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Abstract 

A detailed characterization under 
90

Sr β-particles and 4.5 MeV protons micro-beam of a single-

crystal CVD diamond-based three-dimensional detector with surface and buried graphite electrodes 

is presented. Pillar contacts, 300 µm long and 30 µm  diameter, were fabricated by using a 

femtosecond laser operating at 1030 nm wavelength and 400 fs pulse duration. Charge collected 

under 
90

Sr β-particles was measured in front and back irradiation conditions, pointing out that the 

pillars contribute to the charge collection. Charge collection efficiency (CCE) was measured to be up 

to 94% under proton beam irradiation. Results of a comprehensive study, including crossed-

polarizers imaging, numerical simulation of the electric field distribution, and proton mapping, show 

that CCE is not affected from the stress induced by the pillar fabrication, and that the electric field 

strength is high enough to partially compensate for carrier recombination in the defected regions 

surrounding the pillars. 

 

Keywords: graphite pillars; 3D detectors; single-crystal CVD diamond; β-particles; protons. 
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1. Introduction 

Three-dimensional (3D) diamond detectors have been recently proposed as an additional 

technology for the innermost tracking detectors in ATLAS and CMS experiments at CERN 

[1].  Also, 3D electrode geometries have raised interest in several application fields [2–4], 

ranging from solar energy conversion to medical imaging. Using the same architecture 

proposed for silicon and GaAs based devices [5], 3D diamond detectors would indeed show 

superior performance due to the outstanding radiation hardness and the extremely high 

resistivity of bulk diamond. Moreover, the low dielectric permittivity of diamond guarantees a 

relatively lower noise level referred to the input of the front-end electronics.  

3D diamond detectors have been recently studied by few groups [6–8], exploiting the 

local conversion of bulk diamond into graphite by ultrafast (from ns to fs) pulsed laser 

irradiation. One of the first examples of laser treatment used for the fabrication of buried 

graphite contacts can be attributed to Walker et al. [9], who created vertical electrodes into the 

bulk of a natural diamond to reach and connect a conductive buried layer previously 

fabricated by boron ion implantation. Nowadays, research efforts [10-16] are mainly focused 

on the optimization of the laser processing parameters, aimed at 1) reducing the graphite 

column resistivity, 2) enhancing the pillar aspect ratio (length over diameter), 3) improving 

the buried-contact geometry, and 4) increasing the pillar density. The key requirement is the 

long-term stability of diamond detectors in terms of charge collection efficiency (CCE), 

especially under extreme irradiation conditions (high fluences) [17]. Very recently, by using a 

Ti-Sapphire femtosecond laser operating at 800 nm and 100 fs pulse duration, G.T. Forcolin 

et al. [18] reported a study about the effect of laser fluence on the pillar properties. Results 

pointed out a linear dependence of the pillar diameter on the laser beam fluence in the 2–5 J 

cm
-2

 range, and a strong influence of the laser processing parameters on the stress induced in 

the bulk diamond, but only a minor effect was observed on the graphite column resistivity. 

For the first time, they also performed tests with photon and proton micro-beams using Ion 

Beam Induced Charge (IBIC) and Time Resolved Ion Beam Induced Current (TRIBIC) 

analysis, highlighting a complete charge collection within the explored active regions of the 

detector. On the same topic, M.J. Booth et al. [19] reported a more complete IBIC and 

TRIBIC analysis. They were able to evidence a full charge collection for different geometries 

of 3D pillars, whereas small differences, depending on the buried-contact geometry, were 

found in charge sharing among neighboring cells. S. Murphy et al. [20] were able to decrease 

both the dimensions and the resistance of the electrodes by using a spatial light modulator to 

correct the aberration of the laser beam and the local stress induced by the laser treatment. 
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Their results showed a resistivity decrease from 2.5 Ω cm to 0.2 Ω cm, combined to a lower 

diamond-on-graphite ratio and to a lower degree of stress induced by graphitic electrodes 

formation. 

In this paper, a comprehensive study of graphite pillars buried in single-crystal CVD 

diamond fabricated by local graphitization using an ultrafast IR laser is reported. Unlike the 

3D structures reported in Refs. 1-7, pillars were not fabricated as “pass-through” columns, but 

the end of the pillar is located about 100 μm away from the bottom surface, which is therefore 

completely insulating: this could represent a simple way for the implementation of a 3D 

stacked detector for particle tracking with no risk for short-circuits between the single layers.  

Aimed at verifying the effectiveness of pillars in collecting the photogenerated charge, a 

detailed investigation with beta particles emitted by a 
90

Sr source was performed by 

irradiating the detector from both the top and bottom surface of the sample. Also, aimed at 

evaluating the presence of lattice defects and stress induced by the laser treatment in the 

volume surrounding the pillars, and how they can affect charge collection efficiency, IBIC 

mapping with a 4.5 MeV protons micro-beam was used, in conjunction with Raman analysis 

and cross-polarized optical microscopy analysis. Moreover, numerical simulations were 

performed to estimate the electric field distribution within the detector active volume. 

 

 

2. Experimental  

2.1. Material 

A customized “detector-grade” single-crystal (100)-oriented CVD-diamond plate by Element 

Six [21], 4×4 mm
2
 large and 0.4 mm thick (with nitrogen and boron impurities content lower 

than 10 ppb and 1 ppb, respectively), was used for the fabrication of the detector. The four 

lateral 4×0.4 mm
2
 faces were polished by using standard mechanical procedures, allowing for 

a real-time inspection during the subsequent graphitization laser-processing for the realization 

of the buried contacts. Then, in order to remove any metal and organic residuals, the sample 

was dipped in hot sulpho-chromic acid solution (K2Cr2O7, 1.6% weight, in H2SO4; 15 min at 

120
o
C), followed by rinsing in aqua regia (25% vol. HNO3 in mixture HNO3+HCl; 10 min at 

90
o
C), hot deionized water (1 min at 80

o
C), and isopropanol (1 min at 25

o
C). 
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2.2 Detector fabrication 

A computer controlled 3-axis stage was used to control the diamond position and 

translation with respect to the laser focal plane. Local graphitization was performed with a 

VaryDisk50 pulsed laser (Dausinger + Giesen GmbH), operating at 1030 nm wavelength, 

repetition rate of 200 kHz and 400 fs of pulse duration. First, the laser beam was focused by 

an aspheric lens (11 mm focal length) on the back diamond surface: fourteen parallel graphite 

strips (1.5 mm long, 50 μm wide, 10 μm thick, and 250 μm apart), were drawn at the surface 

by means of a multi-pass beam scanning technique at a speed of 50 μm/s and a fixed pulse 

energy of 0.8 μJ (fig. 1a). Fabrication details of the graphite surface contacts, as well as of 

their electrical characterization, can be found elsewhere [22, 23]. Subsequently, six buried 

graphite pillars were grown on each surface strip (fig. 1b) at the same pulse energy, moving 

the sample away from the lens along the laser beam axis. Each pillar was written in a single 

scanning step at a relative laser focal point/sample speed of 0.5 μm/s. The fabricated array of 

buried graphite pillars has a body-centered rectangular structure. The ‘elementary cell’ has 

lateral dimensions x = 250 ±10 µm, and y = 500 ±10 µm. The effective distance between the 

central pillar and the neighboring ones is 279.5 µm.  

 

            

Fig. 1. Schematic layout of the 3D detector: a) front view of part of the surface strips connecting buried columns; 

b) cross-sectional lateral view of the graphite pillars. c) optical microscopy image (taken from the lateral surface 

of the sample) of a group of three pillars belonging to the same strip. 

 

Fig. 1c shows an optical microscopy image of a group of three pillars belonging to the 

same strip. As can be seen, the length of the pillars is not equal (pillars A, B and C are 270, 

265, and 300 µm long, respectively); after the inspection of a group of 24 pillar, average 

length was estimated to be 275 ± 30 µm. Therefore, the distance between the end section of 

the pillars and the back surface varies in the range 95 – 155 µm (125 µm on average). 
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Conversely, the diameter is the same for all the pillars (30 µm), always increasing up to 

50 µm near the surface strips.  

Cyan-acrylic single component liquid glue was used to fix the device to a single-face 

Printed Circuit Board (PCB), with copper traces specifically designed for optimizing the 

connection to the front-end electronics used for detector biasing and signal acquisition. The 

presence of a hole in the PCB allowed for irradiation also on the back side of the detector. 

Odd graphite strips (red in fig. 1a) were wire-bonded to a PCB read-out pad (channel 1) by 

using Al (99%)/Si (1%) 25-µm thick wires. Even strips (grey in fig. 1a), were wire-bonded to 

a second read-out pad (channel 2). In this way, measurements can be performed either in 

single-ended (grounded) or differential (floating contacts) mode.  

 

              

Fig. 2. a) Cross-polarized optical microscopy image of a region involving two rectangular cells. The picture 

shows one central even graphite strip included between two odd ones. b) Optical  microscopy image (taken from 

the back side of the sample) of the end section of two adjacent pillars  belonging to the same strip. 

 

Possible stress induced on the virgin diamond plate by the laser treatment was inferred by 

using crossed polarized optical microscopy. Stressed regions may indeed induce electronic 

active defects for the charge carrier recombination or trapping, resulting in detrimental 

polarization effects and affecting severely the charge collection efficiency. Fig. 2a reports the 

picture of a region between three strips involving two rectangular cells. The buried pillars 

(black round dots) and the graphite strips on the surface are clearly evidenced. Stressed 

(white) regions, about 80 – 100 m long, departing from each pillar and oriented toward 

neighboring pillars, are also clearly visible. It’s worth noting the superposition of some of 

such “plumes” with others produced in the neighboring cells, whereas a lower stressed region 
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can be seen between two adjacent pillars belonging to the same strip. Raman analysis, 

performed in the region within the pillars, evidenced an upshift (νR – νR0) of about ~2.5 cm
-1

 

for the diamond peak position νR from the reference value νR0 = 1332.5 cm
-1

 known for 

unstrained diamond. This upshift corresponds to a compressive stress σ ≈ 1.0 GPa, as 

estimated by using the relationship σ = 0.38 (νR – νR0) GPa [24]. However, despite the stress, 

no visible cracks (or other extended defects) are present in the diamond bulk surrounding the 

pillars, as highlighted in fig. 2b, which shows the end section of two adjacent pillars 

belonging to the same strip (and having the same length). This suggests that the defects 

unavoidably introduced by laser treatment at the diamond-graphite interface are mostly point 

defects in our case, or otherwise defects which cannot be easily detected by optical inspection. 

 

2.3. Measurement setup with 
90

Sr source 

Experiments with  electrons emitted from a 
90

Sr β-source (activity 1 MBq, 1 mm diameter 

and 1 cm long, QSA Global, code SIFB13505, item 22/2006), were carried out in self-

triggering mode, regulated on a selectable amplitude level of the same acquired pulses. The 

90
Sr β-source emits relatively low-energy electrons by 

90
Sr to 

90
Y decay, with an end-point 

energy of 0.546 MeV. Then, a second high-energy β-decay to 
90

Zr is observed, with a 2.280 

MeV end-point energy. The source holder, a 25 mm long brass cylinder with an aperture of 

0.4 mm diameter and a depth of 5 mm, was used both to host the source and collimate the 

electron emission. The source was maintained 1 cm above the sample surface, thus irradiating 

the whole detector area. Low-noise and fast rise time CAEN A1422H-F2 (gain 45 mV/MeV 

in Si) hybrid charge sensitive amplifier with an input test for calibration (C = 1 pF) was used 

as a first stage for charge signal conditioning. Amplified output signal was analyzed by using 

a CAEN N6724A 2-channel digitizer (14 bit, 100 MSample/s and 500 mVpp of dynamic 

range), whereas a CAEN N1471A voltage supply was used for detector biasing. Signal 

processing was performed by means of a CAEN DPP-PHA Digital Pulse Processor for Pulse 

Height Analysis. Being the Gaussian pedestal noise evaluated to be equal to 0.18 fC (1100 

electrons), the trigger threshold was set to 1500 electrons (corresponding to 0.24 fC). An 

Agilent 33250A waveform generator, with arbitrary curve capability, was used to produce a 

calibration signal in order to convert the Pulse Height Distribution (PHD) of the acquired 

signal (expressed as ADC channels) into femtocoulomb units of the collected charge. The 

calibration uncertainty is mainly related to the pulse generator accuracy (1%), whereas the 

non-linearities related to the charge preamplifier and the ADC do not significantly influence 

the uncertainty, as confirmed by the low error of the linear calibration curve, showing a slope 
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of 2.66 ± 0.01 aC/ADC-channel and an offset referred to the input of 16.30 ± 0.01 aC.  

 

2.4. Measurement setup with 4.5 MeV protons 

To study the detectors by IBIC analysis, the proton micro-beam facility at the Ruđer 

Bošković Institute in Zagreb [25] was used. The system is based on a 6 MV Van-de-Graaff 

tandem accelerator. For the present work, protons were accelerated to gain an energy of 

4.5 MeV, producing a micro-beam with a focus smaller than 2 µm (FWHM). At such an 

energy, a proton is stopped within 97 µm in diamond [26], so that they are completely 

absorbed within the detector volume. The spatial distribution of the ionization charge was 

evaluated by using SRIM, a software used to simulate ion transport in matter. For the IBIC 

measurements, the read-out chain consisted of a charge-sensitive preamplifier (ORTEC 142A) 

followed by a shaping amplifier (ORTEC 570) with a shaping time of 2 µs. Measurements 

were carried out by reducing connections to three adjacent strips, the central one for biasing 

and signal acquisition and the other two for grounding. A bias voltage in the ±300 V range 

was applied to the detector. A dedicated beam scanning and data acquisition system rasterized 

the beam in 128128 pixels and read the amplitude of the charge signal with a trigger 

threshold regulated to 20.000 electrons, whereas for back-side irradiation it was lowered to 

about 10.000 electrons, because of a lower collection efficiency (protons are indeed 

completely stopped within the “dead” volume of the detector in this case). The read-out chain 

was calibrated with a silicon detector by assuming an electron-hole pair production energy of 

3.62 eV [27]. Conversely, the CCE in diamond was determined by assuming an electron-hole 

pair production energy of 13.0 eV [28]. 

 

 

3. Results and discussion  

3.1. Dark current measurements  

The current-voltage (I–V) curves reported in fig. 3 were measured in the dark and at room 

temperature conditions with a Keithley 6517A pico-ammeter. Before the measurements, the 

device was heated at 100 °C in air for two minutes to remove any possible surface-adsorbed 

humidity able to modify the conductance value.  

The I–V characteristic is fairly symmetric, and a linear behaviour is found up to 100 V. In 

such a range, the probed resistance of the detecting volume corresponds to about 1.6×10
14

 Ω, 

addressing the low density of trap-and-release defects in the selected specimen.  
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Fig. 3. Current-voltage characteristics of the fabricated device for both positive and negative bias voltages. 

 

 

3.2. Electric field distribution: numerical analysis 

Numerical simulations of the electric field distribution were carried out by using FlexPDE 

5.0.4, a finite element software, on a 3D structure reproducing the real fabricated device with 

proper material conductivity, dielectric permittivity, and simulating the presence of both the 

graphite strips on the surface and the pillars embedded in the bulk diamond. For the analysis, 

diamond resistivity was set to  210
13

 Ω cm, as inferred from dark current measurements 

reported in fig. 3. Resistivity of the surface graphite strips was set to 510
-5

 Ω cm, on the 

basis of four-point probe measurements. Resistivity of the graphite pillars was set to 6.3 ± 

0.5 Ω cm, as estimated by current-voltage measurements performed on “pass-through” 

columns fabricated by our group in other scCVD-diamond samples with the same laser 

treatment parameters used in the present work. Dielectric permittivity was set to 5.5 and 100 

for diamond and graphite, respectively.  

As reported in the simulation illustrated in fig. 4a, each x–y ‘elementary cell’ exhibits 

wide regions of a weaker electric field far away from the pillars, whereas the density of the 

electric field lines increases in regions close to the pillars, which are highly defected regions 

as expected for a laser-processed volume. Therefore, the non-linearity of I-V characteristics 

reported in fig. 3, where current approaches a V
2
 dependence for V > 100 V, can be tentatively 

attributed to space charge limited current (SCLC) conduction mechanism [29, 30] usually 
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observed in diamond [31]. SCLC conduction regime could indeed be triggered by the 

progressive filling of the high density of traps concentrated in the neighborhood of the 

graphite pillars.  It’s worth mentioning here that the simulation shown in fig. 4a refers to a 

section located 100 µm below the top surface (which is about the stopping range of the 4.5 

MeV protons): therefore, we can suppose that the influence of the top graphite contacts is not 

strong enough to distort the electric field lines. 

Fig. 4b shows the cross-sectional (x–z) view of the distribution of the electric field contour 

lines in a region between two pillars at different potential. The direction of the simulated 

cross-section is represented by the blue solid line in fig. 4a. As expected, the electric field 

intensity distribution clearly indicates that charge collection mainly occurs along the detector 

volume defined by the pillars' length. Conversely, the electric field in the region below the 

pillars’ end appears to be too weak (< 0.1 V/µm at an operating bias voltage of 200 V) to 

ensure an efficient charge collection. This will be confirmed by the results obtained under 

beta irradiation from the back-side. 

 

    

 

Fig. 4. Numerical simulations of the electric field distribution for the 3D detector at an operating bias voltage of 

200 V. a) Electric field distribution in a zoomed region corresponding to an elementary x–y rectangular cell, 100 

µm below the top surface. Pillars located at y = 0.5 mm and y = 1.0 mm are at ground voltage, whereas the 

central one (y = 0.75 mm) is at bias potential. b) Cross-sectional view of the electric field contour lines 

distribution in the region between two pillars at different potential, positioned in the direction indicated by the 

blue solid line of fig. 4(a). 
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3.3 Response to 
90

Sr electrons 

Fig. 5a shows the PHD of the collected charge at different positive bias voltages in the 

100 – 200 V range for electrons impinging on the front surface of the detector (where 

graphitic strips were fabricated). Front-side irradiation allows the signal to be collected from 

both the lower energy electrons emitted in the 
90

Sr to 
90

Y decay, almost completely absorbed 

in the diamond detector volume, and the MeV range electrons emitted in the 
90

Y
 
 to 

90
Zr 

decay, traversing the whole device. Spectra were acquired without an external trigger 

(hampering in this way a correct estimation of the charge collection efficiency under beta 

particles), but using the self-triggering configuration of the internal digitizer. The threshold 

referred to the input was fixed to 0.24 fC (about 1500 electrons), being the amplitude of the 

Gaussian pedestal noise measured to be 0.18 fC (about 1100 electrons). Pulse distributions 

were monitored for 2700 s. As can be seen from fig. 5a, the typical asymmetric height 

distribution observed under β-source irradiation, with a long exponential decay tail, is 

observed. It’s worth noting that, even at the lowest bias values, PHDs show a Most Probable 

Value (MPV) close to the one found at higher voltages (about 2 fC), denoting saturation of 

charge collection. Full Width Half Maximum (FWHM), which remains practically constant 

with bias voltage, is about 1.50 ± 0.02 fC: this large FWHM is mainly attributed to the 

contribution of the lower energy electrons emitted in the 
90

Sr to 
90

Y decay, which are almost 

fully absorbed within the diamond bulk.   

 

          
                                                                                                             

Fig. 5. PHDs at positive bias voltages in case of irradiation from the front side (a) and from the back side (b).  
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In order to confirm the effectiveness of pillars in collecting photogenerated charge, and to 

evaluate a signal contribution mainly induced by MeV range electrons, we performed 

measurements under β-particles impinging on the detector back side. In this configuration, 

most of the lower energy electrons emitted in the 
90

Sr to 
90

Y decay, as well as the 4.5 MeV 

protons (see section 3.4), are indeed absorbed in the 100 µm thick region below the pillars’ 

end, where the electric field is less intense (see fig. 4b). Conversely, MeV range electrons are 

able to cross all the sample thickness, and to generate carriers also in regions where the 

electric field intensity is higher. Fig. 5b shows PHD results obtained at different positive 

applied voltages in the back-side configuration. As expected, both the MPV (about 1.75 fC) 

and the FWHM (about 1.30 fC) of the spectra are lower than the values obtained for the front-

side measurements (fig. 5a), due to a decrease of the signal contribution coming from the 

lower energy electrons. Similar measurements, for both the front-side and back-side 

configurations, were performed by applying a negative bias: spectra showed approximately 

the same shape of the ones recorded at positive bias, with only slight differences (< 5%)  in 

terms of MPV and integral counts. 

 

 

Fig. 6. a) Integral number of measured events at different positive bias voltages for β-particles impinging on the 

front (dots) and back (circles) side of the detector. In the inset, the sum of the MPV of collected charge and the 

FWHM of the distribution at different positive bias voltages for both the measurement configurations. b) 

Numerical simulation of the contour lines of a 0.1 V/μm electric field at three different bias voltages (100, 140 

and 200 V). Without loss of generality, simulation was limited to a restricted number of strips and pillars, by 

taking into account, as a geometrical constraint, only the distance of the outer strips from the sample edge. 
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Fig. 6 reports the integral number of measured events (area under the curve of the beta 

spectrum) as a function of bias voltage for the two measurement configurations. Note that in 

both cases the total counts increase linearly with the applied bias, almost doubling their value 

from 100 to 200 V. The pulse pile-up at lower voltages and its rejection by the digitizer setup 

can only partially explain this dependence. The increase of counts cannot even be explained 

by a higher probability of collecting carriers (i.e. a better CCE); as can be indeed seen from 

the inset on fig. 6, both the MPV of collected charge and the FWHM of the distribution 

remain practically constant with applied voltage for both the front-side and back-side 

configurations, implying no significant shape changes in the beta spectrum, and therefore 

highlighting a good CCE in the span of bias used. Most probably, the increase of counts with 

voltage is due to an increase of the effective volume of the detector. It’s worth recalling here 

that strips are only 1.5 mm long, whereas the sample lateral dimensions are 4×4 mm
2
: being 

the whole volume of the detector irradiated by the 
90

Sr β-source, as described in section 2.3, 

it’s plausible that a significant number of events occurring outside the volume defined by the 

surface strips and the graphite pillars are not counted, unless the charge carriers are generated 

within a distance from the electrodes equal to the charge collection distance (CCD), which 

can be expressed by CCD = μτF where μτ is the mobility-lifetime product of charge carriers 

and F is the applied electric field. The product μτ was previously evaluated to be about 

2.510
-5

 cm
2
/V by independent X-ray photocurrent measurements [33] performed on a 

sample of the same quality as the one used in the present work. By considering an applied 

electric field F = 0.1 V/μm, chosen as a threshold value for an efficient charge collection, the 

corresponding CCD is 250 μm. As can be seen from fig. 6b, reporting  a numerical simulation 

of the contour lines of a 0.1 V/μm electric field at three different bias voltages (100, 140 and 

200 V), the increase of counts with voltage can be qualitatively explained by supposing an 

increasing number of events occurring within the evaluated CCD, actually expanding the 

collecting volume of the detector. In addition, de-trapping effects induced by the electric field, 

possibly enhanced by the radiation [34], may partially compensate for the recombination of 

charge carriers at defects, which are mostly concentrated in the neighborhood of pillars; this is 

also suggested by numerical simulations (fig. 4a), showing that the electric field in the regions 

surrounding pillars is particularly intense. The presence of electrically active carrier-selective 

defects (i.e. acting as traps for holes or for electrons) could also explain the slight difference 

for both the MPV and integral counts found at positive and negative applied voltages. Most 

likely, a class of defects which could act in our case as carrier traps is represented by N-V 

(nitrogen-vacancy) centers: a recent study [35] showed indeed that N-V photoluminescence is 
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greatly enhanced after the formation of laser-induced microstructures similar to those 

introduced in this work. By the way, a more detailed investigation is needed to figure out the 

effective nature of defects and the electronic processes involved in the observed behaviour. 

It’s worth observing now that back-side measurements allowed us to check qualitatively 

that pillars contribute to charge collection in conjunction with the surface graphite contacts.  

The average energy of the electrons emitted in the 
90

Sr to 
90

Y decay is 196 keV [36]: as can be 

seen from fig. 7, reporting a simulation of the energy distribution of 196 keV electrons as a 

function of penetration depth in diamond bulk, all the energy is deposited within a distance of 

only 120 µm. 

 

 

 

Fig. 7. Energy distribution of 196 keV electrons vs. penetration depth in diamond. Contour lines show the 

percentage of energy contained within the line. Simulation was performed with CASINO software [37]. 

 

As regards 
90

Y
 
 to 

90
Zr decay, the average energy of the electrons emitted is 926 keV [36]. 

Fig. 8 reports a simulation (a) of the energy distribution of 926 keV electrons as a function of 

penetration depth in diamond bulk, as well as a simulation (b) of the electric field contour 

lines in the region between two active pillars at different potential. Fig. 8c is similar to fig. 8b, 

but assumes that pillars are not working, and that the only active electrodes are the surface 

graphite strips. Note from fig. 8c that the 0.1 V/µm contour line is about 300 µm far away 

from the back surface (up in the figure): therefore, it’s plausible that electrons emitted in the 

90
Sr to 

90
Y decay do not produce signal at all in case of inactive pillars. Conversely, active 

pillars (fig. 8b) are able to collect about the 25% of the deposited average energy, which is 

absorbed between 70 and 120 µm (see fig. 7) away from the back surface. On the other hand, 
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electrons emitted in the 
90

Y
 
 to 

90
Zr decay are on average able to produce charge collectable 

by the surface strips; however, a significant fraction (between 25 and 50%) of the deposited 

energy (i.e. absorbed in the first 300 µm of material) does not generate signal, whereas in case 

of working pillars this “lost” fraction is far less than 10% (see dashed lines in fig. 8).  

 

 

 Fig. 8. Energy distribution of 926 keV electrons vs. penetration depth in diamond (a). Cross-sectional view of 

the electric field contour lines in the region between two active pillars at different potential (b). Cross-sectional 

view of the electric field contour lines in the region between two surface graphite contacts at different potential 

(c). Dashed lines are a guide to the eye to show the percentage of deposited energy able to generate signal in the 

two configurations of active electrodes (b) and (c). 

 

Now, the MPV value of collected charge in case of back-side irradiation is only 14% less 

than the value obtained for front-side irradiation; this is inconsistent with the hypothesis that 

pillars are not working, since the difference between the amount of charge collected in the 

two configurations would have been, on the basis of the performed simulations (figs. 7 and 8), 

far larger than 14%, being surface strips unable to collect the charge produced by low-energy 

electrons and a significant fraction of the charge produced by MeV range electrons. Of 

course, a more complex analysis, based on finer simulation models of the energy spectrum of 

β-particles and of the collection efficiency of the detector, is needed to better understand and 

interpret quantitatively the experimental  results. 

 

 

3.4 IBIC results 

Experiments with a 4.5 MeV proton beam were carried out at positive and negative bias 

voltages both in front-side and back-side configurations, in order to confirm the suitability of 

the particle detector to collect the charge carriers produced by the energy delivered within the 

sensing volume, as well as to confirm the performance estimated under β-particles irradiation. 

Proton mapping also allowed us to estimate the charge collection efficiency of the detector as 
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a function of the beam position, with a spatial resolution of a few micrometers.  

 

   

Fig. 9. IBIC signal response to proton micro-beam  in case of front-side irradiation as a function of the beam 

position at different bias voltages: ± 300 V, ± 100 V, and ± 50 V. Empty dots marked with “A” and “B” indicate 

the points used for the estimation of the CCE curves reported in fig. 11.  

 

 Fig. 9 show the maps of the monitored signal for front-side irradiation on a 310×310 µm
2
 

area for three different positive (+300 V, +100 V, + 50 V) and negative (–300 V, –100 V, –50 
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V) bias voltages. Fig. 10 reports a sketch of the investigated regions in case of front-side and 

back-side irradiation.  

 

 

Fig. 10 A sketch of the investigated regions under proton irradiation. Scanned areas are 310×310 µm
2
 in the 

front-side configuration and 140×140 µm
2
 in the back-side one, the results of which are shown in fig. 12.  

 

As can be seen from fig. 9, as expected, CCE is extremely low (< 10%) in the area 

corresponding to the conducting pillar, approximately 30 µm in diameter, at every bias 

voltage applied. Conversely, charges are efficiently collected far away enough from the 

pillars. In particular, a better performance is obtained in the wide region between two 

differently polarized rows of pillars, whereas a lower CCE is obviously observed in the region 

between the pillars connected by the same surface graphite strip (y = 200 µm), i.e. at the same 

potential. As regards the absolute values of CCE, it is higher than 90% almost everywhere 

outside the pillars for V = ± 300 V, it stays in the range 70 – 90 % for V = ± 100 V, whereas it 

drops below 70% for V = ± 50 V, even if there are rather wide regions (see the upper section 

of the maps) where CCE still reaches 80%. Interestingly, by comparing the cross-polarized 

image of fig. 2a and the proton maps of fig. 9, CCE seems not to be influenced by the amount 

of stress introduced within the diamond bulk: a good CCE is indeed observed also in the 

highly stressed regions between two rows of differently polarized pillars (white diagonal 

“plumes” in fig. 2a). 
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Fig. 11. Average charge collection efficiency (CCE) as a function of the applied bias voltage as measured 

with proton micro-beam in two different positions, as indicated in fig. 9 : “A” (far away from the pillar) and “B 

“(in the neighborhood of the pillar). 

 

The rather high dependence of CCE on the polarity of bias voltage, observed in the 

neighborhood of the pillars, deserves further discussion. For this reason, CCE as a function of 

bias voltage was estimated in two different positions, indicated in fig. 9 (+300 V map) with 

“A” and “B”. Results are reported in fig. 11. CCE increases in both cases with increasing bias 

voltage, due to a more intense electric field able to drift the generated carriers towards the 

buried contacts, finally saturating at high voltages. But CCE saturation values are completely 

different in the two cases, as well as its symmetry with polarity. As can be seen, in regions far 

away from the pillar (A), where the concentration of lattice defects is very low, CCE is fairly 

symmetric with polarity, and the saturation value (94%) is the same both in the positive and 

the negative branch. Conversely, in the neighborhood of the pillar (B), CCE saturation values 

are lower and a strong asymmetry with polarity is observed (CCE is up to 82% for positive 

bias and up to 52% for negative bias). The asymmetry with polarity observed in the B case 

seems to confirm the presence of electrically-active carrier-selective defects near the pillars 

which can trap one type of carriers, and from which de-trapping may occur or not depending 

on the polarity of the applied voltage.  Unfortunately, IBIC alone is not a technique able to 

disentangle the contributions of electrons and holes to the collected charge signal, so to 

identify the polarity of traps. Possible and effective solutions to be adopted in the future 
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experiments are: 1) the implementation of IBIC, TRIBIC and TSC (Thermally Stimulated 

Current) analyses in the same experimental set-up [38]; 2) the analysis of ion beam-induced 

transient currents [39]. Finally, it’s worth observing that maps recorded at ± 50 V are fairly 

symmetric with polarity, even in the neighborhood of the pillar, further indicating that pillars 

contribute to charge collection in conjunction with the surface graphite contacts. 

 

 

Fig. 12. Signal response under proton micro-beam  irradiation on the back-side of the detector as a function of 

the beam position. The bias voltage is –300 V.  

 

Fig. 12 reports the proton map of a 140140 µm
2
 region (see sketch in fig. 10) just around 

the pillar termination in case of back-side irradiation. As can be seen, unlike the case of front-

side irradiation, charge collection efficiency is poor in this region of the detector, hardly 

reaching 10% and rapidly dropping below 2.8% (corresponding to the detection threshold of 

10000 electrons) in the area corresponding to the pillar and few tens of µm away from it. The 

detectable signal (purple region) can be attributed to the electric field around the end of the 

pillar, intense enough (see simulation in fig. 4b) to partially collect charge despite the high 

density of defects in the neighborhood of the pillar and at the diamond/graphite interface. 

However, fig. 12 clearly indicates that the investigated pillar does not work properly. This is 

quite unexpected, because 4.5 MeV protons are stopped within 97 µm in diamond, so the 

majority of charge (Bragg peak) is deposited just where the end section of the pillar is located; 

a CCE < 10% is therefore not plausible with the assumption that the irradiated pillar 
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contributes to the signal. Presumably, that particular pillar is too defective, or, more probably, 

its resistivity is so high that the RC constant is much larger than the 2 µs shaping time of the 

read-out chain.  

 

 4. Conclusions  

A single-crystal CVD diamond detector with 3D graphite pillars acting as buried contacts 

interconnected via surface graphite strips, both fabricated by femtosecond laser treatment, 

demonstrated its feasibility as an all-carbon device for particle detection, opening new 

perspectives for the realization of even more complex 3D architectures, such as 3D stacked 

detectors for particle tracking. Although cross-polarized optical microscopy and Raman 

analysis highlighted the presence of compressively stressed regions within the diamond bulk, 

good detection performance resulted from measurements under both beta particles and 

protons. An average charge collection efficiency of 94 % was measured under proton beam 

irradiation from the top surface. Numerical simulations of the electric field distribution 

showed that, despite the defects created in the regions surrounding the pillars, the electric 

field strength is high enough to partially compensate for the recombination of photogenerated 

carriers at electrically active carrier-selective defects. Further investigation is necessary to get 

a deeper insight into the electronic transport processes involved in the stressed/defected 

regions unavoidably created by the laser treatment used for the fabrication of 3D pillars. 
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Highlights 
 

 

 All-carbon 3D diamond detectors with buried graphite pillars and surface graphite 

contacts were tested under β-particles and protons.  

 

 Pillars are not “pass-through”, enabling an easy implementation of 3D stacked 

diamond detectors for particle tracking. 

 

 A comprehensive study including crossed-polarizers imaging, numerical simulation of 

the electric field lines in the detector volume, β-particle characterization, and proton 

mapping is reported. 

 

 Charge collection efficiency ( > 90% ) is not affected by the stress induced by the 

fabrication of the pillars within the diamond bulk. 

ACCEPTED MANUSCRIPT


