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Abstract.  We analyze a family of 1D fully analytically solvable models in 
which a many-body cluster interaction, acting simulatenously on n  +  2 spins, 
competes with a uniform transverse external field. These models can be solved 
analytically using the Jordan–Wigner transformations and we prove that they 
present a very rich phase diagram with both nematic and symmetry protected 
topological ordered phases. From the point of view of the entanglement, 
these models show a non vanishing bipartite entanglement between the spins 
at the end points of the cluster term. At the same time, regardless to the 
system parameters, it is possible to prove analytically that there in no genuine 
multipartite entanglement among the spins of a subset made by m � n+ 2. 
Numerical simulations suggest that this absence extends also to larger subsets. 
Due to their integrability and to the peculiar entanglement properties, the 
n-cluster models in a transverse magnetic field may serve as a prototype for 
studying non trivial order and can be of extreme relevance for applications of 
quantum information tasks.
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1.  Introduction

The scientific community has now widely accepted the fact that the analysis of the 
entanglement properties of the ground states can provide the most fundamental char-
acterization of a quantum many-body system. Indeed the study of the entanglement 
can characterize the quantum critical point [1–3] exactly as the Ginzburg–Landau 
approach directly borrowed from the classical statistical mechanics [4, 5]. But it can 
also unveil several other aspects that cannot be detected by the standard analysis and 
that have shed a new light on quantum many-body systems. To give an example it was 
discovered that quantum non critical systems obey to the so called Area-Law, i.e. the 
fact that the entanglement entropy scales with the area of the subregion and not with 
its volume [6–12]. Moreover non trivial sub-leading terms of the von Neumann entropy 
can signal the presence of topological ordered phase [13–15]. Also the total absence of 
the entanglement in the so called factorization point [16–18] allow to characterize the 
magnetically ordered phases and make possible to predict phase transitions by analyz-
ing the dynamics of a finite size system [19].

However, although now the entanglement is recognized as one of the fundamental 
concepts of the quantum physics, its evaluation is still an open problem. With the 
exception of few simple cases there is no necessary and sucient general way to mea-
sure the entanglement. This is especially true in the case of genuine multipartite entan-
glement. Consequently the analysis of entanglement properties of the ground state of 
a many-body system was focused mainly on the bipartite entanglement. But, in recent 
years, this situation is slowly changing. Although the diculties in quantifying the 
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multipartite entanglement are still present, several studies have highlighted its pres-
ence and role of in the XY-model [20, 21]. Moreover it has also been shown that models 
with cluster interactions can be characterized simultaneously by the total absence of 
bipartite entanglement between two spins and the presence of genuine multipartite 
entanglement between three or more elements of the system [22, 23]. At first sight, this 
result would seem to be connected to the fact that an interaction that acts on several 
elements of the system simultaneously, as the cluster one, should naturally tend to 
generate multipartite entanglement.

This interpretation, as we will show in the present work, is not correct. Indeed the 
cluster interaction, interplaying with an external field, allow to obtain a system in 
which we have both a non vanishing bipartite entanglement and a zero multipartite 
entanglement at the same time. Strictly speaking, to provide the proof of the complete 
absence of any kind of genuine multipartite entanglement we would have to analyze 
any possible subset of spins of the system for all possible values of the parameters. 
Such kind of analysis is impossible to do not only because of the numberless dierent 
subsets to analyze but also because of the lack of a general closed formula for the 
genuine multipartite entanglement. Therefore in our analysis we: (a) use the peculiar 
properties of the family of models under study to prove, analytically, that there is no 
genuine multipartite entanglement in any subset made by a number of spin less or 
equal to the dimension of the cluster interaction term; (b) make a numerical analysis, 
based on a sucient but not necessary criterion [24, 25], to support the idea that, also 
subsets of spins larger than the cluster term do not show any genuine multipartite 
entanglement.

But the peculiar entanglement properties is not the only reason to study the n-clus-
ter models in external fields. In fact, the models also show two novel ordered phases of 
matter that fall outside the Ginzburg–Landau scheme, i.e. the nematic and the sym-
metry protected topological phases. Nematic phases [26, 27] occur in a system in which 
we have a ground state that: (a) breaks at least one symmetry of the Hamiltonian; (b) 
is characterized by an order parameter with a support defined on a finite number of 
spins � with � > 1. In some senses, the nematic order can be seen as a generalization 
of the magnetic one to the case in which the order parameter is not strictly local. On 
the other hand the symmetry protected topological ordered phases are characterized 
by string order parameters, i.e. non vanishing expectation value of operators which 
support extends on the whole system [28, 29]. Topological ordered phases are associ-
ated to the robustness of ground state degeneracies [13], show quantized non-Abelian 
geometric phases [14] and play a fundamental role both in the spin liquids [30, 31] and 
in non-Abelian fractional Hall systems [32]. Moreover they will play a key role in the 
development of fault-tolerant quantum computers [33]. On the other hand, nematic 
order is usually found in materials commercially used in liquid crystal technology [34]. 
Therefore it is not surprisingly that the number of papers devoted to their analysis is 
continuously increasing. To limit ourselves to the 1D spin systems, it is known that 
the frustrated 1D spin-1/2 chain in an external magnetic field shows a nematic ordered 
phase [35, 36], the 1D cluster Ising model exhibits a symmetry-protected topologi-
cal ordered phase [22, 37, 38] and the n-cluster Ising models, that can obtained using 
Floquet interactions in atomic systems [39], show both nematic and topological orders, 
depending on n [23].

https://doi.org/10.1088/1742-5468/aac443
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The paper is organized as follow. In section 2 we define the family of models that 
we are considering and show how it can be analytically solved using the Jordan–
Wigner transformations [40]. We will prove that all the models of the family hold 
a quantum critical point when the relative weights of the external field and of the 
cluster interaction are the same. The quantum critical point separates two phases: a 
paramagnetic phase, in which the external field dominates on the cluster interaction, 
and an ordered cluster phase when the many-body interaction is more relevant than 
the field. The ordered cluster phase can be a nematic or a topological phase depend-
ing on the number of spins involved in the many-body interaction. In both cases we 
determine and analyze the order parameter (see section 3). In section 4, we start to 
analyze the entanglement properties starting from the correlation functions that we 
have derived in section 2.3. At first, we focus on the concurrence that measures the 
entanglement between two spins [41, 42]. We will show that, in contrast with the 
n-cluster Ising model [23], for any value of n, there is a region of the parameter φ for 
which the entanglement between the two spins at the end points of a cluster term 
diers from zero. Then we move our analysis on the genuine multipartite entangle-
ment. Making use of the particular symmetries of the system we will prove ana-
lytically that for a block made by m � n+ 2 spins there is no genuine multipartite 
entanglement. For larger subsets, because of the lack of a closed formula valid for 
all states, it is impossible to prove the absence of the multipartite entanglement. We 
made several numerical evaluations using the sucient but not necessary criterion 
developed in [24, 25]. This criterion, if verified, proves the presence of the genuine 
multipartite entanglement but, if not, does not give any conclusive response. In all 
our numerical simulation the criterion is never verified driving us to think that the 
genuine multipartite entanglement vanishes also in subsets of spins larger than the 
cluster size. Before to conclude we move to analyze the block entanglement, at the 
quantum phase transition φ = φc ≡ π/4 and by using the conformal field theory [10] 
we evaluate the central charge of the models, that turns out to be dependent on n, 
proving that the models of the family fall into dierent classes of symmetry. In sec-
tion 5, we draw our conclusions.

2. Solution of the family of models

We focused our analysis on a family of 1D spin-1/2 models characterized by the inter-
play between a cluster interaction and an external field. The Hamiltonian of such fam-
ily of models can be written as

H
(n)
φ = −J cos(φ)

∑
j

σx
jO

z
j,nσ

x
j+n+1 + J sin(φ)

∑
j

σz
j .�

(1)

The parameter φ controls the relative weight of the two terms, J has the dimension of 
an energy, σα

i  (with α = x, y, z) are the Pauli operators and Oz
j,n stands for

Oz
j,n =

n⊗
k=1

σz
j+k.� (2)

https://doi.org/10.1088/1742-5468/aac443
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The Hamiltonian in equation (1) can be solved analytically by using the Jordan–
Wigner transformation [40]. Such transformation maps spin models into a system made 
by non-interacting spinless fermions [23, 37, 43–45]. Applying the Jordan–Wigner 
transformation to equation (1), after some algebras, we obtain

H
(n)
φ = J cos(φ)

∑
j

(
c†jcj+n+1 + c†jc

†
j+n+1 + h.c.

)

− J sin(φ)
∑
j

(
2c†jcj − 1

)
,

�
(3)

where ci (c
†
i ) it the operator that annihilate (create) a spinless fermions on the site i.

At first sight, the fermionic Hamiltonian in equation (3) is very close to the one 
obtained applying the Jordan–Wigner transformation to the quantum Ising model 
in the external field [44]. The main dierence is that, while in the second case, 
each interaction term involves two fermionic sites at distance 1, in the present case 
the interactions is realized between sites at distance n  +  1. One can be tempted 
to re-arrange the dierent terms in such a way that the model under analysis can 
be seen as a set of n  +  1 independent fermionic systems with interaction between 
nearest sites. But this re-arrangement does not take into account the fact that the 
Jordan–Wigner transformations strongly depends on the order of the operators. 
Hence, if we imagine to re-organize the fermionic sites and then invert the Jordan 
Wigner transformation, we will obtain a spin model completely dierent from the 
starting one.

2.1. Ground state and energies

The fermionic Hamiltonian in equation  (3) can be easily diagonalized performing a 
Fourier transform in the momentum space where the system can be written as the sum 
of N/2 non interacting terms

H
(n)
φ =

∑
k>0

H̃
(n)
φ,k

H̃
(n)
φ,k = 2ıδ

(n)
φ,k

(
b†kb

†
−k − b−kbk

)
+ 2ε

(n)
φ,k

(
b†kbk + b†−kb−k − 1

)
.

�
(4)

Each terms H̃
(n)
φ,k act only on fermions with momentum k and/or  −k with k = πl/N and 

l  <  N positive integer. The parameters δ
(n)
φ,k and ε

(n)
φ,k are given by

δ
(n)
φ,k = J sin ((n+ 1)k) cosφ,

ε
(n)
φ,k = J (cos ((n+ 1)k) cosφ+ sinφ) .

�
(5)

Since the Hamiltonian is the sum of terms acting on dierent Hilbert space, the 
ground state of the total Hamiltonian will be the tensor product of the ground states 

of the dierent H̃
(n)
φ,k, i.e.

|ψ(n)
φ 〉 =

⊗
k

|ψ(n)
φ,k〉.� (6)

https://doi.org/10.1088/1742-5468/aac443
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The local ground state |ψ(n)
φ,k〉 is given by

|ψ(n)
φ,k〉 = α

(n)
φ,k |1k, 1−k〉+ β

(n)
φ,k |0k, 0−k〉,� (7)

with the parameter α
(n)
φ,k and β

(n)
φ,k equal to

α
(n)
φ,k = ı

ε
(n)
φ,k − E

(n)
φ,k√(

δ
(n)
φ,k

)2

+
(
ε
(n)
φ,k − E

(n)
φ,k

)2
,

β
(n)
φ,k =

δ
(n)
φ,k√(

δ
(n)
φ,k

)2

+
(
ε
(n)
φ,k − E

(n)
φ,k

)2
,

�

(8)

and an associated energy equal to

E
(n)
φ,k = −2

√(
δ
(n)
φ,k

)2

+
(
ε
(n)
φ,k

)2

.� (9)

It is extremely relevant to note that while α
(n)
φ,k is an imaginary number β

(n)
φ,k is a real 

one. This property will play a fundamental role when we will determine the spin cor-
relation functions.

Accordingly with the fact that the ground state of the system is the tensor product 
of states defined on dierent Hilbert space, its energy can be would be the sum of the 
dierent energies. In the thermodynamic limit, replacing the sum with the integral, the 
expression of the energy density becomes

E
(n)
φ = −2J

π

∫ π

0

√
1 + cos((n+ 1)k) sin(2φ)dk.� (10)

The knowledge of the energy density of the ground state allows us to determine the 
presence of quantum phase transitions. In fact, in agreement with the general theory 
of continuous phase transitions at zero temperature, the divergence of the second 
derivative of the energy density, with respect to the Hamiltonian parameter, signals 

Figure 1.  Behavior of the second derivative of the ground state energy density 

E
(n)
φ,k, as function of φ, for n  =  1. The divergence is independent of n at the critical 

value φc =
π
4
 and corresponds to a vanishing energy gap between the ground state 

and the first excited state.

https://doi.org/10.1088/1742-5468/aac443
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the presence of a quantum critical point [5]. In figure 1, we plot the second derivative 
of the energy density as a function of the parameter φ. We can see that the second 
derivative of the energy density shows a divergence at φ = φc ≡ π/4, that results to be 
independent on n.

2.2. Fermionic correlations functions

From the knowledge of the ground state we can evaluate the spin correlation func-
tions. However, being the ground state in terms of fermionic variables, we have to 
transform the spin operator associated to the correlation function into a fermionic 
one. To make this transformations we introduce two dierent types of Majorana fer-
mionic operators, i.e.

Aj = cj + c†j and Bj = cj − c†j.� (11)

Any spin operator can be mapped into an ordered products of the two types of Majorana 
fermionic operators [45]. Moreover, accordingly with the Wick’s theorem [46], the 
expectation value of the tensor product of fermionic operators can be expressed in terms 
of the contractions involving only one- and two-body correlation functions. Considering 
the parity symmetry of the Hamiltonian, and hence of the ground state, the expecta-
tion value of a single Majorana operator vanish, i.e. 〈Ai〉 = 〈Bi〉 = 0 (here and in the 

following 〈O〉 is a shortcut for 〈ψ(n)
φ |O|ψ(n)

φ 〉). Moreover taking into account that in 

equation (8) one of the two coecients is real and the second is imaginary it is easy to 
prove that 〈AiAk〉 = −〈BiBk〉 = δik

These results play a key role when we evaluate the spin correlation functions and, 
consequently, of the entanglement measures. Indeed, at first, if a spin operator is 
mapped into an odd number of fermionic operators, its expectation value on the ground 
state of the system has to vanish. In fact, accordingly with the Wick’s theorem, it can be 
written as a linear combination of terms each one of them include the expectation value 
of a single Majorana operator that it is always zero. This is the case of spin correlation 
functions which operator does not commute with the parity along z, i.e. Pz =

⊗
i σ

z
i . 

Moreover, also a spin operator that are mapped in fermionic one with a dierent num-
ber of Ai and Bi operators has to vanish due to the fact that 〈AiAk〉 = 〈BiBk〉 = 0. This 
is the case of operators with am odd number of σx

i  or σy
i  operators which correlation 

function vanishes, independently on the set of Hamiltonian parameters, even if the 
operator commutes with the parity operator along the z spin direction. Therefore the 
only spin correlation functions that are not identically zero are those that can be writ-
ten in terms of functions Gi,k(n,φ) ≡ 〈BiAk〉.

The functions Gi,k(n,φ) depends on the two sites on which they are evaluated. 
However, because we are considering models that are invariant under spatial transla-
tion, they have to depend only on the relative distance r  =  i  −  k and not on the precise 
choice of the site i and k, i.e. Gi,k(n,φ) = Gr(n,φ). With a small algebra, taking into 
account equations (6) and (7), in the thermodynamic limit, we obtain for Gr(n,φ) the 
following expression

Gr(n,φ) =
1

π

∫ π

0

cos(k(n+ 1 + r)) cosφ− cos(kr) sinφ√
1 + cos((n+ 1)k) sin(2φ)

dk.� (12)

https://doi.org/10.1088/1742-5468/aac443
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Defining I( p) as

I( p) =
1

2π

∫ 2π

0

cos(kp)√
1− sin(2φ) cos(k(n+ 1))

dk� (13)

the fermionic correlation functions Gr(n,φ) can be written as

Gr(n,φ) = cos(φ)I(n+ 1 + r) + sin(φ)I(r).� (14)
The introduction of the function I( p) allows us to prove an important properties of 
Gr(n,φ). In fact, taking into account the periodicity of the integrand in the equa-
tion (13), we have that I( p) can be rewritten as

I( p) =
1

2π

n∑
l=0

∫ 2π
n+1

0

cos(kp) cos(2πlp
n+1

)− sin(kp) sin(2πlp
n+1

)√
1− sin(2φ) cos(k(n+ 1))

dk.

But the sum 
∑n

l=0(cos(kp) cos(
2πlp
n+1

)− sin(kp) sin(2πlp
n+1

)) is non zero if and only if 

p = (n+ 1)m where m is an integer (positive or negative). Hence I( p) is non zero if 
and only if p = (n+ 1)m. Consequently also Gr(n,φ) is non vanishing if and only if 
r = m(n+ 1) where m in an integer.

2.3. Spin correlations functions

From the knowledge of the Gr(n,φ) we can evaluate all the correlation functions. Let 
us make some consideration about the main ones. To begin, let us consider the magne-
tization along z that it is equal to 〈σz

i 〉 = −G0(n,φ). The presence of the external field 
along the z axis induces, on the contrary of the models in [23] a non vanishing magne-
tization that is always dierent from zero, for all possible values of φ �= 0 and for all n. 
Moreover, in the same direction, the two-body correlation function can be written as

〈σz
i σ

z
i+r〉 = G2

0(n,φ)−Gr(n,φ)G−r(n,φ),� (15)

and hence for r �= m(n+ 1) it factorizes in the product of the two magnetizations, i.e. 
〈σz

i σ
z
i+r〉 = 〈σz

i 〉2 ∀r �= m(n+ 1) .
On the other side the expression of the correlation functions 〈σx

i σ
x
i+r〉 and 〈σy

i σ
y
i+r〉 

are more complex. With some algebra [45] it is easy to prove that they can be written, 
in terms of the Gr(n,φ), respectively as the determinant of the following matrices




G−1(n,φ) G−2(n,φ) · · · G−r(n,φ)

G0(n,φ) G−1(n,φ) · · · G1−r(n,φ)
...

... . . . ...
Gr−2(n,φ) Gr−3(n,φ) · · · G−1(n,φ)


� (16)




G1(n,φ) G2(n,φ) · · · Gr(n,φ)

G0(n,φ) G1(n,φ) · · · Gr−1(n,φ)
...

... . . . ...
G2−r(n,φ) G3−r(n,φ) · · · G1(n,φ)


 .� (17)

https://doi.org/10.1088/1742-5468/aac443


n-cluster models in a transverse magnetic field

9https://doi.org/10.1088/1742-5468/aac443

J. S
tat. M

ech. (2018) 063103

Taking into account that the fermionic correlation functions Gr(n,φ) for all r �= l(n+ 1) 
vanish, it is easy to prove that

〈σx
i σ

x
i+r〉 = 〈σy

i σ
y
i+r〉 = 0.� (18)

Instead for r = l(n+ 1) both the two correlation functions are dierent from zero and 
in the very relevant case in which l  =  1 and hence r  =  n  +  1, we obtain that

〈σx
i σ

x
i+n+1〉 = (−1)n G−(n+1)(n,φ) G0(n,φ)

n,

〈σy
i σ

y
i+n+1〉 = (−1)n G(n+1)(n,φ) G0(n,φ)

n.� (19)

In the limiting case of the quantum Ising model in the transverse field that we obtain 
setting n  =  0, the equation (19) reduces at the well known expression of the spin cor-
relation functions obtained in [45].

3. Phase diagrams and order parameters

As we have seen in section 2.1, the presence of a divergence in the second derivative 
of the ground state energy density signals that, regardless the value of n, in the ther-
modynamic limit the models undergo to a quantum phase transition at φ = φc ≡ π/4. 
However, the presence of such divergence does not provide any information about the 
kind of phases that are realized in the system before and after the quantum critical 
point. To make this analysis let us rewrite the Hamiltonian in equation (1) by using 

well tailored cluster operators. Such operators, that we named O(n)
j  are defined as

O(n)
j =

{(⊗ j−n−1
k=1 σz

k

)
σy
j−nσ

x
j−n+1 · · · σ

y
j−1σ

x
j odd n

σx
j σ

y
j+1σ

x
j+2 · · · σx

j+n even n
.� (20)

Figure 2.  Behavior of the expectation value 
〈
O(n)

j O(n)
j+r

〉
, for n  =  1 and 

r = 3, 6, 9, 12, 15, as a function of the phase parameter φ: green dots (upper curve) 
r  =  3, blue up-triangles r  =  6, red down-triangles r  =  9, magenta squares r  =  12 
and black stars (lower curve) r  =  15. As r increases, the expectation value tends to 
disappear in the paramagnetic phase while it remains finite in the cluster phase.
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The main dierence between the two dierent cases, i.e. even and odd n, is that the 

operators O(n)
j  are defined, when n is even, on a finite support made by n  +  1 contigu-

ous spins while for odd n the dimension of support depends on the site and in the 

thermodynamic limit diverges with N. However, regardless to n, the operators O(n)
j : (1) 

satisfy the commutation relation [O(n)
j ,O(n)

k ] = 0 ∀j, k; (2) admit two dierent eigen-

values, namely ±1, both of them with a degeneracies equal to 2n; (3) do not commute 
with the parity along z.

By using these operators we can rewrite the Hamiltonian of equation (1) as

H
(n)
φ = −J cos(φ)

∑
j

O(n)
j O(n)

j+1 + J sin(φ)
∑
j

σz
j .� (21)

Let us set, for a moment, φ = 0. In this case, taking into account the commutation 

relation [O(n)
j ,O(n)

k ] = 0, the Hamiltonian will admit several factorized ground states, 

all of them characterized by the fact that 〈O(n)
j O(n)

j+1〉 = 1 and 〈O(n)
j 〉 = ±1. Taking into 

account that O(n)
j  does not commute with the parity, the fact that 〈O(n)

j 〉 = ±1 signals 

the presence of an ordered phase and makes the expectation value of the operator O(n)
j  

the main candidate to play the role of the order parameter.
This picture is strengthened if we look at figures 2 (n odd) and 3 (n even) in which 

we plot the expectation values of 
〈
O(n)

j O(n)
j+r

〉
 as a function of φ, by varying r. From the 

two figures, we observe that, as r increases, these expectation values tend to disappear 
for φ > φc, while they remain finite in the cluster phase, making

〈O(n)
j 〉 = lim

r→∞

√〈
O(n)

j O(n)
j+r

〉
� (22)

an excellent order parameter to describe the kind of phase realized in the system.

Figure 3.  Behavior of the expectation value 
〈
O(n)

j O(n)
j+r

〉
, for n  =  2 and 

r = 3, 6, 9, 12, 15, as a function of the phase parameter φ: green dots (upper curve) 
r  =  3, blue up-triangles r  =  6, red down-triangles r  =  9, magenta squares r  =  12 
and black stars (lower curve) r  =  15. As r increases, the expectation value tends to 
disappear in the paramagnetic phase while it remains finite in the cluster phase.
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However, as we saw in equation (20), passing from even n to odd one the structure 

of the O(n)
j  operators changes significantly. This implies that, depending on the par-

ity of n, we have two dierent kinds of order. When n is even we have the so-called 
nematic order (which behavior for several n is shown in figure 5), that is an order that 
can be seen as the generalization of the standard magnetic order usually founded in 
spin models with interaction between neighboring spins as the Ising model. As for the 
standard magnetic order, the presence of a nematic order implies the existences of 
ground states that can brake at least one symmetry of the Hamiltonian. Both of them 
can be characterized by an order parameter that has a finite support but, while in the 
magnetic order it coincides with a single spin, in the nematic case the support is strictly 
greater than one. On the other hand, when n is odd we have that in the system a 

Figure 4.  Behavior of the string order parameter S
(n)
j , for several n, as a function 

of the phase parameter φ: green dots (upper curve) n  =  1; blue up-triangles n  =  3; 
red down-triangles n  =  5; magenta squares n  =  7; black stars (lower curve) n  =  9. 
The dots represent the numerical results whereas the curves correspond to the 
behavior of the string order parameter S(n) defined in equation (23).

Figure 5.  Behavior of the nematic order parameter B
(n)
j , for several n, as a function 

of the phase parameter φ: green dots (upper curve) n  =  2; blue up-triangles n  =  4; 
red down-triangles n  =  6; magenta squares n  =  8; black stars (lower curve) n  =  10. 
The dots represent the numerical results whereas the curves correspond to the 
behavior of the nematic order parameter B(n) defined in equation (23).
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symmetry protected topological order is realized (which behavior for several n is shown 
in figure 4). As in the standard topological order, that cannot be realized in a 1D spin-
1/2 model [47], two distinct topological states cannot be smoothly deformed into each 
other without a phase transition, if the deformation preserves the symmetry. However, 
dierently from the true topological ordered phase they all can be smoothly deformed 
into the same trivial product state without a phase transition, if the symmetry is bro-
ken during the deformation.

Analyzing the numerical data obtained for both order parameters S(n)
j  and B(n)

j , we 

find finally the same dependence on n and φ, i.e.

S(n) =
(
1− tan(φ)2

)n+1
8 ,

B(n) =
(
1− tan(φ)2

)n+1
8

�
(23)

from which we deduce the critical exponent β

β = β(n) =
n+ 1

8
.� (24)

The fact that the critical exponent β depends on n point out that the models under 
analysis fall, depending on n, into dierent classes of symmetries. For n  =  0 we recover, 
as expected, the critical exponent for the Ising class of symmetries (Z2) and also the 
block order parameter becomes equal to 〈σx

i 〉, i.e. the standard magnetic order param
eter that signals the presence of an ordered phase for that class of models. To determine 
the classes of symmetries for the model with n  >  0 is more complicated because we 
have to analyze each single case separately. However as we will see better in section for 
n  =  2 we can provide a simple answer using the analogy with the cluster-Ising model 
analyzed in [37].

On the contrary, above the quantum critical point, i.e. φ > φc, the system is domi-
nated by the external magnetic field. In such a phase, there is no order parameter and 
the system is in a typical paramagnetic phase.

4. The entanglement properties

Let us now begin to analyze the dierent entanglement properties of our family of 
models. We focus on two dierent kind of entanglement. The first is the entangle-
ment between dierent spins in a block of the chain, the second is the entanglement 
between the block of spins and the rest of the system. The starting point to analyze 
both of them is the reduced density matrix obtained, from the ground state, trac-
ing out all the degrees of freedom of the spins outside the block of interest. Such 
reduced density matrix can be written in terms of the m-point spin correlation 
functions [48] as

ρ(n)m =
1

2m

∑
α1,...,αm

〈σα1
1 σα2

2 · · · σαm
m 〉σα1

1 σα2
2 · · · σαm

m ,� (25)
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where αi = 0, x, y, z and σ0
i  denotes the identity matrix.

4.1. Entanglement between two spins

For what concerns the entanglement between two spins in a block, we can prove the 
following theorem:

Theorem 1.  If the distance r between the two spins is not an integer multiple of n  +  1 
the two spins are not entangled.

Proof.  To proof the theorem is it enough to recall the results obtained in section 2.3, 
for the spins correlation functions. In fact, in agreement with equation (25), the 2-spin 
reduced density matrix can be written as a linear composition of single-body and two-
body spin correlation functions. For what concern the single-body correlation functions, 
we have that 〈σx

i 〉 = 〈σy
i 〉 = 0, because of the properties of the Majorana fermionic op-

erators 〈Ai〉 = 〈Bi〉 = 0. On the other hand, for what concern the two-body correlation 
functions, all the functions that involve dierent spin operators vanish in agreement 
with the fact that 〈Ai〉 = 〈Bi〉 = 0 and 〈AiAj〉 = 〈BiBj〉 = δi,j. Thus, the two spin re-
duced density matrix depends on four dierent correlation functions only: 〈σz

i 〉, 〈σx
i σ

x
i+r〉, 

〈σy
i σ

y
i+r〉 and 〈σz

i σ
z
i+r〉. However, as we have proved in section 2.3 if r �= l(n+ 1) where l 

is an integer than 〈σx
i σ

x
i+r〉 = 〈σy

i σ
y
i+r〉 = 0. Hence the reduced density matrix depends 

only on 〈σz
i 〉 and 〈σz

i σ
z
i+r〉 and therefore is diagonal in the base of the eigenstates of σz

i  
and σz

i+r. But this base is made by state that are tensor product of states defined on 
a single spin. Being diagonal in a base made by states that are tensor product of local 
states, the reduced density matrix cannot be entangled. QED� □ 

On the contrary, when r = l(n+ 1), since 〈σx
i σ

x
i+r〉 �= 0 and 〈σy

i σ
y
i+r〉 �= 0, and hence 

there can be a region of the Hamiltonian parameters for which the two spins are 

entangled. We quantify such entanglement in terms of the concurrence C(ρ
(n)
2 ) [42, 49]. 

In figure 6, we plot C(ρ
(n)
2 ) as a function of the phase parameter φ, for l  =  1 and hence 

r  =  n  +  1 for several n. Regardless n the dierent concurrences show a similar behavior. 
With the single exception of n  =  1 they are dierent from zero in a region confined in 

Figure 6.  Dependence of the concurrence C(ρ
(n)
2 ) as function of the phase parameter 

φ, for r  =  n  +  1 and dierent n that runs from 1 (highest curve) to 8 (lowest curve). 
Note that only for n  =  1 concurrence is non-zero before the critical point.
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the paramagnetic phase, increase up to a maximum value, and vanishes at φ = π/2 
where all the systems admit a factorization point [16–18]. Increasing n, the concurrence 
becomes smaller and smaller and the relative maximum goes towards higher value of φ. 
On the contrary, for all l  >  1 numerical evaluation shows that all the concurrences are 
identically zero. Therefore, the entanglement is always limited between the spins at the 
end points of a cluster term.

It is interesting to compare the behavior of the concurrences between the two 
spins at the ends of the cluster term in our model with the one, well known, between 
neighbors spins of an Ising model in the transverse field [2, 3, 48]. The comparison 
shows some similarity but also some relevant dierences. For what concern the 
similarity, we have that also the concurrence between next neighbors spins in the 
quantum Ising model is characterized by a local maximum in the paramagnetic 
phase just before the phase transition and by an annulment at the factorization 
point at φ = π/2. But in the magnetic phase of the Ising model, which takes the 
place of the cluster phase because the cluster term becomes a normal two-body 
interaction, is always characterized, with the exception of φ = 0 (factorization point 
of the magnetically ordered phase) by a non-zero concurrence. Moreover, even if 
only in a small region of the parameters around the critical point, the Ising model 
has also a non-zero entanglement between next neighbors spins that has no equiva-
lent in the models with n � 1 [2].

4.2. Genuine multipartite entanglement

For what concern the genuine multipartite entanglement, we prove the following 
theorem:

Theorem 2.  For each block made by m adjacent spins, with m � n+ 2, there is no 
genuine multipartite entanglement.

Proof.  The proof is based on the fact that, following the definition of the genuine 
multipartite entanglement for a mixed state, it must be impossible to find a decompo-
sition of the reduced density matrix in states that show only entanglement between a 
couple of spins.

To start our proof, let us consider a block made by m  =  n  +  2 adjacent spins. 
The reduced density matrix on such a block can be written in terms of the spin 
correlation functions and, in turn, all the spin correlation functions must be 
written in terms of the Gr(n,φ) functions. Taking into account the results of sec-
tion 2.2 and the fact that the maximum distance between the two spins in the 
block is n  +  1, the reduced density matrix depends only on three dierent fermi-
onic correlation functions: G0(n,φ), Gn+1(n,φ) and G−n−1(n,φ). Therefore, the only 
spin correlation functions dierent from zero are the ones that are diagonal in the 
natural base or that are associated to an inversion of the two spins at the end of 
the block. Hence, in the natural base, the reduce density matrix can be written 
as a convex combination

ρ
(n)
n+2 =

∑
i

pi

( ⊗
k=2,n+1

χi,k

)⊗
χi,1,n+2,� (26)
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where χi,k is a state defined on the kth spin of the block and χi,1,n+2 is a state (entangled 
or not) defined on the two endpoints of the block. In other words, the reduced density 
matrix can be written as a linear combination of states that, with the only exception 
of a possible bipartite entanglement between the two endpoints of the block, are fully 
factorized. In such state it comes immediately that any multipartite entanglement has 
to vanish.

If now we consider a block made by m  =  n  +  1 adjacent spins, we have that the 
reduced density matrix can be obtain by equation  (26) tracing out one of the two 
endpoint spins. Thus, we obtain a reduced density matrix that is a linear convex com-
bination of fully disentangled states and hence it does not admit any entanglement. 
continuing this reasoning we can prove that also any subsystem made by m  <  n  +  1 
spins cannot show multipartite entanglement. QED� □ 

Because of the well known problem of the lack of a general closed formula for the 
genuine multipartite entanglement, it is impossible to prove analytically that such 
absence of genuine multipartite entanglement extends also at subsets made by more 
than m  +  2 spins. To flank this problem we made some numerical simulations, based on 
the criterion developer in [24, 25]. Unfortunately, this criterion, like others developed 
with the same goal, is sucient but not necessary. In other words, if the criterion is 
verified, we have a proof of the presence of genuinely multipartite entanglement, but if 
it is not verified, the criterion does not provide any answer. In all our numerical simu-
lations with several m � n+ 2 with n � 1 the criterion has never been verified. This 
leads us to think that the absence of multipartite entanglement also extends to blocks 
larger than n  +  2.

It is interesting to make a comparison with the results reported in [23], for the 
n-cluster Ising models, where, on the contrary, there is no bipartite entanglement 
but a significant value of genuine multipartite entanglement evaluated with the so 
called generalized concurrence [50–52]. Comparing these two results, and taking into 
account the proof of the presence of genuine multipartite entanglement in the xy-
model [20, 21], we may counter-intuitively conclude that a fundamental requirement 
to have multipartite entanglement is the presence, in the Hamiltonian, of a simple 
Ising-like interaction. The presence of a cluster interaction decreases the total value 
of the entanglement in the system and allows to separate the bipartite and multipar-
tite contributions in a way that has no equivalent with the more common two-body 
interactions. This opens up countless applications, for cluster models, in the field of 
quantum computing. To give an example, the fact that, setting n  =  1, in our models 
the bipartite entanglement extends also to cluster phase and the three-partite entan-
glement make the same in the cluster-Ising model [22], open the possibility to convert 
bipartite to multipartite entanglement, and vice versa, using the adiabatic deforma-
tion of the ground state [54].

4.3. Block entanglement

Let us now analyze the entanglement between a block of m adjacent spins and the rest 
of the chain in the quantum critical point φ = π/4 that is related to the holomorphic 
and anti-holomorphic sectors in conformal field theory [10].
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For this purpose, we compute the von Neumann entanglement entropy [53] of the 
reduced density matrix of a block of m spins

S(ρ(n)m ) = −Tr
[
ρ(n)m log2(ρ

(n)
m )

]
.� (27)

Using the methods developed in [7, 8], we find

S(ρ(n)m ) =
m∑
j=1

HShannon

(
1 + ν

(n)
j

2

)
,� (28)

where HShannon(x) is the Shannon entropy

HShannon(x) = −x log2(x)− (1− x) log2(1− x),� (29)

and ν
(n)
j  are the imaginary part of the eigenvalues of the matrix(

Γ(n)′
)
ij
= δij − ı

(
Γ(n)
m

)
ij
,� (30)

with

Γ(n)
m =




Π
(n)
0 Π

(n)
−1 · · · Π

(n)
−m+1

Π
(n)
1 Π

(n)
0 · · · Π

(n)
−m+2

...
... . . . ...

Π
(n)
m−1 Π

(n)
m−2 · · · Π0




,� (31)

and

Π(n)
r =

(
0 Gr(n,φ)

−G−r(n,φ) 0

)
.� (32)

Figure 7.  Behavior of the von Neumann entropy S(ρ
(n)
m ), as a function of the size 

m of the block, for dierent values of size n  +  2 of the cluster. The value of n runs 
from 1 (lowest black curve) to 8 (highest violet curve). Independently of n, the von 
Neumann entanglement entropy diverges, at a quantum critical point φc = π/4, as 
a logarithmic function of m.
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We evaluate numerically the von Neumann entanglement entropy as a function of 
the size of the block, at the critical point φ = φc (see figure 7). Analyzing the data, we 
deduce that the von Neumann entropy obeys to the following logarithmic law

S(ρ(n)m ) � 0.17(1 + n) log2 m+ const(n).� (33)

The multiplicative constant in front of the logarithmic term is known to be related to 
the central charge of the 1  +  1 dimensional conformal field theory, that describes the 
critical behavior of the chain via the relation [6]

Sm =
c+ c

6
log2 m,� (34)

where c and c are the central charges of the so-called holomorphic and anti-holomor-
phic sectors [10]. Due to the existence of a duality in the system, we have that c = c 
and hence

c = c(n) � 0.51(1 + n).� (35)
As for the β critical exponent analyzed in section  3, two quantum 1D systems 

belonging in the same universality class have the same central charge. Hence the fact 
that the central charge of the n-cluster models in a transverse magnetic field depends 
on n, implies that they fall into dierent universality classes. Taking into account 
the unavoidable approximations of the numerical approach, the result reported in 
equation (35) for n  =  0 is compatible with the central charge obtained for the Ising 

model that is equal to 1
2
. Moreover settings n  =  2 we obtain a central charge equal to 

c = 1.51 and from equation (24) a critical exponent β = 3
8. These two values are com-

patible with the ones obtained in [37] for the cluster-Ising model (respectively c = 3
2
 

and β = 3
8). Hence the cluster-Ising model and the 2-cluster model in the external field 

lives in the same universality class that is the one characterized by a Z2 × Z2 sym-
metry [37].

5. Conclusions

In summary, we have analyzed a family of fully analytically solvable models, named 
n-cluster models in a transverse magnetic field. These models are characterized by a 
many body cluster interaction competing with a spatially uniform transverse magn
etic field. Using the Jordan–Wigner transformations, we diagonalized the models and 
proved that their classes of symmetry depends on n. For n  =  0 our system reduces to a 
quantum Ising model and it falls in the Z2 symmetry class, while for n  =  2 the system 
lives in the Z2 × Z2 universality class. Regardless the value of n, a phase transition 
always occurs exactly when both interactions are equally weighted. The paramagnetic 
phase, realized for φ > φc, shows a very similar behavior for all n. On the contrary, 
the cluster phase, realized for φ < φc, exhibits two dierent orders, depending on n. 
For odd (even) n, we have a symmetry-protected topological ordered phase (nematic 
ordered phase) in perfect agreement with the results obtained in [23]. In the case in 
which n  =  0 the model reduces to a standard Ising model and the nematic parameters 
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reduces to the standard magnetic one. The presence of these two important novel 
phases candidate the n-cluster model in the external field as an interesting toy model 
to study hot topics of the current research, such as the presence of global entanglement 
[55] or the eects of a sudden quench of the Hamiltonian parameters [19, 56].

In complete contrast with the results obtained for the n-cluster Ising models, 
any multipartite entanglement seems to vanish, while the bipartite entanglement, 
quantified in terms of the concurrence between two spins at a distance n  +  1, is 
dierent from zero in a region that is confined, with the only exception of n  =  1, in the 
paramagnetic phase. The fact that for n  =  1 a non vanishing concurrence can be found 
also in the symmetry protected topological phase is extremely relevant. In fact, taking 
into account that also in the cluster-Ising model [22] the three partite entanglement is 
non zero in the topological phase it is possible to convert bipartite entanglement into 
genuine three-partite entanglement, and vice versa, using adiabatic deformation of 
the ground stats. Moreover, our family of solvable models admits, for large n, a very 
large central charge and hence can be used to test the accuracy of the conformal block 
expansion [57].

This family of models can be generalized with respect to higher dimensions, both in 
space and degrees of freedom, and may become a prototype for studying the possible 
applications of quantum information tasks.
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