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Next-to-next-to-leading order prediction for the photon-to-pion transition form factor
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We evaluate the next-to-next-to-leading order corrections to the hard-scattering amplitude of the photon-to-
pion transition form factor. Our approach is based on the predictive power of the conformal operator product
expansion, which is valid for a vanishing function in the so-called conformal scheme. The Wilson coeffi-
cients appearing in the nonforward kinematics are then entirely determined from those of the polarized deep
inelastic scattering known to next-to-next-to-leading order accuracy. We propose different schemes to include
explicitly also the conformal symmetry breaking term proportional to ghfinction and discuss numerical
predictions calculated in different kinematical regions. It is demonstrated that the photon-to-pion transition
form factor can provide a fundamental testing ground for our QCD understanding of exclusive reactions.
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I. INTRODUCTION In the leading twist-2 approximation, the light-cone OPE
approach is equivalent to the collinear factorization scheme
At a sufficiently large scale, exclusive QCD reactions fac-[1-3]. The transition form factor factorizes as a convolution
torize into a perturbative calculable partonic hard-scatterin@f the hard-scattering amplitudeand the pion distribution
amplitude and universal hadron distribution amplitudesamplituded, with respect to the momentum fractian
[1-3]. The study of such reactions offers the possibility of
directly exploring nonperturbative features of hadrons at the _(*
amplitude level, as well as of testing our understanding of »#(® Q)= 2 T(@.X.Q.u1) @ (X, 1), ®=jo dx,
the amplitude factorization. Unfortunately, exclusive reac- (1.2
tions are still challenging to both experimentalists and theo-
reticians, and the onset of the perturbative approach is a coRghere
troversial topic in the literature.

The photon-to-pion transition form factor, appearing in (01— 02 92—l
the two-photon amplitude of the process (q;) y*)(qs) QZZ_ﬁ, = L 12
—a°(P), can serve for a thorough study of the mentioned 4 q§+ q§

problem. In this process the partonic content of a meson is

probed only by the electromagnetic interaction. Furthermoreln the above, the resolution scal is large and the asym-
since we require that the meson is produced at lightlike dismetry parametew is fixed, i.e.,|ow|<1, while u; represents
tances, i.e., that at least one photon is far off shell, this prothe factorization scale. Because of Bose symmetry the tran-
cess belongs to quite a large class of two-photon processettion form factor is symmetric invo. The perturbative ex-
calculable by means of the operator product expansiopansion of the hard-scattering amplitude reads

(OPE [4]. Deeply virtual Compton scatteringDVCS),

deeply inelastic lepton-hadron scatterii@S), and the pro- V2 ) o)
duction of various hadronic final states by photon-photon T(w,x,Q,u)= —| TO(w,x) + ————T@ w,X,—)
fusion belong to this class of processes. Such processes can 6Q° 2m i
be described by a general scattering amplitude given by the B

time-ordered product of two electromagnetic currents sand- n as(pr) T(z)( X 2 2)

wiched between the hadronic states. For a specific process, (277)2 s g

the generalized Bjorken kinematics at the light cone can be

reduced to the corresponding kinematics, while the particular 3

hadron content of the process is reflected in the nonperturba- +0(ag) +{x—=1-x}|, 1.2

tive part of the amplitude. Hence, the generalized hard-

scattering amplitude enables us to relate predictions of dif- . L )
ferent two-photon processes on the partonic level. where i, is the renormalization scale and the leading-order

(LO) contribution is given by

*On leave of absence from the Rudjer Bosic Institute, Zagreb, T(O)(w X) =

Croatia. 1-w(2x—1)" (1.3
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The normalization ofl given above corresponds (X, tt) strained only from the scaling violation that arises from the
normalized to 1 and ,=131 MeV. Note that a residual de- evolution of the distribution amplitude. In the sméd| re-
pendence on the renormalization scale appears in the gion, perturbative QCD gives a parameter-free prediction of
truncated perturbative expansion of the hard-scattering anthe photon-to-pion transition form factor, and in the interme-
plitude. The next-to-leading ordéNLO) correction to the diate region, one might extract the few lowest moments of
hard-scattering amplitude has been calculated in the modifietthe distribution amplitude and confront them with nonpertur-
minimal subtraction MS) scheme[5-7]. In the next-to- bative resultysee Ref[30]). However, both high-precision
next-to-leading ordetNNLO), only the contributions com- data as well as a precise understanding of perturbative and
ing from the quark-bubble insertions have been evaluatefonperturbative effects are necessary for this analysis.
[8—10], again using theVS scheme. The pion distribution ~ Thus, the computation of both perturbative and power
amplitudes(x, u¢) is intrinsically a nonperturbative quantity SUPPressed contributions is an important task. In this way, we
and cannot be determined from the perturbation theoryc@n gain insight into the perturbative approach to exclusive

However, its evolution is governed by the evolution equationProcesses. However, calculations of exclusive amplitudes be-
yond the leading order are quite cumbersome. In addition to

, d the photon-to-meson transition form factor and similar exclu-
mi—— POX 1) = V(X U, ) @ (U, 1), (1.4  sive two-photon processes, the perturbative next-to-leading
dpg order predictions are known only for the pion form factor
in which the evolution kernel has a perturbative expansion a%Sl_.:gﬂ gnd for the ampl|t.u§je of charged meson pair pro-
uction in two-photon collisions for the case of equal mo-
o2(ur) menta sharing meson distribution amplitu@@g]. Fortu-
V(O)(x,y)+s—v(1)(x,y)+O(a§). nately, in the perturbative sector massless QCD is invariant
2 under conformal transformation provided the coupling has a
(1.5  fixed point, so that thg function, the renormalization group
coefficient of the running coupling, vanishes. In the lowest
Yrder ofag, the conformal symmetry breaking part, which is
consequently proportional #8/g= Boad/ (4) + O(aﬁ), can
be determined by calculating the Abelian part of the gluon
self-energy proportional to the number of quarks Addi-
tional subtleties may appear owing to the factorization pro-

as(pt)
21

V(X!yuu’f) =

The evolution kernel has been estimated to NLO accurac
using theMS schemg11-13 and the corresponding solu-
tion of the evolution equation was obtain€t4—-16. The
latter can be expressed in the form

D (X, gl o) = dO(X, s o) + ai'uf) (X, wt| o) cedure and they can be resolved by a finite renormalization
m of the hard-scattering and distribution amplitudes. Making
+0(ad) (1.6) use of conformal symmetry constraints, together with the

s/ .

explicit calculation of terms proportional to th@ function,
where the scaleu, denotes some low scale at which the offers a considerable simplification of the perturbative calcu-
nonperturbative input was obtained. The solutjtiré) satis-  ation and, in our case, gives the possibility of going beyond
fies the initial conditione (X, mo|mo) = (X, mo| o) and  the NLO approximation.
for ws—o takes the asymptotic formp(x,mws— o|umo) Indeed, for the photon-to-pion transition form factor we
=6x(1—X). We stress that the evolution equation as definecan take advantage of this symmetry and its predictive power
by (1.4) and(1.5) corresponds to the simplified scheme fixed [39,40 by means of the conformal OREOPBE [41,42, in
by the preference that the distribution amplitugeshould ~ Which the form of the Wilson coefficients is constrained. The
have no residua| dependence on the renorma“zation gca|e_n0rma|izati0n Of these CoeffiCientS can be reCOVered in the

The photon_to_pion transition form factor haS been mea_forWa.rd kinematics from the DIS results for the nonSinglet
sured at largeQ? by the CELLO[17] and CLEO[18] Col- coefficient function of the polarized structure functign
laborations, where one photon is almost on shell, while th&nown to NNLO [43]. This field-theoretical approach has
second one has a virtuality up to 9 Ge\Different authors been explored15,16,44—4%and tested to NLQ47], where
have analyzed the dafa9-2€, and it is often stated that the the B function is absent in the Wilson coefficients. We em-
pion distribution amplitude is close to its asymptotic shapephasise that the “conformal symmetry breaking” due to the
for previous work, see alsi®7—29. However, in this kine- factorization procedure in thBIS scheme and the restora-
matics, the shape of the distribution amplitude can be contion of conformal symmetry by finite renormalization are

well understood at NLO. Further consistency checks are
based on comparison with explicit resultg.g., hard-
INote that, in general, such a residual dependence appears alof§attering amplitudes for two-photon processes in the light-
with the evolution kernel depending on two scales: cone dominated region, the flavor nonsinglet kernel, quark—
bubble insertions in singlet kernglsand with constraints
coming from theN=1 super Yang-Mills theory48].

In this paper we apply the COPE combining the NNLO
result for the nonsinglet coefficient function of the polarized
+0(ad). structure functiorg, [43] with the explicit result for then;-

(i.e., Bo-)proportional NNLO contribution to the hard-

2
Ll

2
Mt

o as(:ur) Oé(,ur) BO
V(XY )= 2—7\/“”(x,y)+w VI(xy) =2 VOxy)in
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scattering amplitude of the photon-to-pion transition formsion of the distribution amplitude

factor [9,10], both being evaluated in th®1S scheme, to

obtain a full NNLO result for the photon-to-pion transition X=X g

form factor in the so-called conformal factorization scheme. @(X: )= ZO N Ci (2= 1(m(P)| Oy ()| Q)™

Alternatively, we propose a scheme in which the hard- I~ J

scattering amplitude can already be constructed from a . .

knowledge of the nonsinglet coefficient function @f and _:W

the corresponding anomalous dimensions. ' 4(2)+3)
The paper is organized as follows. For the convenience of

the reader, in Sec. Il we review the predictive power of con-Here C¥? are the Gegenbauer polynomials with index

formal symmetry relevant to the photon-to-pion transition=3/2 of orderj and the sum runs over evénin this repre-

form factor. We then propose two treatments of terms prosentation, the transition form factor reads

portional to theB function and discuss the remaining free-

dom in the choice of the factorization procedure. The general <, g

structure of the hard-scattering amplitude in M8 scheme Fw(w,Q)sz;O Tj(@,Q,m)(m(P)| O} ()| )™,

and the NNLO term that is proportional B are analyzed in 2.2

Sec. lll. For the phenomenologically important case in which

one photon is quasireal, we evaluate conformal moments fqfhere T, denotes thejth conformal moment of the hard-

the hard-scattering amplitude and by making use of th&cattering amplitude:

NNLO results for theg; function we obtain the NNLO pre-

diction for the photon-to-pion transition form factor in the

(2.0

1 _
conformal factorization scheme. We extend this procedure to Tj(w,Q,Mf)=f de(w,x,Q,,uf)X(lN_ X) Cj3’2(2x—1)
other values of photon virtualities and present a detailed in- 0 !
vestigation of the conformal partial wave decomposition of \/5 g ) 0
the transition form factor in differend regions. Based on =" T(O)(w)Jrs_'“'T(l)(w,_)
these results, in Sec. IV we analyze the size of the NLO and 3Q?| ! 2m Mt
NNLO effects for one quasireal photon and in the small and 5
intermediate|w| regions. Finally, a summary and conclu- ag(pr) ) Q Q 3
sions are given in Sec. V. The Appendixes are devoted to + (21)2 T] O +0(as) |-
technical details: the Feynman-Schwinger representation of
the hard-scattering amplitude, a consistency check at NNLO 2.3

between the ns-proportional MS results for the hard- . . L

scattering amplitude of the photon-to-pion transition form AS reviewed in Sec. Il A, the operator mixing problem
factor and the results for the nonsinglet coefficient functiont!nder renormalization beyond the one-loop level is solved by
of the DIS polarized structure functian, evaluation of the the restoration of conformal symmetry. I_n Sec. II B this al-
conformal moments of the hard-scattering amplitude, thd®WS Us to employ conformal symmetry in the OPE of two
Taylor expansions im, and the prescription for reconstruct- electromagnetic currents, and to fix the hard-scattering am-

ing the hard-scattering amplitude in the momentum fractiorP'itUde(2'3) in the conformal limit. Additionally, we include
space from the known conformal moments B-proportional terms and in Sec. Il C we discuss the corre-

sponding ambiguities of this procedure. The solution of the

renormalization group equation to NNLO is worked out in
II. OUTLINING THE CONFORMAL SYMMETRY Sec. IID

FORMALISM

In the physical sector, massless QCD at the tree level i®\. Renormalization properties of conformal operators and the
invariant under conformal transformations, i.e., under space- conformal scheme
time transformations containing the Poincaransforma- ith th ints for th lizati f
tions, dilatation, and special conformal transformations. The Let us start with the constraints for the renormalization o
' ' L . \_.._composite operators. In the flavor nonsinglet and parity odd
latter are composed of translation, inversion, and translation .
. S ; sector the twist-2 operators refsil—53
again. Conformal symmetry implies an improvement of the
energy-momentum tensor, which then becomes traceless.
Owing to this symmetry, one has additional constraints for ,
field-theoretical quantities, e.g., for Green’s functions. This
subject was intensively studied in the 1960s and 1970s iff .
four-dimensional field theory. In QCD, conformal symmetry A N 3200
is manifested in the Crewther relatia9] and in the solu- d’(x’“’)_Bgo X108 (u) G (2x 1),
tion for the mixing problem of composite operators underwhereB;(j=2,4, .. .)essentially represent the nonperturbative in-
renormalizatiorn{50,15,44. The reduced matrix elements of put. Comparing with our definiton (2.1, we have
the conformal operator®, sandwiched between the vacuum (m(P)|O;; (u)|Q)"®*=6N;B;(11), where (m(P)|Ogo )| Q)"

|Q) and one-pion7(P)| states, are pertinent to the expan- =B,=1 is a renormalization group invariant quantity.

It is common in the literature that the distribution amplitude is
xpanded in the form
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n-D

Oji=h(x)(n-7) 75C}" m)(in-a)'d;(y)

7 24

whered=d+3, D=D-D, andn is a lightlike vector that
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The understanding of this subtlety is the key for the ap-
plication of conformal symmetry iall orders of perturbation
theory. It is well known that, on the quantum level, confor-
mal symmetry is broken owing to the regularization of ultra-
violet divergences, which shows up in the trace anomaly of
the (improved energy-momentum tensor. This trace anomaly

makes these operators symmetric and traceless. The Gegel-given as a linear combination of different renormalized
bauer polynomial€™ arise from the group-theoretical con- gperators. In the dimensionally regularized theory with

struction of the operators and they are of orgexhere this
label is related to the conformal spjn-1, i.e., the eigen-

value of the Casimir operator of the so-called collinear con-

formal group. These operators have spinl and canonical
dimensionl +3. In other words, we have different infinite

space-time dimension=4-2¢, it reads

®M(X)=2B—QE(GZV(X))2+ e (2.7

irreducible representations of the conformal algebra, calledvhere theg function in the regularized theory is defined as

towers, that are characterized by the conformal gpirl,

while the members of each representation are labeled by the g =,

spinl+1. The conformal operators wilh=| are the lowest

members of each conformal tower, and we can climb the

tower by acting with the generator of translation.
Employing Poincarenvariance, the general form of the

4—n

79 .
— Tg+ﬁ with

L o+ O(ad)
(2.9

andBqy=(2/3)n;—(11/3)C4. In addition to the square of the
renormalized field strength tens@f‘w multiplied by thep

renormalization group equation for the operators introducegynction, the trace anomal2.?) contains equations of mo-

above reads

d

i
Maoﬂz_go YjkOki - (2.9

In the conformally invariant theory operators of different

tion and BRST-exact operators. Therefore, it is sometimes
believed that in the physical sector of the theory the breaking
of conformal symmetry is in general proportional to tBe
function. However, if one deals with composite operators,
the operator product and the trace anomaly of these operators
contain additional ultraviolet divergences. Since they are

conformal towers do not mix under renormalization. Indeedmytiplied by the (4-n) contribution in 8., these UV di-

the anomalous dimension matrix

2 3

I () W TY ) W B )
+O(a'g) with Yi=Yij (2.6

is diagonal at LO. This property is induced by conformal

symmetry at the tree level. The fact that these operators wi

mix beyond LO even for the vanishing function in theMS

vergences produce finite symmetry breaking terms that are
not proportional to theB function. The appearance of
anomalous dimensions of composite operators can also be
understood in this way.

A detailed analysis shows that the nondiagonality of the
anomalous dimension matrix observed in M8 scheme at
NLO originates from such an effect of conformal symmetry

reaking. It already appears at LO in the Ward identities of
hese operators with respect to the special conformal trans-
formation. The calculation of this special conformal anomaly

scheme, has been considered as an unexpected breakdown of

conformal symmetry. Note that the appearance of the anom
lous dimension already requires a “redefinition” of the con-

dmatrix Yo(1) = (as/27) Y*O(1) + O(a?) results in

YOy ==b(1) O +w, 2.9
formal representation at the tree level, i.e., the scaling dimen- b (1) W 29
sions of the operators change. where
|
b 2(1+k+3)6x—2(2k+3), j—k=0 andeven,
(D= 0 otherwise,
and
. . A= (j+2)+ (1) 2Ak :
—4(2k+3)(j —Kk)(j +k+3)| = : : . j—k>0 and even,
wy=Cp{ HEDUOUHEIN TS GG TG ks
0 otherwise
jt+k+4 j—k ) i
k=9 |~ | F2e - e +2) (), (2.10
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with ¢(z)=(d/d2)InT'(z2) and Cr=4/3. It induces off- o o2
diagonal entries in the anomalous dimension m&®i®): Aik=2—SAJ(E)+( S)ZAJ(&H O(ad) with
™ 2

S [YO+ Bob, ¥ Oy
MS(1)_ J A A
Vi a(j.k) forj=k, (211 AQ=BE-[d, YO, (2.16

wherea(j,k)=2(j —k)(j + k+3). The predictior2.11) co-  Note that the diagonal paf2.12, which corresponds to the
incides with the moments of the explicitly calculated evolu-moments — of the splitting kernels, also includes
tion kernel at NLO[11—13. On the other hand, the diagonal B-Proportional terms. The moments of the splitting kernels

part of the anomalous dimension mat(&6) are completely known to two-loop accurd®4—57 and the
first 13 entries at three-loop level are given[B8]. Their
a a scheme dependence is fixed by the fact that they are evalu-
= _—& (0) S (1) 4 S (2)+O 4) . — .. . .
Yi=YiTo Y (2m)? Y (277)371- (as ated in theMS scheme. This implies that the diagonal part

212 of B is given by the identity matrix.

coincides with the anomalous dimensions of the operators B. Conformal operator product expansion
that are restricted to the forward kinematics and are known

as the moments of the splitting kernels in DIS. Let us now turn to the second question we have raised. As

we discussed in the preceding subsection, one advantage of

f As Iwe can seet,) thelga |s.a i}s’;l_rgpletﬁ unde,:lstan(:]mg of ©OMhe conformal scheme is that, up to off-diagonal terms pro-
orma symmetry reaxing in t scheme. Now the ques- portional to 8, the anomalous dimensions are fixed by the
tions arise: Can we find a scheme at which conformal sym: IS results, and, in the conformal limit, they are partly

metry holds true? Can we then use the predictive power %nown to NNLO ordef Furthermore, the class of two-

? . . .
conform_al symmetry’ . . hoton processes that are light-cone dominated, i.e Qfor
The f'rSt. question h.as a pqsmve answer n the case th rge, can be treated by means of OPE. That includes the
thhe ﬁﬂ:u?ctllo? hzs a'f|?[<ed p0|_nt. Ilnsftead OIhrerlng I(')n trge evaluation of the corresponding nonforward Wilson coeffi-
ypothetical fixed point, we Simply Ireez€ the coupling by qiants. under the assumption that conformal symmetry holds

harr:d’ wh|chh|_mhpi|k(]as,8=0. It I'IS (tjhen fpossﬂ?le to fmZ 4 true, these coefficients are fixed up to normalization factors
scheme inwhich the renormalized contorma opera@ré that coincide with the Wilson coefficients appearing in the
form an irreducible representation of the collinear conformal

. . ) deep inelastic scattering structure functiokg and g
group, 1.€., the|r_ special cqnformal anoma_ly and anomalouF41 42. Hence, in the conformal scheme, taking the confor-
dimension matrices are simultaneously diagonal. The rotaz _| ’ '

. = g 8nal limit in which conformal symmetry holds true, we can
tion from theM§ to such a scheme, ‘_’Vh'Ch we call the con-se this predictive power of the COPE to avoid cumbersome
formal subtraction(CS) scheme, is given by the matr®®  higher-order calculations. Indeed, the NLO coefficient func-

defined by tions for the hadronic tensor in the general off-forward kine-
matics were predicted in this wgy4] and they coincide,
~ == o . TS . . .
OCS=B-1OMS Bjk= Sj+ _SB](I})JF O(ag)' after rotation to theMS scheme, with explicitly calculated
2w ones[60—-62.
(213 For the photon-to-pion transition form factor, the leading

twist-2 result of OPE is given by Ed2.2), where the con-
formal momentsT; of the hard-scattering amplitude corre-
spond to the Wilson coefficients;, which are convention-
c(0) ally normalized as

Yk~ 10y Ay

The NLO term BJ(&) is entirely determined by the special
conformal anomaly2.9) and reads

Bfi)=—0(j>k) 3
(2.14 Ti(0.Qu)= 3 56 @lasw).Qlw). (@21

Here we introduce the notatiod;=bj./a(j,k) and gj. h ioned. in the f | f | limit th
=wj/a(j,k). In the case of a nonvanishing function, an As we have mentioned, in the formal conformal limit the

additional off-diagonal term appears, and thus the Comp|et¥Vilsqn_coefficients are constrained in the CS scheme by the
anomalous dimension in the CS scheme rgads16] predictive power of the COPE:

_ d ag(p)=af -fixed
CS_|R-12MSR 4 -1 A
=1B B+B —B
ik : ’ Hdu ]jk implies the reduction
= 'k7'+0(j>k)éA'k- (2.19
s g} 3In principle, we then also know the Efremov-Radyushkin-

) ) ] . Brodsky-LepagdERBL) evolution kernels, which can be obtained
The addendum of the anomalous dimension m&&it9 is  from the Dokshitzer-Gribov-Lipatov-Altarelli-Pari$DGLAP) ker-
known in the lowest order of, [40]: nels through an integral transformatifBo].
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Cj(w|as(1).Q/u)=Ci(w|at ,Q/u), pearing in bothc{® and y{*). Let us first set such terms to
zero and, with the help of this, single out @§-proportional
whereC,(w|a? ,Q/w) is given by[39 terms inC
j(w|ag ,Q/u) is given by[39]
_ L2\ 2(20) o CCS=CM_SB|B:O+E¢SC
Ci=cjlas)| | T 1B+ 1i+2) ¢
Q (1+po) ™77
= B .
. 1 1 =Clg_o+ =5C with
Z . B=0
j+1+2'yl,j+2+2‘yl 290 g
X 2Fs , 1 1+ |’ 9
2| j+2+ 5 5C=E(CMSB—CMSB|B:0), (2.21)

2.1 . . :
(2.18 and « remains running. At LO g, term does not appear in

In the limit »—1, one obtains the result for the production C"'®; thus, the perturbative expansion

of a (pseudgscalar meson by two \grtual photons, while for

7n=0 the forward case is reproducedlote thatC;(w) is an 50 ¥ on(1) 2

even(odd function of w for even(odd) j, which Jis guaran- 0C)=0oC7+ T 0C; "+ 0(as) (222
teed by the linear transformation properties of the hypergeo-

metric functions,F;. The normalizationc;(as) coincides holds true. Note that SinCBJ(E)=5jk [Eq. (2.13] the LO
with the flavor nonsinglet Wilson coefficients of the polar- coefficientCMS(®=C(® s independent of the scheme. Simi-

ized structure functiory; taken atu=Q. It is given as a |arly to Eq.(2.21), we can write the matri8 in the general

perturbative expansion: form
2
¢j(ag)=c{V+ ﬁcilmic(%omg) with ¢c(9=1, B=B|s_o+ Eaé with
J 2} (271_)2 J J g
(2.19

A~ A o A~
— SR(0) 1 S sR(1) 2
and is known to NNLO in theMS scheme[43]. Strictly oB= BT+ 2 6B+ 0(as). (2.23

speaking, this coincidence appears just at the hypothetical
fixed pointas=ag . However, since we know the forward | e defineB so that it contains ng, term at ordews, i.e.,
anomalous dimensions and the Wilson coefficients perturbgs o 1a1e 58 =0 as in our definition of the CS scheme

tively in the MS scheme, we can easily restore (213, (214, the coefficients’C up to NNLO read
B-proportional terms in these quantities beyond the confor-

mal limit. 2 o R
Conformal symmetry breaking terms proportional to the §C(®©=0, 5C(1)=ﬂ—(CMS(2)—CMS(2)|ﬁO:0)+C(°)5B(1).
B function alter the COPE resu(®.18 in the full theory. 0 (2.24

Obviously, in the irreducible conformal representation used,
the B term cannot be fixed from the requirement of confor-

mal invariance. Thus, the definition of the conformal schem Since we have required that the diagonal entrie8 should

ebe 1, the normalization coefficient§ coincide in the for-
ward limit with the Wilson coefficients ofj; calculated in

Ccs(as(,u,),Q/,U,)= CM_S(CYS(,U«) ,Ql ) é(CVs(,U«)) the MS scheme.

with C. Ambiguities in the definition of the conformal scheme
C(at ,Q/p)=C(at ,Q/u) (2.20 As we have discussed, the ambiguity left in the definition
of the conformal scheme in the full theory resides in the
is ambiguous and, consequently, tBematrix is uniquely — B-proportional off-diagonal terms, i.e., in the choiced in
defined only up tg3-proportional terms that are off diagonal. Eq. (2.23. Adopting the definition2.13 and(2.23, we set
At the two-loop level,C containsgy-proportional terms ap-  sB(®)=0 and in the following discuss different choices of

sBW), restricting ourselves to NNLO.

“The Wilson coefficients appearing in the deep inelastic scattering 1. Defining CS andCS schemes
structure function$, andg, are derived in the usual DIS operator . .
basis, which differs in the normalization from the definition for the ~ 1he haive choice is to set
basis of conformal operators. Hence, these Wilson coefficients dif- .
fer slightly from the;=0 limit of Eq. (2.18. sBM =0, (2.25

014013-6
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which means that thed,-proportional term in the NNLO new residual scale dependencé. The meaning of this pro-

Wilson coefficients, i.e.oC) is entirely evaluated in the cedure is obvious. We do not resum the remaining off-

MS scheme. Since the conformal symmetry breaking pargéliagonal Inu terms through the renormalization group equa-

appearing in the COPE has to be proportional togHfanc-  tion; rather, we include them in the Wilson coefficients,

tion, we can calculatéC®) by evaluating the contributions Where they will be annulled. This is indeed on the same

proportional to then; piece of B,, i.e., from the one-loop footing with what we have already discussed in e 0

Feynman graphs with an additional quark-bubble insertion.case, where the off-diagonal entries present in the
In this naive schem&.25, which we denote by CS, both MS scheme have been removed by a finite, howexen-

the conformal operators and the Wilson coefficients will mixdependent renormalization. Consequently, both the operators

under renormalization to NLO accuracy owing to the run-and the Wilson coefficients

ning of the coupling. Let us consider this in more detalil.

Sinfce th_e transition form factor is invariant under renormal- OCS=B-1oMS  cCTS_cMSp (2.30

ization, i.e.,

where B is defined by Eq(2.29, now satisfy the desired

NEFW(&%Q):O, (2.26  renormalization group equations in tag approximation:
these effects will compensate one another. Thus, the renor- d = as(i) o a?(w) o
malization group equation for the Wilson coefficients reads M@O“ (u)=— Ryl +(ZT)2 j
J J as(pm) ad(m)
i p—|cts=| = (0) 4 =5 (1| cCs oS
“on Paglo T am T |9 +0(ad) |0Fw), (2.31
0 L
5 3, Gy RPN
i<7+2 IR P
[Maﬂ +Bag Cias(n),Qlw)
+0(ay3), (2.27

where the addendum(’ is defined in Eq(2.16. SinceC{™® =
is conformally covariant to the NLO approximation, i.e., it

contains no partial wave®.18) with a conformal spin larger X C(ay(1),Qlw). (2.32
than j+1, the off-diagonal entries on the right-hand side !

(RHS) arise from the explicitu dependence oCF*®, Note that the forward anomalous dimensioyjsremain ex-
which has been taken from tiéS scheme. _ plicitly « independent. However, both the off-diagonal piece
In the alternative conformal scheme, denoted in the folof the anomalous dimensions and the Wilson coefficients
lowing by CS, this intermediate mixing is avoided by the now possess a residual dependence at the orde#s and
complete diagonalization of the renormalization group equay? | respectively.
tion. This can be achieved by including an explieidepen- To restore the. dependence of the Wilson coefficient, we
dence in theB matrix, i.e., by taking perturbatively solve its renormalization group equation
(2.32. Up to an integration constariC’, its solution to
two-loop accuracy can be expressed by the Wilson coeffi-
cient(2.18), appearing in the COPE,

S

2
aS(lu‘) (O) CYS(ILL) (l) 3
> Y +(27T)2 Y +0(a

*x2
5B§§>=|n(“—2)A§E>a(j>k)+-.-. (2.28
o

2

In the order we are considering, the matExnow reads o — as PBo
9 CF ). Q) =C s w) QL)+ = 5)2 2 oc,
2 K
o as(u) (1) ag(pm) (2) Bo (2.33
which now depend on the running coupling:
M*Z O ars s
X|In Mz)Ajk O(j>K)+--- | +0(a)). o Q o \[u? 7"/22(2w)jB(j+1,j+2)
j_Cj as(#)i;!a_,y_ 2 14 @) H1+72
(2.29 i\Q (1+w) j
This choice introduces®S given by Eqs(2.15), (2.16) with j+1+ Ey j+2+ ly
(0)_, ACS(0)_( ; 27 27 2w
Ap’—A7=0, i.e, the LO addendum to the anomalous X oF4 (2.34
dimension matrix vanishes in this scheme. However, for di- olitos 1 . 1t
mensional reasons the choi@?29 additionally introduces a J 27
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The running ofa (1), appearing in the lowest approximation of bgthandc;, is compensated by introducing a logarithmic
change of theu dependence in the normalization factors:

z 2
Cj(as(u),g, ’ ):c(°’+ (%S('“)(;(lhr as(1) @ ag(w) ,30 Q°
MY J 2 T (om)2] . 2 2
(0) 2
aS(/"L) (1) (0)71 Q (0)_.(0) 5
><| 2 te In| =] |+¢;” ,(0) +0(a?). (2.39

Equation(2.34 should be understood in the sense of a conip the MS scheme. Now we extend our analysis by distin-

sequent expansion with respectdg up to orderas . guishing between the renormalization scale(the argument
So far we have found a rather natural way to include theof o, in the Wilson coefficientsand the factorization scale

effects of the running coupling in the structure of the COPE,,. . we require that the matrix elements of conformal opera-

I’esult with the adVantage that the conformal Opel’atOI’S d%rs should depend 0n|y on the factorization Sqa’e Thus
not mix under renormalization in NLO. It remains to fix the the scheme transformation now reads

integration constandC’, which vanishes in the kinematical

forward limit. We can identify it with the noncovariant part C(as( ), Ql s ,Ql y)
calculated in theMS scheme, in an analogous way to our _ R
discussion in the case of the CS scheme. On the other hand, =CMS(ag(r),Qf s, Qf ) Blarg( y)).

it is rather appealing that the Wilson -coefficients
Cj(as(,u),QZ/,uz) contain only conformally covariant terms Employing the scale-changing relation
to NNLO. For the scheme we callS, we adopt this pre-

scription, i.e., we puC’=0. In the NNLO approximation,

we then have a partial wave decomposition of the transition — @s(tf) = as( )
form factor with respect to the “good” quantum number—

conformal spin. This in principle allows us to extract the (2.36
conformal moments of the distribution amplitude with a
well-defined conformal spin for experimental data.

2
Mt
— | +0(ad)|,

r

as(ur) Bo

27 2"

1+

we expand the rotation matrix

2. Calculational prescriptions a?( ) Bo
Blas(ur)=Blas(p)+ - 75|
Let us comment on the renormalization scale dependence (27)

and give the calculational prescription for the schemes we (2.37
have proposed.

First, we introduced a naive recig€S schemgwhich Hence, in this scheme, the Wilson coefficients read to NNLO
combines the COPE result with the one explicitly calculatedaccuracy

B<1>+0(a ).

2
_ 2( )
COS= Tan( ), Q)] o+ 20 B

2
Mt 5
Lcopd)
2 (2m)° 5]C'B

My

_C%_S(Z)(as(ﬂr)vQ/Mf ,Q/ ) +1In +0(ad), (2.39

whereCf>(?) denotes the 4/2)-proportional contribution ~ whereC; is defined by Eqs(2.34 and (2.35. The form of
evaluated in theMS scheme, while the structure & is  the Wllson coefficients in which the distinction between the
fixed by Egs.(2.18 and(2.19. scalesu, and ¢ is introduced can be obtained analogously

Alternatively, in theCS scheme, we employed renormal- to the previously discussed case of the CS scheme, and will
ization group invariance to incorporate the running of thePe presented in Sec. Ill C. _
coupling into the generic structure of the COPE result and In Sec. IV we employ both of these schemes to estimate

used a finite renormalization to preserve the structure of théhe size of NNLO effects at a given input scale. The missing
COPE to NNLO accuracy: ingredient for a consistent NNLO analysis including the evo-

lution of the distribution amplitude is the anomalous dimen-
& — sion matrix at the three-loop level. Whereas the first few
Ci ¥ as(w),Qlu)=Cj(as(n),Q/ n), (2.39 diagonal entries have been calculated, the off-diagonal part is
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unknown. It could be read off from the-proportional part

of the special conformal anomaly matrix in the two-loop B = N5
approximation. Also, generally, the trace anomaly will affect Ok~ LYjk
the COPE at NNLO accuradgee Eq(2.7)]. We rather make (2.43
use of the freedom to rotate the conformal symmetry break-

ing piece from the perturbative sector to the nonperturbative R

one, as has been done in ti&S scheme, or the reverse. where yNP represents the triangular off-diagonal matrix

However, we expect that the mixing effect in 88 scheme
will be negligibly small and its detailed investigation is be- [

Sk
: S+ LYW+ LYNPLYND) o+ - -,

yond the scope of this paper. o | Yik for j>k,

y]k - (244)

0 otherwise,

D. Evolutional behavior of conformal operators

We end this section with a short review of the evolutional@nd the operatoC is an integral operator whose action is
behavior of the conformal operators from which that of thedefined by
distribution amplitudep(x, ) can easily be established. For
the convenience of the reader, we repeat here the basic steps

for solving the renormalization group equati¢h.4) and L£AND_ w'
present the results in a form convenient for phenomenologi- Yik = vo 1’ 7Jk O(u')
cal analysi§15,16,4Q.
The r_enormalizatio_n group eqL_Jati(JZLS) i_s an inhomoge- v du” ., )
neous first-order partial differential equation and after sand- X ex Ly () = w1 g
ko

wiching the conformal operators between the hadronic states
of interest we obtain the evolution equation for the reduced (2.45
matrix elements:

In the MS or CS scheme, the anomalous dimensith$)

Mdi<77(p)|ojj(,u)|9>fed dgpend only implicitly on th.e scalg via the running cou-
M pling ag(w). For theB function, we employ the expansion
— i (7P O} ()| Q) [63]
-2
= 2 Vi m(P) Oy (2.40 b_adw)  odw)  dw
g 4n PO (4m)? 1t (4m )3,32"‘ (a3),
The solution can be achieved by the ansatz 5 38
,80: §nf_1l, ,81=§nf—102,
(m(P)] O} ()] Q)"
i w dp! B 325 2, 5033 2857 04
=k20 B,-k(u,uo)eXp{—J —,yk(p«’)] Po== gt g M~ 5 (249
= Ko M

x{m(P)|O Qyred 2.4
(m(P) Ol o)1) 249 Since the off-diagonal entries of the anomalous dimensions

give only subleading logs, which will not be resummed, we
expand the3 matrix in powers ofag:
with the initial condition

a’s(M) §( )
B (w, =8, + —= (1) + (2)
+0(a3). (2.47

The recursive solution of this set of differential equations,

starting with the homogeneous one for 0, has been writ-

ten for an arbitrary scheme in a compact fofsee Ref. Performing the integrations in E¢R.43, we obtain the de-
[15)): sired results for
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ND(1)

Yik
B{@=—Rix( . ol1) JBO (2.48
(1)_ (1) (0)_.,(0)] ,ND(1)
B YT B YT Yk | Yik
Bk)_[Rjk(Myﬂoll)_Rjk(#vﬂolz)]{ Bo 2B, B B + Ry, 110/ 2)
B A NP AR Rl 1) = R4, 2012) v

280 Bo Bo mk+2 Bo 1+(y0-29D+yiBy  Bo
where
(0)_ _(0)
Bo (as(ﬂo))(nﬁ‘ﬁy ORI
R ,Moln)= - 2.4
Jk(lu’ /L0| ) nﬁo—i— yl(o)_ yf(o) aS(M) ( 9)

The leading logs associated with the diagonal entries are resummed, while the subleading ones are expanded with respect tc

ag:
(0)
N ks du’ ag(p) |~k /o as(m) (1) a,2( ) (2)
eXp| Loﬂ—wk(u )] as(uo)} [+ — AR (1o )+(2 )ZA (i, p0)+0(ad) |, (2.50
where
) (1)
(1) _ _M} ﬂVL_VL}
Ao = 1= 0 1128, B Bo '
1 al(po) [ B2—BaBo Y B A y‘f)}
(2) =Z[AW 2_11- =2 . 2.5
'Ak (/’L’ILLO) Z[Ak (IU“!ILLO)] ag(lu) 8[‘30 IBO 4180 EO 2[30 ( :D

To the considered order, the evolution of the matrix elements then reads

(0)
“cTPo a (,u)
Skt —— AP+ BT (1, 0)

!

as(u)

i
B red_—_
(m(P)|Oj; ()] €2) kZO as( o)

s(:Uv)
(27)

Lo AP+ BRAD BT, 10) +0(ad) { (m(P)| Ol )| Q)" (2.52

The off-diagonal entries are known only at NLO and are given inMIS scheme in Eq(2.1). In the CS scheme, they are

proportional toB,, as given in Eq(2.15, whereas in th€S scheme they are equal to zero by definition. Therefore, the mixing
of operators is aray§ suppressed effect:

B{P=0,
R e S L N N LY T
2 /3+7(°)—7(°) Bo i o 2]\ 1= ag(po) as(p)
> Ri, 0l 2) AT, (253

whereA () is defined in Eq(2.16). Here we have taken into order ofQ> A ocp. The auxiliary scale can now be set, e.g.,
account the expliciz dependence in the anomalous dimen-to u* = u.

sions, induced by the transformati¢2.29. The addendum Let us remark that the evolution of the distribution ampli-
ACS(l)—Z CS(2)/,80, which is presently unknown, has to be tude can be formally obtained by resummation of the confor-
evaluated a’w ©*. Note that theag power counting re- mal partial waves given in E¢2.1). Taking into account the
mains correct as Iong as the scale, u, andug are of the  evolution of the reduced matrix element in H.52), one
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finds the eigenfunctions of the evolution equation, expandetiubble insertion and the overall loop, respectively. The ker-

with respect to the Gegenbauer polynomidls]. nels [v3(x,y|e)], and [v®(x,y|e)], are diagonal with
respect to the Gegenbauer polynomi§2+ f(2x—1) and
Ill. HARD-SCATTERING AMPLITUDE TO NNLO they are regularized with the usdal- - ], prescription:
ACCURACY

1
In the preceding section we outlined the structure of the [oO6Y)]e =v(xy) = a(x=y) fo dzv(zy). (3.9

conformal predictions in the conformal momentum space
and in this one we analyze the structure of the NNLO resultS heir eigenvalues are
in the momentum fraction representation. In Sec. Il A we

. . . +
derive a convolution representation of the NNLO term pro- U?: i 1te i - ! ,
portional to 8, and also give the general structure of the (I+j+e)(2+j+e) 2+e
hard-scattering amplitude in th&S scheme up to the v?=2¢(2+e)—2¢(2+e+j). (3.6

NNLO order. Furthermore, in Sec. 11l B we consider the phe-

nomenologically important case of the asymmetry parameter The g kernel is not diagonal with respect to the Gegen-
|w| equal to 1 and in Sec. Il C we then present the NNLObauer polynomials and is responsible for the apparent break-
result for the conformal moments in the CS anding of conformal symmetry in th®S scheme. Its expansion
CS schemes. In Sec. IIl D we analogously present the results

at small and the intermediate values|af . g(xyle,0)=g(x,y) +9'(x,y)e+g(x,y)o+0(€?, 0% o)

A. Bo-proportional NNLO terms and the general structure reads
of the NNLO results in the MS scheme O(y—X) X X— X
First, we consider the term proportional g, i.e., By, g(xy) y—X I ( y * y_)y '
appearing in the NNLO calculation of the two-photon hard-
scattering amplitudé€l.2). For the case of general Bjorken O(y—x) 1 X X— X
kinematics, the result has been given in Réf.and is easily 9'(Xy)=——— §|n2< - —) +
restricted to the kinematics of a particular process, i.e., in our y y y—y
case, to the kinematics of the photon-to-pion transition form 3.7
factor (see Appendix B for the definitions of generalized . oy—x)[ X _
Bjorken kinematics In the special casgo|=1 (one photon 9xy)=— le( 1- —) —le(l)}
on shel), these results coincide with the results from Ref. y y
The authors of Ref.9] presented the regularized result in + —t+g’ (x)y).
terms of hypergeometric functiong=,. It is instructive to y—y
rewrite it as a convolution of the amplitude _ . ) .
There is a similar expansion of the kernels {=a,b)
e _ 1 . . . 1. , 5
(X = o D7 @D o' (x.yle)=v'(xy) +v'(x.y) e+ 50! (x.y) €+ O(€%),
with the kernels where
1+e€ . . . X—X
vi(x.yle)= a(y—x)(f +[X q , (3.2 v'(X,y)= 0(y—><)f'(x,y)+[ q
y y—y y—y
1+e€ . ) X X—X
0%,y €)= By —x) f) i+|“ﬂ, (%)= 0y xy)in| 2 +[ 1 NEY:
y y=X |y—y y—y
(3.3
; X X—X
1 x| “lteto v'(X,y)= 0(y—x)f'(x,y)ln2(— +[ q :
g(x,y|e,a)=0(y—x)§(1—)—/) y y—y

X—

The LO kernel of Eq(1.5) is expressed in terms of thé

kernels introduced above:

and the functiong' can be read off from Eq$3.2), (3.3).
X
XB q (3.9
y

X

—1+o,— 6—0') +

y y—>
VO(x,y)=Cglv(X, , X,Y)=v3(X,y)+v°(x,y).

where B,a,b)=[§dyy* (1—y)P~! is the incomplete (Y =Celoty)]e, v y)=vixy)+o {; 9

Beta function. Herer and e are the dimensional regulariza- '

tion parametersi{=4—20[ €]) associated with the quark- For the NLO kernel we use the color decomposition
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Bo

V(x,y)=Cg| Crop(X,y) — 5> Us(X.Y) f(z)(w,x)=CF[CF'T',(:2)(w,x)—%‘T'g)(w,x)

. (3.12

(3.10 —(CF—%)?Q(Q),x)

Ca
| Crm ve(X,y)
+

In the following we particularly need th@,-proportional ~Employing the integral representation of the hypergeometric

kernel functions, one can express the regularized results of [QEf.
. 5 A
vp(X,Y)=v(Xy)+ Zo(xy) toixy). (31D TO(w,x)=M(w,x|€,0), (3.13
. . 2
The unrenormalized NLO and NNLO corrections to the ~(2) _ Jar(2—e
hard-scattering amplitude are of the form T (@x)= I'(4-2e) M(wxlee) (319
TW(w,)=CeTH (w,%), in terms of convolutions
|
T(e+)T(2—eT(1—e—a) [4mu?\ 7 (1 o (1—€)(1—4e—30)
= ) — _
M(w,X|€,0) F(3-2¢— )T (15 o) o fodyﬂ (w,y|e+ o) o S(x—y)
(1—e)[2—2e(l—€)+to(l—0)] a (1—€e)[2— €t 2e(eto)]—€a(et+ o)
+ 1+o v3(y.X|o)+ 1-€
X([vb(y,xlo)h—(6+0)[g(y,><|6,0)]+)]- (3.19

The results given above contain UV and collinear singularities, which are removed by renormalirdtaziuces the scale
) and factorizatior(at the scaleu;) of collinear singularities. The renormalization procedure inNt& schemdfor details
see Ref[10]) induces the following general structure of NLO and NNLO corrections present in the expd&hspn

2

TW(w,%,Q/ 1) =Ce T (w,%) +In| = | [T VO](w,x), (3.16
%
@ e Ol —col cog@— Porer_[ o _ CAl1@
(w!X!Q Iu’f’Q lu’r)_ FI~F'F 2 B F 2 G (O),X)
2 1 2
+in| = |{ TOeVv®+ CFT§:1)+§In = | TOeV@ VO (v,x)
pt Kt
Bo 2 Bo [ Q
+7In(—2 T(l)(w,x,Q/,u,f)—Zlnz p [TORVO](w,x), (3.17
r
where
T (0,%)=TOw,y)2{TE(y, )+ LN(o,y)[v(y.X)]:}, (3.189

1
T (@) =T w,y)®| TPy + LN(0,Y)([ve(y )] + T2 e[v]. (v,x) + 5N 0,y)[v] e[v] (.0 [, (319

1
Tg2>(w,x>=T<°>(w,y>®{7*,§><y.x>+LN(w,yx[vﬁL—T&”)(y,x)—ELN%w,y)[v(y,xm : (3.20

TO(w0,x)=TOw,y)@{TZ(y,x)+ LN(0,y)[vs(y, )]}, (3.21)

while LN(w,x) =In[1+w—2xw] and TO(w,x) is given by Eq.(1.3. For a detailed discussion of the appearance of the LN
terms, see Appendix A.
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The explicit calculation provides us with the kernels

3 3
TH(xy)=| = 50°+g| (xY)—58(x-Y), (3.22
+
|20 a0 209 7. 1. 19 s .
5 (XY)=|puitvi- mrv—qu— vt =g+g +(X,Y) (X=y). (3.23

As we see, thes@ kernels are built up of andg kernels  so that only a partial cancellation of the(h—x)/(1—x) term
also appearing in the evolution kernel. While tgeand v appears.

kernels appear at NLO, tieandu ones show up for the first
time at NNLO. For the missing two entries, namd')(:,'z) and  B. Limit |w|—1 and corresponding conformal moments in the
72 we expect a similar structure, but with additional and MS scheme

unknown building blocks that are related to tié&ernel. Of special interest is the limitw|—1, since different

Making use of the fact that both the photon-to-pion tran-(yseydoscalarmeson-to-photon transition form factors are

sition form factor and the forward Compton scattering bé-measyred in this kinematical region. We can trivially perform
long to the class of light-cone dominated two-photon PrO-this limit in Egs.(1.3), (3.18, and(3.20 and after convolu-

cesses, which can be described by a general scatterigg, we present the result in the form of RE£0];
amplitude, we have performed a consistency check between
the previously presented results for the hard-scattering am-
plitude of the photon-to-pion transition form factdmown TO(x)= 1
up to By-proportional NNLO termsand the corresponding 2(1-x)’
results for the nonsinglet coefficient function of the DIS po-
larized structure functiog, [43]. The procedure is presented Lo 1 L
in detail in Appendix B. 1) —X 2

A few comments regarding the LX) terms are in or- T(F 0= 2(1—x) 2 7In(1—x)+ Eln (1=x)
der. In NLO, we observe that the Lh(x) term matches the ) (3.28
In term indicated in Eq(3.16), i.e., we can absorb it in Eq.
(3.18 by an appropriate choice of the scale:

(3.27

~ T@(x) = L [ 457 47 1 In(1—x)
Wi u?=u?(1+ 0 —2xw) " with i={f,r}. B - 2(1-x)| 48 |36 4x (
(3.24

The explicit NNLO result for thg3-proportional terms satis-
fies the same rule for the scale redefinition, which indicates a
general property of the hard-scattering amplitude evaluated
in the MS scheme. This is shown in Appendix A. The terms
proportional to LNg,x) are vanishing in the limitw|—0

and for|w|—1 provide a logarithmic enhancement in the where the polylogarithms are defined by

end-point region. However, a resummation of such terms

through an appropriate scale setting is misleading, since .

other logarithmically enhanced terms also appear. For in- Lin(x):jxdyu”_l(y) with  Liy(x)=—In(1—x),
stance, at NLO we have 0 y

13 1)| ) 1I . 7
+ 32/ (1—x)—g n (1—X)—§le(X)

1
+5Lis(X) = SAx) |, (3.29

In(1—y) _In?(1-x)+2In(1-x) 1(x Ind(1—-y)
?y®[v(y,x)]+— 1% SlZ(X):EfodyT
+0(n(1—x)), (3.25
1 :
while the contribution of7M)(x,y) is [see Eq.(3.22)] = EIn2(1—x)ln(x)+In(1—x)L|2(1—x)
1 I2(1—x)+3 In(1—x)+9 ~Lig(1=x)+2(3). (330
m@?ﬁ (y,x)=— 2(1=x)
Here we introduce for the special casg=1 a more con-
+0(n(1-x)), (3.26 venient notation in which the In(2) terms arising from the
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LN(w=1x) functions present in Eq$3.18—(3.20 are ab- The conformal moments of the individual terms we en-
sorbed in IN(®%uf ) =In(—0/? ). We do not list here ~counter in Eqs(3.27—(3.29 are givenoin Appe?gix C. Here
the terms proportional to these logs but refer to Re®] for ~ We list the conformal moments of®(x), T(x), and

their explicit expressions. T(x) calculated in theS scheme:
2j+3
O ___—° ~
ATESVIESE (3.3
2j+3 9 3-4S,(j+1) _
TH= ——— | - — —+ +282(j+1) |, 3.3
PO(+DG+2) 20 2+0)(+2)  (j+1)%j+2)2 1+ (332
o 203 457 1 T 1 115 (—1)l S S
BT T D2+ ] ~ 28 24334 )+m 36 2 (@3St -28(+1)
(—1))S_,(j+1) 17850+1) > +lgs('+1)+1032('+1)+4s3('+1)+233('+1)
B P eI eI R R R R |
(3.33
|
After inspection of Eqs(3.16 and(3.17) one notes that the 202 2j+3
conformal moments of the terms proportional to TO=TH+In| — o v (339
In(ZQZ/M%(r)) can be conveniently expressed using the con- Mt (J+1(+2)

formal moments of the kernets andv ;. For the definition
of conformal moments of the kernels, we refer to Appendix i o
C, Eq.(C7). The conformal moments of the diagonal kernel While the (= Bo/2)-proportional NNLO term is given by

[v(X,y)]+, given in Eq.(3.9), are denoted by;=uv;; :

S+t ! 3.3 T@+In 27| 2j+3 o% 4 Sin 2Q° vj
I A AR e TP M PN wd JG+DG+2) [ 7R 270 2
The conformal .moment(:)s of@e[v],, determined using i 2Q? T 33D
Eq. (C10), are given byT;v;. On the other hand, the kernel u? I '

[vg]+ in Eq.(3.1]) is nondiagonal, and as shown in EG8)

both the diagonabg;j=vg;; as well as the nondiagonal

vgkj (k=] andk—j even conformal moments contribute to Note that, owing to the fact that, is nondiagonal, even the
the conformal moments of ¥®[v ], , i.e., one obtains |owest partial wave, i.ej=0, of the NNLO correction de-
1T g - After performing the convolution and making pends on the factorization scale as well as the renormaliza-
use of the results for the conformal moments summarized ifion one.

Appendix C, one can express the conformal moment of

TO%[vg], in the form T)v3 ;, where we introduce the

“effective” conformal moment of thev ; kernel amounting C. NNLO result in the CS and CS schemes
to in the limit |w|—1
5 9 1 Letus now tqrn to the conformal schemgs QS asl We
v,%j:_vﬁg(z)___ _— (3.35 make a distinction between the renormalization and factor-
13 4 (1+)A2+))? ization scales. Consequently, the argument of the coupling in

L the Wilson coefficients depends qry and, as discussed in
Finally, we summarize ouMS results. The LO contribu- Sec. Il C, we require that the matrix elements of conformal
tion is given in Eq.(3.31), the NLO contribution takes the operators depend only on the scale. We use the COPE,
form where for|w|=1 the Wilson coefficient$2.18 simplify to

014013-14



NEXT-TO-NEXT-TO-LEADING ORDER PREDICTION . ..

Ci=cj(as(p))
i2 . . .
o )T TGHDTG+2)T(2) 44 y)
2Q2 L(j+2+ /2T (j+3+y/2'(2j+3)"
(3.39
The anomalous dimensions are given by
_adu) g ad(md) g
L v (272 ¥+ 0(a3)
ag(pur) as(pur) Bo
=2 327TI‘ CFUj ;ﬂ_)r C|: C[:UF] 7UB’J'
1 3
- CF_ECA ve,j|TO(ag)(, (3.39

wherev;, vgj, vgj, andvg; are the diagonal conformal
moments of the evolution kernels (x,y) 1. , [ve(X,¥Y) ],
[ve(X,y)]+, and[vg(x,y)]s , respectively, and they coin-

cide with the moments of the DGLAP kernels. The LO mo-

ments are given by Eq3.34), while other entries can be
found in Refs[54-57. Analogously, we decompose the nor-

PHYSICAL REVIEW 38, 014013 (2003
Its NLO contribution reads

3-25,(j)
2(j+1)(j+2)

(3.41

3
cfV=SH1+])+ 5Si(j+2)—5

—S(j+1),

while the NNLO contributions can be determined from the
Mellin moments of the coefficient functions calculated from
the a§ corrections to the polarized structure functipn[43].

A consistency check of thgy-proportional part of these re-
sults is given in Appendix B.

As discussed in Sec. Il C, the Wilson coefficients in the
CS scheme are obtained in a straightforward manner by
means of Eq(2.38, where ClS®N(ag(u,), Q/ ¢, Ql ;) is
given by the expressiorni3.37). Taking into account the
proper normalization, i.e., identifying® with C") by Eq.
(2.17), the expansion o€;, defined by Eq(3.38), leads to
the complete NNLO result for the hard-scattering amplitude:

2
malization factor T(Q, )= \/Q—Z O i“r)TfS(l)(Q/,uf)
aa
2
1+—CFc<1>+( % e, Cec?— Bch>
2 2 2 ! S(lu’l’) CS(Z)
(2m )2T (Q/ s, Q) +0O(ad) |,
-lc ——cA ) +0(ad). (3.40 (3.42
where
2j+3 2Q?
Cs(1)_ cs(1) .
T, Ce| TF +(j+1)(j+2) In u,l, (3.43
Bo_ 2Q2 2j+3
CS(2)_ CS(2)_ - CS(2)
T Cef{ CeTES T (cF CA)TG] +In SIS
2 1
[CF vej+ Mo +0[Si(j+1)+S,(j+2) - 251(2J+3)]+—'|n 2Q io G — (cF—ECA)vG,j]
Mf
EO Q2 CS BO Q2 2J+3
+>In TESMQ/ ——In . . o 3.4
( )T w2 GFDG+2)Y) (344
and
2]+
CS(l) (1) . ; H _ H
TF —(J+1)(J+2){CJ +ui[Si1(j+2)+S1(j+1)—25,(2j+3)]} (3.45
CS(2)_ 2j+3 ) (1) : . - sz : .
TE] GrD(+2) Cry T (€ 0+ vp YIS+ D+ S1(142)=25(2]+3) ]+ 5 [(Si(i+ D+ S1(j+2)
—285,(2j+3))?+Sy(j + 1) +Sy(j +2) = 4S,(2) +3) +2{(2)] (3.46
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TES®= Zj—+3{c(2)-+v [S1(j+1)+Sy(j+2)—25,(2j +3) ]} (3.47
IESTE R ' ' | |

while Tﬁf} corresponds to théIS result given by Eq(3.33. Note that, in accordance with the renormalization group

invariance, the off-diagonal part of the anomalous dimension matrix proportiong bas been changed and, consequently,

also the conformal moments

(J+1)(j+2)
op ooy —vp+ L e 348

Fina”y’ we present the result for t@ Scheme, in which D. NNLO predictions for small and intermediate values 0f|w|

the conformal covariance of the partial wave decomposition _ _ _
is preserved. The modification concerns only the terms Based on numerical observations on the small and inter-

proportional to B3, in which the off-diagonal entries in Mmediate|w| behavior of the transition form factor predicted
Eq. (3.44 are removed by making the following replace- by perturbation theory, interesting phenomenological aspects
ments: have been pointed out in R4B0]. Unfortunately, for these

css configurations both photons are virtualf. Eq. (1.1)] and
VB VB thus the statistics is rather low. Therefore, no measurements
_ 2j+3 has been done yet, although they could be possible at the
TE)=T553= W{Cfgz,ervﬁ,j[Sl(J +1) existinge™e~ machines of the Babar, Belle, and CLEO ex-
periments. In the following we want to add some comments
+S,(j+2)—2S,(2j+3)]} on the pion transition form factor in the small and interme-
1 diate|w| regions and to give predictions at NNLO.
+In(2) TE§(1)+ T}°)§|n(2)vj . (3.49 From the representatidi2.34) it follows that thejth con-

formal moments fofw|<1 are suppressed hy'. In addi-
The In(2) terms appear here artificially from the absorptiont'on’ the hypergeometric functions appearing in the Wilson

of such terms into the factorization and renormalization logsC0efficients are sharply peaked [af| =1 owing to a loga-

ie., |n(Q2/M12)—>|n(2Q2/M12)—|n(2) [see Eq(2.35]. All other rithmic enhancement caused by th¢(In-w)/(1+w)] term.

expressions in Eqg3.43—(3.47) remain unchanged, e.g., For fi>.<ed|w|<1, one finds for_ growing_an in_creasip_g sup-
pression of the hypergeometrical functions, in addition to the

powerlike suppression due 0. To study this behavior in
more detail, we employ the integral representation for the
(3.50 hypergeometrical functions:

CS/ 4\ _ TCS(1 CS(2)_ TCS(2 CS(2)_ TCS(2
Tj (1)_Tj ( )’ TF,j( )_TF,j( )’ TG,i( )_TG,j( ).

. 1 1
2j+1+‘yj/2 c J+1+§‘}/JIJ+2+§7] 2w
T 1 Tre
( w) ! 2 J +2+ E’)/J
- —F11(24:213 +721))2J'wdsseSZ/Ze[(1+j+yj/2)/2]{32+In(lesz)In(lw ey (3.51)
J T 0

To evaluate this integral for large we rely on the saddle point approximation, which is valid as long as the condition

J1I—w?>1 (3.52

|
J+1+2

is satisfied. To clearly illustrate the suppression we mentioned above, we write the Wilson coefficients in the form

u?

2Q?

T+ DT+ 2T (2] +4+ y) 0!

T(j+2+ 5,21 (] +3+ /2T (2] +3) Ej(o]y)). (3.53

_ J
Cj:Cj(as(M)uQ/Ma&_,y)
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Consequently, we have the following normalization for the functigtw=1|y;)=1 [cf. Eq. (3.38]. For |w|<1, the ap-
proximation

JaV2(j+1+ /21— o? Y
E(w|y)=~ exp{— jti1+— |n(1+\/1—w2)] (3.59
s 2V1+1- w? 2

shows an exponential decrease f¢r-(L)In(1+1—w?)>+2. The value ofEJ-(w|yl—) is then smaller than 1/2. Note that
perturbative corrections due to the anomalous dimensions, which are positive and grow logarithmicajlygwitha loga-
rithmic enhancement of this behavior. In the case of rather dmlithe suppression factor is proportional to12/j+1,
which affects even the lowest partial waye 2. The suppression is already larger than 80% for give6 as long as the
inequality 1—|w|>4/(j + 1) is satisfied. Increasing| will then abruptly increase the value Bf to reach theE;=1 limit.
To finish this general discussion, we estimate the partial wave that will be suppressed by &+d€{6w) < 1/e depending on
w:

. —W_l(—452(1+\/1—w2)|n(1+\/1—w2)/(77\/1—w2))] —In(4E% ) (355
= 2 In(1+V1- 0?) 4(1-|wl) '

where W_;(—x) is the product log function which is real tion to the second partial wave, which is in addition sup-
valued in the region &x=<1/e. pressed by a relative factor of 2/3. Thus, in the snhall

To estimate the contribution of the first few nonvanishingregion perturbative QCD provides us eaimos) parameter-
partial waves, we first consider the conformal momentdree, factorization scheme independent prediction:
(m(P)|Oj; (1) Q)"=6N;B;. The distribution amplitude
vanishes at the end poinit] and from this behavior it fol- J2 _ Y
lows thatN;B; vanishes af — o: Fya(0,Q)= 302 co(as(,LLr),Q/Mr)(l+ €+O(w4))

~(1—=X)¢f 1 6N;B;~j €
#(x)~(1=x)¢ for x—1 = 6N;B;~] for |w|<0.4. (3.57)

for j—oo with €>0. (3.56 . . . .
The phenomenological consequences are obvious, since this

We want to add that different nonperturbative estimatesprediction is practically independent of and its logarithmi-
based on a lattice calculation, sum rules, or a model calculz#al Q% dependence is governed only by the running of the
tion, give quite different values of M,B, at a scale coupling.
Q=1 GeV, varying from~—1 to ~+1. Here the lower For intermediate values ofw|, defined as 04|w|
bound stems from a preliminary lattice calculatip®4], < 0.8, the second partial wave contributes between 2% and
while the upper one arises from sum rule estimaf&s66| 13%, while the fourth one is at least more than five times
and is also compatible with previous lattice calculatitsme  suppressed with respect to the second one. On incresing
[64] for references There are other estimates that favor ato the value 0.95, the relative contributions of the second and
rather small value oB,. This suggests that the absolute sizefourth partial waves grow to 25% and 10%, respectively,
of the lowest few conformal moments\gB; are of order 1 while the sixth(eighth partial wave contributes at the 4%
or even smaller. In the following estimates we consider thent2%) level. It is illustrative to compare these numbers with
of order 1, which serves us as an upper bound for the corthe suppression arising in the linfi| — 1 in which the con-
tribution of thejth partial wave to the transition form factor. tribution amounts to 39%,24%,18%,14% fo+ 2,4,6,8 par-

In the small|w| region, i.e.,|w|<0.4, the lowest partial tial waves, respectively.
wave contributes essentially. In LO the relative contributions As we have realized, only the first two nonvanishing par-
of the second and fourth partial waves with respect to thdial waves are essential for an intermediate valugagf It
first one for |w|=0.2 (0.4) are about 0.08%2.3% and could, therefore, be justified to employ the Taylor expansion
0.004% (0.05%), respectively. Thew? term of the zeroth of the hypergeometric functions at=0 and hence the tran-
partial wave varies in the same order as the relative correcsition form factor reads in th€S scheme

uz) ”’22&[ (8+72)(6+7,)

2

142 L3
Co 5 ' 35

wa(wiQ): +C;

Q2 15 8(9+ v,)

for 0.4<|w|<0.8, (3.58

3Q?

1 6N,Ba( 1) +O(w6)l
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where the Wilson coefficient,(as(u),Q/u,d/dy;) is de-  we rather employ the underlying scalg~ 1/z° of the OPE
fined by Eq.(2.39 to NNLO accuracy and a consequent of two currents at the distanae Thus, we have for th#1S
expansion inas should be done to this accuracy. Has|  scheme the NLO resu(B.16)

=0.8, the higher-order terms @(w®) contribute at the 2%

and 20% level for thg =0 andj=2 partial waves, respec-

tively. These contributigns 8c:an be reduced by a factor of 2 o?

(4) by taking the ordew® (®®) corrections into account. For

larger values ofw|, the convergence of the Taylor expansion Ti(l)(‘”'Q/'“f) =Cr TE:J)((") +TJ(O)(“’)I”( F) UJ'] ’

at w=0 is rather slow for higher partial waves. For instance, f (3.60
to approximate the third nonvanishing partial wave|at

=0.9 to an accuracy of better than 10%, one has to take into ) )
account the first ten nonvanishing terms, i.e., u®{@?2%).  and analogously for the CS scheme. Note that in comparison

waves with higher conformal spin start to contribute with|@/—1 limit, Egs. (3.32 and (3.45, differ by a
increasing|w|. However, as we have discussed, as long adn(2)-proportional term:
we do not reach thew|—1 limit, there will be an exponen-
tial suppression for higher valuesjoiNote that this limit can
never be reached in any experiment atedre” machine lim TA ()= T (0)

; . ! imTg =T+ In(2)T v,
where the mean value of the virtuality of the untagged pho- Fa(@)=Te+IN(2)T 0,

w—1
ton is set by the electron mass and there are further kinemati-
cal restrictions arising from the detector geometry and kine-
matical cuts. Just for illustration, we would like to mention
that, for|w|=0.99 and|w|=0.999, the contributions of the lim TE5 W (0) =TE5 W+ In(2) T, (3.6
12th and 38th partial waves are reduced by a facter 1/ ol

~0.37 compared to their contributions in the linhii| — 1,

while higher ones start to be exponentially suppressed, sinGeypanding theT(®)(w)LN'(w) terms in Eq.(3.18 provides
the (j +1)In(1+1—w? > 2 condition is satisfied. after convolution with the corresponding kernels the desired

We now present the general result of the photon-to-piofyeg it in theMS schemdD8). In the considered order af?,
transition form factor fofw|<1 in its expanded form to the j; coincides with the result of Ref30]. The result in the CS

NNLO approximation. Notation analogous to that in Ed.gcheme can be easily derived by expanding @418 in
(3.42 will be used, and the Taylor expansionsdR for the order ay:

contributing terms of the first five nonvanishing partial

waves are listed in Appendix D. At leading order the hyper-

geometrical functions can be expressed in terms of elemen- cs) " 1 )

tary arctanh functionge.g., TEF @) =[c—v5(0) T} (), (3.62

wherec™™ andv; are given by Eqgs(3.41) and (3.34), re-

TO)( 1) 3 |, (1 2)af0tanhw) spectively, ands{”(w) is defined by the expansion
w)=—— — — W) ——————— ,
0 2w
jtl+tej+2+e 2w
7 270 2(j+2+e) |1tw
T (w)= 24(‘)2[15— 1302 (1+w)F17e
1
= (1) Z &2 2 3
—(5—6w2+w4)3aLanhw), (3.59 =|1+s (w)6+281- (w)e“+0O(€)
and the expansion iw is given in Eq.(D2). The radiative U 2(j+2) |1t

corrections foro#0 depend on the factorization scheme (14 w)i*? ' (3.63

even for the lowest partial waves. In comparison with Egs.

(3.43 and(3.44), here we will not include In(2) terms in the

factorization and renormalization logs, i.e., instead @?2 The corresponding expansions s and s{? in «? are
given for j=2,4,6,8(because of current conservatiop=0
and, consequently, the=0 term does not contributeyiven

SThe result can be expressed in terms of In functions by means dh Egs.(D5) and (D7), respectively. The NNLO contribution
arctanh) =1/2 I (1+ w)/(1— w)]. in the CS scheme we write analogously to E8j44) as

2
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Bo 1
chs(z)(w)=C,:|C TCS(2)( )— T(z)(w) Cr— ZCA TCS(Z)(w)

2 2 2
oin| & T(O)(w){CF e+ —v! S(l)(a))+02 n(Q—z)]—%ugfi(w)—(cp—%q)v@,j]
Mf Mt
2 2
+@| Q2 T M w,Qf uy )—@m (Q )T(O)(w) ] (3.64
r Mf

In comparison to the definitions in Eq&3.46), (3.47), and  and the expansion can easily be obtained by means of Egs.

(3.33, one has again to take care of In(2) terms by means 0f3.62), (D5), and(D8). o

the following correspondences: The By-proportional NNLO terms in th&€€S scheme are
obtained by making the replacements

lim TES X ) =TES@+In(2) T v j+ o
w—1
T@(0) TS @)= TO(w){c?)~ v 55D ()}
<S‘1’(w D+ In(Z)N and v53* — 058 =v, TO(w), (3.69
lim TSP @) =TSP+ In(2) Vv |, (3.69  while the other terms remain the same as in the CS scheme.
w—1

T(0),,CS% _ 1Cs(1) IV. RADIATIVE CORRECTIONS TO THE PHOTON-
IR F.j TO-PION TRANSITION FORM FACTOR

|imlT<B%}(w)=Tg%}+|n(2)

This section is devoted to a model independent study of
radiative corrections to the pion-to-photon transition form
factor in the case of one quasireal photdm|(~1) and in
o — the small and intermediatho| regions. We also illustrate
and similarly for the quantities in theS schemze Here we pow the perturbative QCD approach to exclusive processes
have also employed the identitp7) For TE5?(w) and  can be tested in a novel way by a sum rule and how the two
TSP (@), the expansion of the Wilson coefﬂmen(tz 18  lowest nontrivial conformal moments of the pion distribution
gives amplitude could be extracted from experimental data in the
intermediatg w| region.

In Sec. IV A we briefly review the features of the radia-
tive corrections to the first few conformal moments of the
) hard-scattering amplitude in th®1S and CS schemes to

i U_Jsgz)( NLO. We point out that asymptotic formulas with respect to
()1, (3.66 o . L
the conformal spirj +1 provide a very good approximation
of the moments in question for a rather low valuejef4.
TS 0) =T (w){cd) —ve s (w)}. As a by-product, we propose a simple method for recon-
(3.67  structing the amplitude from its conformal moments, which
is outlined in Appendix E.
The conformal moments proportional 16, are obtained In Sec. IVB we present the numerical values of the
from theMS result given by Eq(3.20. The expansion im? NNLO corrections to the first five non-vanishing conformal
of the termT§) is given by Eq(D9). As in the|w|=1 case  moments of the hard-scattering amplitude in the CS @8d
[see the discussion of expressi@35], we define the con- schemes. We point out their general features and discuss dif-
formal moments OfT(O)(w)®[vB]+ by T}O)(w)vgj(w). ferent possibilities for treating the, terms. In particular, we
Note that the “effective’conformal moment> . now de-  consider the lowest conformal partial wave and compare its
pends onw and its expansion iw? is given in’Eq (D10). contribution to the photon-to-pion transition form factor with

1
—5IN@2) T,

TE@) ) =T}0)(w){ c?)— (e + v ) s ()

Analogously to Eq(3.48), Uﬁ (w) is provided by expgrimental data. We study the influencg of radiative cor-
rections to the sum rule and show that higher-order correc-
TCS(l)(w) T(Flj)(w) tions will interfere only slightly in the extraction of the two
Ugsjz(w) vﬁ j(w)+ © : , (3.68 lowest nontrivial conformal moments of the distribution am-
T (w) plitude.
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TABLE 1. First moments ofT®), T8, and TES™ for |w|=1 with uf=2Q? and for |w|=0.8 with

Mf—Q2
j 0 2 4 6 8 10 12 14 16 18
lo|=1 T© 1.5 058 037 027 021 017 015 013 0.11 0.10
w?=2Q? T -375 12 214 238 242 239 233 226 219 212
TeSW -225 191 252 258 251 241 23 219 209 2
|w|=0.8 TO 119 015 0.03 0.01 — — — — — —
wi=Q? T -202 o014 01 003 001 — — — — @ —
TeS® -178 016 01 003 001 — — @— @—  —
A. Features of radiative corrections at NLO nonperturbative inpufsee Eq.(3.56] and so perturbative

QCD remains applicable. In the photon-to-pion transition
form factor there might also be a cancellation of the lowest
(1) andTCS(l), given by Eqs(3.32 and(3.45, are shown partial wave with the remainder, which is due to their relative

|nT ble I Fr m this table we realize that the main differen minus sign. Of course, the net contribution of radiative cor-
avie 0 s lable werealize that the ma Erence o tions depends on the model of the distribution amplitude
between the two schemes is in the first two moments, whic r#self

?Azengﬁig?suﬁns?;:{: ggdS'th;gefg];nlglé;%z{g;geﬂiﬁze 0 W|th decreasindw|, hi_gher conformal partial waves are

large] asymptotics the leading terms are ' startlng' to be exponer?tla_llly suppre;sed, anq, as we have
shown in Sec. Il D, radiative corrections logarithmically en-
hance this suppression. Also note that off-diagonal contribu-

Let us first compare the NLO corrections in thES and
CS schemes fdiw|— 1. The first ten nonvanishing moments

2j+3 ., 9 o tions to each partial wave, which are relatively suppressed by
T(FJ) (J+L)(j+2) [281(1+J) a §+O((J +2) )}’ powers ofw? with respect to the diagonal ones, are becom-
ing small. If we approach the equal virtuality case, i®.,
2i4 3 =0, only a factorization-scheme-independent constant, aris-
TCS(l) J— Si(1+))| Sy (1+j)+=+41In(2) ing from the lowest partial wave, will survive. Thus, by de-
(G+1)(j+2) 2 creasing |w| the differences between thMS and CS

schemes must be washed out. In Table | we illustrate these
(4.1  effects for|w|=0.8. For the two lowest nonvanishing partial
waves the difference between these two schemes is reduced
to about*=14% and for higher ones below 2%. In the CS
scheme also the contributions from the functicsi8(w)
=0(w?) [cf. Eq. (3.63] are power suppressed. So one ex-
pects from Eq(3.62) that the radiative corrections due to the
lImS;(1+j)=In(2+])+ ye, (4.2 normalization factors(" are the essential ones, but with one
= exception. Since the coefficien@l) is relatively small com-
pared to the anomalous dimensigf’, O(w?) corrections
remain important for the second partial wave in the interme-
diate|w| region.

—g—g(Z)—s IN(2)+0((j+2) Y.

Taking into account the largeasymptotics of thes; func-
tions, given by

the ratioTES™ITE) slowly approaches 1/2. The difference is
caused by thé@nfinite) resummation of off-diagonal terms in
the MS scheme. The asymptotic formulé&1) have a rela-
tive error of less than 2% already fpe=4. Thus, by know- TABLE II. The ratio of NLO to LO and NNLO to NLO radia-
ing a few lowest moments and their asymptotics we gain aive corrections in units ofrs/ 7 for |o|=1 andu?= u?=2Q? in
complete insight into the radiative corrections fa=1. In  the MS, CS, andCS schemes.

Appendix E we use this result to make an approximate re
construction of the hard-scattering amplitude in the momen- - @ 7SS TCS(2) Te5@)
tum fraction representation from its conformal moments. Th i i i i !
consequence of the logarithmic behavior in E42) is ob- 21 21 2T 2T Sros
viously an increase of radiative corrections with growing :

conformal spin. It is shown in Table Il that already fpr 0 -1.67 — -1 7.23 5.14
=8 radiative corrections are of the size of 80% ftey/ 2 1.37 — 2.18 4.54 4.13
=0.1(i.e., u,~2 GeV for one-loopag with n;=3). From 4 3.88 — 4,58 7.44 6.11
this point of view, one might conclude that perturbationg 5.92 — 6.42 9.21 7.39
theory breaks down for rather large valueg.ofortunately, g 7.64 — 7.93 10.56 8.39

higher conformal spin contributions are suppressed by the
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TABLE lIl. The first five nonvanishing Wilson coefficients appearing in the perturbative expansions of
T and T® with respect toas/7 at NNLO accuracy fofw|=1. The results are obtained employipg

= u?=20Q"
2
: (0) CF S(1) CF cS(2 CF(ZCF_CA) Cs(2) CFBO 2) CFBO T3(2)
J T > T 2 T8 TG g Th1  ~ g VAl
0 1.5 —-15 1.42 —-0.04 —-12.23 —-9.09
2 0.58 1.27 —2.28 —-0.53 8.58 8.06
4 0.37 1.68 —0.46 —0.60 13.56 11.33
6 0.27 1.72 1.25 —0.58 15.17 12.06
8 0.21 1.67 2.54 —0.55 15.68 12.05
B. Predictions to NNLO accurac
Y F. (Q)= \/Efﬂ 1— as( ) n g(ﬂr) 0.917
1. The quasireal photon limit ym 2Q2 ar 2 )
We now turn to the discussion of NNLO effects in the CS )
andCS schemes starting with the linjib|] — 1. In Table Il _@ _ l 2Q 3
X i o 1.347 S In| —- +0(eg) (. (4.5
we present the numerical values of the Wilson coefficients 2 2 :
CS(2) —CS(2) CS(2)_ +(2) CS(2) -
TET, T T =Tg), and Tz corresponding to

Egs.(3.46), (3.47), (3.33, and(3.49, respectively. The val- For ag(u?)/7=0.1, the ratio of the NLO to the LO contri-

ues of TES®, TES@, and T ® were obtained by means of bution is —17% in theMS scheme and-10% in the CS

the NNLO result for the deep inelastic scattering structurescheme. This difference arises from the fact that in Mt&

functiong; [43]. scheme off-diagonal terms of the hard-scattering amplitude

Let us investigate in more detail the contribution of the are resummed. In E¢4.3) we see that the In@/u2) term is

lowest partial wave to the transition form factor, which is rather small compared to the 'g2u?) one. This is even

;chemﬂjependent fer#0 and for|w| =1 reads: more the case in the CS scheme, while in @& scheme the

in the MS scheme, In(2Q%u?) term vanishes completely, since all off-diagonal
entries in the NLO evolution have been removed. The sign
alternating series of th@,-nonproportional terms is due to

3 J2f, 5 ag(py) @) the Sudakov effect; see R¢R3] for a detailed discussion.

- 2Q? 3 + Since factorization-scale-changing effects in the hard-
scattering amplitude are quite small for the lowest partial

F,=(Q)

3 2

Bo 5 [2Q?2 2Q?2 wave, and since they will be compensated by the evolution
Y —1.811+ g'” — | —0.285I —- of the nonperturbative patsee Sec. Il D, we setu?=2Q?
K K in the following and discuss the scale setting of the residual
u, dependence. First, let us equatéz 2Q%
+0(ad) (, 4.3
£ Q) V2t . a(2Q?) [7.23] a2(2Q?)
T ZQZ T 5.14 w2
in the CS scheme, CS scheme,
+0(ad)| forthe |c_s scheme (4.6)
2
F»qu(Q): \/Efﬂ 1— as(ﬂr)+as(ﬂr) 0.917 o .
202 - 2 Henc.e, fgras(ur)/w—o.l, the ratio of the NNLO t_o the LO
contribution is —7.2% and—5.1%, and the ratio of the
Bo 1 (202 2Q2 NNLO to the NLO contributionthe measure of the conver-
——| — 1811 §|n — | +0.048I —- gence of the perturbative QCD expansids ~70% and
Hr Kt ~50%, in the CS an€S schemes, respectively.
The main part of these rather large NNLO contributions
+o(a§ , (4.4 arises from thepy-proportional term. Owing to the off-
diagonal parts, it is larger by about a factor of 2 in the CS
scheme than in th€S scheme. It is appealing to resum this
. large contribution by the Brodsky-Lepage-McKengii M)
and in theCS scheme, proposal67] (for application to exclusive processes, see also
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TABLE IV. Ratio ag y=u3 u/2Q? of the BLM scale squared 0.25
to 2Q?, and the ratio of the NNLO to the NLO coefficient in units
of ag/m for u?=pud v, u?=2Q? and|o|=1. = 0.2
o,
T(z) TCS(Z) -I—C_S(Z) 6’: 0.15 + 3
j a’éA_LSM agim a(B:_EM J = 0 +
21V 2TESW oS o0
“x
0 1/8.79 1/37.43 1/1478 — ~0.92 f,g 0.05
2 1/120.08 1/20.1 1/16.76 — —2.22 o
4 1/68.73 1/36.17 1/20.05 — —-0.63 5 5 y s 5
6 1703 1/5041 1/2252 — 0.39 20? [GeV?)]
8 1/75.29 1/64.4 1/24.54 — 1.19

FIG. 1. The contribution of the first partial wave to the scaled
photon-pion transition form factorQZFW(aF +1,Q) is shown in
[68]), in which all terms proportional t@ are absorbed in  LO (dotted, NLO (dash-dottely and NNLO (solid and dashed
the coupling by the scale setting = ug/m : accuracy for the€S scheme. The renormalization scale has been set
to u2=2Q? (solid) and to the BLM scale.’=2Q?%14.7 (dashedl

2f a a?(py) The data are taken from Refd7,18.
F,(Q)= \!Qz [1_ S(/:TBLM) +0.9558 l;r +0(ad) 47,19
aw
4.7 pling in the corresponding approximation with the normal-
' ization ag(u;=M,)=0.118. The dashed line is the predic-
with tion for the BLM scale setting and accumulates
nonperturbative effects by freezing the coupling dg( u,
2 _o5A2 1/37.4 for the C_S scheme, =0)=0.6 by adding an effective gluon mass. Let us note
MBLM 1/14.7 CS scheme. that the scale setting ambiguities @2=1 Ge\? are of the

(4.8 order of 20% if we vary the renormalization sca,lé from

, L 0.5 GeV to 2 Ge\?. This ambiguity can be further reduced
The ratio of the NNLO to the NLO coefficient is now only by going to higher orders i, .

—1 and reflects the Sudakov effect in the conformal theory. * i comparison shows that theoretical uncertainties due
However, as we realize, combining the COPE result with thgq higher-order radiative corrections and scale-setting ambi-
MS result of theBo-proportional piece induces a rather low guities are much smaller than the error of the experimental
scale. For instance, for @=4 Ge\? we have ufy  data. At larger values o? there is no significant contribu-
~0.1 GeV in the CS scheme and hence nonperturbativaion of higher partial waves. However, there is a significant
behavior of the coupling is needed. If we completely removegiscrepancy of the results in Fig. 1 in the region 0.5 &eV
the off-diagonal terms, the BLM scale squared is enlarged by 2Q?<2 Ge\?, which may indicate the presence of higher
a factor of 2.7 and is now closer to that in tMS scheme partial waves. Since evolution effects in this kinematical re-
[10] given in Table IV. What one is actually doing here is to gion are rather strong, we could employ them to pin down
combine perturbative QCD with speculations about the nonthe size of higher partial waves. However, the gquestion
perturbative behavior of the QCD coupling and so, strictlyarises: Can we in this kinematical window rely on the lead-
speaking, one is leaving the perturbative ground on whicling twist result?
the whole analysis was based. However, one advantage of By considering the size of power suppressed contribu-
this proposal is that the result predicted by conformal symtions, we will now argue that the answer to this question is
metry is recovered if we consequently assume a hypotheticgositive. Since thelocal) matrix elements of any operator
fixed point of theg function during our considerations. What appearing in the OPE can be built with only the momentum
we in fact do by the freezing of the coupling is to assumefour-vectorsP, Lorentz covariance immediately tells us that
that this nonperturbative fixed point is @=0. power suppressed contributions are of even pow&).ifthe

In Fig. 1 we compare the experimental data from theonly dimensional parameters that can appear are the mass of
CLEO experiment with the prediction arising from the low- the pionm_~0.14 GeV and the QCD scale parameter
est conformal moment, the only one that survives in the~0.2 GeV. Assuming that multipartonic correlation func-
asymptotic limitQ2— . Without further considerations, we tions will not have a strong numerical enhancement, we ex-
assume, as has also been done in the method of data extrgct that the contributions proportionaliaf. will provide a
tion employed(see Sec. 3 of Ref18]), that the quasireal relative correction of the order of 0.02 G&¥2Q?2. The size
photon limit has been reached. The prediction for the asympof the remaining nonperturbative corrections arises from am-
totically largeQ? in this |w|—1 limit is displayed as a dot- piguities in summing the perturbative series and can be esti-
ted line. As we have discussed, radiative corrections reducgated in the framework of renormalons. In the conformal
the size of this prediction for realistic values @°. The  scheme, we might again borrow the results from the analysis
dash-dotted line represent the NLO and the solid line thef the coefficient of the structure functiagy, which gives
NNLO prediction for the standarilS definition of the cou- for the lowest moment an uncertainty of a similar sigee
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Ref. [69] and references therginThus, we might conclude TABLE V. Same as Table Il fotw|=0.8 andu?= u?=Q>.
that the nonperturbative effects to the contribution of the

zero partial wave are smaller than 10% at a scale @f 2 ) @ TCs() Tos@) TI;:_S(z)
~1 Ge\?. Certainly, this rather optimistic speculation ;O ;1 ] - ﬁ =a
should be confronted with other methods used. The lowest 21 21 2T 2T 2Ts W
conformal moments of twist-4 quark-gluon-quark operators
have been obtained by means of QCD sum r{il&371]. —1.14 — -1 4.21 3.58
Here it was found that, relative 2, a certain matrix ele- 2 0.6 - 0.7 13 08
ment is numerically enhanced by a factor of 10. This cer? 2.3 - 24 4.6 3.8
3.7 — 3.7 5.8 51

tainly would strike our point of view and indicate that the 6
so-called Wandzura-Wilczek approximation, in which higher
multiparton correlations are neglected, fails. Renormalon in-
duced corrections have been studied in a model-dependecompared to NLO or a4% (<1%) correction compared
way in Ref.[8], where their relative size was estimated to beto LO for u?= u?=Q? and as/7=0.1. Altogether, we find
0.2 GeV¥/2Q?. Note, however, that in this analysis excita- ~ — 150 reduction of the LO prediction for the lowest par-
tions of higher conformal partial waves have been includedijg] wave and an increase of about 7% and 33% for the sec-
Making it short, we stress that the estimate of higher-twisiyng and fourth, respectively. The main part of the NNLO
contributions has to be made in a consistent framework thalqrection arises from thg,-proportional term. Its absorp-
is set by the _scheme in which one started. Combining estigon in the running coupling via the BLM scale-setting pre-
mates from different approaches is a popular but rather awksintion again requires knowledge of the nonperturbative
ward prpcedure. . . . ._behavior of ag. Table VI shows that then a sign change
In this process with a quasireal photon higher partlaloccurs at NNLO, where the BLM scale for the second partial

waves are s_ummed. Even if the| 1 limit is not reached wave is quite low and its remaining NNLO correction is
in the experiment, a rather large number of terms will CON- - ther large

Loute, Vihoutany onledge sboul e shape of e s Cerany, the resummation o thproporional cortec
: P ' g P tjons is associated with a new input that is not well known.
cate this series by hand to extract the values of the lowe

artial waves from the normalization of the bion-to-photon hus, in the following discussion concerning the extraction
P P P . of nonperturbative conformal moments of the distribution

transition form factor. Figure 1 clearly shows that the dom|—am litude we prefer the naive scale-setting prescri ﬁlﬁn
nant contribution, at least for@®>2 Ge\?, arises from the & 1S We P | i gp I f]
af #i=Q°. In pane s(a) and (b) of Fig. 2 we display thew

lowest partial wave, and the remainder is small. The fact th q for th led bh . ition f
the contributions of higher partial waves cancel each other ig€Pendence for the _scaled photon-to-pion transition form

not excluded, and it remains a claim that the asymptotidactor evaluated in th€S scheme at LO and NNLO, respec-
shape of the distribution amplitude is established by experilively. One clearly sees that the prediction is almost indepen-
mental data. In principle, one can gain more information orfént of @ for |[<0.2 and only a negligible dependence
the remainder if one also employs the evolution of the dis2rses for 0.2°|w|<0.4. Radiative corrections will only shift
tribution amplitude. However, even if rather high-precisionthis prediction downward. Note that this shift will slightly
data are available, the deconvolution problem is not easy téicrease if we go to higher orders af;. For the lowest
solve. As we have already mentioned, at NLO the perturbaPartial wave they can be taken from the calculation of the
tive correction will increase with growing conformal spin. radiative corrections to the Bjorken sum rule, which are
The same tendency can be read off from Table Il also irfvaluated in the third-loop approximati¢@2] and roughly
NNLO, where theg,-proportional term is the dominant one. estimated at four loops’3]. Consequently, confronting these
This is also reflected by the decrease of the BLM scale aBredictions with experimental measurements would provide
shown in Table IV, where we can also see that the remainin§ither a novel test of perturbative QCD or an insight into the
corrections at NNLO are moderate. Note that the BLM scalesize of higher-twist contributions. To enhance statistics, one
is rather low for 2<j in the MS and CS schemes, which is &N €ven integrate over the smpil| region:

due to off-diagonal terms.

TABLE VI. Analogous to Table IV for the ratioag y

_,.2 2 2_~"2 —
2. What can we learn from the small and intermediate| = miLu/ Q% whereui=Q* and|w|=0.8.

regions? _
. . . ) TCS(Z) TpS(Z)

As was clearly spelt out in Ref30] and explained in a alls, aSs, a5, i j -
more general way in Sec. lll D, the smad| region is suit- 21t 27O p7Cs()

able for a novel test of the perturbative QCD approach to the

class of exclusive light-cone dominated processes. As we 17.4 1/9.7 17.4 — -0.92
noted in Sec. IV A, for decreasin| the differences be- 2 1/155 1/80 1/62 — —8.54
tween different schemes will decrease too. This is illustrated 1/40 1/38 1/28 — —-363
for |w|=0.8 in Tables V and VI. For the lowegsecond ¢ 137 1/37 1/27 — _23

partial wave we have about-a40% (10%) effect at NNLO
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0.18 the radiative corrections to the lowest two partial waves are
negative and approximately of the same size, while they are
0.16} Rt positive in all other cases. Since the gap between the curves
e for both extreme cases, wheBs= *0.5, is about 30% or
even larger, we might expect that these curves can be distin-
guished by a measurement. This would also test the reliabil-
ity of nonperturbative methods. Certainly, a precise extrac-
tion of B, or even B, also requires high-precision
0.1} measurements with high statistics. Assuming that such data
are available, the extraction of the nonperturbative parameter
itself is rather simple. First, a measurement in the siall
L 0.2 B:4 0=6 08 region should be confronted with the parameter-free predic-
(a) tion that depends only on the running of the coupling. As we
argued, we do not expect higher-twist corrections to be es-

2Q*Fyr(w, Q) [GeV]

0.18 sential. If that were experimentally established, a simple
= 0.16 two-parameter-dependent fit
> 0.
o
. ” 18
@ 0.14¢ ,-/’..' F'yﬂ'(w!Q)zfﬂ' TO(‘”!Q)"’?TZ((‘)!Q)BZ(Q)
3 =
< 45
& + 17 Ta(@,Q)B4(Q) (4.10
S
could be used to extract the two conformal momeByeQ)
0 0.2 0.4 0.6 0.8 andB,4(Q) as long as the statistics is high enough. Moreover,
(b) w a consistency check is provided by ti@ dependence of

these parameters. Note that in tB& scheme the mixing
FIG. 2. Thew dependence of the scaled photon-to-pion transi-between different partial waves is caused by evolution at

tion form factor RQ°F,.(w,Q) at Q=2 GeV* in LO (a) and in  NNLO, while in theMS scheme the mixing appears already
CS at NNLO(b) for three different values oB,={0,~0.5,0.5 is  at NLO in both the hard-scattering amplitude and the evolu-
shown as solid, dashed and dash-dotted lines, respectively. Theon of B;. In the CS scheme the mixing appears first in the
spread of the corresponding lines displays the sensitivity of th%vom»ﬂon to NLO accuracy.
predictions with respect to the parameBey, which is equated to Finally, we want to comment on the size of evolution
—0.25 and 0.25 for the lower and upper curves, respectively.  gffects which are caused by the off-diagonal entries in the

anomalous dimension matrix. We numerically observe that

the conformal symmetry breaking terms at NLI.@mpare

Q? (oo the MS scheme results with the CS ones in Table I, as well
wt)o doF,(0,Q) as at NNLO(see Table IlJ]] can provide an enhancement of
the corresponding corrections up to 50%. One would naively
\/Efw ay(Q) Z(Q) s(Q) expect a smy!ar r_elanve_effect from tr_]e_ evolution due to the
1- -3. 583— 20. 215— unknown mixing in theCS scheme arising at NNLO. How-
v . . .
ever, since it does not appear at the input s€gjelue to the

initial condition (2.42), this mixing effect is in fact small
+0(a )+o(mi/Q2,A2/Q2) ., [40]. For instance, at NLO in th#1S and CS schemes this
mixing effect in the lowest partial wave goes uptd..3%
(4.9 and 2.3%, respectively, for the evolution fronQ,
=0.5 GeV t0Q=20 GeV andw|=1. Note, however, that
where w®'< 0.4 andn;=3. in the MS scheme cancellation appears in the off-diagonal

If we vary the unknown82 and B, parameters in the terms between th€Z- andCS,- PVOPOV'UO”al parts and that
range that is suggested by nonperturbative estimates, i.é¢he contribution from only theCZ-proportional term might
—1/2<B,=<1/2 and— 1/4<B,=<1/4, it can be realized that be of the order of 2%. This number should be compared with
in the intermediatéw| region the perturbative QCD predic- the correction in the hard-scattering induced by the off-
tions start to be dependent on the valueBgfand for larger ~ diagonal terms, which is about 7%. As we discussed above,
|w| even on that oB,, while higher partial waves can be these corrections are reduced farj<1. Since the ratio of
safely neglected. Here it is important that radiative correcdiagonal entries in NNLO to those in NLO is smaller than
tions do not spoil a possible extraction. They rather shift the3as/ for the first five even diagonal terms, we might argue
curves in the whole region and slightly enhance the spread dghat the ratio of off-diagonal entries in tthdS scheme is of
the curves associated wiBy. This is caused by the fact that the same size. Assuming so, one would expect that unknown

2
(200 S<Q )
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mixing effects induced b)AjC:S(l) due to evolution are re- Pressed. This can affect the analysis only if the matrix ele-

duced by a factor of 1/3 or even more with respect to those a'€nts of conformal operators with rather large conformal
NLO. Thus, we expect from the numbers given above afPin contribute. On the other hand, we know that the net
NLO that the contribution oA G3™® is smaller than 0.5% in effect of all partial waves with conformal spyt-1=3 is

— — L small. Obviously, this does not necessarily mean that the
the MS s_cheme. In th€S SCheme’ the contrlbuthn of the matrix elements themselves are small, and therefore we can-
log term in Eq.(2.53 can be estimated by comparison with

. not say that the asymptotic form of the pion distribution

L %mplitude is experimentally established. Also, taking into ac-
contribution smaller thars(Q)IN[Q/Qo)/. For the example -, ¢ nonperturbative results from other methods given in

d|scus§ed above that would produce a mixing effect smallegq |ierature, a strong statement that the asymptotic form is
than 1%. Therefore, for higher values O.f the mput sc.ale, e'gsuggested by these estimates cannot in fact be made.
Qo~1 GeV, we expect a rather tiny mixing in the ~ Thege problems that we have spelled out can be sepa-
CS scheme. rately studied apart from thpw|—1 limit. Indeed, in the
small|w| region, perturbative QCD predicts a sum rule that
has the same status as the Bjorken sum rule in deep inelastic
scattering, evaluated at ordeg . A first test of this sum rule
We have employed conformal symmetry in the perturbamight be possible with existing® e~ machines and would
tive sector to evaluate the NNLO corrections for pion pro-offer us a first insight into the size of power suppressed con-
duction through two-photon fusion. The requirement of atributions for exclusive processes from experimental data.
manifestly conformal invariant result partly removes the am-We expect that such contributions will turn out to be small. If
biguities arising from the factorization. However, the ambi-this should be established experimentally, one might attack
guities are retained in the scheme dependence of the forwatde extraction of the first- and second-lowest conformal mo-
Wilson coefficients and anomalous dimensions and in thenents of the distribution amplitude. This is an important
treatment of the conformal symmetry breaking induced bytask, since it would open a window to testing the reliability
the trace anomaly, proportional to tifefunction. The latter  of nonperturbative methods applied to exclusive quantities.
ambiguity has been studied here in two alternative schemesiaving in mind that the collinear factorization applied here
(i) combining the conformal predictions with tiS result  to the photon-to-pion transition form factor is also adopted
and (ii) improving the partial wave decomposition of the for the analysis of exclusiv® physics, it is timely to con-
conformal invariant theory by the renormalization groupfront such methods with experimental measurements.
equation. The second possibility minimizes the mixing of Let us finally give a short outlook for the application of
partial waves and gives us an almost good quantum numbethe conformal approach to other processes. After a simple
namely, the conformal spin. For decreasing valugsopfthe  replacement of the decay constant and matrix elements the
differences between these schemes are removed, since oMNLO result obtained can be used for the analysisznof
diagonal terms are suppressed by powersaf production, i.e., its flavor octet component. Moreover, the
As was known before, fdiw|=1 NLO corrections can be formalism can be extended in a straightforward manner to
considered to be small for only the two lowest partial wavesthe »'-to-photon transition form factor. Guided by the large
since the NLO corrections logarithmically increase with thej +1 asymptotics of the conformal moments, it is also pos-
conformal spin. This behavior is analogous to the lajge sible to reconstruct the hard-scattering amplitude in DVCS.
behavior of the Wilson coefficients in DIS arising from soft The reliability of this technique can be tested at NLO and
gluon configurations. The effect is manifested by lng)  partly also at NNLO, i.e., fop3-proportional terms. We also
terms that are associated with factorization logs and, consevant to add that one can go one order furthewinin the
quently, are absent in the lowest partial wave in the conforapproximation of the first few conformal moments of the
mal schemes. Other InfAx) terms are related to the Sudakov hard-scattering amplitude, since we can borrow the forward
effect and are manifested in a sign alternating seriesgfor Wilson coefficients from the nonsinglet sector of the deep
=0. However, the numerical study showed that the NNLOinelastic structure functiofr;, evaluated at next-to-NNLO
corrections are dominated by th®& -proportional term, as [58].
expected. In general, this term is rather large compared with
the NLO coefficient and thus the BLM scale is rather low, ACKNOWLEDGMENTS
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higher partial waves anq it requires a deeper |.nS|ght INtO\ pPENDIX A: STRUCTURE OF THE HARD-SCATTERING
power suppressed contributions. Although there is no doubt AMPLITUDE IN THE MS SCHEME

in the literature that the CLEO measurement can be analyzed
in this limit, we should state here that partial waves with Here we prove that the LN{,x) terms, appearing in Egs.
sufficiently large conformal spin will be exponentially sup- (3.18—(3.21), are related to the factorization logs. We do not

V. CONCLUSIONS
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distinguish between the renormalization and the factorization 1 2 Zm-1 1 x
scales, since the difference appears only in ther(y,X|E):f dzlf dz,- - f d2m5(y— 5 551(2)
w-independent term Ipg /). The hard-scattering amplitude 0 0 0

is given by the sum over all Feynman diagracontribu- 1—X

tions + TBz(E)) THZ|e). (A6)

1 The renormalization procedure provides the factorization

—ZT(w,X,Q/M)=E THw,x,Qlu), (Al)  logs In@%u?), which always appear in combination with

Q g LN(w,Xx) terms. The factorization theorem tells us that after

resummation of all Feynman diagrams the corresponding

where we have rescaled the individual contributiongyto  convolution kernel is given by the evolution one. Obviously,
have dimensionless amplitudes. Each of these contributiontsie log-independent terms can also be represented as convo-
is given as a product of propagators and vertices integrateldition. The support of all these kernels is known and follows
over the virtual loop momenta. The two photon vertices arefrom the restrictions oif3;(z), which are obtained from their
connected by a chain of quark propagat&sand quark-  definition and the topology of Feynman graplsse, for in-
gluon-quark vertice¥: stance[74,4]).

B([1—2x]P/2+q—1)V, B([1—2x]P/2+q—1+k;) APPENDIX B: CONSISTENCY CHECK WITH THE

X B([1—2X]PI24+ g1+ - - - T k), (A2) FORWARD-LIMIT RESULTS
In this section we present a consistency check between
where P=gq,+q, and the large momentum= (g, —q,)/2 the results for the nonsinglet coefficient function of the DIS
flows only into this chain. Momentum conservation requiresP0l@rized structure functiog, [43] and the hard-scattering
that | +1"=3"_k;, wherel and |’ is the sum of virtual amplitude of the pion transition form factd®9,10. The

momenta flowing into the first and flowing out of the secondformer quantity is known to NNLO, while for the latter dis-

photon vertex, respectively. Interchanging the two photoncusseOI In $ec.||lll\lﬁlt_k§ calculat:;nﬁas belen ﬁerfortr)ned quto
vertices will give the crossed contributions with| — — w. Bo-proportiona terms. Both results have been ob-

Obviously, there are further propagators that depend only offined in theMS scheme. Making use of the fact that both
the virtual momenta angP or (1—x)P, but not ong. Intro- quantities, the photon-to-pion transition form factor and the

ducing the Feynman-Schwinger representation for the propgructure functiorg,, are defined by the two-photon ampli-
gators, integrating over the virtual momenta, and making us/des belonging to a general class of the scattering ampli-
of the on-shell conditiorP?=0, give us the following rep- tudes for the two-photon process at lightlike distances, we
resentation for the regularized contribution: are able to transform the results for the photon-to-pion tran-
sition form factor to the results fay;.
1 The general scattering amplitude for the two-photon pro-
zy Zm—1 K . :
Tf(vaaQ//L):f leJ’ dz,- - f dz, cesses is given by the time-ordered product of two electro-
0 0 0 magnetic currents sandwiched between the in and out had-
ronic states with moment®,; and P,, respectively. Using
2e . . .
» w=THz|€) the notationq=(q,+q,)/2 (q; and q, are incoming and
Q%[ XwBy(2) +(1—X)wBy(z) + 1]1+¢’ outgoing photon momentaP=P;+P,, and A=P,— Py,
- - the following generalized Bjorken region can be defined

(A3)  [4,39]
Here € is the dimensional regularization parameter and the v=P.q— and Q*=-q*—x, (B1)
functions3;(z) depend on the Feynman-Schwinger variables . , ,
z={zy, ... Zm} With n=m. We introduce the new variable with the scaling variables
v A-q
1 x 1-X w=— and zn=—. (B2)
y=5-— 531(5) - 752(5) (A4) Q? v
In the forward case, corresponding to DISp1dan be iden-
and write tified with the Bjorken variableg; and » vanishes, while for
the two-photon production of a hadroj=1. The relations
1 u2e between the nonforward ERBL kernels and the forward DG-
Tf(w,x,Q/M):f dy V AY,X|e€), LAP kernels were extensively studied and derived in Ref.
0 TQ*1-(2y-1w]'te [4], while in Ref.[39] consistency between the transition

(A5) form factor andg, results was reported up to NLO. Here we
explain in more detail the technical side of these consistency
where the unrenormalized convolution kernel is defined by checks and extend them B-proportional NNLO terms.
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The building blocks of the hard-scattering amplitude forplitude. Taking into account the definition gf and its co-
the photon-to-pion transition form factol (w,x,Q,ws) efficient functions(see[43]), one arrives at the following
given in Egs(1.2), (1.3), and(3.16—(3.23 can generally be recipé for the building blocks of the nonsinglet coefficient

written as functionsCy®:
w
(v*m) - _ A ()= —1m[ lim A(@, 72, jo=1s 1=1. (B8
AY o) = 7o T, @ 8 ), (2= [nﬁo i(@,7.)]jo=1,1=1-  (B8)
. INl1-w(2y—1)—ie] -~ The —0 limit of the extended ERBL kerne[€] results in
AT w0 =m = o Gy 01, " . ! 14
1-w(2y—-1)—ie i the corresponding DGLAP kerneR of the general form

wheren=0,1,2. Note that we have reintroduced tkeerm, P(2)=0(2)0(1-2)p(z)  with

originally present in the definition of Feynman propagators. 1
For the kernels that appear in E¢8.16—(3.23 we use the [P(2)].=P(2)— 5(1—2)J dz’ P(z).
generic symbob (y,x). Furthermore, for the kernels of in- 0

~ B9
terest, given in Eq93.7), (3.8), and(3.11), the functionv is (B9)
of the general form It is straightforward to derive
~ ~ X—X o[~ [14ty 1+ty [ [t
v(xy)=0(y=x)f(xy)+y . (B4) lim—— o™ —— — =sgnt) -|Pl || -
y—y 7—0<7 + t t +
. . . (B10)
We have to extend our restricted nonforward kinematics
to the whole kinematical region. The extension of the BLwith p given by
kernelsv to the wholex,y region (—o<x,y<o) [4] is 1/t 1 ([.[1+t'/n 1+t/y
accompanied by a change of thdunction as follows: Tp(T> = |im2—{ 5 T o
n—0<"
UeXt(Xay):U(XaY)\ﬂ(yfx)ﬂ0(17x/y)0(x/y)sgn(y) . (B5) ~< 1-t'/n 1—t/77>
- ) B11
Furthermore, the dependence pimas to be restored and one 2 2 N (B1D)

performs the following change of variables:
The imaginary part of expressiofB7) is obtained by mak-

1+t/ 1+t'/ ing use of
xo oy T e, BE) O
2 2 1
Imfzwﬁ(l—t’w), (B12)
The definition of the distribution amplitudes, with which the 1-t'w—ie

hard-scattering amplitude is convoluted, as well as the defi- . . .
nition of its generalized counterpart, introduce the restrictiorAnd for more complicated functions, containing(In-t'w
—1<t<1. After examining the functions in the kernels ~1€) (N=1,2), we derive the following decompositions:
(B5) and taking into accounty|<1, one obtains—1<t’ IN(1—wt'—ig) 1 1

< 1. The building blocks of the generalized two-photon scat-
tering amplitude are thus obtained and they are of the form

= ® ,
1-wt' —ie (1-5)y 1-stw—is

IN?(1— ot’ —i In(1—s)—Ins
Al(w’n’t):—l—wt—ie’ (1~ _ 8):2( ( ) )
1-wt' —ie 1-s N
Agp(@,7,1) Jl gy Mzet~le) -
wl 1 = - . —_—
S ot 1-ot'—ie ®1—St’w—i8. (B13

1
27

1+t'/np 1+tligy
2 2

e (B7)  Alternatively, for the imaginary parts of the expressions con-

¥ taining logarithms one can refer [@8]. Finally, we present
the results relevant to the NNLO calculation:

X

It is easy to see that relatior{B3) indeed represent the
=1 limit of (B7).
The forward limit(i.e., the forward Compton amplitule  éthe factor 1/(2r) comes from the dispersion relation, and the

corresponds top—0 and, due to the optical theorem, the additional factor of 2 from the definition af,. The origin of the
nonsinglet coefficient functions of the DIS polarized struc-factor w in Eq. (B8) lies in the fact that the transition form factor is

ture functiong, (contributing to the total cross sectjoare  scaled byQ?, while the forward Compton amplitude is scaled by
determined by taking the imaginary part of the forward am-P-q.
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TABLE VII. Selected forward counterparts of the nonforward quantities.

AX=y) A1l-2)
vA(XY) (1-2026(1-2)

P(x,y) 2z
vy T HDH1-2)

: 1+ 7

v T KDK1-2)

X, 2In(1-z
gxy) B 1(_2 ) woii-2
03(XY) (1-2(Inz+1)6(2)0(1—2)
vexy) (1fz)+11+TZZZInz H2)0(1—2)
v(xy) 2(1-2)nz+ :L;—Tz: In%z|6(2)(1—2)
axy) B A B In%(1-2) 2Li,(1—-2) -

31-2 1-z 1—z |0@61-2)

IN[1—w(2y—1)]
1-w(2y—-1)

7(1fz)+2(172)

®u(y,X) —

1+7

2
+ rz|n(1*2)+ E[In(lfz)fln z]]a(z)e(lz)

AN z) = 5(1-2),

A5 =[P(2)],,

Nz)= 9(1) 0( - i/>,;®[ﬁ’(z'”+ ’
z 2')(2'-2),

merfgh
4 4

><2(In(z’—z)—lnz

(g
Aza

(9
Az

) ®[P(z)], .

+

Z/
(B14)

TO(w,x)— 8(1—2),

3z
T(w,x)—| —(1—2)+

Hence, the building blocks for the hard-scattering ampli-
tude of the photon-to-pion transition form factor

Ai(y* ™(w,x) given in Eq.(B3) can be brought into corre-
spondence with the building blocks of the nonsinglet coeffi-
cient function of the polarized structure functiog,
Ai(gl’Ns)(z), displayed in Eq(B14). For various ERBL ker-

nels v(x,y), the corresponding DGLAP kerneB(z) are
obtained by taking the limi{B11) with t=1 (andt’'—2z)
taken into account. In Table VII we list some selected results.
We mention here that the integration of twe-" forms re-
sults again in the %" form, but the contributing terms
should be appropriately rearranged. Following the procedure
explained above, we finally obtain the forward counterparts
of the elements of the hard-scattering amplitude for the
photon-to-pion transition form factor:

(B15)

2

3
21-2 (1-2 1

1+z 3
_Z[In(l—z)—lnz] —55(1—2), (B16)

+
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1) 311 . 19 209{1+zz)+ 3 L 3 +19(1+22)| Lo 1 . +5
ploX)= =5 =D% g " Bg1=p |27 50=7 T ea=g "L F| T g1 DF 32
2 e 25, L — gy 2nzin(1— 2+ Lig1-2+ | | 3801
“ai=2) n(z)+ﬁ —an—zn( —2z)+2InzIn(1—2z)+Liy( —z)+? +— (1-12).
(B17)
|
Here, the expressions on the RHS represent the scale- 2(2k+3) k+1 (k+1
independent LO, NLO, an@,-proportional NNLO terms of =(_1)k(k+—1) > (- )'( i )
the nonsinglet coefficient functiorC{®) of g;. Similar ex- =0
pressions can be written for the terms proportional to k+i+1)
In"(Q%u?). Following the notation of43], the 6(z) 6(1—z) i1 X+ (C2

factors are not shown in EqE815—(B17). We note that the

imi (1) —y)=T0(— i- . . .
limit of T (w,1-x)=T"(~w,x) corresponds to the anti The evaluation of the conformal moments, i.e., in our case

N

quark case QES)- the evaluation of the expressions

Our result$ (B15)—(B17) are numerically in agreement
with the Mellin moments and up to a typo also with the f(x) k2(2k+3) kil i k+1
analytical expression for thes-proportional term displayed <T> =V T iZO (1)
in the Appendix of Ref[43]; namely, in Eq.(A2) in that k B
reference the term 1/3(11z)Inz should read 1/3(1 K+i+1\ 1
-112)Inz X i1 J’o x'f(x), (C3

APPENDIX C: DETERMINATION OF CONFORMAL and

MOMENTS i1 _
f(x) 2(2k+3) [ k+1\[k+i+1

In this section we present a method for computing mo- <1—x> = D) Z (—1) i i1
ments with respect to conformal partial waves with the index k 1=0
k. We introduce the notation 1

xfo Xf(1—x), (C9

1 _
(F(x))kzj dxF(x) X(lN X) C§’2(2x—1), (Cy consists then in calculating the Mellin moments and per-
0 k forming the summation. The Mellin moments for the func-
tions we encounter in our calculation are well knoyaee,

_ ) ) ) o for example[75,76), and most of the nontrivial sums we are
while Ny is defined in Eq.(2.1). It follows trivially that  |eft with can be found iff77]. The sums that usually appear
(F(A=x)=(—1)%F(X))x. In the calculation of the gre
photon-to-pion transition form factor for the special case
|w|=1 we encounter function(x) of the formsf (x)/x and oy n
f(x)/(l—x), with  f(x)e{1, In"(X)IN™(1—x), Lix(X), Sﬂ(n):z — S, (n)zz —S (i),
Liz(X), SiA¥)}. =11 P =1 P

It is convenient to use the following expression for the (CH)
Gegenbauer polynomials:

_1|
S m(n)=2, (im),
X(1=X) o k2(2|<+3)o|_k ket
TNe Ci(2x=1)=(-1) WDl OIXk[x(l X)] o
ST jp(n)=§1i—msj1 ..... i ().

"The representation of the coefficient functions in the form ) ) .
AS8(1—-2)+[F(2)]. , as given in Eqs(B15—(B17) and naturally ~ T1he functionsS;,(z) are expressed via the functiongz)
emerging in our calculation, is convenient for the determination of=d InI'(z)/dz
the Mellin momentscj=fézjc(z) since thej =0 Mellin moment
corresponds to the term proportional 801 —z). p(2)=—yet+S(z—1),
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gm The kernelsv? andv are defined in Eqs(3.2), (3.3, and
—(z)=mli(— DM I f(m+1)—S,.1(z—1)]. (C6) (3.9, while the corresponding moments can be read off from
dz Egs.(3.6) (for e=0) and(3.34), respectively.

) Finally, in Table VIII we summarize the conformal mo-
For (Lis(x)/(1—x)) and (SiA(x)/(1—x))x, the corre-  ments of the functions relevant to our calculation.
sponding sums are missing [i@7], and to obtain them we  Ag a py-product of this calculation, we list the following
turn to expressing the relevant functions as convolutions of,gntrivial sums:

appropriate functions with the known diagonal kernels. Gen-

erally, the conformal moments of a kerrjel] , are defined E _ 1)1( _ 512(1 +1)
by i=0 jt1
~ ~ 1
vik=([v(Xx,y) — _ _(_13\n
k=([v(X,Y)]:+ )ik nF1 ninED) (=1)"[S-2(n+1)
oot ~ y(1-y)
- | ax ayca-nimeon]
fo 0 @ TN +S—2(n_1)]}’
X CgA2y—1), (eg)
- ol M| i
and for the kernels appearing in this calculatigp=0 for E (1) j+1 J+—1
| <k andl —k odd. The conformal moments of the convolu-
tion F(x)=G(y)®[v(y,x)]. then take the form 1] (1"
=~ I nmr DS ANt DS o(n-1)]),
F(x))=(G(y)®[v(y, => (G(y)vk. (C8
(FOON=(GM (Y. 0] k=2 (G- (C8) C i s+ 1)
2%(—1y jjlj+1) jr1
As before we use the simplified notation for the diagonal .
moments 1
o = - +[Si(n+1)+S;(n—1)]
Ukk=Uk, (C9 n+1l n*(n+1)?
1 1

i.e., for the diagonal conformal moments we retain just one

) ; e (C13
index and the relatioiC8) simplifies to

mn+1)+n%n+1ﬁ
(FOOW=(G(Y)®[0(y,¥) ]+ =(G(y))wk. (C10  Which complement the collection of sums found[#tV].

Hence, in order to determing(Lis(x)/(1—x)), and APPENDIX D: TAYLOR EXPANSIONS IN @

(S1Ax)/(1—x) )¢, we make use of the identities . .
We now present the results for the five lowest even partial

Li,(1—y) waves, which are expanded &t to the first seven nonvan-
1f(@[va(y,x)]+ ishing terms. For brevity, we will not denote the neglected
y terms.
Lis(1—%) ¢(3) In(x) In(x)In(1—x) The LO result can be simply expanded by means of its
=- + - + representation in terms of hypergeometrical functions. Em-
X X 1-x 2(1—x) ) . ,
ploying the identity
1L 22)| (La(1=% 4(2) _ _
ol T T 1ox X x 1 . jtltej+t2+el 20
(C1D (1+w) e T 2(j+2+e) [1to
and _ j12+ el2+112j 12+ el2+1)
-2 j+e+5/2 @
Lio(y) . . .
®[ (y,X) ]+ and representing the hypergeometrical functions as power
1- series inw, after a few simple manipulation with functions
S L(3)  In(1-x)  Lix(x) we find
T1x 11— 2(1— | .
X X X (1—x) oy 2 JaT(1+j+2n) 2n+]
In(1—x) 1 j (@)= “o nIT(5/2+j+n) | 2 '

(C12

+a2% T-x " 1-x) (D1)
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TABLE VIII. The conformal moments of some relevant functions.

IN(x)In(1—x) >
k

1 1
2N (k+1)(k+2)
1 -2

2N,

1
—[—5(2)—S-z(k+2)—S-z(k)+52(k+2)—52(k)—(1—(—1)k)

1 1
N CO- oDy | Sk - S

2(2k+3) 1

(k+1)(k+2) 2Ny

1

Z—M[—Sl(kJrZ)—Sl(k)]

1

N{[—SL(H 2) =S (K P+[Syk+2)—S(K)]}

{[ Si(k+2) =Sy (K P+2 — Sy(k+2)— Sy(K) ]+~ Sy(k+2) ~ S (K [Syk+2) ~S,(K) T}

m[ Si(k+2)=S (k) +1]

1
(k+1)(k+2)

{(2) Sy(k+2) +Sy(k) +

1
(k+1)(k+2)
(—1)k

§(2)+S (k+2)+S_, (k)—m

(k+1)(k+2)
+[—=Si(k+2) = Sy(K) ][ Sy(k+2) = Sy(K) ]}

(k+1)(k+2)

The first few moments read

The relative error of these approximations foy
={0,2,4,6,8 is about{0.1%,0.7%,2%,4.4% ,8%for |w|

T=1+0.20%+0.085%*+0.0476»°+ 0.0303° =0.8 and increases t0.6%,4%,10%,19%,30%for |w|

+0.021Q01%+ 0.015402,

(0_ 2% 2 4 6
T~ S5 (1+0.666%% + 04545 +0.3263

=0.9.
The expansion of the}(w) functions from Eq(3.63 can
be found in an analogous way:

s{(w)

+0.244808+0.190°+ 0.151 %), <

8w
T(0) = _(1+ 1.153802+ 1.0769v*+ 0.9502°

ZO SOG,MT(1+j+2n)/[n!T(5/2+]+n)](w/2)?"

©

315 > L(1+]j+2n)/[nT(5/2+j+n)](w/2)2"
n=0
+0.825208+0.71520%%+0.6219%?), (D2)
(D3)
(0) 160° 2 4 6 1) _ : . .
T8~ 35031+ 164717+ 1.9508"+2.0433 SYA(J,n)=S1(j +2n) = S$,(3/2+ ] +n) = Sy(])
+S,(3/2+]), D4
+2.02118+ 1.94030%%+ 1.8325,%9), il D b4
o SA(j,n)=[SM(j,n) ]2~ S,(j+2n) +Sy(3/2+] +n)
128w
TO= 109395(1+2.142902+ 3.07450%+ 3.73040° +S,(j)— Sy(3/2+]).

+4.1449%+ 4.37360 %+ 4.46 T 1?). The approximation oj(w) reads

014013-31



MELIé, MULLER, AND PASSEK-KUMERIKI PHYSICAL REVIEW D 68, 014013 (2003

TABLE IX. The first four nonvanishing and even eigenvalues of the evolution kéfingl to NNLO
accuracy[for color decomposition see E(B.39]. The values ob{* are taken from the nonsinglet result for

the deep inelastic structure functiéi [58].

. F 2)__ 1 (2
J CFUJ' CIZ:UF’1+2_|\I(:UG] Vg U]( )=— ')’]( )
2 —2.77778 3.41307 —2.88194 —155.614+ 24.5592”4—0.22025@1«2
4 —4.04444 7.15867 —4.32389 —215.118+ 34.7698]f+o.295776]f2
6 —4.89048 9.82554 —5.30857 —254.562+ 41.36021f+0.34242®f2
8 —5.52910 11.86905 —6.06196 —284.650+ 46.3238]f+0.375806]f2

(1)(w)~

+0.08940%+0.067Q 1Y),

83w?
338

+0.0935:%+0.070w19),

siH(w)= +0.20250%+0.13130°

(D5)

14
sé(w)= +0.20480%+0.13340°

+0.0953»8+0.0723,19),

+0.20590% + 0.13440°

~ 294
+0.09630%+0.0732:19).

Here we mention that the analytical expansion reads
3w?/(5+2))3+ w1+0(1/(5+2))?)]/16. Thus, the w?
term is numerically suppressed. In the — 1limit, the func-
tionss{"? take the values

sV (w=1)=28,(2j+3)—=Sy(j +1)~Sy(j +2)—~In(2),
(D7)

s (w=1)=[s{"(0=1)]?~4S5,(2j+3) + S,(j +2)

+S,(j+1)+2£(2).

The quantities in thé1S scheme are evaluated from Egs.
(3.16—(3.23. For u?=Q? the NLO contribution
T (w, uf/Q*=1) reads
T{N=—2(1+0.33332+0.1873»*+ 0.12450°+ 0.09040°

+0.06940°+0.05540»1?), (D8)

Note that the prefactor of these series is giver by 3/(5 w2
+2))*]w?/4~ w?l4 and that forj={2,4,6,3 and |0[=0.8  T{M= —(1+1.2815s2+1.0293*+0.777Q%+0.5844,°
the relative error of these approximations is about 9
{1.2%,2.5%,4.4%,6.7 %0 and increas_es . to +0.443600+ 0.34071?),
{6%,10%,14%,19% for |w|=0.9. The approximation of
s7(w) is given by 41840
1) 2 4 6
.2 TP = 25555 (1+1.40760%+1.4571* + 1.3683»
(2)(w)~ ——(1+14.70020%+ 10.70040"* + 7.7684»° . L
243 +1.237Q08+1.10130%%+0.97540?),
+5.869Q%+4.596W19),
) 26182 1+ 1.856Qw>+2.3723»*+2.620%°
) 6 2837835(
s§ )(w)~ +24.307@°
+2.694908+ 2.66440'0+ 2. 5747,
+18.532%08+ 14.6322,19), (D6)
T~ 568352,° 1+2.332402+3.55420" + 4.51160°
) 3w 8= 57432378
S (@)= 7913
+5.19210%+ 5.63460°+ 5.88940 ') ,
+42.3458,8+33.557319),
while the conformal moments of the factorization log-
. w2 , , ,  Proportional term, i.e.Crv;T{%(w), are obtained by multi-
S5 ()= 3087(1+ 191.006°+142.411»"+105.26 o plying the results(D2) with the values ofCgv;, given in

+80.756Q°8+ 64.125%019).

Table IX. At NNLO, only theB,-proportional term has been
evaluated:
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T¢)~—3(1+0.350502+0.1785*+0.10980°+ 0.075Q° Cls?l) the CZS scheme, we find the NLO result
+0.05480104 0.042012), o9 (0 /Q=1) from £a.(3.62:
436007 T53M=—2(1+0.20?+0.085%" +0.0476°+0.0303°
(2)

52~ 8620 (l+0.91591)2+0.729&)4+0.5740n6 _{_0.02101)10_,_0'0154012), (D12)

+0.45660%+ 0.3691w%+ 0.3031w?),

2
w
T5°(M= 5 (1+1.4691° + 1.2818»"+1.0443°

235685%*

T~ — e (1+1.35880%+ 1.40630* + 1.3333,°

8505000 +0.846608+0.69330°+ 0.5752:%?),

+1.22098+1.10220°+ 0.9899%?),

cs(1)_ 41840* ) . .
5= (1+1.41020%+ 1.467 4%+ 1.38750
T@= 20352710026° 1+1.84080%+2.35920* 12525
56~ 322486264000 +1.26440%+1.135401%+ 1.01480%?),

+2.62330%+2.719Q8 + 2.710801%+ 2.6415:1?),

eS()~ 96182,° 1+1.83730%+2.33440" + 2.569°
10) 363260060682° 142 3308, 35655, 6 2837833 - ' '
,8: PP ——————— . .
#” 1367694578250 +2.63720%+2.60500104 2.51711,
+4.55160°+5.271508+5.75820'%+ 6.057609).
568352
o TS M= —é1+ 2.30520%+ 3.4829%+ 4.39260°
To restore the factorization log, one needs 5743237

+5.0299,8+5.437301%+ 5.6655:1?),
2

s @ 2 4 6
Vg o=~ €(1+0.565b +0.383Qw*+ 0.283

while the factorization log-proportional term is the same as

in the MS scheme. The NNLO correction” > w, ¢ /Q?
=1,u,/Q?=1) for By=0 reads

+0.222Q%+0.1804019), (D10)

83w?
v?,.,zz — ——(1+0.0488»%+0.0308»*+0.02250°
2o TSS(=3.66671+0.202+0.085%* + 0.0476°

8 10 12

D12
3 77831)4 2 4 6 ( )
V54~ ~ Zog75 (1+0.0261%+0.0172»*+0.013G
TSS()= —3.23312(1+0.6769°+ 0.455%"
+0.322405+0.23860°+ 0.18320°

+0.14480%) 5 _o,

+0.0105:%+0.008801%+ 0.00760'?),

s 3745727%° 5 .
V= m61+0 017402+ 0.0118

+0.009%0%+ 0.007508+ 0.006401°
+0.005601?),

T$S(2= —0.93380%(1+1.096 >+ 0.9764»*
+0.82720%+0.693%:%+ 0.5838,»1°

12
. 76991788° +0-4949 D 1g0-0,

_— T 2 4
Vg8~ 1085471887é1+ 0.013w“=+0.008w

+0.007Qv®+ 0.005808+ 0.005Qv™°
+0.00440%).
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Tg5®=—0.210%1+1.513302+ 1.661 %" + 1.6285°
+1.51840°+1.382901+ 1.2459"%) 5 _o,
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TSS2=—0.042%°%(1+ 1.9050%+ 2.4505* the following we demonstrate this method at NLO order and
its generalization to higher orders is straightforward.
+2.68580°+2.713408+ 2.6181w ™0 First, we consider the quality of the asymptotic formulas

(4.1). Since the neglected terms are of the ordey-1/Z), we
expect that the approximatior4.1) have an accuracy of the

. . . level of 10% forj=10. Surprisingly, the accuracy is already
The Q2-|'ndependent ancﬁo-mportlonéﬂ term In the CS' pejow 1% in both cases, which indicates that the 12)
scheme is the same as in th&S one, given in EQ(D12).  erm s small. Thus, we completely neglect such terms and

The factorization and renormalization log-proportional term%mprove the approximate formula by adding subleading
appearing in Eq(3.64 can easily be restored by means of orms of the form

the results from Table IX, Eq$D2), (D5), as well as Egs.
(3.68, (D8), (D10), (D11).
The difference between the CS a@b schemes arises a+BS(j+1) y+6Si(j+1)
only from the pBy-proportional terms (3.69. The (j+1)(j+2) + (j+1)2(j+2)2+“"
Bo-proportional NNLO termTB‘jCS(Z)(w) reads

+2.457 ") ~0-

o where the coefficients, . .. ,6 are determined from a fit of
Tg%&)z —3(1+0.202+0.085%*+0.0476v°+ 0.03030° the lowest moments. In this way, we obtain an approximation
that is better than 1% for all moments. Now we can recover
+0.021Q'%+0.01540"?), (D13  an approximate expression for the hard-scattering amplitude
as a convolution by the following recipe.

ts02) 5 5 . 6 Substitute the LO Wilson coefficients by the correspond-
Tﬁ,2 ~=0.5056"w (1"‘084961) +0.643%0"+ 0.490Qv mg hard_scattering amp“tude

+0.382Q08+0.304801°+ 0.248201?),
2j+3 1
(G+1(+2)  2(1=x)

TC5®=0.277114%(1+ 1.251202+ 1.2252* + 1.11620°
+0.99198+0.874 %+ 0.771 ), Restore the kernels:

TC5?=0.09147855(1+ 1.7236w° + 2.1049*
+2.25500°+2.2689° + 2.20760 0+ 2.10780'9),

cons—consl, m —v,(XY),

. _ 1
T539~=0.026560°(1+ 2.20920%+ 3.24130* + 4.0009° Si(1+])— = 5lop(xy)]+ +11.

+4.5064¢8+ 4.80810 1%+ 4,957 *?).

Consider the multiplication of the conformal moments
given above, which corresponds to convolution in the mo-
mentum fraction space.

Here we have introduced a shorthand notation for the

identity | = 5(x—Y). In theMS scheme, using E(3.32 and

The restoration of the factorization log in ti sector re-
quires knowledge ob ; ;, given in Table IX.

APPENDIX E: RECONSTRUCTION the recipe given above we restore the exact expre$8ias)
OF THE HARD-SCATTERING AMPLITUDE IN THE in the momentum fraction space. For the CS scheme, using
MOMENTUM FRACTION REPRESENTATION the improved forn{4.1), we get a good approximation of Eq.

Let us now discuss the reconstruction of the hard-(3'45)' for the lowest moments also, by taking
scattering amplitude in the momentum fraction representa-
tion from the conformal moments. This technical problem is 83
of immense importance for the discussion of two-photon a=15184(2)—26In(2)~3.438,
processes in which the operator product expansion is not
convergent. The solution is known in forward kinematics and
is given by the Mellin transformation of moments. In non- 73
forward kinematics, the problem is solved in principls]; y=- 3—12§(2)+48In(2)~—1.068, B=06=0,
however, one has to evaluate rather cumbersome integrals.
Here we propose a simple approximative solution which is
based on the asymptotic behavior, presented in Sec. IV A,
and it is applicable to deeply virtual Compton scattering. Inand the hard-scattering part reads

(ED)

014013-34
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TS ~TO

1 1
E[vb]+®(§[vb]+—6.273> —2.952+3.438,— 1.068,8v, | (X)

 0.251(1-x)~2.136 {1-x)~8.224 In(1-x)[0.25IM1-x) - 6.642
= 2(1—%) * 2%
Li,(x) — Lio(1)

After analytical continuation ix this result corresponds to the NLO correction of the deeply virtual Compton scattering for the
quark-quark channel in the parity odd sector.
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