 and uvu50.8.

j aBLM
MS aBLM

CS aBLM
CS

Tj
(2)

2Tj
(1)

Tj
CS(2)

2Tj
CS(1)

5
Tj

CS (2)

2Tj
CS (1)

0 1/7.4 1/9.7 1/7.4 — 20.92
2 1/155 1/80 1/62 — 28.54
4 1/40 1/38 1/28 — 23.63
6 1/37 1/37 1/27 — 22.3
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Q2

vcutE0

vcut

dvFgp~v,Q!

5
A2 f p

3 H 12
as~Q!

p
23.583

as
2~Q!

p2
220.215

as
3~Q!

p3

2~;200!
as

4~Q2!

p4
1O~as

5!1O~mp
2 /Q2,L2/Q2!J ,

~4.9!

wherevcut,0.4 andnf53.
If we vary the unknownB2 and B4 parameters in the

range that is suggested by nonperturbative estimates,
21/2<B2<1/2 and21/4<B4<1/4, it can be realized tha
in the intermediateuvu region the perturbative QCD predic
tions start to be dependent on the value ofB2 and for larger
uvu even on that ofB4, while higher partial waves can b
safely neglected. Here it is important that radiative corr
tions do not spoil a possible extraction. They rather shift
curves in the whole region and slightly enhance the sprea
the curves associated withB4. This is caused by the fact tha

FIG. 2. Thev dependence of the scaled photon-to-pion tran
tion form factor 2Q2Fgp(v,Q) at Q252 GeV2 in LO ~a! and in
CS at NNLO~b! for three different values ofB25$0,20.5,0.5% is
shown as solid, dashed and dash-dotted lines, respectively.
spread of the corresponding lines displays the sensitivity of
predictions with respect to the parameterB4, which is equated to
20.25 and 0.25 for the lower and upper curves, respectively.
01401
e.,
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e
of

the radiative corrections to the lowest two partial waves
negative and approximately of the same size, while they
positive in all other cases. Since the gap between the cu
for both extreme cases, whereB2560.5, is about 30% or
even larger, we might expect that these curves can be di
guished by a measurement. This would also test the relia
ity of nonperturbative methods. Certainly, a precise extr
tion of B2 or even B4 also requires high-precision
measurements with high statistics. Assuming that such d
are available, the extraction of the nonperturbative param
itself is rather simple. First, a measurement in the smalluvu
region should be confronted with the parameter-free pre
tion that depends only on the running of the coupling. As
argued, we do not expect higher-twist corrections to be
sential. If that were experimentally established, a sim
two-parameter-dependent fit

Fgp~v,Q!5 f pFT0~v,Q!1
18

7
T2~v,Q!B2~Q!

1
45

11
T4~v,Q!B4~Q!G ~4.10!

could be used to extract the two conformal momentsB2(Q)
andB4(Q) as long as the statistics is high enough. Moreov
a consistency check is provided by theQ dependence of
these parameters. Note that in theCS scheme the mixing
between different partial waves is caused by evolution
NNLO, while in theMS scheme the mixing appears alrea
at NLO in both the hard-scattering amplitude and the evo
tion of Bi . In the CS scheme the mixing appears first in t
evolution to NLO accuracy.

Finally, we want to comment on the size of evolutio
effects which are caused by the off-diagonal entries in
anomalous dimension matrix. We numerically observe t
the conformal symmetry breaking terms at NLO@compare
the MS scheme results with the CS ones in Table I, as w
as at NNLO~see Table III!# can provide an enhancement
the corresponding corrections up to 50%. One would naiv
expect a similar relative effect from the evolution due to t
unknown mixing in theCS scheme arising at NNLO. How
ever, since it does not appear at the input scaleQ0 due to the
initial condition ~2.42!, this mixing effect is in fact small
@40#. For instance, at NLO in theMS and CS schemes thi
mixing effect in the lowest partial wave goes up to21.3%
and 2.3%, respectively, for the evolution fromQ0
50.5 GeV toQ520 GeV anduvu51. Note, however, that
in the MS scheme cancellation appears in the off-diago
terms between theCF

2- andCFb0-proportional parts and tha
the contribution from only theCF

2-proportional term might
be of the order of 2%. This number should be compared w
the correction in the hard-scattering induced by the o
diagonal terms, which is about 7%. As we discussed abo
these corrections are reduced foruvu,1. Since the ratio of
diagonal entries in NNLO to those in NLO is smaller tha
3as /p for the first five even diagonal terms, we might arg
that the ratio of off-diagonal entries in theMS scheme is of
the same size. Assuming so, one would expect that unkn
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he
e

3-24



-
e
a

e
th
tiv

ll
.g
e

ba
ro

a
m
bi

a
th
b

e

e
up
o
b

es
he
e
ft

ns
fo
v
r
LO

wi
w

g

is
i
o

nt
u
z
ith
p-

le-
al

net

the
can-
n

ac-
in
is

epa-

at
astic

on-
ta.

. If
ack
o-
nt
ity
ies.
re
ed

f
ple
the

he
to
e
s-
S.

nd

e
ard
ep

l
e
r-

gy

.
ot

NEXT-TO-NEXT-TO-LEADING ORDER PREDICTION . . . PHYSICAL REVIEW D68, 014013 ~2003!
mixing effects induced byD jk
CS(1) due to evolution are re

duced by a factor of 1/3 or even more with respect to thos
NLO. Thus, we expect from the numbers given above
NLO that the contribution ofD jk

CS(1) is smaller than 0.5% in
the MS scheme. In theCS scheme, the contribution of th
log term in Eq.~2.53! can be estimated by comparison wi
the NLO effect in the CS scheme. Here one finds a rela
contribution smaller thanas(Q)ln@Q/Q0#/p. For the example
discussed above that would produce a mixing effect sma
than 1%. Therefore, for higher values of the input scale, e
Q0;1 GeV, we expect a rather tiny mixing in th
CS scheme.

V. CONCLUSIONS

We have employed conformal symmetry in the pertur
tive sector to evaluate the NNLO corrections for pion p
duction through two-photon fusion. The requirement of
manifestly conformal invariant result partly removes the a
biguities arising from the factorization. However, the am
guities are retained in the scheme dependence of the forw
Wilson coefficients and anomalous dimensions and in
treatment of the conformal symmetry breaking induced
the trace anomaly, proportional to theb function. The latter
ambiguity has been studied here in two alternative schem
~i! combining the conformal predictions with theMS result
and ~ii ! improving the partial wave decomposition of th
conformal invariant theory by the renormalization gro
equation. The second possibility minimizes the mixing
partial waves and gives us an almost good quantum num
namely, the conformal spin. For decreasing values ofuvu, the
differences between these schemes are removed, since
diagonal terms are suppressed by powers ofv2.

As was known before, foruvu51 NLO corrections can be
considered to be small for only the two lowest partial wav
since the NLO corrections logarithmically increase with t
conformal spin. This behavior is analogous to the largj
behavior of the Wilson coefficients in DIS arising from so
gluon configurations. The effect is manifested by ln(12x)
terms that are associated with factorization logs and, co
quently, are absent in the lowest partial wave in the con
mal schemes. Other ln(12x) terms are related to the Sudako
effect and are manifested in a sign alternating series fob
50. However, the numerical study showed that the NN
corrections are dominated by theb0-proportional term, as
expected. In general, this term is rather large compared
the NLO coefficient and thus the BLM scale is rather lo
which drives the coupling in the nonperturbative region.

We compared the NNLO predictions with the existin
data for the quasireal photon case and found that for 2Q2

.2 GeV2 the contribution from the lowest partial wave
compatible with the data. The deviation below this scale
induced by nonperturbative effects or by the contribution
higher partial waves and it requires a deeper insight i
power suppressed contributions. Although there is no do
in the literature that the CLEO measurement can be analy
in this limit, we should state here that partial waves w
sufficiently large conformal spin will be exponentially su
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pressed. This can affect the analysis only if the matrix e
ments of conformal operators with rather large conform
spin contribute. On the other hand, we know that the
effect of all partial waves with conformal spinj 11>3 is
small. Obviously, this does not necessarily mean that
matrix elements themselves are small, and therefore we
not say that the asymptotic form of the pion distributio
amplitude is experimentally established. Also, taking into
count nonperturbative results from other methods given
the literature, a strong statement that the asymptotic form
suggested by these estimates cannot in fact be made.

These problems that we have spelled out can be s
rately studied apart from theuvu→1 limit. Indeed, in the
small uvu region, perturbative QCD predicts a sum rule th
has the same status as the Bjorken sum rule in deep inel
scattering, evaluated at orderas

3 . A first test of this sum rule
might be possible with existinge1e2 machines and would
offer us a first insight into the size of power suppressed c
tributions for exclusive processes from experimental da
We expect that such contributions will turn out to be small
this should be established experimentally, one might att
the extraction of the first- and second-lowest conformal m
ments of the distribution amplitude. This is an importa
task, since it would open a window to testing the reliabil
of nonperturbative methods applied to exclusive quantit
Having in mind that the collinear factorization applied he
to the photon-to-pion transition form factor is also adopt
for the analysis of exclusiveB physics, it is timely to con-
front such methods with experimental measurements.

Let us finally give a short outlook for the application o
the conformal approach to other processes. After a sim
replacement of the decay constant and matrix elements
NNLO result obtained can be used for the analysis ofh
production, i.e., its flavor octet component. Moreover, t
formalism can be extended in a straightforward manner
the h8-to-photon transition form factor. Guided by the larg
j 11 asymptotics of the conformal moments, it is also po
sible to reconstruct the hard-scattering amplitude in DVC
The reliability of this technique can be tested at NLO a
partly also at NNLO, i.e., forb-proportional terms. We also
want to add that one can go one order further inas in the
approximation of the first few conformal moments of th
hard-scattering amplitude, since we can borrow the forw
Wilson coefficients from the nonsinglet sector of the de
inelastic structure functionF3, evaluated at next-to-NNLO
@58#.
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APPENDIX A: STRUCTURE OF THE HARD-SCATTERING
AMPLITUDE IN THE MS SCHEME

Here we prove that the LN(v,x) terms, appearing in Eqs
~3.18!–~3.21!, are related to the factorization logs. We do n
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distinguish between the renormalization and the factoriza
scales, since the difference appears only in
v-independent term ln(mr /mf). The hard-scattering amplitud
is given by the sum over all Feynman diagramF contribu-
tions

1

Q2
T~v,x,Q/m!5(F TF~v,x,Q/m!, ~A1!

where we have rescaled the individual contributions byQ2 to
have dimensionless amplitudes. Each of these contribut
is given as a product of propagators and vertices integr
over the virtual loop momenta. The two photon vertices
connected by a chain of quark propagatorsS and quark-
gluon-quark verticesV:

S” ~@122x#P/21q2 l !V1 S” ~@122x#P/21q2 l 1k1!

3•••S” ~@122x#P/21q2 l 1•••1kn!, ~A2!

where P5q11q2 and the large momentumq5(q12q2)/2
flows only into this chain. Momentum conservation requir
that l 1 l 85( i 51

n ki , where l and l 8 is the sum of virtual
momenta flowing into the first and flowing out of the seco
photon vertex, respectively. Interchanging the two pho
vertices will give the crossed contributions withuvu→2v.
Obviously, there are further propagators that depend only
the virtual momenta andxP or (12x)P, but not onq. Intro-
ducing the Feynman-Schwinger representation for the pro
gators, integrating over the virtual momenta, and making
of the on-shell conditionP250, give us the following rep-
resentation for the regularized contribution:

TF~v,x,Q/m!5E
0

1

dz1E
0

z1
dz2•••E

0

zm21
dzm

3
m2eTF~zue!

Q2e@xvB1~z!1~12x!vB2~z!11#11e
.

~A3!

Here e is the dimensional regularization parameter and
functionsBi(z) depend on the Feynman-Schwinger variab
z5$z1 , . . . ,zm% with n<m. We introduce the new variable

y5
1

2
2

x

2
B1~z!2

12x

2
B2~z! ~A4!

and write

TF~v,x,Q/m!5E
0

1

dy
m2e

Q2e@12~2y21!v#11e
VF~y,xue!,

~A5!

where the unrenormalized convolution kernel is defined
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VF~y,xue!5E
0

1

dz1E
0

z1
dz2•••E

0

zm21
dzmdS y2

1

2
1

x

2
B1~z!

1
12x

2
B2~z! DTF~zue!. ~A6!

The renormalization procedure provides the factorizat
logs ln(Q2/m2), which always appear in combination wit
LN(v,x) terms. The factorization theorem tells us that af
resummation of all Feynman diagrams the correspond
convolution kernel is given by the evolution one. Obvious
the log-independent terms can also be represented as co
lution. The support of all these kernels is known and follo
from the restrictions onBi(z), which are obtained from thei
definition and the topology of Feynman graphs~see, for in-
stance,@74,4#!.

APPENDIX B: CONSISTENCY CHECK WITH THE
FORWARD-LIMIT RESULTS

In this section we present a consistency check betw
the results for the nonsinglet coefficient function of the D
polarized structure functiong1 @43# and the hard-scattering
amplitude of the pion transition form factor@9,10#. The
former quantity is known to NNLO, while for the latter dis
cussed in Sec. III A the calculation has been performed u
b0-proportional NNLO terms. Both results have been o
tained in theMS scheme. Making use of the fact that bo
quantities, the photon-to-pion transition form factor and t
structure functiong1, are defined by the two-photon ampl
tudes belonging to a general class of the scattering am
tudes for the two-photon process at lightlike distances,
are able to transform the results for the photon-to-pion tr
sition form factor to the results forg1.

The general scattering amplitude for the two-photon p
cesses is given by the time-ordered product of two elec
magnetic currents sandwiched between the in and out h
ronic states with momentaP1 and P2, respectively. Using
the notationq5(q11q2)/2 (q1 and q2 are incoming and
outgoing photon momenta!, P5P11P2, and D5P22P1,
the following generalized Bjorken region can be defin
@4,39#:

n5P•q→` and Q252q2→`, ~B1!

with the scaling variables

v5
n

Q2
and h5

D•q

n
. ~B2!

In the forward case, corresponding to DIS, 1/v can be iden-
tified with the Bjorken variablexB j andh vanishes, while for
the two-photon production of a hadronh51. The relations
between the nonforward ERBL kernels and the forward D
LAP kernels were extensively studied and derived in R
@4#, while in Ref. @39# consistency between the transitio
form factor andg1 results was reported up to NLO. Here w
explain in more detail the technical side of these consiste
checks and extend them tob0-proportional NNLO terms.
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The building blocks of the hard-scattering amplitude
the photon-to-pion transition form factorT(v,x,Q,m f)
given in Eqs.~1.2!, ~1.3!, and~3.16!–~3.23! can generally be
written as

A 1
(g* p)~v,x!5

1

12v~2y21!2 i«
^ d~y2x!,

A2,n
(g* p)~v,x!5

lnn@12v~2y21!2 i«#

12v~2y21!2 i«
^ @ ṽ~y,x!#1 ,

~B3!

wheren50,1,2. Note that we have reintroduced thei« term,
originally present in the definition of Feynman propagato
For the kernels that appear in Eqs.~3.16!–~3.23! we use the
generic symbolṽ(y,x). Furthermore, for the kernels of in
terest, given in Eqs.~3.7!, ~3.8!, and~3.11!, the functionṽ is
of the general form

ṽ~x,y!5u~y2x! f̃ ~x,y!1H x→ x̄

y→ ȳ
J . ~B4!

We have to extend our restricted nonforward kinema
to the whole kinematical region. The extension of the
kernels ṽ to the wholex,y region (2`,x,y,`) @4# is
accompanied by a change of theu function as follows:

ṽext~x,y!5 ṽ~x,y! uu(y2x)→u(12x/y)u(x/y)sgn(y) . ~B5!

Furthermore, the dependence onh has to be restored and on
performs the following change of variables:

x→ 11t/h

2
, y→ 11t8/h

2
, v→hv. ~B6!

The definition of the distribution amplitudes, with which th
hard-scattering amplitude is convoluted, as well as the d
nition of its generalized counterpart, introduce the restrict
21,t,1. After examining theu functions in the kernels
~B5! and taking into accountuhu<1, one obtains21,t8
,1. The building blocks of the generalized two-photon sc
tering amplitude are thus obtained and they are of the fo

A1~v,h,t !5
1

12vt2 i«
,

A2,n~v,h,t !5E
21

1

dt8
lnn~12vt82 i«!

12vt82 i«

3
1

2h F ṽextS 11t8/h

2
,
11t/h

2 D G
1

. ~B7!

It is easy to see that relations~B3! indeed represent theh
51 limit of ~B7!.

The forward limit ~i.e., the forward Compton amplitude!
corresponds toh→0 and, due to the optical theorem, th
nonsinglet coefficient functions of the DIS polarized stru
ture functiong1 ~contributing to the total cross section! are
determined by taking the imaginary part of the forward a
01401
r

.

s

fi-
n

t-

-

-

plitude. Taking into account the definition ofg1 and its co-
efficient functions~see @43#!, one arrives at the following
recipe6 for the building blocks of the nonsinglet coefficien
functionsCq

NS:

A i
(g1)

~z!5
v

p
Im@ lim

h→0
Ai~v,h,t !# uv51/z, t51 . ~B8!

The h→0 limit of the extended ERBL kernels@4# results in
the corresponding DGLAP kernelsP̃ of the general form

P̃~z!5u~z!u~12z!p̃~z! with

@ P̃~z!#15 P̃~z!2d~12z!E
0

1

dz8P̃~z8!.

~B9!

It is straightforward to derive

lim
h→0

1

2h F ṽextS 11t8/h

2
,
11t/h

2 D G
1

5sgn~ t !
1

t F P̃S t8

t D G
1

,

~B10!

with p̃ given by

1

t
p̃S t8

t D5 lim
h→0

1

2h F f̃ S 11t8/h

2
,
11t/h

2 D
2 f̃ S 12t8/h

2
,
12t/h

2 D G
1

. ~B11!

The imaginary part of expressions~B7! is obtained by mak-
ing use of

Im
1

12t8v2 i«
5pd~12t8v!, ~B12!

and for more complicated functions, containing lnn(12t8v
2i«) (n51,2), we derive the following decompositions:

ln~12vt82 i«!

12vt82 i«
5

1

~12s!1
^

1

12st8v2 i«
,

ln2~12vt82 i«!

12vt82 i«
52S ln~12s!2 ln s

12s D
1

^
1

12st8v2 i«
. ~B13!

Alternatively, for the imaginary parts of the expressions co
taining logarithms one can refer to@78#. Finally, we present
the results relevant to the NNLO calculation:

6The factor 1/(2p) comes from the dispersion relation, and th
additional factor of 2 from the definition ofg1. The origin of the
factorv in Eq. ~B8! lies in the fact that the transition form factor i
scaled byQ2, while the forward Compton amplitude is scaled b
P•q.
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TABLE VII. Selected forward counterparts of the nonforward quantities.

d~x2y! d~12z!

va~x,y! ~12z!u~z!u~12z!

vb~x,y! 2z

12z
u~z!u~12z!

v~x,y! 11z2

12z
u~z!u~12z!

g~x,y!
2

2 ln~12z!

12z
u~z!u~12z!

v̇a~x,y! ~12z!~ln z11!u~z!u~12z!

v̇~x,y! F~12z!1
11z2

12z
ln zGu~z!u~12z!

v̈~x,y! F2~12z!ln z1
11z2

12z
ln2zGu~z!u~12z!

ġ~x,y! F2 p2

3~12z!
2

ln2~12z!

12z
ln z1

2Li2~12z!

12z Gu~z!u~12z!

ln@12v~2y21!#

12v~2y21!
^v~y,x! → H2~12z!1

3

2~12z!
1

2

12z
ln~12z!1

11z2

12z
@ln~12z!2ln z#Ju~z!u~12z!
li-
r

-
ffi-

lts.

ure
rts

the
A 1
(g1 ,NS)

~z!5d~12z!,

A2,0
(g1 ,NS)

~z!5@ P̃~z!#1 ,

A2,1
(g1 ,NS)

~z!5uS z

z8
D uS 12

z

z8
D 1

~z82z!1

^ @ P̃~z8!#1 ,

A2,2
(g1 ,NS)

~z!5uS z

z8
D uS 12

z

z8
D

32S ln~z82z!2 ln z

z82z
D

1

^ @ P̃~z8!#1 .

~B14!
01401
Hence, the building blocks for the hard-scattering amp
tude of the photon-to-pion transition form facto

A i
(g* p)(v,x) given in Eq.~B3! can be brought into corre

spondence with the building blocks of the nonsinglet coe
cient function of the polarized structure functiong1 ,
A i

(g1 ,NS)(z), displayed in Eq.~B14!. For various ERBL ker-

nels ṽ(x,y), the corresponding DGLAP kernelsP̃(z) are
obtained by taking the limit~B11! with t51 ~and t8→z)
taken into account. In Table VII we list some selected resu
We mention here that the integration of two ‘‘1’’ forms re-
sults again in the ‘‘1’’ form, but the contributing terms
should be appropriately rearranged. Following the proced
explained above, we finally obtain the forward counterpa
of the elements of the hard-scattering amplitude for
photon-to-pion transition form factor:
T(0)~v,x!→d~12z!, ~B15!

TF
(1)~v,x!→F2~12z!1

3

2~12z!
2

3z

~12z!
1

11z2

12z
@ ln~12z!2 ln z#G

1

2
3

2
d~12z!, ~B16!
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Tb
(2)~v,x!→F2

31

12
~12z!1

19

4~12z!
2

209~11z2!

36~12z!
1S 3

2
~12z!2

3

2~12z!
1

19~11z2!

6~12z! D ln~12z!1S 2
1

4
~12z!1

5

2
z

2
19~11z2!

4~12z! D ln~z!1
11z2

12z S 2
5

4
ln2z2

1

2
ln2~12z!12 lnz ln~12z!1Li2~12z!1

p2

3 D G
1

23d~12z!.

~B17!
a

t

-

t
e

o
e

se

he

se

er-
c-

e
r

rm

o

Here, the expressions on the RHS represent the sc
independent LO, NLO, andb0-proportional NNLO terms of
the nonsinglet coefficient function (Cq

NS) of g1. Similar ex-
pressions can be written for the terms proportional
lnn(Q2/m2). Following the notation of@43#, the u(z)u(12z)
factors are not shown in Eqs.~B15!–~B17!. We note that the
limit of T( i )(v,12x)5T( i )(2v,x) corresponds to the anti
quark case (Cq̄

NS).

Our results7 ~B15!–~B17! are numerically in agreemen
with the Mellin moments and up to a typo also with th
analytical expression for thenf-proportional term displayed
in the Appendix of Ref.@43#; namely, in Eq.~A2! in that
reference the term 1/3(1111z)ln z should read 1/3(1
211z)ln z.

APPENDIX C: DETERMINATION OF CONFORMAL
MOMENTS

In this section we present a method for computing m
ments with respect to conformal partial waves with the ind
k. We introduce the notation

^F~x!&k[E
0

1

dxF~x!
x~12x!

Nk
Ck

3/2~2x21!, ~C1!

while Nk is defined in Eq.~2.1!. It follows trivially that
^F(12x)&k5(21)k^F(x)&k . In the calculation of the
photon-to-pion transition form factor for the special ca
uvu51 we encounter functionsF(x) of the formsf (x)/x and
f (x)/(12x), with f (x)P$1, lnn(x)lnm(12x), Li2(x),
Li 3(x), S12(x)%.

It is convenient to use the following expression for t
Gegenbauer polynomials:

x~12x!

Nk
Ck

3/2~2x21!5~21!k
2~2k13!

~k11!!

dk

dxk
@x~12x!#k11

7The representation of the coefficient functions in the fo
Ad(12z)1@F(z)#1 , as given in Eqs.~B15!–~B17! and naturally
emerging in our calculation, is convenient for the determination
the Mellin momentscj5*0

1zjc(z) since thej 50 Mellin moment
corresponds to the term proportional tod(12z).
01401
le-

o

-
x

5~21!k
2~2k13!

~k11! (
i 50

k11

~21! i S k11

i D
3S k1 i 11

i 11 D xi 11. ~C2!

The evaluation of the conformal moments, i.e., in our ca
the evaluation of the expressions

K f ~x!

x L
k

5~21!k
2~2k13!

~k11! (
i 50

k11

~21! i S k11

i D
3S k1 i 11

i 11 D E
0

1

xi f ~x!, ~C3!

and

K f ~x!

12xL
k

5
2~2k13!

~k11! (
i 50

k11

~21! i S k11

i D S k1 i 11

i 11 D
3E

0

1

xi f ~12x!, ~C4!

consists then in calculating the Mellin moments and p
forming the summation. The Mellin moments for the fun
tions we encounter in our calculation are well known~see,
for example,@75,76#!, and most of the nontrivial sums we ar
left with can be found in@77#. The sums that usually appea
are

Sm~n!5(
i 51

n
1

i m
, Sm, j 1 , . . . ,j p

~n!5(
i 51

n
1

i m
Sj 1 , . . . ,j p

~ i !,

~C5!

S2m~n!5(
i 51

n
~21! i

i m
,

S2m, j 1 , . . . ,j p
~n!5(

i 51

n
~21! i

i m
Sj 1 , . . . ,j p

~ i !.

The functionsSm(z) are expressed via the functionsc(z)
5d ln G(z)/dz:

c~z!52gE1S1~z21!,

f

3-29
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dm

dzm
c~z!5m! ~21!(m11)@z~m11!2Sm11~z21!#. ~C6!

For ^Li3(x)/(12x)&k and ^S12(x)/(12x)&k , the corre-
sponding sums are missing in@77#, and to obtain them we
turn to expressing the relevant functions as convolutions
appropriate functions with the known diagonal kernels. G
erally, the conformal moments of a kernel@ ṽ#1 are defined
by

ṽ lk[^@ ṽ~x,y!#1& lk

5E
0

1

dxE
0

1

dyCl
3/2~2x21!@ ṽ~x,y!#1

y~12y!

Nk

3Ck
3/2~2y21!, ~C7!

and for the kernels appearing in this calculationṽ lk50 for
l ,k and l 2k odd. The conformal moments of the convol
tion F(x)5G(y) ^ @ ṽ(y,x)#1 then take the form

^F~x!&k5^G~y! ^ @ ṽ~y,x!#1&k5(
l>k

^G~y!& l ṽ lk . ~C8!

As before we use the simplified notation for the diago
moments

ṽkk[ ṽk , ~C9!

i.e., for the diagonal conformal moments we retain just o
index and the relation~C8! simplifies to

^F~x!&k5^G~y! ^ @ ṽ~y,x!#1&k5^G~y!&kṽk . ~C10!

Hence, in order to determinê Li 3(x)/(12x)&k and
^S12(x)/(12x)&k , we make use of the identities

Li2~12y!

12y
^ @va~y,x!#1

52
Li3~12x!

x
1

z~3!

x
2

ln~x!

12x
1

ln~x!ln~12x!

2~12x!

1
1

2 S Li2~x!

12x
2

z~2!

12xD1S Li2~12x!

x
2

z~2!

x D
~C11!

and

Li2~y!

12y
^ @v~y,x!#1

52
S12~x!

12x
1

z~3!

12x
1

ln~12x!

x
1

Li2~x!

2~12x!

1z~2!S ln~12x!

12x
1

1

12xD . ~C12!
01401
f
-

l

e

The kernelsva and v are defined in Eqs.~3.2!, ~3.3!, and
~3.9!, while the corresponding moments can be read off fr
Eqs.~3.6! ~for e50) and~3.34!, respectively.

Finally, in Table VIII we summarize the conformal mo
ments of the functions relevant to our calculation.

As a by-product of this calculation, we list the followin
nontrivial sums:

(
i 50

n

~21! j S n

j D S n1 j

j 11DS1,2~ j 11!

5
1

n11 F2
1

n~n11!
2~21!n@S22~n11!

1S22~n21!#G ,
(
i 50

n

~21! j S n

j D S n1 j

j 11D S1,2~ j 11!

j 11

5
1

n11 F ~21!n

n~n11!
@S22~n11!1S22~n21!#G ,

(
i 50

n

~21! j S n

j D S n1 j

j 11D S3~ j 11!

j 11

5
1

n11 F2
1

n2~n11!2
1@S1~n11!1S1~n21!#

3S 1

n~n11!
1

1

n2~n11!2D G , ~C13!

which complement the collection of sums found in@77#.

APPENDIX D: TAYLOR EXPANSIONS IN v

We now present the results for the five lowest even par
waves, which are expanded inv2 to the first seven nonvan
ishing terms. For brevity, we will not denote the neglect
terms.

The LO result can be simply expanded by means of
representation in terms of hypergeometrical functions. E
ploying the identity

1

~11v! j 111e 2F1S j 111e, j 121e

2~ j 121e!
U 2v

11v D
5 2F1S j /21e/211/2,j /21e/211

j 1e15/2 Uv2D
and representing the hypergeometrical functions as po
series inv, after a few simple manipulation withG functions
we find

Tj
(0)~v!5

312 j

4 (
n50

` ApG~11 j 12n!

n!G~5/21 j 1n! S v

2 D 2n1 j

.

~D1!
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TABLE VIII. The conformal moments of some relevant functions.

K 1

12x L
k

2~2k13!

~k11!~k12!
5

1

2Nk

Kln~12x!

12x L
k

1

2Nk
@2S1~k12!2S1~k!#

Kln2~12x!

12x L
k

1

2Nk
$@2S1~k12!2S1~k!#21@S2~k12!2S2~k!#%

Kln3~12x!

12x L
k

1

2Nk
$@2S1~k12!2S1~k!#312@2S3~k12!2S3~k!#13@2S1~k12!2S1~k!#@S2~k12!2S2~k!#%

Kln~12x!

x L
k

1

2Nk
F2 1

~k11!~k12!G
Kln2~12x!

x L
k

1

2Nk
H 22

~k11!~k12!
@2S1~k12!2S1~k!11#J

Kln~x!ln~12x!

12x L
k

1

2Nk
F2z~2!2S22~k12!2S22~k!1S2~k12!2S2~k!2~12~21!k!

1

~k11!~k12!G
KLi2~x!

12x L
k

1

2Nk
Fz~2!2S2~k12!1S2~k!1

1

~k11!~k12!G
K Li2~12x!

12x L
k

1

2Nk
Fz~2!1S22~k12!1S22~k!2

~21!k

~k11!~k12!G
K Li3~x!

12x L
k

1

2Nk
H z~3!2

~21!k

~k11!~k12!
@z~2!1S22~k12!1S22~k!#J

K S12~x!

12x L
k

1

2Nk
H z~3!2

1

~k11!~k12! F2S1~k12!2S1~k!2
1

~k11!~k12!G
1@2S1~k12!2S1~k!#@S2~k12!2S2~k!#%
The first few moments read

T0
(0).110.2v210.0857v410.0476v610.0303v8

10.0210v1010.0154v12,

T2
(0).

2v2

15
~110.6667v210.4545v410.3263v6

10.2448v810.1900v1010.1517v12!,

T4
(0).

8v4

315
~111.1538v211.0769v410.9502v6

10.8252v810.7152v1010.6219v12!, ~D2!

T6
(0).

16v6

3003
~111.6471v211.9505v412.0433v6

12.0211v811.9403v1011.8325v12!,

T8
(0).

128v8

109395
~112.1429v213.0745v413.7304v6

14.1449v814.3736v1014.4677v12!.
01401
The relative error of these approximations forj
5$0,2,4,6,8% is about $0.1%,0.7%,2%,4.4%,8%% for uvu
50.8 and increases to$0.6%,4%,10%,19%,30%% for uvu
50.9.

The expansion of thesj
i (v) functions from Eq.~3.63! can

be found in an analogous way:

sj
( i )~v!

5

(
n50

`

S ( i )~ j ,n!G~11j12n!/@n!G~5/21j1n!#~v/2!2n

(
n50

`

G~11 j 12n!/@n!G~5/21 j 1n!#~v/2!2n

,

~D3!

S (1)~ j ,n!5S1~ j 12n!2S1~3/21 j 1n!2S1~ j !

1S1~3/21 j !, ~D4!

S (2)~ j ,n!5@S (1)~ j ,n!#22S2~ j 12n!1S2~3/21 j 1n!

1S2~ j !2S2~3/21 j !.

The approximation ofsj
1(v) reads
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TABLE IX. The first four nonvanishing and even eigenvalues of the evolution kernel~1.5! to NNLO
accuracy@for color decomposition see Eq.~3.39!#. The values ofv j

(2) are taken from the nonsinglet result fo
the deep inelastic structure functionF3 @58#.

j CFv j CF
2vF,j1

CF

2Nc
vG,j vb, j v j

(2)52
1
2 g j

(2)

2 22.77778 3.41307 22.88194 2155.614124.5592nf10.220250nf
2

4 24.04444 7.15867 24.32389 2215.118134.7698nf10.295776nf
2

6 24.89048 9.82554 25.30857 2254.562141.3602nf10.342420nf
2

8 25.52910 11.86905 26.06196 2284.650146.3238nf10.375806nf
2

u

f

ds

s.

g-

n

s2
(1)~v!.

13v2

54
~110.3642v210.1973v410.1266v6

10.0894v810.0670v10!,

s4
(1)~v!.

83v2

338
~110.3694v210.2025v410.1313v6

10.0935v810.0707v10!, ~D5!

s6
(1)~v!.

143v2

578
~110.3716v210.2048v410.1334v6

10.0953v810.0723v10!,

s8
(1)~v!.

73v2

294
~110.3727v210.2059v410.1344v6

10.0963v810.0732v10!.

Note that the prefactor of these series is given by@123/(5
12 j )2#v2/4;v2/4 and that forj 5$2,4,6,8% and uvu50.8
the relative error of these approximations is abo
$1.2%,2.5%,4.4%,6.7%% and increases to
$6%,10%,14%,19%% for uvu50.9. The approximation o
sj

2(v) is given by

s2
(2)~v!.

v2

243
~1114.7002v2110.7004v417.7684v6

15.8690v814.5967v10!,

s4
(2)~v!.

3v2

2197
~1144.8125v2133.1180v4124.3070v6

118.5325v8114.6322v10!, ~D6!

s6
(2)~v!.

3v2

4913
~11100.913v2175.0187v4155.3152v6

142.3458v8133.5573v10!,

s8
(2)~v!.

v2

3087
~11191.007v21142.411v41105.261v6

180.7569v8164.1255v10!.
01401
t

Here we mention that the analytical expansion rea
3v2/(512 j )31v4@11O„1/(512 j )2

…#/16. Thus, the v2

term is numerically suppressed. In theuvu→1limit, the func-
tions sj

(1,2) take the values

sj
(1)~v51![2S1~2 j 13!2S1~ j 11!2S1~ j 12!2 ln~2!,

~D7!

sj
(2)~v51![@sj

(1)~v51!#224S2~2 j 13!1S2~ j 12!

1S2~ j 11!12z~2!.

The quantities in theMS scheme are evaluated from Eq
~3.16!–~3.23!. For m f

25Q2 the NLO contribution
Tj

(1)(v,m f
2/Q251) reads

T0
(1).22~110.3333v210.1873v410.1245v610.0904v8

10.0694v1010.0554v12!, ~D8!

T2
(1).

v2

9
~111.2815v211.0293v410.7770v610.5844v8

10.4436v1010.3407v12!,

T4
(1).

4184v4

42525
~111.4076v211.4571v411.3683v6

11.2370v811.1013v1010.9754v12!,

T6
(1).

96182v6

2837835
~111.8560v212.3723v412.6207v6

12.6949v812.6644v1012.5747v12!,

T8
(1).

568352v8

57432375
~112.3324v213.5542v414.5116v6

15.1921v815.6346v1015.8894v12!,

while the conformal moments of the factorization lo
proportional term, i.e.,CFv jTj

(0)(v), are obtained by multi-
plying the results~D2! with the values ofCFv j , given in
Table IX. At NNLO, only theb0-proportional term has bee
evaluated:
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Tb,0
(2).23~110.3505v210.1785v410.1098v610.0750v8

10.0548v1010.0420v12!, ~D9!

Tb,2
(2).

4369v2

8640
~110.9159v210.7298v410.5740v6

10.4566v810.3691v1010.3031v12!,

Tb,4
(2).

2356859v4

8505000
~111.3588v211.4063v411.3333v6

11.2209v811.1022v1010.9899v12!,

Tb,6
(2).

20352710029v6

222486264000
~111.8408v212.3592v4

12.6233v612.7190v812.7108v1012.6415v12!,

Tb,8
(2).

363260060687v8

13676945782500
~112.3308v213.5655v4

14.5516v615.2715v815.7582v1016.0576v12!.

To restore the factorization log, one needs

vb,0
S .2

v2

6
~110.5657v210.3830v410.2837v6

10.2220v810.1804v10!, ~D10!

vb,2
S .2

83v2

216
~110.0488v210.0308v410.0225v6

10.0177v810.0146v1010.0123v12!,

vb,4
S .2

7783v4

70875
~110.0261v210.0172v410.0130v6

10.0105v810.0088v1010.0076v12!,

vb,6
S .2

3745727v6

132432300
~110.0174v210.0118v4

10.0091v610.0075v810.0064v10

10.0056v12!,

vb,8
S .2

76991788v8

10854718875
~110.0130v210.0089v4

10.0070v610.0058v810.0050v10

10.0044v12!.
01401
In the CS scheme, we find the NLO resu
Tj

CS(1)(v,m f /Q251) from Eq.~3.62!:

T0
CS(1).22~110.2v210.0857v410.0476v610.0303v8

10.0210v1010.0154v12!, ~D11!

T2
CS(1).

v2

9
~111.4691v211.2818v411.0443v6

10.8466v810.6933v1010.5752v12!,

T4
CS(1).

4184v4

42525
~111.4102v211.4674v411.3875v6

11.2644v811.1354v1011.0148v12!,

T6
CS(1).

96182v6

2837835
~111.8373v212.3344v412.5697v6

12.6372v812.6050v1012.5171v12!,

T8
CS(1).

568352v8

57432375
~112.3052v213.4829v414.3926v6

15.0299v815.4373v1015.6655v12!,

while the factorization log-proportional term is the same
in the MS scheme. The NNLO correctionTj

CS(2)(v,m f /Q2

51,m r /Q251) for b050 reads

T0
CS(2).3.6667~110.2v210.0857v410.0476v6

10.0303v810.021v1010.0154v12! ub050 ,

~D12!

T2
CS(2).23.2331v2~110.6769v210.4557v4

10.3224v610.2386v810.1832v10

10.1448v12! ub050 ,

T4
CS(2).20.9338v4~111.0967v210.9764v4

10.8272v610.6939v810.5838v10

10.4949v12! ub050 ,

T6
CS(2).20.21v6~111.5133v211.6617v411.6285v6

11.5184v811.3829v1011.2459v12! ub050 ,
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T8
CS(2).20.0427v8~111.905v212.4505v4

12.6858v612.7134v812.6181v10

12.4577v12! ub050 .

The Q2-independent andb0-proportional term in the CS
scheme is the same as in theMS one, given in Eq.~D12!.
The factorization and renormalization log-proportional ter
appearing in Eq.~3.64! can easily be restored by means
the results from Table IX, Eqs.~D2!, ~D5!, as well as Eqs.
~3.68!, ~D8!, ~D10!, ~D11!.

The difference between the CS andCS schemes arise
only from the b0-proportional terms ~3.69!. The
b0-proportional NNLO termT

b, j
CS(2)(v) reads

Tb,0
CS(2).23~110.2v210.0857v410.0476v610.0303v8

10.0210v1010.0154v12!, ~D13!

Tb,2
CS(2).0.50567v2~110.8496v210.6431v410.4900v6

10.3820v810.3048v1010.2482v12!,

Tb,4
CS(2).0.277114v4~111.2512v211.2252v411.1162v6

10.9919v810.8747v1010.7710v12!,

Tb,6
CS(2).0.0914785v6~111.7236v212.1049v4

12.2550v612.2689v812.2076v1012.1078v12!,

Tb,8
CS(2).0.02656v8~112.2092v213.2413v414.0009v6

14.5064,v814.8081v1014.9570v12!.

The restoration of the factorization log in theb0 sector re-
quires knowledge ofvb, j , given in Table IX.

APPENDIX E: RECONSTRUCTION
OF THE HARD-SCATTERING AMPLITUDE IN THE

MOMENTUM FRACTION REPRESENTATION

Let us now discuss the reconstruction of the ha
scattering amplitude in the momentum fraction represe
tion from the conformal moments. This technical problem
of immense importance for the discussion of two-pho
processes in which the operator product expansion is
convergent. The solution is known in forward kinematics a
is given by the Mellin transformation of moments. In no
forward kinematics, the problem is solved in principle@45#;
however, one has to evaluate rather cumbersome integ
Here we propose a simple approximative solution which
based on the asymptotic behavior, presented in Sec. IV
and it is applicable to deeply virtual Compton scattering.
01401
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the following we demonstrate this method at NLO order a
its generalization to higher orders is straightforward.

First, we consider the quality of the asymptotic formul
~4.1!. Since the neglected terms are of the order 1/(j 12), we
expect that the approximations~4.1! have an accuracy of the
level of 10% for j 510. Surprisingly, the accuracy is alread
below 1% in both cases, which indicates that the 1/(j 12)
term is small. Thus, we completely neglect such terms
improve the approximate formula by adding sublead
terms of the form

a1bS1~ j 11!

~ j 11!~ j 12!
1

g1dS1~ j 11!

~ j 11!2~ j 12!2
1•••,

where the coefficientsa, . . . ,d are determined from a fit o
the lowest moments. In this way, we obtain an approximat
that is better than 1% for all moments. Now we can reco
an approximate expression for the hard-scattering amplit
as a convolution by the following recipe.

Substitute the LO Wilson coefficients by the correspon
ing hard-scattering amplitude:

2 j 13

~ j 11!~ j 12!
→ 1

2~12x!
.

Restore the kernels:

cons→consI ,
1

~ j 11!~ j 12!
→va~x,y!,

S1~11 j !→2
1

2
@vb~x,y!#111I .

Consider the multiplication of the conformal momen
given above, which corresponds to convolution in the m
mentum fraction space.

Here we have introduced a shorthand notation for
identity I[d(x2y). In theMS scheme, using Eq.~3.32! and
the recipe given above we restore the exact expression~3.28!
in the momentum fraction space. For the CS scheme, u
the improved form~4.1!, we get a good approximation of Eq
~3.45!, for the lowest moments also, by taking

a5
83

10
18z~2!226 ln~2!'3.438,

g52
73

5
212z~2!148 ln~2!'21.068, b5d50,

~E1!

and the hard-scattering part reads
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TF
CS(1)~x!'T(0)

^ H 1

2
@vb#1 ^ S 1

2
@vb#126.273I D22.952I13.438va21.068va^ vaJ ~x!

'
0.25 ln2~12x!22.136 ln~12x!28.224

2~12x!
1

ln~12x!@0.25 ln~12x!26.642#

2x

11.068
Li2~x!2Li2~1!

2~12x!
. ~E2!

After analytical continuation inx this result corresponds to the NLO correction of the deeply virtual Compton scattering fo
quark-quark channel in the parity odd sector.
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