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Key words: optical thin metal films, electron damping, Cu/Au and Au/Ag multilayers, Drude-Sommerfeld model

∗ Corresponding author: e-mail Stefano.Mezzasalma@irb.hr, Jordi.Sancho.Parramon@irb.hr

A combination rule for electron (e−) damping in multilayer thin metal films is derived from a mean-field pic-
ture and is applied to optical experimental data. The overall coefficient obeys a parallel law of pure materials
damping, 〈γ〉−1 = g

A
γ−1

A
+ g

B
γ−1

B
(gi < 1), chemical specificity being involved by averaging over densities of

low energy states in the free e− model. Geometric and static electromagnetic features of single layers couple
via small Fermi’s energy fractions (αi). An application is developed for thin Cu/Au and Au/Ag films, showing
an apparently irregular damping trend in the film thickness (di = 2.5 − 7.5 nm). The inferred 〈γ〉’s agree in
both cases with our data when |αi| ≈ 10−2 ÷ 10−3 linearly increases with decreasing di, suggesting a coupling
phenomenology that can bring new insights in the optics and plasmonics of nanostructures.
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Bimetallic systems are the subject of relevant nanoscience
investigations, among which the optical response of nanos-
tructures of group 11 noble metals, e.g. Au, Ag, Cu [1–3].
Their polarizability, promoted by d10 electrons (e−) and
large free e− densities, entitle them to be the preferred
candidates for plasmonics applications in the visible light
spectrum. Alloyed nanomaterials can show functionali-
ties (e.g. catalysis, energy storage and optics) lying be-
yond those of their constituents, as the e− binding and
charge distributions in the alloy alter the electronic (sur-
face) properties of pure metals and, accordingly, their
chemical behavior [4,5]. To improve the versatility of
plasmonic materials, the surface plasmon resonance char-
acteristics thus are engineered by combining (i.e. alloying,
layering, intermixing) metal particles of different kinds [6,
7]. By focusing on layered systems, core-shell nanoparti-
cles were shown to provide superior Raman enhancement
[8], improved antibacterial properties [9] and larger tun-
able chiral response [10] than nanoparticles made by pure
materials. Segregated bimetallics or Janus nanoparticles
then offer a highly tailorable optical response, as it comes
from their geometric and chemical asymmetry [11], and
improved electrocatalytic features [12]. Apart from their
use as optical coatings in X-ray spectral ranges [13,14],
2-dimensional bimetallic multilayer systems can jointly

furnish mechanical and electrical features that are unattain-
able with pure materials [15]. Optical features of metal
films depend on deposition history, thickness, strains, grain
size, texture and crystallinity degree [16]. This uncertainty
implies the relative permittivity of mixtures to be measured
at specified compositions, and afterwards compared to the
available models [17]. Four are the main levels at which
metals can be modeled: perfect conductors, dispersive ma-
terials, dissipative materials within classical Drude’s model
[18] and extended Drude’s model [19], when the carrier
lifetime is frequency-dependent. Drude’s theory, thus, still
applies in many cases to model the low-frequency absorp-
tion domain, affording a straightforward explanation of
ion core-e− interactions by an effective e− mass and the
sign of carrier charges [20]. Modeling dielectric proper-
ties of material mixtures, however, may become a tough
task. Effective medium approximations alone may be used
[21], provided the sizes of mixing phases are smaller than
the light wavelength, but are large enough to preserve
the dielectric information of reference media. In alloys,
they disregard possible structural changes and therefore
fail even though permittivity values of pure metals are ac-
curately known beforehand [1]. Dielectric functions are
unpredictable too from composition-weighted averages of
pure constituents, as it was shown for Au/Ag [22,23]. In
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well-separated layered media, effective medium theories
may be affected by non-locality and size confinement [24].
This work focuses on the effective e− damping in thin
multilayer metal films. Damping is the most critical pa-
rameter ultimately determining the quality factor in many
optics and plasmonics applications [25,26]. By combin-
ing a mean-field view with the free e− model, the overall
behavior fulfills a parallel combination rule of pure mate-
rials coefficients, as here it is tested for Cu/Au and Au/Ag.
Theories linking mesoscopic to microscopic/atomic scales
well suit condensed matter investigations such as polariza-
tion, dielectric [27–29], flow [30] and solid-state properties
[31]. This picture can allow a quantitative analysis of non-
local processes in bimetal samples, fruitful to study and
design plasmonic devices relying on thin layered media.

Experimental Two types of multilayer structures
were produced and studied, Cu/Au and Au/Ag. Optical
features of all pure materials are nicely described by
Drude’s model in spectral regions for photon energies
< 1.5 eV [32], where interband transitions are absent and
e− damping coefficients follow from optical spectroscopy
methods in the near-infrared range [33]. Due to good wet-
ting properties, Cu is less prone than Ag and Au to form
islands when it is deposited onto a dielectric or semicon-
ductor surface [34]. To improve Au wetting, substrates
were precoated by a 5 nm thick Cr layer [35]. By using
electron beam evaporation, a number of Cu/Au and Au/Ag
multilayers were deposited on a silicon wafer, Si(100),
comprising 5 pairs of Cu/Au and Au/Ag layers with differ-
ent combinations of metal thicknesses. Depositions were
made in a modified Varian chamber with base pressure of
6× 10−7 Torr, where a quartz crystal controller monitored
the thickness of metal layers, growing with rate ≈ 1 Å/s.
Substrates weren’t preheated before deposition to prevent
from metal island formations and get compact films.

X-ray reflectivity (XRR) spectra (in Supporting Infor-
mation A) were detected to control the fabricated multi-
layer structures. They were carried out by a diffractometer
equipped with a Co X-ray tube and a position-sensitive de-
tector (Hecus PSD-50M) that was placed 500 mm from the
samples. XRR scans were obtained by measuring the inten-
sity of specularly reflected X-ray beams as a function of the
grazing incidence angle (ranging from 0◦ to 1.2◦ with step
0.003◦). In all examined multilayers, XRR data showed
Bragg peaks and oscillations that confirmed the structure
periodicity and thickness uniformity. Best fits were calcu-
lated by the standard Parratt algorithm taking roughness
into account according to Nevot and Croce [36], revealing
thickness values in close agreeement with those detected
by the quartz control and densities of layers agreeing as
well with their reference values.

Optical measurements allowed retrieving the effective
dielectric function and thickness of the whole multilayer.
Ellipsometric data were obtained in the spectral range
(275− 2175) nm by a J.A. Woollam V-VASE ellipsometer
at incidence angles of 65◦, 70◦,75◦. Dielectric functions
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Figure 1 Ellipsometric angles (symbols) and best fits (solid lines)
from a multiple-oscillator model for effective optical constants of
Cu/Au (5.0/5.0)5. Data for Au/Ag are illustrated in Supporting
Information B. Quality of this fit is representative of the two entire
data sets. Legends also report the incidence angle.

of composites followed from a multiple-oscillator model,
taking both interband transitions in the visible-UV spec-
tral range and low-energy Drude’s response into account
[34]. Data were best fitted by optimizing the dispersion
parameters minimizing the discrepancy among experimen-
tal and simulated spectra. This method is implemented by
the WVASE software and always led to excellent fits in
the entire spectral range. Figures 1 and 2 illustrate typical
responses for Cu/Au systems, Au/Ag’s being depicted in
Supporting Information B. The good fit quality in all cases
implies that multilayers can be well described by homo-
geneous media with effective optical constants, obeying
Drude’s model in the low-energy region (Fig. 2). Effective
thicknesses were set to the total multilayer’s.

A synopsis of relevant data is drawn in Table (1).
Drude’s plasma frequencies (ω

P
) did not show relevant

changes in all samples, with mean values 〈ω〉
P

= 8.62,
8.80 eV and relative % deviations ≈ 3.5, 2, respectively
in Cu/Au and Au/Ag. Optical parameters of pure metals
agree with former plasma frequency values and damping
coefficients of Au, Ag and Cu [37–40]. Owing to slightly
different deposition conditions, Au data turned out to dif-
fer in the two multilayer series. Note that samples may
exhibit an electromagnetically anisotropic behavior. Our
measurements, however, reflect the response to an electric
field directed parallelly to each multilayer structure. The
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Figure 2 Imaginary part of the effective dielectric function (ε) of
Cu/Au samples (Au/Ag’s is shown in Supporting Information B).

Table 1 Geometrical and Damping Data (k = bilayer number).

thicknesses (nm/nm)k Cu/Au (meV) Au/Ag (meV)
(35/0)1 136 96
(0/35)1 69 62
(5.0/5.0)5 196 120
(2.5/2.5)5 281 142
(7.5/7.5)5 168 98
(2.5/7.5)5 163 123
(7.5/2.5)5 138 110

continuity condition for displacement vectors at the air-
metal interface strongly attenuates the longitudinal field
component in the layer, as in metals the dielectric function
is large in most of the spectral range [41].

Theoretical Drude’s relation for charge displacement
in a metal i is a function of mass (mi), electric charge (qi),
damping coefficient (γi), electric field intensity (Ei) and
frequency (ω) as:

ri = − qiEi
miωi(ωi + iγi)

(1)

Equation (1) follows from a Lagrangian view for a dissi-
pative n-body system, with vector positions ri (i ≤ n) in
a region with external electric field (φ), classical potential
(U) and kinetic (K) energies, as well as Rayleigh’s dissipa-
tion function (D

R
). For n = 2 (i = A, B) [42]:
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Figure 3 Scheme of the mean-field approach, ψi, mi, qi, denot-
ing the i-th effective field attenuation (Eq. 9), mass and charge.

with total and reduced masses, M and m = m
A
m

B
/M ,

velocities of baricentre (r) and the position difference (r),
v = p

A
v

A
+p

B
v

B
(pi = mi/M ) and v = v

B
−v

A
(kc is

Coulomb’s constant). Overwritten symbols will mean on-
ward mass averages, in the fashion of v. Equation (1) stems
from Euler-Lagrange’s once electric fields Ei = Eie

−iωtet
and charge displacements ri = rie

−iωtet are adopted, Ei
being space-dependent and et denoting the unit vector in
transverse direction. For longitudinal Coulomb’s forces,
one gets in fact an equation system just solved by Eq. (1):(
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(5)

with Ωk/pk = iω(γk − iω) = ∓Ω̂k (k = A, B). Support-
ing Information C reports the main mathematical details.
On this basis, a mean-field approach is stated in the follow-
ing for e− damping in a bilayer of distinct metals. Geom-
etry is regarded infinite in the horizontal plane with thick-
nesses at the nanoscale, each layer carrying an overall mass
and charge (Fig. 3). As Drude’s model well reproduced all
data, no other dissipation source was added to D

R
to in-

clude e.g. mean free path constraints from interfaces or
grain boundaries [43]. Drude’s dielectric functions come
from inserting the (e−) charge displacement (ri) in the dis-
placement field by the polarization vector density. An akin
analysis can be made for overall displacements obeying a
weighted average like:

〈r〉 = %
A
r
A

+ %
B
r
B

(6)

its weights (%i) being defined through 〈r〉 = 〈r∗〉, where:

〈r∗〉 =
−qEr

Mω(ω + i 〈γ〉)
(7)

Now, overall charge, electric field and damping coefficient,
q, Er and 〈γ〉, can be linked to the same quantities in single
layers by suitable partitioning coefficients. Let ni be the i-
th e− density, charge fractions obey qi/q = piπi/π ≡ χi,
with πi = ni/ρi being the charge amount per unit mass
(ρ = mass density per unit volume). Field attenuations are
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equally needed in each layer, thus we define Ei/Er ≡ ψi.
Replacing such partition terms in Eq. (6) and Eq. (7) yields:

ϕ
A
ψ̂

A
+ ϕ

B
ψ̂

B
= ϕ (8)

with ϕi = piπ
2
i , ϕ = π2 and:

ψ̂i(ψi, ω) =
ω + i 〈γ〉
ω + iγi

ψi (9)

where ψi = ψ(di, ω) is function of the thickness di. Short
notes on the pure materials behavior in Eq. (8) are re-
ported in Supporting Information D. To express ψi, we re-
mind no static longitudinal fields establish in conducting
media without applied current densities. In good conduc-
tors, the lowest-order propagation vector in ωεi/σi � 1

is ki⊥ ≈ (1 + i)
√
µ̃iσiω/2, where ε is the dielectric per-

mittivity, σ is the electric conductivity, µ̃ is the magnetic
permeability [41]. As thicknesses relate to metal volume
fractions (di/dj → 0 iff pi → 0), pure materials responses
should be recovered as pi → 1 or di → ∞. A way to im-
pose this is through the field decay across each layer, i.e.
ψi(di, ω) ≈ 1 − e−Im{ki⊥(ω)}di , giving an intrinsic decay
contribution from layer i. If di → 0 then ψi → 0 and, cor-
respondingly, pi → 0 (and vice versa if di →∞).
To involve the individual metal features, Eq. (8) may be
averaged over the densities of occupied states Di = Di(ε)
[44,45], reminding that Drude’s intraband transitions are
low-energy’s. For any frequency function in the layer i,
Ii = Ii(ε/h̄) (h̄ = Planck’s constant), the operator:

〈Ii〉 =
Ci
ni

∫ ∞
0

DiIi(ε)dε (10)

is calculated to let the phenomenological behavior of each
damping contribution emerge from Eq. (8) i.e.:

ϕ
A

〈
ψ̂

A

〉
+ ϕ

B

〈
ψ̂

B

〉
= ϕ (11)

As temperature effects aren’t regarded here, the factor Ci
will normalize any thermal coefficient to recover the single
layer responses in all of the involved physical quantities. In
particular, Eq. (11) will be coupled to Drude’s low-energy
domain by resorting to Sommerfeld’s expansion [44]:∫ ∞

0

f
Di
Ii(ε)dε ≈

∫ µi

0

Ii(ε)dε +
π2

6
(k

B
T )2I ′i(µi)

(12)
where k

B
T is Boltzmann’s thermal factor, prime is the first

ε-derivative, f
Di

(ε, µi) is Fermi-Dirac’s distribution func-
tion with chemical potential µi, entering Di = Ae

√
εf

Di

with 2π2Ae = (2me/h̄
2)

3
2 (me = e− mass). Equation

(11) is averaged upon µi ≈ εiF (Fermi’s energy), valid at
low T , and introducing Fermi’s energy fractions through
δεi/εiF ≡ αi � 1. Calculations, reported in Supporting
Information E, return an overall damping coefficient of the
form:

g 〈γ〉−1 = g
A
γ−1

A
+ g

B
γ−1

B
(13)

with dimensionless coefficients:

gi =
ϕi
ϕ
α2
iλi
√
εiF , g ≡ α2λε

F
(14)

and where λi = di
√
µ̃iσi/2 is coupling the layer thickness

to electromagnetic features of each phase. Note that pure
dampings recover identically from Eq. (13) upon pi → 1.

Results and Discussion Equation (13) shows a par-
allel combination law for Drude’s e− damping in multi-
layer thin films. Coefficients can obey gi/ 〈g〉 < 1, a con-
dition allowing larger damping (smaller relaxation times)
from a parallel (series) rule. It quantitatively explain two
dissimilar data series, the first of which e.g. damping less
when Cu/Au = 7.5/2.5 and 2.5/7.5, than 7.5/7.5 and 5/5.
These trends aren’t anyway explained by effective medium
theories for metals, as optical parameters would range in
this case between pure materials values (see the numeri-
cal analysis in Supporting Information F). Qualitatively, a
close situation arises from thin alloyed materials (see e.g
[46] Au/Ag), in compliance with Matthiessen’s rule [47].
Dependence of weight coefficients on √ε

F
agree with the

prediction of larger damping with increasing Fermi’s ve-
locity, ∆γ ∼ v

F
/L [48,49] (L = length scale). Note that,

in original Drude’s assumptions, γ is independent of ε,
while the more realistic assumption of energy-independent
mean free path (scattering e.g. from lattice vibrations or
neutral impurities) would set γ ∝

√
ε [50]. The quantities

αi � 1 couple the sum over states to low energies, where
Drude’s response takes place. They specialize the analysis
by defining an energy slice for each metal. This approach
acts as an optical extrapolation for good conducting layers,
from very low to moderately low energies.
Our data, γ

A
= 136 meV, γ

B
= 69 meV and γ

A
= 96

meV, γ
B′ = 62 meV were taken as pairwise reference

states for Eq. (13) when A ≡ Au, B ≡ Cu and A ≡ Au,
B′ ≡ Ag. The combination law was rather responsive to
the physical parameters and carried out by resorting to well
established solid-state data [51,52,45,38], µ̃

A
= 1, µ̃

B
=

0.99999, µ̃
B′ = 0.99998; σ

A
= 58.8 S/µm, σ

B
= 45.5

S/µm, σ
B′ = 62.1 S/µm; n

A
= 59.0 nm−3, n

B
= 84.7

nm−3, n
B′ = 58.6 nm−3; ρ

A
= 19.28 g/cm3, ρ

B
= 8.96

g/cm3, ρ
B′ = 10.49 g/cm3; ε

AF
= 5.53 eV, ε

BF
= 7 eV,

ε
B′F = 5.49 eV. Then we obtain λ

A

√
ε
AF
≈ 0.49 d

A
,

λ
B

√
ε
BF
≈ 0.63 d

B
, λ

B′
√
ε
B′F ≈ 0.57 d

B′ with di de-
noting here the effective thickness in nm. On conforming
to the real sample geometries, di were set to 5 times the
values in Table (1). As all films grew at constant surface
area, mass probabilities read pi = ρidi/(ρA

d
A

+ ρ
B
d

B
)

(and identically in B′). Effective Fermi’s energy fractions
αi may depend on intensive and extensive film variables
coming from the statistical thermodynamics of bulk and in-
terface phases. To the authors’ knowledge useful analytical
expressions are unknown, but the orders of magnitude of
all αi must be small enough to preserve the validity of Eq.
(13). Fermi’s energies then should decrease with increas-
ing layer thickness [53], an influence getting more pro-
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Figure 4 Fermi’s energy fractions in Cu/Au and Au/Ag damping.

nounced as the size quantization level is approached. Ac-
cordingly, α-terms were coupled in each metal pair to obey
a linearly decreasing function of di, bearing in mind they
may stand for some lowest-order expansion of a more com-
plex dependence. To a good approximation, one has α

A
≈

(12.7−1.2 d
A

)·10−3, α
B
≈ (22−0.7 d

B
)·10−4 (Cu/Au),

α
A
≈ (12.8− 1.2 d

A
) · 10−3, α

B′ ≈ (25− 0.8 d
B

) · 10−4

(Au/Ag), each term multiplying di being nm−1. The found
αi vs. di (i = A,B; i = A,B′), once inserted in Eq. (13),
recover all damping energies in Table (1) with relative er-
rors < 2.5 · 10−4. Figure 4 suggests that αi may stand for
an optical solid-state property, since α

A
does not change

significantly in the two systems. Consistently with former
assumptions, and the orders of magnitude of Drude’s pa-
rameters, then we find αiεiF < γi and αiεiF << ωiP ,
with mean values α

A
ε
AF
≈ 37 meV (Au), α

B
ε
BF
≈ 13

meV (Cu), α
B′ εB′F ≈ 15 meV (Ag). Finally, to point out

another proof of consistency, a layer coupling interaction
u = u(|r|) was added to U in Eq. (2), distorting the dis-
placements into:

r∗i = − qiEi ± ∇ru⊥

miωi(ωi + iγi)
, (15)

∇ru⊥ ≡ et · ∇ru and the positive sign at the numerator
referring (conventionally) to A. For a coupling term 〈ti〉 ≡
±∇ru⊥/qiEi, Eq. (13) should be reconsidered upon:

g∗
A

= (1+〈t
A
〉)g

A
, g∗

B
= (1−〈t

B
〉)g

B
, g∗ = g∗(〈t

A
〉 , 〈t

B
〉)

(16)
In fact the former analysis for Cu/Au is formally equivalent
to set α∗

A
= 1.27 ·10−2, α∗

B
= 2.2 ·10−3 and

√
1± 〈ti〉 =

αi/α
∗
i , yielding 〈t

A
〉 ≈ (1−9.4·10−2d

A
)2−1 and 〈t

B
〉 ≈

1− (1− 3.2 · 10−2d
B

)2. Alike trends could be observed as
well for Au/Ag. This again emphasizes the role of chemical
specificity and the way nanolayers may couple via bulk or
surface interactions.

Conclusions e− damping in multilayer thin (Cu/Au
and Au/Ag) films was measured and interpreted by linking
a mean-field picture to the free e− model. The combination
rule of single coefficients is of the parallel type and coupled
to given Fermi’s energy fractions in each metal.
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