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Abstract	

This work reports on the induced diamond crystal amorphization by 4 MeV carbon ions 

implanted in the <100> oriented crystal and its determination by application of RBS/C and 

EBS/C techniques. The spectra from the implanted samples were recorded for 1.2, 1.5, 1.75 

and 1.9 MeV protons. For the two latter ones the strong resonance of the nuclear elastic 

scattering 12C(p,p0)12C at 1.737 MeV was explored. The backscattering channeling spectra 

were successfully fitted and the ion beam induced crystal amorphization depth profile was 

determined using a phenomenological approach, which is based on the properly defined 

Gompertz type dechanneling functions for protons in the <100> diamond crystal channels 

and the introduction of the concept of ion beam amorphization, which is implemented 

through our newly developed computer code CSIM.  

	

	

	



1.	Introduction 

Diamond is a semiconductor whose physical properties can be important for 

technological applications, among which the production of detectors is the most promising 

one. Namely, in comparison with silicon, diamond has a higher band gap (5.45 eV), while 

exhibiting lower dark current and breakout field (>1 kVμm-1) [1], higher  resistance to 

damage due to its strong chemical bonds and very high thermal conductivity, 22 Wcm-1K-1, 

for natural, and, 33  Wcm-1K-1, for synthetic diamond, respectively [2]. For high-purity 

diamond crystals, grown using the chemical vapor deposition technique (CVD), the electron 

and hole room temperature drift mobility was reported to be as high as 4500 cm2V-1s-1 and 

3800 cm2V-1s-1 [3] respectively. Additionally, CVD grown diamond detectors show 

enhanced performance characteristics, such as, extraordinary long lifetimes and very high 

mobility of charge carriers [4, 5]. Based on these properties, diamond detectors can be used 

for the detection of light charged particles [1, 6, 7], fission fragments [8], neutrons [9], 

ultra-violet [10] and X-ray [11] emission. Recently, diamond detectors have shown great 

promise for the production of photonic devices [12]. Also, they constitute an excellent 

choice for radiotherapy dosimetry owing to their soft tissue equivalence (Z=6) [13]. 

It is well known that the ion implantation is a standard method for the introduction of 

dopants in semiconductors [14]. One of the drawbacks of the process is the induced 

amorphization of the crystal [15, 16]. However, the induced amorphization can even be 

favorable if the so called pre-amorphization process is required. In the case of diamond 

based devices amorphized diamond layers are observed to have increased electric 

conductivity, making it suitable for ohmic contacts [17, 18].  In broader sense, pre-

amorphization of a semiconductor substrate in the contemporary semiconductor industry 

allows for production of the ultra-shallow junctions for advanced complementary metal 

oxide semiconductor transistors (CMOS), which leads to  significantly lower parasitic 

capacities and, consequently, faster integrated circuits [19]. In this aspect, a good 

quantification technique for determination of the amorphization depth profile in 

semiconductors is emerging as an imperative. It should be noted here that the techniques 

for characterization of the ion beam induced amorphization, reported in the past, like 

Scanning Transmission Electron Microscopy (STEM), which require extensive sample 



preparations and rigid experiment conditions [20], or micro Raman spectroscopy, which 

needs sample cut along longitudinal axis in order to assess amorphization depth profile 

[21], are dominantly qualitatively ones with respect to a precise determination of the non-

crystalline phase induced by the ion beam implantation. Further, Positron Annihilation 

Spectroscopy (PAS) gives point defects depth profile with a suitable probing positron beam 

[22] while X-ray diffraction (XRD) is a nondestructive method that gives averages over 

depth, though a lot has been done to increase XRD resolution [23]. It is also well known 

that the Ion Beam Analysis (IBA) techniques: Rutherford Backscattering Spectroscopy 

(RBS), Elastic Backscattering Spectroscopy (EBS), Elastic Recoil Detection Analysis (ERDA) 

and Nuclear Reaction Analysis (NRA), can determine the depth profile of impurities in a 

bulk material with a depth resolution in the range of a few nanometers [24]. Subset of 

those techniques in the channeling crystal orientation, RBS/C and EBS/C, with lowered 

backscattered signal originating from the bulk crystal can additionally provide the ion 

beam induced amorphization depth profiling information on the bulk crystalline material 

[25, 26]. However, the accurate quantification of the obtained amorphization profiles [27] 

still constitutes an open problem. In the present work our main goal is to obtain quantified 

amorphization depth profile induced by MeV ion implantation by means of fitting 

experimental RBS/C and EBS/C spectra using in-house developed computer simulation 

code which takes into account the background yield of bulk crystal material in the RBS/C or 

EBS/C spectra [28]. 

2.	Computer	simulation	code	

A computer simulation code for the description of RBS and EBS spectra in the random 

and channeling mode, called CSIM, was developed recently [28]. It is based on a 

phenomenological approach [28]. In the channeling mode, the code uses a Gompertz type 

sigmoidal dechanneling function, with the fitting parameters, k and xc, being the 

dechanneling rate and range, respectively. The additional fitting parameter α is the ratio of 

the stopping powers of the channeled to random ions. The target in the code is divided into 

computational layers, whose thickness can be adjusted. Properties of the target layer i.e. 

the atom types, stoichiometry and density, can be set as an input in the code. 



The ion beam in the layer is divided in channeled and dechanneled parts. The 

dechanneled part is treated as being random and consequently its ion beam energy 

loss/stopping power is calculated by Ziegler et al. stopping data [29]. For the channeled 

part of the ion beam, it has been assumed that the energy loss/stopping power is less than 

the random one by a factor determined by the parameter α. The same holds for the energy 

loss straggling, which is calculated as a sum of a part dependent on the energy loss and a 

statistical one [28]. The statistical part is calculated by using Yang’s formula [30]. The 

backscattering cross section is obtained from the IBANDL database for a certain 

backscattering angle [31]. It takes into account the Rutherford and non-Rutherford elastic 

scattering processes including the existing nuclear resonances. 

In a target layer, the dechanneled/random backscattered part of the ion beam along a 

certain angle is calculated from the assumed phenomenological dechanneling function – 

sigmoidal Gompertz function, and the backscattering elastic differential cross section. Then 

it is followed back through the target towards the detector having the total (calculated) 

energy loss and straggling at the exit of the target. The detector resolution is taken into 

account assuming that the energy loss of the detected ion is of a Gaussian form, whose 

standard deviation is the result of the sum in quadrature of standard deviations 

corresponding to the energy loss straggling and to the resolution of the detector. The 

remaining channeled and dechanneled parts of the beam proceed to the next layer, in 

which the new, modified channeled and dechanneled parts are calculated and the whole 

procedure is repeated. It should be mentioned here that one can manually introduce the 

fitting channeling parameters – k, xc and α in each target layer. However, in this work, it has 

been assumed that the fitting channeling parameters are the same in every target layer and 

are determined via a 2 minimization using the MINUIT minimization routine developed at 

CERN [32]. 

3.	Results	

In this work 4 MeV carbon ions were implanted in a diamond crystal in the <100> axial 

channeling direction, with a fluence of ~1016 ions/cm2. RBS/C and EBS/C spectra were 

taken on the implanted spots and on a virgin spot of the diamond crystal by using 1.2, 1.5, 



and, 1.75 and 1.9 MeV protons. In the EBS/C spectra the strong resonance of the nuclear 

elastic scattering 12C(p,p0)12C at Ep,lab=1.737 MeV was explored [31]. 

The experiments were performed at Ruđer Bošković Institute, Zagreb, Croatia. The ion 

beams were produced from the 1 MV HV Tandetron accelerator. The goniometer was 

installed on the beam line allowing for a 5-degree freedom of movement with an angular 

precision of 0.010. The beam line had a collimating system composed of two small 

apertures separated by 25 cm. The silicon detector (SSB) was set at 1600. The beam spot 

had a size of 0.8 mm2.  All the artificial diamonds were flat, polished and rectangular 3x3 

mm2 Element 6 synthetic, high-purity single crystals (with boron and nitrogen dopant 

concentrations of less than 0.05 ppm and 1 ppm respectively), cut in the [100] direction. 

The diamonds were 0.3 mm thick, with flat edges (tolerance < 0.2 mm), grown by Chemical 

Vapor Deposition (CVD) synthesis processes. The diamond crystal alignment along the 

<100> crystal axis was performed with 1 MeV protons [28]. In order to minimize the 

crystal lattice damage, and avoid any type of heating effects, the beam current on target 

never exceeded ~4 nA.  

In order to explain the experimental results and determine the ion beam induced 

crystal amorphization the CSIM computer code [28] was modified by introducing an 

additional fitting parameter A, the ratio of the amorphous to the crystalline phase. Then, in 

the calculation, for a particular value of variable A in the layer, the part of the beam 

corresponding to the value of A is treated as being dechanneled/random, thus decreasing 

the percentage of the channeled part of the beam in the layer. In the first approximation, 

which is used in this work, it will be assumed that the dechanneling and the induced 

amorphization processes are independent. This assumption can be justified by the fact that 

implanted doses cause relatively small crystal damage in the trace region as has been 

previously observed in the studies performed with 6H-SiC crystal [33]. This means that one 

can use the dechanneling parameters obtained for the virgin crystal and independently 

introduce the induced amorphization depth profile. This then allows for relative easy 

spectrum fitting by changing number, height and width of bars comprising amorphization 

depth profile until suitable fit is obtained. Having all three parameters free to change in 

each part of amorphization profile creates too many parameters for minimization to make 



RBS/C or EBS/C technique practical for amorphization depth profiling. However, using 

channeling parameters that do not differ too much from ones obtained in virgin crystal 

case is an option which we would like to offer to potential future users. True testing of 

channeling parameter dependence on amount of amorphization in the crystal would 

require obtaining exact quantified amorphization depth profile via some other method and 

then using that profile to assess how much channeling parameters differ with amount of 

amorphization phase in each layer, which is out of the scope of this paper. It should be also 

noted that the dependence of the energy loss process on the induced amorphization is 

implicit. Namely, the obtained increase of the random part of the beam induced by the 

amorphization accordingly increases the ion energy loss. The ion energy loss straggling has 

also been changed with the induced amorphization in accordance to the change of the ion 

energy loss. 

Therefore, in this work, the fitting procedure of the experimental spectrum assumes 

the introduction of the already obtained dechanneling parameters k and xc, and α, for the 

virgin <100> diamond crystal case [28]. For the proton energies under consideration these 

parameters are given in Table 1, which demonstrates the right trend of the parameters k 

and xc with energy (k is decreasing and xc is increasing), whereas, the parameter  can be 

considered as constant for all practical purposes. Furthermore, in the fitting procedure, the 

parameter A has been adjusted in each crystal layer as to obtain the best fitting curve of the 

experimental spectrum. As a result the amorphization depth profile has been determined. 

Figs. 1(a) and (b) show the RBS/C spectra and the fitting curves for the proton energies 

of 1.2 and 1.5 MeV, whereas, Figs. 1(c) and (d) show the EBS/C spectra and the fitting 

curves for the proton energies of 1.75 and 1.9 MeV, for both the virgin and channeling 

implantation <100> diamond crystal cases. The experimental data are designated by black 

and open dots and the fitting curves by blue and red lines, for the implanted and virgin 

diamond crystal cases, respectively. The induced amorphization is clearly visible as the 

difference of the implanted and virgin parts of the spectra. Also, EBS/C spectra clearly 

show the resonance at Ep,lab=1.737 MeV, in the trace region for 1.75 MeV protons, and 

inside the crystal for 1.9 MeV protons. 



The corresponding amorphization depth profiles are shown in Figs. 2(a)-(d), 

respectively. It is clear that fits of the experimental data presented in Fig. 1 are excellent. 

Also, the obtained amorphization depth profiles, presented in Fig. 2, are consistent with 

respect to the fact that they all show a practically non-disturbed trace region of about 1.5 

µm in thickness and a highly non-symmetric peak structure with the position of the peak 

being located at the same position, which is in all the cases equal to 2.1 µm, accompanied 

by a tail reaching up to ~5 μm in depth, as expected due to the channeling implantation. It 

should be noted here that the amorphization layer at the surface was introduced in order 

to simulate the crystal lattice’s blocking pattern from the planes forming the <100> 

channel, which leads to increased proton backscattering in the channeling direction from 

the crystal surface contributing to the surface channeling peak. This, in principle, depends 

on the initial ion beam energy. Also, the observed differences between the amorphization 

depth profiles for different energies, particularly the ones for the proton energies of 1.2 and 

1.9 MeV, when the values of the maximum induced amorphizations are equal to 70% and 

50%, respectively, can be attributed to the uncertainties of the stopping power, energy loss 

straggling, dechanneling parameters and non-Rutherford/resonant elastic differential 

cross sections. 

In the final analysis, the amorphization depth profiles for all proton energies were 

averaged. This step was chosen to minimize the influence of the uncertainties of all the 

processes involved, as already mentioned above, and to demonstrate the consistency of the 

applied phenomenological approach. The result is shown in Fig. 3. The thus obtained 

undisturbed trace region was equal to 1.55 µm, the position of the maximum 

amorphization was equal to 2.1 µm, with the pronounced tail distribution extending up to 5 

µm as mentioned above.  Using these averaged values as input in the CSIM code, the 

reproduction of the experimental channeling spectra is also excellent and does not deviate 

from the χ2 minimization one by more than 1-5%, which justifies our approach. 

4.	Conclusions	

It is shown here that it is possible to determine the carbon ion beam induced 

amorphization depth profile of the diamond crystal by applying the modified 



phenomenological channeling model for fitting the RBS/C and EBS/C spectra. This could 

open the usage of RBS/C and EBS/C techniques (non-destructive, non-biohazard, fast and 

well known) for quantified crystal amorphization (damage) depth profiling. The newly 

developed CSIM code can be additionally easily adapted for the treatment of implanted 

impurity ions, something which will be the aim of a future work. The beta version of the 

code will be offered for downloading and testing by the scientific community in the near 

future via the Vinča Institute’s web site. 

As a result, it has been demonstrated that MeV range implanted carbon ions in the 

channeling mode can produce a sharp deeply buried carbon amorphization layer in a 

diamond crystal, with the trace region practically undisturbed. This could be compared 

with a recent report about the implementation of the plasma-enhanced CVD method for 

producing freestanding diamond films via the buried graphite interlayer at the interface 

between the diamond film and the Ni substrate [34]. 
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Table 1 

 
E [MeV] 1.20 1.50 1.75 1.90 
k [µm-1] 0.481 0.400 0.300 0.197 
xc [µm] 2.050 2.470 2.749 4.160 

 0.880 0.883 0.900 0.865 
	

Table	1.	Values of the parameters k, xc and , for proton energies of 1.2, 1.5, 1.75 and 1.9 

MeV, for the virgin <100> diamond crystal.  

  

 

 

  



 

Figure 1a 

 

 
Figure	1.	Experimental spectra for the implanted spots – black dots, for the virgin spots – 

open dots, for the implanted spots – blue lines, for the virgin spots – red lines, in the case of 

<100> diamond crystal and proton energies: (a) 1.2 MeV, (b) 1.5 MeV, (c) 1.75 MeV and (d) 

1.9 MeV. 

 

  



Figure 1b 

 

 
Figure	1.	Experimental spectra for the implanted spots – black dots, for the virgin spots – 

open dots, for the implanted spots – blue lines, for the virgin spots – red lines, in the case of 

<100> diamond crystal and proton energies: (a) 1.2 MeV, (b) 1.5 MeV, (c) 1.75 MeV and (d) 

1.9 MeV. 

 

  



Figure 1c 

 

 
Figure	1.	Experimental spectra for the implanted spots – black dots, for the virgin spots – 

open dots, for the implanted spots – blue lines, for the virgin spots – red lines, in the case of 

<100> diamond crystal and proton energies: (a) 1.2 MeV, (b) 1.5 MeV, (c) 1.75 MeV and (d) 

1.9 MeV. 

 

  



Figure 1d 

 

 
Figure	1.	Experimental spectra for the implanted spots – black dots, for the virgin spots – 

open dots, for the implanted spots – blue lines, for the virgin spots – red lines, in the case of 

<100> diamond crystal and proton energies: (a) 1.2 MeV, (b) 1.5 MeV, (c) 1.75 MeV and (d) 

1.9 MeV. 

 

  



Figure 2a 

 

 
Figure	2.	Amorphization depth profiles – blue lines, in the case of <100> diamond crystal 

and proton energies: (a) 1.2 MeV, (b) 1.5 MeV, (c) 1.75 MeV and (d) 1.9 MeV, corresponding 

to the simulation spectra for the implanted spots. 

 

  



Figure 2b 

 

 
Figure	2.	Amorphization depth profiles – blue lines, in the case of <100> diamond crystal 

and proton energies: (a) 1.2 MeV, (b) 1.5 MeV, (c) 1.75 MeV and (d) 1.9 MeV, corresponding 

to the simulation spectra for the implanted spots. 

 

  



Figure 2c 

 

 
Figure	2.	Amorphization depth profiles – blue lines, in the case of <100> diamond crystal 

and proton energies: (a) 1.2 MeV, (b) 1.5 MeV, (c) 1.75 MeV and (d) 1.9 MeV, corresponding 

to the simulation spectra for the implanted spots. 

 

  



Figure 2d 

 

 
Figure	2.	Amorphization depth profiles – blue lines, in the case of <100> diamond crystal 

and proton energies: (a) 1.2 MeV, (b) 1.5 MeV, (c) 1.75 MeV and (d) 1.9 MeV, corresponding 

to the simulation spectra for the implanted spots. 

 

  



Figure 3 

 

 
Figure	3.	Averaged amorphization depth profile – black line. 

 


