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We propose a new approach in the investigation and detection of axion and axion–like particles based 
on the study of the entanglement for two interacting fermions. We study a system made of two identical 
fermions with spin −1/2, and we show that fermion–fermion interaction mediated by axions leads to a 
non–zero entanglement between the fermions. An entanglement measurement can reveal the interaction, 
providing an indirect evidence of the existence of axions. We discuss how the other interactions affect 
the entanglement, and how to isolate the axion contribution. Particular care is devoted to the analysis 
of the magnetic dipole–dipole interaction, which turns out to be, apart from axions, the most relevant 
contribution to the entanglement, and we show that it can be suppressed by setting opportunely the 
duration of the observation. We also introduce a two–body correlation function, which could be directly 
observed in an experiment, and plays the role of an entanglement witness.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The standard model provides a simple explanation for a wide 
range of phenomena involving fundamental particles and their in-
teractions. In spite of its success, it does not represent the defini-
tive theory of elementary particles. Several phenomena, ranging 
from particle mixing [1–5] to the quantum features of gravita-
tion [6], are beyond the standard model. Among the shortcomings 
of the theory is the so–called strong CP problem in Quantum Chro-
modynamics (QCD) [7–9]. The QCD Lagrangian features a gluon–
gluon interaction term that in principle allows for an arbitrary 
violation of CP symmetry, whereas no such violation is observed 
in strong processes [7–11]. As a direct consequence of the CP 
violating term, one would expect a relatively large neutron elec-
tric dipole moment, which the recent experiments constrain below 
3 × 10−26 e cm (see [12] and, for a more recent result [13]). Simi-
lar bounds on the electric dipole moment of atoms and molecules 
[14,15] pose a further constraint on the magnitude of the CP vio-
lating term. To remedy this inconsistency, R. Peccei and H. Quinn 
introduced a new global symmetry U P Q (1) (called Peccei–Quinn 
symmetry) that is spontaneously broken [8,9]. As shown by Frank 
Wilczek and Steven Weinberg [10,11], this results in a new par-
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ticle, named the axion, which is the pseudo–Nambu–Goldstone 
boson of the broken U P Q (1) symmetry [16].

The scale at which the symmetry breaking occurs f A , known 
as the axion decay constant, determines, according to the model 
considered, both the axion mass ma ∝ 1

f A
and the effective cou-

plings with the standard matter. The original proposal considered 
f A close to the electroweak scale [9–11], a hypothesis that was 
later ruled out by the experiments. Soon alternative axion models 
were devised, notably the KSVZ model [17], featuring heavy quarks 
carrying a Peccei–Quinn (PQ) charge, and the DFSZ model [18], 
in which the ordinary quarks and additional Higgs doublets carry 
the PQ charge. They provide a reference for two large classes 
of axion models (hadronic and GUT axions). Today the axion de-
cay constant is estimated to be very large f A > 109 GeV, so that 
the QCD axions (both hadronic and GUT) have to be very light 
ma ∼ (10−6 − 10−2) eV and very weakly interacting [7]. These as-
pects make axions a natural candidate for dark matter.

Moreover, motivated by the search for dark matter components, 
a variety of Axion–like–particles (ALPs) has been introduced. They 
can deviate significantly from the original Peccei–Quinn proposal, 
and are not necessarily tied to the solution of the strong CP prob-
lem, but share the nature of axions and are weakly interacting 
with the standard matter. In these models the relation between 
the coupling constant and the mass of the ALP can differ from the 
direct proportionality that characterizes the PQ axions. They range 
from masses ma ∼ 10−22 eV, characteristic of the ultra–light ax-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ions [19,20], up to masses of 1 TeV for the heavy GUT axions [21]. 
Axions and ALPs are, to date, one of the most credible explanations 
for dark matter [22–25].

Driven by large theoretical interest, several experiments were 
designed to prove the existence of ALPs. Perhaps unsurprisingly, 
considered their extremely small interaction rates, the experimen-
tal search for ALPs has proven to be very challenging. Many ex-
periments take advantage of the axion–photon coupling. Among 
them, searches for polarization anomalies in the light propagat-
ing through a magnetic field (PVLAS) [26], “light shining through 
a wall” experiments (OSQAR, ALPS) [27–29], detection via the Pri-
makoff effect (CAST) [30], and haloscope experiments (ADMX) [31]. 
More recently other approaches based on geometric phases [32]
and QFT effects in the axion–photon mixing [33] were also sug-
gested. Astrophysical observations and terrestrial experiments over 
the decades have restricted the allowed regions in parameter 
space, and further constraints might come from the analysis of the 
axion–nucleon and axion–lepton interactions, as suggested for in-
stance in [34]. Experiments based on the axion–fermion interaction 
have also been proposed (QUAX) [35]. Despite this, no evidence for 
the existence of the ALPs has been found up to now.

In this paper, we propose a different approach to the detection 
of axions, based on the study of the entanglement arising between 
two fermions interacting via axion exchange. In recent years, the-
oretical and experimental analysis of the entanglement properties 
have found application in the most disparate fields, from quantum 
biology [36] to statistical physics [37,38], and also as a tool to gain 
insight on fundamental interactions, like gravity [39–42]. These ap-
plications stem from the fact that the emergence of entanglement 
between two (or more) physical objects is strictly connected to 
the presence of a quantum interaction between them acting as 
a quantum channel [43,44]. Consequently, an analysis of the en-
tanglement properties provides information about the interaction 
itself.

We focus on the axion–mediated fermion–fermion interaction, 
which assumes the familiar form of a Yukawa coupling between 
the pseudoscalar field and two fermionic fields. In the non–
relativistic limit, the axion–induced interaction reduces to an ef-
fective two–body potential [45,46], that acts as a source of en-
tanglement for the two fermions. An entanglement measurement 
might then provide evidence for the pseudoscalar interaction, and 
thus for the existence of axions/ALPs. Obviously, the two fermions 
interact with each other in many other ways, i.e. gravitationally, 
magnetically, etc. All these interactions are potentially a source of 
entanglement. Hence, one of the main goals of this work is to show 
how it is possible to extract the axions–induced entanglement con-
tribution from the others. We choose to quantify the entanglement 
through the 2–Renyi entropy [47–50] that has the advantage to be, 
in several systems, directly connected to experimentally accessible 
quantities [51–55]. Since a direct measurement of the entangle-
ment entropy is challenging in many cases, here we individuate a 
two–body spin correlation function that plays the role of an entan-
glement witness, and can be more easily accessed.

An entanglement witness is a physical quantity that is strictly 
related to the family of states under analysis, with the property 
of vanishing simultaneously with the entanglement. The detection 
of a non–zero value of the entanglement witness therefore implies 
that the entanglement is non–zero. Specialized to our case, un-
der suitable conditions, a non–vanishing witness would signal the 
presence of axions, and then provide an indirect evidence for their 
existence. For masses in the range of (10−3 − 1) eV and coupling 
constants close to the actual constraints, that are compatible with 
some ALPs models, the witness is significantly different from zero.

The paper is organized as follows. We first recap the axion–
fermion pseudoscalar interaction and the corresponding two–
fermion potential in the non–relativistic limit (Sec 2). From the 
knowledge of the potential we compute the time–dependent en-
tanglement between the two fermions, and we individuate a spe-
cific time at which, in absence of axions, the entanglement must 
vanish. If in correspondence with such time the entanglement is 
different from zero, the presence of axions is detected (Sec 3). 
Soon after we introduce an entanglement witness and we present 
a numerical analysis (Sec 4), and finally we draw our conclusions 
(Sec 5).

2. Fermion–fermion interaction induced by axions

Let us start by recalling the main features of the axion–
mediated fermion–fermion interaction. The coupling of axions with 
fermions is described by a Yukawa pseudoscalar vertex [45,46]. If 
φ is the axion field and ψ1, ψ2 are the fermion fields, the interac-
tion term reads

LI NT = −
∑
j=1,2

igpjφψ̄ jγ5ψ j (1)

where γ5 is the product of Dirac matrices iγ 0γ 1γ 2γ 3 and gpj

are the effective axion–fermion coupling constants, which depend 
critically on the fermions considered and the underlying axion 
(or ALP) model. Since the couplings are expected to be small, i.e. 
gpj � 1, the scattering amplitudes can be well approximated by 
the leading order in the perturbative expansion. For the scattering 
ψ1(p1)ψ2(p2) → ψ1(p′

1)ψ2(p′
2) we have

ıA = ū
s′1
1 (p′

1)gp1γ5us1
1 (p1)

i

q2 − m2
ū

s′2
1 (p′

2)gp2γ5us2
2 (p2) (2)

where the pseudoscalar free propagator with momentum q = p′
1 −

p1 = p2 − p′
2 appears, and m is the axion mass. Here usi

i (pi) are 
the solutions of the free Dirac equation in momentum space, for 
the i-th fermion with momentum pi and spin projection si :

usi
i (pi) =

√
ωi + Mi

2ωi

(
φsi

σσσ · pppi
ωi+Mi

φsi

)
(3)

with Mi mass of the i-th fermion, ωi =
√

ppp2
i + M2

i energy of the 
i-th fermion and φsi normalized two–component spinors. In the 
non–relativistic limit ωi ≈ Mi , these become

usi
i (pi) ≈

(
φsi

σσσ · pppi
2Mi

φsi

)
. (4)

Inserting equations (4) in equation (2), one obtains the scattering 
amplitude for non–relativistic fermions

A ≈ gp1 gp2

qqq2 + m2

(
φ

†
s′1

(σσσ ·qqq)φs1

)(
φ

†
s′2

(σσσ ·qqq)φs2

)
4M1M2

. (5)

By Fourier transforming the amplitude (5) into real space, one 
finds the two–body potential due to axion exchange [46]

V (rrr) = − gp1 gp2 e−mr

16π M1M2

[
σσσ 1 ·σσσ 2

(
m

r2
+ 1

r3
+ 4

3
πδ3(r)

)

− (
σσσ 1 · r̂̂r̂r

) (
σσσ 2 · r̂̂r̂r

)(
m2

r
+ 3m

r2
+ 3

r3

)]
, (6)

where r (r̂̂r̂r) stands for the modulus (the unit vector) of the relative 
distance between the fermions and δ3(r) is the Dirac delta, while 
σσσ i is the three–dimensional vector of Pauli operators defined on 
the i–th fermion. For two identical non–relativistic fermions one 
has M1 = M2 = M and gp1 = gp2 = gp , yielding the interaction 
Hamiltonian
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H p = − g2
pe−mr

16π M2

[
σσσ 1 ·σσσ 2

(
m

r2
+ 1

r3
+ 4

3
πδ3(r)

)

− (
σσσ 1 · r̂̂r̂r

) (
σσσ 2 · r̂̂r̂r

)(
m2

r
+ 3m

r2
+ 3

r3

)]
. (7)

In the following we will always consider r large enough that the 
contact term proportional to δ3(rrr) can be neglected. Assuming, in 
addition, that r̂̂r̂r coincides with the z–direction, we obtain

H p = − g2
pe−mr

16π M2r3

[
m2r2 σ z

1 σ z
2 + (mr + 1)O

]
(8)

where the operator O is defined as O = 2σ z
1 σ z

2 − σ x
1 σ x

2 − σ
y

1 σ
y

2 . 
The equation (8) is the interaction, due to axion exchange, between 
two identical non–relativistic fermions, and represents the starting 
point for our analysis.

3. Dynamics of entanglement

Since we wish to analyze the entanglement between two 
fermions due to the axion–mediated interaction (8), we first need 
to establish whether the latter can induce entanglement in a 
fermionic system. More precisely, considering two fermions inter-
acting through the Hamiltonian H p of eq. (8) and initially prepared 
in a fully separable (non–entangled) state, we need to determine 
whether their state develops a non-vanishing entanglement under 
the action of H p . There exist precise conditions that a Hamiltonian 
has to fulfill in order to produce entanglement: 1) a non com-
pletely degenerate spectrum; 2) the impossibility to be reduced 
to the sum of local terms acting separately on every single ob-
ject [42–44]. As it is easy to check, the Hamiltonian in eq. (8)
fulfills both the requirements, and shall induce entanglement on 
the two fermion system. This fact can be used to reveal axions and 
ALPs through the analysis of the entanglement properties of the 
two fermion state.

Therefore we focus on a system of two identical spin– 1
2

fermions (for instance electrons or neutrons) and study the time 
evolution of its entanglement properties. We write the state of the 
system as

	(rrr1,rrr2, s1, s2; t) = R(RRR,rrr; t)ψ(s1, s2; t) (9)

where the spatial wave–function R depends on the center of mass 
position RRR and the relative position of the two fermions rrr = rrr1 −rrr2, 
while the spin wave–function ψ(s1, s2; t) is a state vector in the 
product space Hspin

1 ⊗ Hspin
2 of the spin Hilbert spaces associated to 

the two particles. In order to simplify the analysis, we assume, as 
a first approximation, that the spatial wave–function R is sharply 
peaked at a given value of the distance r = |rrr1 − rrr2|, and so re-
mains during the time interval of interest. We then consider the 
distance r in eq. (8) as a parameter, and the Hamiltonian H p as an 
operator acting on the spin state alone. Of course, the full wave–
function 	 must be antisymmetric under particle exchange. Since 
we shall consider symmetric spin states ψ(s1, s2; t), the spatial 
wave–function R(RRR, rrr; t) must be antisymmetric.

At t = 0 we assume that the spin state of the whole system is 
fully separable, i.e. that it can be written as the tensor product of 
two states each defined on a single fermion. In other words we 
have that, at t = 0, the state of the system can be written as

|ψ(0)〉 = |ϕ(0)〉1 ⊗ |ϕ(0)〉2 (10)

|ϕ(0)〉i = cos(θ) |↑〉i + eıφ sin(θ) |↓〉i

where we have dropped the spin arguments s1, s2 and have 
switched to a more convenient Dirac notation. Here |↑〉i and |↓〉i
denote the eigenstates of the magnetic moment along the direc-
tion joining the two fermions (z-direction). Being the state of Eq. 
(10) separable, the entanglement vanishes for t = 0.

If the two fermions would interact with each other only 
through axions, a non–vanishing entanglement would directly sig-
nal their presence, but this is not the case. The two fermions 
generally interact with each other through several channels, and 
any of these is potentially a source of entanglement, depending on 
the distance r and on the states that one considers.

As we are interested in highlighting the entanglement due to 
axions, these interactions produce an unwanted contribution that 
has to be minimized in order to successfully reveal the axion–
induced entanglement. Then we must devise a setting in which 
these additional sources of entanglement are suppressed or signif-
icantly reduced.

At first, let us deal with the weak and the strong nuclear in-
teractions. They are relevant only for very small distances and, 
hence, assuming, in our setup, a relative distance large enough 
(r > 10−12 m), we can neglect them altogether. Secondly, let us 
consider the gravitational and the electrostatic (if the fermions 
have a non–vanishing electric charge) interactions. Their action on 
the evolution of the spin state cannot induce entanglement and 
amounts to a global phase factor. Indeed, as we have previously 
said, a fundamental requirement for the interaction to induce en-
tanglement in a system, is that the spectrum of the associated 
Hamiltonian is not fully degenerate. Particles such as electrons, 
protons, or neutrons are characterized by precise values of charge 
and mass that do not depend on their spin states. Therefore, any 
state depending solely on the spin of the particles, like the one we 
are considering, will react to gravitational and electrostatic inter-
actions in the same way and will not generate entanglement.

Another unwanted entanglement source is the dipole–dipole 
magnetic interaction, whose Hamiltonian reads

Hμ = − 1

4πr3

g2qe
2

16 M2
O , (11)

where g is the g–factor and qe is the charge of the electron. As 
done in Eq. (8), we have dropped a contact term proportional to 
δ3(rrr) in Eq. (11), assuming that r is large enough. Being asso-
ciated with the exchange of massless photons, this interaction is 
not confined at short–range and it is sensible to the different spin 
states in a way that cannot be reduced to the action of local oper-
ators. Hence its contribution to the entanglement is different from 
zero. However, in the following we will show that, by properly 
setting the time interval of the entanglement measurement, the 
contribution to entanglement due to the dipole–dipole magnetic 
interaction can be neglected and the entanglement reduces to the 
axion contribution alone.

Starting from the initial state |ψ(0)〉, the state at t > 0 can be 
obtained as |ψ(t)〉 = U (t) |ψ(0)〉, where the time evolution opera-
tor U (t) is unitary since we consider our system to be closed (we 
neglect any other interaction with the surrounding world). U (t)
can be written as U (t) = exp[−ıt(HT )], where the total Hamilto-
nian HT is the sum of the magnetic (Hμ) and the axion term (H p), 
i.e. HT = H p + Hμ , and reads

HT = − A

r3

[
O + Be−mr

(
m2r2 σ z

1 σ z
2 +O (mr + 1)

)]
. (12)

In eq. (12) the parameter A = g2qe
2

64π M2 is the strength of the mag-

netic interaction while B = 4g2
p

g2q2
e

= 4g2
p

αg2 quantifies the relative 
weight of the axion interaction and α denotes the fine structure 
constant.

Since the operator U (t) is unitary for any time t ≥ 0, the state 
|ψ(t)〉 remains a pure state, although in general, differently from 
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|ψ(0)〉, it is entangled. The amount of entanglement between the 
two fermions in |ψ(t)〉 can be quantified using different measures. 
In the present work we consider the 2–Renyi entropy [47–50], 
that has the advantage, with respect to the other entropy–based 
entanglement measures to be associated, at least in some exper-
imental devices, to experimentally accessible quantities [51–55]. 
The 2–Renyi entropy is defined as S2 = − ln(P(ρi(t))), where 
ρi(t) = Trj�=i(|ψ(t)〉 〈ψ(t)|) is the reduced density matrix obtained 
projecting |ψ(t)〉 on the Hilbert space defined on one of the two 
fermions and P(ρi(t)) = Trρ2

i (t) is the purity of ρi(t). In our sys-
tem the 2-Renyi entropy reads

S2(t) = − ln

[
1 − sin4(2θ)

2
sin2(�t)

]
(13)

where � = 6A
r3

[
1 + B

3 e−rm
(
3 + 3rm + r2m2

)]
. As we can see from 

the expression of �, the entanglement derives from both the 
dipole–dipole magnetic interaction (due to 6A

r3 ) and from the pres-

ence of the axions (due to the term 2A
r3

[
Be−rm

(
3 + 3rm + r2m2

)]
). 

Given the form of the 2–Renyi entropy (13), there exist cer-
tain times at which the entanglement is only due to the axion–
mediated interaction. Indeed, by setting t = nt∗ , with n a positive 
integer and t∗ = πr3

6A , we obtain:

S2(nt∗) = − ln

{
1 − sin4(2θ)

2
× (14)

× sin2
[

nπ

(
1 + B

3
e−mr(3 + 3mr + m2r2)

)]}

� sin4(2θ)

2
n2π2 B2e−2mr

(
1 + mr + m2r2

3

)2

.

In equation (14), the dependence on the dipole–dipole magnetic 
interaction has disappeared. Recalling that B ∝ g2

p , we can see at 
once that if there is no axion–mediated interaction (gp → 0), the 
2-Renyi entropy, and thus the entanglement, vanishes. More pre-
cisely, as gp � 1, the last line of eq. (14) shows that the entropy 
is proportional to B2 and then to g4

p . In the case in which a non–
zero entanglement is detected, in correspondence with the times 
t = nt∗ , one can conclude that the former is a consequence of the 
axion–induced interaction alone. This would constitute an indirect 
proof of the existence of axions.

For a numerical analysis of the 2-Renyi entropy (14), we focus 
on ALPs in the mass range (10−3 − 1) eV. These have been con-
sidered in the refs. [56–60], where experimental constraints have 
been obtained on the coupling constant gp as a function of the 
ALP mass, both for protons and neutrons. In Fig. 1 we consider two 
neutrons at a distance r = 1 nm apart, and initial state given by Eq. 
(10) with θ = π/4 and φ = 0. We set, for each value of the mass 
in the range (10−3 − 1) eV, the coupling constant gp equal to the 
threshold value gthreshold obtained from the experimental analyses 
in the refs. [56–60]. In particular: for the black dot–dashed line, we 
set gp = gC P , where gC P is the threshold from effective Casimir 
pressure measurements [56], and sample values are gC P = 0.0327
for m = 10−3 eV, gC P = 0.0348 for m = 0.05 eV, gC P = 0.0674
for m = 1 eV; for the red solid line we set gp = gC F , where gC F

is the threshold from measurements of the difference of Casimir 
forces [60], and sample values are gC F = 0.007 for m = 10−3 eV, 
gC F = 0.012 for m = 0.05 eV, gC F = 0.066 for m = 1 eV; for the 
blue dashed line we set gp = gI E , where gI E is the threshold from 
isoelectronic experiments [58], and sample values are gI E = 0.0036
for m = 10−3eV , gI E = 0.006 for m = 0.05 eV, gI E = 0.07 for 
m = 1 eV. For the three cases, the 2-Renyi entropy S2(t∗) at t = t∗
Fig. 1. Plot of the 2–Renyi entropies (upper panel) and of the Witnesses C yz (lower 
panel) at t = t∗ , i.e. for n = 1, between two neutrons as function of the axions mass 
m at distance r = 1 nm. In the plots we have considered two neutrons at a distance 
r = 1 nm apart, and initial state given by Eq. (10) with θ = π/4 and φ = 0. We 
set, for each value of the mass in the range 10−3 − 1 eV, the coupling constant 
gp equal to the threshold value gthreshold obtained from the experimental analyses 
in the refs. [56–60]. In particular: for the black dot–dashed line we set gp = gC P , 
where gC P is the threshold from effective Casimir pressure measurements [56], and 
sample values are gC P = 0.0327 for m = 10−3 eV, gC P = 0.0348 for m = 0.05 eV, 
gC P = 0.0674 for m = 1 eV; for the red solid line we set gp = gC F , where gC F is the 
threshold from measurements of the difference of Casimir forces [60], and sample 
values are gC F = 0.007 for m = 10−3 eV, gC F = 0.012 for m = 0.05 eV, gC F = 0.066
for m = 1 eV; for the blue dashed line we set gp = gI E , where gI E is the threshold 
from isoelectronic experiments [58], and sample values are gI E = 0.0036 for m =
10−3 eV, gI E = 0.006 for m = 0.05 eV, gI E = 0.07 for m = 1 eV.

is shown in the upper panel of Fig. 1. All the lines depicted in the 
figure show a very similar behavior. At constant distance, larger ax-
ion masses imply a stronger damping by the Yukawa factor e−mr . 
Increasing the mass one eventually arrives at a value for which 
the Yukawa damping starts to be relevant. From this point on, a 
further increment of the mass of the axions will suppress the en-
tanglement exponentially.

To our knowledge, for ALPs in the mass range (10−3 − 1) eV, 
the values reported in refs. [56–60] represent the strongest model–
independent constraints on axion–nucleon interactions from lab-
oratory experiments. For this class of ALPs, as the Fig. 1 shows, 
the 2-Renyi entropy is significantly different from zero, so that 
the laboratory constraints might be strengthened by several orders 
of magnitude from entanglement measurements. Of course, the so 
obtained constraints would be model–independent, since no spe-
cific axion or ALP model has been assumed. On the other hand, for 
QCD axion models there exist several constraints from astrophys-
ical sources, primarily from supernovae [61], neutron star cool-
ing [62] and Black Hole superradiance [63]. The indicative bound 
set by supernovae g2

aN N ∼ 10−19 renders our method unviable for 
QCD axions, at least for present day technologies. For general ALPs, 
since mass and coupling constants are essentially unrelated, and 
the latter can in principle assume any value, our approach can 



A. Capolupo et al. / Physics Letters B 804 (2020) 135407 5
strengthen the current laboratory constraints, with the only lim-
itations presented by the experimental sensitivities and coherence 
time. It is worth to note that the idea, here presented, to use en-
tanglement to test theories of fundamental physics is in line with 
several recent works, see for example Ref. [39,40,64] that suggest 
exploiting the entanglement as a probe for the quantum nature 
of gravity. In fact, in these papers, the spatial wave function has 
a non trivial evolution, and consequently, gravitational interactions 
can induce entanglement.

4. The entanglement witness

In the upper panel of Fig. 1, we plot the entanglement en-
tropy between two neutrons as a function of the axions mass, at 
distance r = 1 nm and for ALPs with coupling constants gp con-
strained by the analysis of Refs. [56], [60] and [58]. Notice that a 
direct measurement of the 2–Renyi entropy is in general not easy 
to accomplish. To overcome this difficulty we can make use of an 
entanglement witness, which is a quantity strictly related to the 
family of states and to the dynamics of the system under analysis, 
whose value is able to signal the presence of entanglement. Let 
us set to zero the phase φ of the initial state in eq. (10). In this 
case, the entanglement witness can be identified with the two–
spins correlation functions

C yz = 〈ψ(t)|σ y
1 σ z

2 |ψ(t)〉 ≡ 〈ψ(t)|σ z
1 σ

y
2 |ψ(t)〉 . (15)

For any choice of φ, one can find a different correlation function 
playing the same role. It is straightforward to show that, for any 
time greater than zero, the correlation function C yz is given by 
C yz(t) = − sin(2θ) sin (�t). This function, for any θ �= kπ

2 with k in-
teger, vanishes only when the entanglement is zero. For t = nt∗ =
nπr3

6A , the correlation function C yz depends only on the interaction 
between axions and fermions and reduces to

C yz(nt∗) = − sin(2θ) sin

[
nπ

(
1 + B

3
e−mr(3 + 3mr + m2r2)

)]

� (−1)n+1 sin(2θ)nπ Be−rm
(

1 + rm + r2m2

3

)
. (16)

Therefore, the detection of such a quantity could demonstrate the 
existence of axions.

From eq. (16), we can see that the entanglement witness, for 
nπ B � 1, has a dependence on the interaction strength propor-
tional to g2

p rather than to g4
p making the signal larger (indeed 

B = 4g2
p

αg2 ). In fact, the entanglement witness of our system assumes 
values larger than the entropy, making the detection of the ax-
ion and of the ALPs much more viable. This is shown in the lower 
panel of Fig. 1, where plots of the entanglement witness for t = t∗
are reported, and compared with those of the 2-Renyi entropy in 
correspondence with the same parameters.

5. Discussions and conclusions

In our analysis on the dynamics induced, in a system of two 
spin- 1

2 fermions, by the axion–mediated fermion–fermion interac-
tion, we have taken into account two important constraints: the 
finiteness of the coherence time [65] and the limitation coming 
from the Yukawa damping factor e−mr , which strongly suppresses 
the axion–mediated interaction, outside a limited spatial region 
r < 1

m .
Relatively to the first constraint, it is well known that one of 

the main problems, when we are interested in the experimental 
analysis of the entanglement of a system, is the finiteness of the 
coherence time. In realistic systems, the coherent superposition 
characterizing the pure quantum states is destroyed by interac-
tions that, unavoidably, every quantum system shares with the 
surrounding world. In our computations, we have neglected such 
kind of interaction and we assumed that our system is completely 
isolated from the rest of the universe. This assumption is realis-
tic since we have considered a finite time interval which is lesser 
than the coherence time, which in modern experimental setups 
can reach values of order of the second [66] and is continuously 
extending due to the progress in the experiments. The character-
istic time interval of our system, which has to be compared with 
the coherence time, is the minimum time interval needed to iso-
late the axion contribution to the entanglement (t∗). For a system 
of two electrons a value of t∗ = 7 s, which is at the limit of to-
day’s technology, is obtained by considering the relative distance 
r = 0.1 μm. A similar result is achieved for a system of two neu-
trons by considering relative distances of order of the nanometer. 
On the other hand, the Yukawa damping factor has the only effect 
of reducing the range of distances r for which the entanglement 
is significantly different from zero. This is not a serious limitation, 
since the smaller the axion mass, the larger is the spatial region 
(with r < 1

m ) where the model is efficient.
The knowledge of t∗ with a high precision is crucial for the ap-

proach described in the paper. The largest source of error that can 
affect this quantity is represented by the uncertainty �r on the 
distance between the two fermions. A simple analysis based on 
the definition of the entanglement witness in eq. (15) shows that 
an uncertainty �t∗ on t∗ implies an uncertainty �C yz(t∗) on the 
entanglement that, to lowest order in B , is equal to �C yz(t∗) =
�t∗
t∗ sin(2θ). The higher order terms O(B2) can be safely neglected 

in virtue of the smallness of the coupling constant gp . Any er-
ror �r on the inter–fermion distance then leads to an uncertainty 
�C yz(t∗) = 3 �r

r sin(2θ). From the definition of t∗ we can see that 
another source of uncertainty is represented by the fermion mag-
netic moments, which are known only with finite precision. Nev-
ertheless, we expect that the uncertainty on the distance �r

r dom-
inates over the uncertainty on the magnetic moments, which, in 
comparison, are known to a high degree of precision [67]. Given 
these considerations, a promising framework for the realization of 
our approach are optical lattices [68,69]. In this context it is indeed 
possible to directly access spin correlation functions [70], with sin-
gle site resolution imaging of fermions [71] and a precise control 
over the particle spacing.

In conclusion, taking into account the above constraints, we 
have analyzed the dynamics induced, in a system of two spin- 1

2
fermions, by the axion–mediated fermion–fermion interaction in 
the non–relativistic regime. We have shown that it is character-
ized by the rising of entanglement between the two fermions. 
Moreover, we have shown that, by suitably tuning the observa-
tion time t = nt∗ and the distance between the two fermions, 
one can get rid of the contribution given to entanglement by the 
dipole–dipole interaction of magnetic origin. In this way, any resid-
ual entanglement–entropy can be seen as a direct consequence of 
the presence of axions and hence constitutes a proof of their exis-
tence. On the other hand if such entanglement is not detected this 
observation can be used to strengthen the current constraints.

In addition, to overcome possible difficulties in direct entropy 
measurement, we have introduced a spin–spin correlation function 
which we have proved to be a suitable entanglement witness, that 
vanishes if and only if the entanglement goes to zero. Such wit-
ness has also the advantage to be proportional, for t = t∗ , to g2

p

rather than to g4
p as the 2–Renyi entropy. This fact allows extend-

ing the range of applicability of our experiment of several orders 
of magnitude. The method we propose can likely probe a cou-
pling constant range gp = 10−3 − 10−1 for any axion mass up to 
m � 1 eV, being particularly efficient for ALPs with low masses and 
large coupling constants [72]. For coupling constants below 10−3
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and masses beyond m � 1 eV measurements are limited by the 
current experimental precision. Improvements in this respect may 
render wider regions of parameter space accessible in the next fu-
ture.
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