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In this letter, the production of deuterons and anti-deuterons in pp collisions at 
√

s = 7 TeV is studied 
as a function of the charged-particle multiplicity density at mid-rapidity with the ALICE detector 
at the LHC. Production yields are measured at mid-rapidity in five multiplicity classes and as a 
function of the deuteron transverse momentum (pT). The measurements are discussed in the context 
of hadron–coalescence models. The coalescence parameter B2, extracted from the measured spectra of 
(anti-)deuterons and primary (anti-)protons, exhibits no significant pT-dependence for pT < 3 GeV/ c, in 
agreement with the expectations of a simple coalescence picture. At fixed transverse momentum per 
nucleon, the B2 parameter is found to decrease smoothly from low multiplicity pp to Pb–Pb collisions, 
in qualitative agreement with more elaborate coalescence models. The measured mean transverse 
momentum of (anti-)deuterons in pp is not reproduced by the Blast-Wave model calculations that 
simultaneously describe pion, kaon and proton spectra, in contrast to central Pb–Pb collisions. The ratio 
between the pT-integrated yield of deuterons to protons, d/p, is found to increase with the charged-
particle multiplicity, as observed in inelastic pp collisions at different centre-of-mass energies. The d/p 
ratios are reported in a wide range, from the lowest to the highest multiplicity values measured in pp 
collisions at the LHC.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The production of light nuclei and anti-nuclei in elementary 
collisions has been described by phenomenological models in 
which nucleons coalesce into nuclei [1–4]. According to these mod-
els, a pair of independent final-state nucleons that are nearby in 
space and have similar velocities can transfer energy to the rest 
of the system to form a deuteron or an anti-deuteron. The pro-
duction rate of the (anti-)deuteron obtained by coalescence is thus 
related to those of its constituent protons and neutrons. In order 
to provide a quantitative description of this process the coales-
cence parameter B2, which relates the deuteron production to the 
square product of nucleon yields, is extracted. These models have 
successfully been tested with deuteron and anti-deuteron produc-
tion measured in pp collisions at the CERN ISR [5,6] and Tevatron 
[7], photo-production and deep inelastic scattering of electrons at 
HERA [8,9], electron-positron collisions at ARGUS [10], BaBar [11], 
CLEO [12] and at LEP [13]. Results on the production of light 
(anti-)nuclei in inelastic pp collisions at 

√
s = 0.9, 2.76 and 7 TeV

have been reported by the ALICE Collaboration in [14,15] and the 
validity of coalescence models [1–4] at the Large Hadron Collider 
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(LHC) has also been discussed. Light nuclei and their anti-matter 
counterparts are rarely produced in elementary reactions. In pp 
collisions at LHC energies, the cost to add one constituent nucleon 
to a nucleus amounts to a reduction factor of the yield (also called 
“penalty factor”) of about 1000 [15]. Heavy-ion collisions, on the 
other hand, constitute a more abundant source of light (anti-)nu-
clei, as reported by ALICE [14,16,17]. A penalty factor of about 300 
has been extracted in central Pb–Pb collisions at the LHC [17].

In Pb–Pb collisions, the yields of light (anti-)nuclei up to the 
mass number A = 4 have been successfully described together with 
other light-flavour hadrons in the thermal-statistical approach with 
one common chemical freeze-out temperature [17–19]. Compared 
to hydrodynamic-inspired models (e.g. Blast-Wave model [20]), the 
measured deuteron pT spectra and elliptic-flow coefficient (v2) 
suggest common kinetic freeze-out conditions for deuterons and 
primary pions, kaons and protons [14,16]. Furthermore, the rela-
tive deuteron-to-proton yields (d/p) increase by about a factor two 
from inelastic pp to central Pb–Pb collisions, where the values [14]
are in agreement with the statistical-thermal model [19]. A coa-
lescence approach that neglects the size of the particle emitting 
source (hereafter denoted as “simple coalescence”) fails in repro-
ducing the deuteron B2 and v2 measured in Pb–Pb collisions [14,
16]. A formulation of the coalescence model that takes into ac-
count the size of the particle-emitting source has been proposed 
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to describe the behaviour in large systems [4]. In smaller systems 
one has to consider that the size of the deuteron may be as large 
as or even larger than the size of the emitting source.

The abundances of nuclei are very sensitive to the freeze-out 
conditions, to the dynamics, and the size of the emitting source. 
For these reasons, a systematic comparison of the production of 
light nuclei across different collision systems and, in particular, in 
events with similar final-state multiplicity but very different initial 
conditions and collision geometry can shed light on the production 
mechanisms. Thanks to the high statistics data sample collected by 
ALICE, the deuteron and anti-deuteron production in pp collisions 
can be studied differentially as a function of the charged-particle 
multiplicity and the transverse momentum (pT), complementing 
the previous measurements in pp and Pb–Pb collisions.

This letter is organised as follows: in Sec. 2 the experimen-
tal apparatus, the analysis technique and the estimation of the 
systematic uncertainties are described. The results on multiplicity 
dependent pT-differential and pT-integrated yields and the anti-
deuteron over deuteron ratio are reported in Sec. 3, which also 
contains a detailed discussion of the results. Conclusions follow in 
Sec. 4.

2. Experimental details

2.1. The ALICE detector

A comprehensive description of the ALICE apparatus and its 
performance can be found in [21,22]. In this section, the detec-
tors used for the analysis discussed in this paper are described. 
Deuteron spectra are measured at mid-rapidity (|y| < 0.5) relying 
on the tracking and particle identification (PID) capabilities of the 
central-barrel detectors, which are located in a solenoid magnet 
providing a B = 0.5 T field, parallel to the beam direction (z-axis 
in the ALICE reference frame).

From the innermost radius of 3.9 cm (distance from the cen-
tre of the beam vacuum pipe) to the outermost radius of 43 cm, 
the Inner Tracking System (ITS) includes two layers of Silicon Pixel 
Detector (SPD), two Silicon Drift Detector (SDD) layers, and two Sil-
icon Strip Detector (SSD) layers. The different ITS sub-systems have 
full azimuth and a common pseudorapidity coverage of |η| < 0.9
in the acceptance. The spatial precision of the ITS, its proximity 
to the beam pipe, and its very low material budget [23] enable a 
precise determination of the primary vertex and of the track im-
pact parameter (i.e. the distance of closest approach of the track to 
the primary vertex) in the transverse plane, for which a resolution 
better than 75 μm is achieved for tracks with pT > 1 GeV/ c [23].

The Time Projection Chamber (TPC) is the main tracking device 
of the experiment and surrounds the ITS with an active volume 
ranging from 85 cm to 247 cm in radius with full azimuthal cover-
age in the pseudorapidity interval |η| < 0.9. It provides up to 159 
space points to determine the particle trajectory and measure its 
momentum. Moreover, the specific ionisation energy-loss of parti-
cles inside the TPC volume is measured with a resolution of 5% in 
pp collisions, exploited here for PID.

The Time-Of-Flight (TOF) system [24], an array of 1593 Multi-
gap Resistive Plate Chambers, completes the set of detectors used 
for PID in the analysis presented in this letter. It is located at a 
radial distance of about 3.8 m, covering full azimuth in the pseu-
dorapidity interval |η| < 0.9. The event time of the collision is 
obtained on an event-by-event basis either using the TOF detector, 
or the T0 detector, or a combination of the two [25]. The T0 detec-
tor consists of two arrays of Cherenkov counters, located on both 
sides of the interaction point at z = 350 cm and z = −70 cm from 
the nominal vertex position. The time-of-flight of the particles is 
determined with a resolution of about 120 ps in pp collisions.

Between the TOF and the TPC, the Transition Radiation Detec-
tor (TRD) is positioned at a radial distance between 2.9 and 3.7 
m from the beam axis, with pseudorapidity coverage of |η| < 0.8. 
Since 2014, all eighteen TRD supermodules are installed, cover-
ing full azimuth. In 2010, when the data used for the analysis 
presented here were collected, only seven sectors were present. 
Although the TRD is not used in this analysis, its detector material 
plays a role in the efficiency corrections, described in Sec. 2.5.

The V0 detector consists of two scintillator arrays built around 
the beam pipe on either side of the interaction point at z = 329
cm and z = −88 cm, and covering the pseudorapidity ranges 2.8 ≤
η ≤ 5.1 (V0-A) and -3.7 ≤ η ≤ -1.7 (V0-C). This detector is used 
for triggering and background suppression. It is also employed for 
classifying events according to multiplicity, as further detailed in 
the next section.

2.2. Event selection and multiplicity classes

The analysis is based on a data sample of 237 million minimum-
bias triggered pp collisions at 

√
s = 7 TeV. The minimum-bias 

trigger requires a hit in either the V0 or the SPD, in coincidence 
with the crossing of proton bunches from the two beams. The 
timing information provided by the V0 detector as well as the cor-
relation between the SPD hit multiplicity and the number of SPD 
track segments pointing to the primary vertex are used offline to 
reject the contamination from beam-gas events, achieving a purity 
of the minimum-bias event sample of 99.7% as estimated in [22]. 
The pileup rejection is performed by rejecting offline the events 
with more than one reconstructed vertex in the SPD. The resid-
ual fraction of events with pileup ranges from about 10−4 to 10−2

for the lowest and highest multiplicity classes, respectively. Events 
are also required to have a primary vertex reconstructed by the 
SPD within ± 10 cm from the nominal interaction point along the 
beam direction. The sample selected with the above criteria con-
tains 172 million events.

The results are reported for an event class (INEL>0) charac-
terised by at least one charged particle being produced in the 
pseudorapidity interval |η| < 1, corresponding to about 75% of 
the total inelastic cross-section. INEL>0 events are selected exper-
imentally by requiring that at least one track segment (tracklet) 
is reconstructed in the SPD. This selection can be affected by in-
efficiencies associated with the tracklet reconstruction. Thus the 
selected number of events used for the normalisation of the yields 
is corrected for the 8.5% loss due to inefficiency in the lowest mul-
tiplicity class and for less than 1.2% loss for all other classes, as 
estimated in [26].

In order to study deuteron production as a function of multi-
plicity, the selected events are classified using the “V0M” forward 
multiplicity estimator, based on the total energy deposited in both 
the V0 scintillator arrays (V0-A and V0-C). The V0M amplitude is 
linearly proportional to the total number of charged particles pro-
duced in the V0 detectors acceptance. Since deuteron production 
is measured at mid-rapidity, an independent estimator is preferred 
as an event classifier to avoid auto-correlation biases. In each 
V0M event class the average charged-particle multiplicity density 
(〈dNch/dη〉) is measured at mid-rapidity and results are reported 
in the following as a function of 〈dNch/dη〉.

For the event classes relevant for this analysis, the values of 
〈dNch/dη〉 and the fraction of the INEL>0 cross section are re-
ported in Table 1. Roman numerals are used to indicate each of the 
ten event classes in which the measurement of other light-flavour 
hadron yields, and protons in particular, have been performed as 
reported in [26,27]. Considering the deuteron statistics needed for 
the present analysis, some of these classes have been combined as 
indicated in the table.
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Table 1
Charged-particle multiplicity (〈dNch/dη〉) measured at mid-rapidity (|η| < 0.5) and 
its corresponding fraction of the INEL>0 cross section (σ /σINEL>0) for each of the 
multiplicity classes selected with the V0M estimator and relevant for this analysis, 
indicated by roman numerals [26]. The uncertainties are the square-root of the sum 
in quadrature of statistical and systematic contributions and represent one standard 
deviation.

Multiplicity class σ /σINEL>0 〈dNch/dη〉
I+II 0 - 4.7 % 17.47 ± 0.52
III 4.7 - 9.5 % 13.50 ± 0.40
IV+V 9.5 - 19 % 10.76 ± 0.30
VI+VII 19 - 38 % 7.54 ± 0.23
VIII+IX+X 38 - 100 % 3.30 ± 0.13
I to X 0 - 100 % 5.96 ± 0.23

2.3. Track selection and particle identification

In order to ensure good quality, tracks are selected according 
to the following criteria. For each track, at least two reconstructed 
points are required in the ITS (including at least one in the SPD) 
and 70 out of a maximum of 159 in the TPC. The track-fit qual-
ity is assured by requiring the χ2 per space point in the TPC to be 
less than 4. Daughter tracks from reconstructed kinks in the TPC 
volume are rejected in order to keep only tracks pointing to the 
primary vertex. To limit the contamination from secondary par-
ticles from material (see Sec. 2.4), requirements are imposed on 
the Distance of Closest Approach of each track to the primary ver-
tex along the beam direction (DCAz) and in the transverse plane 
(DCAxy) to be less than 1 cm and 0.1 cm, respectively. The fidu-
cial pseudo-rapidity region is defined as |η| < 0.8, which ensures a 
uniform acceptance in the detectors involved.

The identification of (anti-)deuterons is achieved by exploit-
ing the measurement of their specific ionisation energy-loss, pro-
vided by the TPC, and via the measurement of the time-of-flight 
of the particles, performed with the TOF. Due to the different ac-
ceptance of the two detectors, the TPC is used without the TOF 
for pT < 1 GeV/ c, where the separation of deuterons from light 
hadrons is very effective. Deuterons and anti-deuterons are se-
lected by requiring an energy loss compatible, within ±3σ , with 
the value expected for particles having the mass and charge of 
the deuteron, where σ is the resolution of the particle energy 
loss in the TPC. For pT > 1 GeV/ c, TOF information is required to-
gether with that from the TPC. The squared mass of the particles, 
m2

TOF = p2 (t2
TOF/L2 − 1/c2), is then determined from the measured 

time-of-flight (tTOF), the momentum (p) and the track length (L), 
after the 3σ selection on the particle energy-loss in the TPC. Fig. 1
shows an example of the obtained m2

TOF distribution around the 
anti-deuteron peak for a selected pT interval and in the high-
est multiplicity class (I+II). The m2

TOF distribution is fitted using a 
Gaussian function with an exponential tail towards higher masses 
for the signal that reflects the TOF detector time response [24]. 
To describe the background the sum of two exponential functions 
is used. They account for those tracks erroneously associated to a 
TOF hit and for the tail of the (anti-)proton signal. For both the 
TPC-only and TOF-TPC analyses the yields of deuterons and anti-
deuterons are separately extracted in each pT interval and for each 
multiplicity class.

2.4. Rejection of secondary deuterons

The sample of identified deuterons is contaminated by those 
that originate from interactions of primary particles with the de-
tector material, e.g. knock-out or pick-up, which are highly sup-
pressed for anti-deuterons. The corresponding correction, only for 
matter, is estimated as in [15] and is based on a fit to the dis-
tribution of the DCAxy . The latter is determined as the sum of 

Fig. 1. TOF squared-mass distribution (m2
TOF) around the anti-deuteron peak for a 

selected pT interval and in the highest multiplicity class. The solid red line repre-
sents a fit of a Gaussian function plus an exponential right tail to the anti-deuteron 
signal, the grey dashed line the fit of the background performed using the sum of 
two exponential functions, and the solid blue line is the sum of the signal and back-
ground components.

two contributions: the signal of primary deuterons appears as a 
Gaussian-like peak centred around zero whereas secondary nuclei 
contribute to the flat underlying background. The fraction of sec-
ondary deuterons is about 40% at pT � 0.6 GeV/ c and decreases 
exponentially as the transverse momentum increases until it be-
comes smaller than 5% above 1.4 GeV/ c. It is observed that this 
does not depend on multiplicity and therefore a correction based 
on the multiplicity-integrated data sample is used to minimise the 
statistical uncertainties.

2.5. Acceptance and efficiency

After subtracting the contamination from secondary particles, 
raw yields are corrected for acceptance and tracking efficiency 
(Acc × ε). This correction allows one to account for the limited 
acceptance of the detectors, the particle absorption in the detector 
material – mainly due to energy loss and multiple-scattering pro-
cesses – and the partial inefficiencies due to detector dead zones 
and inactive readout channels. The Acc × ε is computed by using 
Monte Carlo (MC) generated events. Standard event generators for 
pp collisions, e.g. PHOJET [28] or PYTHIA [29] do not consider the 
production of nuclei. To include light (anti-)nuclei, these are in-
jected into underlying PHOJET events with flat momentum and ra-
pidity distributions. The ALICE detector description is based on the 
GEANT3 particle transport code [30]. As discussed in [14], GEANT3 
includes only an approximate description of the interactions of 
light nuclei with the detector material. The Acc × ε is reduced by 
6% when TOF PID is used, due to the extra (anti-)deuterons lost 
because of hadronic interactions that GEANT3 does not account 
for. This correction is based on the fraction of (anti-)deuterons ab-
sorbed in the TRD modules installed between TPC and TOF, studied 
in data and MC simulations. More details can be found in [15].

As already mentioned in Sec. 2.2, the pT-differential yields are 
normalised to INEL>0 events. Raw yields need to be further cor-
rected for the amount of (anti-)deuteron signals lost because of 
the event selection. This correction is expected to be dependent on 
multiplicity. Simulations enriched with nuclei, such as those used 
to determine Acc × ε, are not appropriate for its estimation, be-
cause the mean number of charged particles per event is not well 
described. In this respect, a MC simulation (based on PYTHIA as 
event generator) that reproduces the charged-particle multiplicity 
measured in the data can be safely used. Since such simulations 
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do not contain nuclei, the fraction of signal lost in the event se-
lection is estimated for (anti-)deuterons by extrapolating the ones 
determined for pions, kaons and protons. This has been done by 
exploiting the linear dependence of the lost signal as a function of 
the mass of the particles, which was observed in simulations. For 
the lowest multiplicity class, the resulting fraction of deuteron loss 
is about 4% at pT � 0.6 GeV/ c and rapidly decreases as the trans-
verse momentum increases until it becomes smaller than 1% above 
1 GeV/ c. For higher multiplicities, the correction is negligible.

2.6. Systematic uncertainties

There are several contributions to the total systematic uncer-
tainty. Two contributions arise from the particular set of selections 
applied to the sample of tracks for the analysis and from the par-
ticle identification procedure. The rejection of secondary deuterons 
also introduces an uncertainty. Other significant uncertainties orig-
inate from the limited knowledge of the absorption of light (anti-
)nuclei in the detector material and of the amount of material 
itself. The ITS-TPC track matching efficiency is also known with 
finite precision. The normalisation of the pT-differential yields to 
INEL>0 events is an additional source of uncertainty. All contribu-
tions to the total systematic uncertainty are summarised in Table 2
for the highest multiplicity class (I+II). More details are presented 
in the following.

The systematic uncertainty related to PID is smaller at low 
transverse momenta, down to 3% at 0.6 GeV/ c, because of a clear 
separation of the deuteron and anti-deuteron signals in the TPC. 
At higher pT, the presence of the background, which contaminates 
the signal in the TOF significantly, introduces an additional uncer-
tainty. The latter increases gradually from about 3% at 1 GeV/ c to 
about 22–23% for pT ≈ 3 GeV/ c. The uncertainty at high transverse 
momentum, at pT ≈ 3 GeV/ c, originates mainly from the right tail 
of the proton squared-mass distribution, which strongly contami-
nates the (anti-)deuteron signal in the TOF.

In the case of the TPC PID, the systematic uncertainty estimate 
is based on a variation of the maximum accepted difference be-
tween the measured and expected energy-loss value for the (anti-
)deuteron-mass hypothesis. In the case of TOF PID, the bin width 
of the squared-mass distribution and the range of the fit have been 
varied. At intermediate transverse momenta (1 < pT < 1.6 GeV/c), 
where the background under the (anti-)deuteron signal peak in the 
m2

TOF distribution is almost negligible, the yield is extracted by bin 
counting. This result is compared to the one obtained with the fit 
procedure described in Sec. 2.3 in order to estimate the system-
atic uncertainty. The uncertainty resulting from the track selection 
has been estimated through variations of the specific requirements 
used in the analysis. The rejection of secondary deuterons is also 
a source of uncertainty at low pT while it is negligible for anti-
deuterons. The uncertainty is estimated by varying the maximum 
|DCAz| of the accepted tracks, which has a significant impact on 
the estimated fraction of primary particles. A pT-independent un-
certainty of 3% is associated with the difference between the ITS-
TPC track matching efficiency in data and MC simulations [27,
31]. The systematic uncertainty related to the normalisation of the 
spectra to the INEL>0 event class is found to be not larger than 1%
for all multiplicities and transverse momenta. This uncertainty is 
estimated as the difference between the corresponding proton and 
deuteron corrections (see Sec. 2.5).

The limited knowledge of the hadronic interaction cross sec-
tion of the primary particles in the detector material leads to a 
systematic uncertainty of 6% uniform in pT, as estimated in [15]. 
Moreover, the uncertainty of the material budget contributes with 
an additional 3% to the total uncertainty. For its evaluation, the ef-
fect of varying the relative amount of material by ±10% has been 

Table 2
Systematic uncertainties on deuteron and anti-deuteron transverse-momentum 
spectra at low and high pT for the highest multiplicity class (I+II). The values in 
parentheses apply to anti-deuterons and are only given where they differ from those 
related to deuterons. Otherwise, where it is not explicitly specified, the values are 
common to particles and anti-particles.

Source d (d)

pT 0.6 GeV/c 3 GeV/c

Particle identification 3% 24% (26%)
Track selection 1% 5%
Secondary nuclei 7% (negl.) negl.
ITS-TPC matching 3% 3%
Norm. to INEL > 0 events 1% negl.
Hadronic interactions 6% 6%
Material budget 3% 3%

Total 11% (8%) 26% (27%)

studied through simulations. All the mentioned contributions have 
been summed in quadrature. The total systematic uncertainty de-
pends moderately on multiplicity: the relative difference between 
different multiplicity classes is 20–30% at most.

3. Results and discussion

3.1. Transverse momentum spectra

The transverse momentum spectra of deuterons and anti-
deuterons in the considered multiplicity classes are shown in 
Fig. 2, in the left and right panels, respectively. In order to ex-
trapolate the spectra to low and high pT, the distributions are 
individually fitted with the Lévy-Tsallis function [31,32],

d2N

dpTdy
= dN

dy

pT(n − 1)(n − 2)

nC[nC + m0(n − 2)]
(

1 + mT − m0

nC

)−n

, (1)

where mT =
√

p2
T + m2

0 is the transverse mass, m0 is the rest mass 
of the particle (deuteron for the present analysis) and n, C and 
dN/dy are the free fit parameters. As observed already in [14] for 
inelastic collisions and in [27] for light hadrons, the Lévy-Tsallis 
function describes the spectra in all multiplicity classes rather 
well. The pT-integrated yield per unit of rapidity (dN/dy) at mid-
rapidity and the mean transverse momentum 〈pT〉 are reported in 
Table 3. These are obtained by integrating the pT-differential yields 
in the measured pT region and the fitted Lévy-Tsallis function in 
the extrapolated regions at low and high pT. The fraction of yield 
contained in these two regions is also reported in the table. The 
first uncertainty of dN/dy and 〈pT〉 reported in Table 3 represents 
the statistical uncertainty, whereas the second is the systematic 
uncertainty. The latter includes the uncertainty due to the extrap-
olation of the spectra, which amounts to about 4 to 9% (from high 
to low multiplicity) of the integrated yield and to about 1 to 5%
of the mean pT. Both these estimates are derived by fitting the 
spectra with other functional forms, which describe the low and 
the high pT regions of the spectra in a different way. These in-
clude Boltzmann, Fermi-Dirac, Bose-Einstein, mT-exponential and 
pT-exponential distributions [33].

Table 3 shows that the yield of deuterons and anti-deuterons 
increases with multiplicity, mirroring the fact that the number of 
constituent nucleons per event is also rising [27]. The multiplic-
ity dependence of the 〈pT〉 reflects the observed hardening of the 
deuteron and anti-deuteron spectra from low to high multiplicity.

The anti-deuteron to deuteron ratio is shown in Fig. 3 for the 
considered multiplicity classes. These ratios are compatible with 
unity within 2σ (where σ is the uncertainty in each pT bin) in 
the measured pT range and for all multiplicity classes, and are in 
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Fig. 2. Transverse-momentum spectra of deuterons (left) and anti-deuterons (right) measured at mid-rapidity in pp collisions at √s = 7 TeV in the considered multiplicity 
classes. The vertical bars are the statistical uncertainties, the open boxes represent the systematic ones. The dashed lines correspond to individual fits to the data performed 
with the Lévy-Tsallis function (see Eq. (1)). The spectra have been scaled with the indicated factors for better visibility.
Table 3
pT-integrated yield, dN/dy, and mean transverse momentum, 〈pT〉, along with the 
extrapolated fraction (Extr.) of deuterons (top) and anti-deuterons (bottom) in pp 
collisions at √s = 7 TeV in different multiplicity classes. The first uncertainty is 
statistical, the second one is the sum in quadrature of the systematic error and the 
uncertainty due to the spectrum extrapolation, as described in the text.

Multiplicity class dN/dy (×10−4) 〈pT〉 (GeV/c) Extr. (%)

d

I+II 10.14 ± 0.15 ± 1.17 1.28 ± 0.01 ± 0.06 23
III 7.01 ± 0.13 ± 0.81 1.19 ± 0.02 ± 0.07 27
IV+V 5.76 ± 0.08 ± 0.64 1.11 ± 0.01 ± 0.05 29
VI+VII 3.55 ± 0.04 ± 0.39 1.05 ± 0.01 ± 0.05 30
VIII+IX+X 1.15 ± 0.01 ± 0.17 0.82 ± 0.01 ± 0.05 39

d

I+II 10.87 ± 0.18 ± 1.47 1.47 ± 0.02 ± 0.16 31
III 7.44 ± 0.15 ± 0.82 1.16 ± 0.02 ± 0.06 29
IV+V 5.68 ± 0.13 ± 0.68 1.17 ± 0.02 ± 0.10 31
VI+VII 3.88 ± 0.06 ± 0.44 1.05 ± 0.01 ± 0.07 35
VIII+IX+X 1.07 ± 0.02 ± 0.15 0.85 ± 0.01 ± 0.05 39

Table 4
Anti-deuteron to deuteron ratio averaged over all mea-
sured pT bins in each multiplicity class in pp collisions 
at √s = 7 TeV. The first uncertainty is statistical and the 
second is the systematic contribution.

Multiplicity class d/d

I+II 0.93 ± 0.03 ± 0.13
III 1.01 ± 0.04 ± 0.15
IV+V 0.92 ± 0.03 ± 0.13
VI+VII 0.96 ± 0.03 ± 0.13
VIII+IX+X 0.93 ± 0.03 ± 0.14

agreement with results for protons [27]. According to coalescence 
models, d/d is equal to (p/p)2 and the anti-proton to proton ra-
tio is indeed compatible with unity [27], independent of pT and of 
charged-particle multiplicity. For each multiplicity class, the aver-
age of the anti-deuteron to deuteron ratio over all pT bins in Fig. 3
is reported in Table 4.

3.2. Coalescence parameter B2

The production of light nuclei and anti-nuclei in pp collisions is 
expected to be the result of the coalescence of protons and neu-
trons that are nearby in space and have similar velocities at the 
last stage of the collision. This process is described by models with 
the parameter B A , where A is the mass number of the nucleus un-
der study. Here, it corresponds to B2, which relates the invariant 
differential yield of deuterons to the one of protons via the follow-
ing equation [1,4]

1

2π pd
T

d2Nd

dpd
Tdy

= B2

(
1

2π pp
T

d2Np

dpp
Tdy

)2

. (2)

In Eq. (2) the proton yield is measured at a value of half of the 
deuteron transverse momentum i.e. pp

T = pd
T/2 and neutrons are 

assumed to have the same invariant differential yield as protons. 
Fig. 4 shows the B2 parameter computed according to Eq. (2) as a 
function of the transverse momentum per nucleon (pT/A) for the 
different multiplicity classes, scaled by constant factors. The differ-
ential yields for deuterons and anti-deuterons shown in Fig. 2 are 
used. The pT spectra of (anti-)protons are those published in [27]. 
The statistical uncertainties in Fig. 4 are dominated by those of 
(anti-)deuterons, while the systematic uncertainties by those of 
(anti-)protons, because the proton term enters to the square power 
in Eq. (2). In any of the considered multiplicity classes, within the 
experimental precision B2 does not show a significant pT depen-
dence as expected in a simple coalescence model [1], where a 
point-like source is assumed that emits nucleons without any cor-
relation between proton and neutron momenta.

In [15], where the results have been reported for inelastic 
pp collisions without any selection on the event multiplicity, the 
B2 parameter (red circles in Fig. 5) was found to increase with 
the transverse momentum. This trend was reproduced by an after-
burner model [34], which looks for correlations between nucleons 
produced by QCD-inspired event generators, and explained as a 
hard scattering effect [15]. In this work the coalescence parame-
ter is re-evaluated for the multiplicity-integrated sample, indicated 
hereafter as B ′

2, by means of the following equation
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Fig. 3. Anti-deuteron to deuteron ratio as a function of pT in the considered multiplicity classes in pp collisions at √s = 7 TeV. The vertical bars represent the statistical 
uncertainty and the open boxes the systematic ones.
Fig. 4. Coalescence parameter B2 of (anti-)deuterons as a function of the transverse 
momentum per nucleon, pT/A, in the considered multiplicity classes in pp colli-
sions at √s = 7 TeV. The vertical bars represent the statistical uncertainties, the 
open boxes the systematic ones. The distributions in each class are scaled by con-
stant factors to improve visibility.

B ′
2 =

VIII to X∑
i=I+II

(Ni/N) Bi
2 (Si

p)2

(
VIII to X∑
i=I+II

(Ni/N) Si
p

)2
, (3)

where Si
p = 1/(2π pT)d2 Ni

p/(dpTdy) is the invariant differential 
yield of protons or anti-protons [27], and Ni/N the fraction of 
events in the i-th multiplicity class. The set of the pT-independent 
Bi

2 measured in this work are also used as inputs of Eq. (3). The 
result for d is shown in Fig. 5 as a red shaded band, after being 
normalised to inelastic collisions via the scaling factor 0.852 [35]. 
The width of the band represents an uncertainty of about 4%. This 
uncertainty includes a 2-3% contribution obtained by consider-
ing finer multiplicity classes than those used in the anti-deuteron 
analysis (anti-proton spectra are measured in [27], B2 has been 

Fig. 5. Coalescence parameter B ′
2 of anti-deuterons as a function of the transverse 

momentum per nucleon pT/A (red shaded band, see text for details). The result is 
compared with the experimental data for B2 measured in inelastic pp collisions at √

s = 7 TeV [15].

interpolated), summed in quadrature to a 3% difference between 
deuteron and anti-deuteron results. The level of agreement with 
the experimental points from [15] indicates that part of the rise of 
B2, in the measured pT/A range, can be explained within a simple 
coalescence picture as a consequence of the hardening of the pro-
ton spectra with increasing multiplicity. The hint for deviation at 
high pT leaves room for additional hard scattering effects, as the 
one invoked in [15,34].

It is worth noting that once the B2 parameter is measured di-
rectly from the multiplicity-integrated sample and normalised to 
inelastic collisions, the result obtained here is in agreement with 
the one published in [15]. In central Pb–Pb collisions the coales-
cence parameter exhibits an increasing trend with the transverse 
momentum [14] that might be attributed to the presence of col-
lective flow [36].

The B2 parameter for one selected interval of transverse mo-
mentum per nucleon (0.7 < pT/A < 0.8 GeV/ c) is shown in Fig. 6 as 
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Fig. 6. Coalescence parameter B2 of (anti-)deuterons as a function of charged-
particle multiplicity at mid-rapidity in pp and Pb–Pb collisions [14] at the LHC at 
the transverse momentum per nucleon of 0.7 < pT/A < 0.8 GeV/ c. The open boxes 
represent the systematic uncertainties.

a function of charged-particle multiplicity density at mid-rapidity 
and compared to the measurements in Pb–Pb collisions at 

√
sNN =

2.76 TeV [14]. In a simple coalescence model [1,3], the B2 param-
eter is expected to be dependent only on the maximum relative 
momentum of the constituent nucleons coalescing in the bound 
state and therefore no multiplicity dependence is predicted. In pp 
collisions (dark green circles in Fig. 6), the extracted B2 is observed 
to vary by about 25% from the lowest to the highest multiplicity 
reached in the present analysis. This effect is more pronounced in 
Pb–Pb collisions and suggests that the increasing volume of the 
particle-emitting source – which reduces the coalescence proba-
bility – has to be taken into account, as done in more elaborate 
coalescence models [4].

3.3. Mean transverse momentum

The mean transverse momenta of deuterons and protons are 
shown as a function of the charged-particle multiplicity in pp col-
lisions in Fig. 7. The difference between deuteron and proton mean 
momenta is significant, except at extremely low charged-particle 
multiplicity. In high-multiplicity pp collisions, the ratio between 
the 〈pT〉 of deuterons and protons is about 1.2 and is smaller than 
the value (about 1.6) measured in central Pb–Pb collisions [14], 
where the established mass ordering is in general attributed to the 
emission of particles from a radially expanding source.

In pp collisions the multiplicity dependence of the deuteron 
mean transverse momentum is well reproduced by computing the 
deuteron spectra using Eq. (2) with the proton spectra as input 
and assuming, as in a simple coalescence model, a pT-independent 
B2 value. Note that in central Pb–Pb collisions the Blast-Wave 
model [20] – a hydrodynamic-inspired model which describes par-
ticle production assuming that these are emitted from an expand-
ing thermalised source – simultaneously fits light nuclei (deuterons 
and 3He) together with light hadrons [14]. On the contrary, in pp 
collisions, the 〈pT〉 of deuterons is not correctly reproduced by us-
ing the Blast-Wave parameters that simultaneously describe pion, 
kaon and proton spectra from [27], as clearly shown in Fig. 7. 
Since the Blast-Wave model is able to reproduce experimental data 
solely in Pb–Pb collisions, we have evidence that a full hydrody-
namic approach does not concurrently describe the production of 
light hadrons and nuclei in pp collisions. The latter is consistent 
with a coalescence picture where the formation of weakly bound 
composite particles is expected to occur only at the last stage of 

Fig. 7. Mean transverse momentum 〈pT〉 of deuterons and protons as a function of 
charged-particle multiplicity at mid-rapidity in pp collisions at the LHC. The open 
boxes represent the total systematic uncertainty while the contribution that is un-
correlated across multiplicity (where estimated) is shown with the shaded boxes. 
The full shaded area corresponds to the expected mean pT of deuterons from a 
simple coalescence model assuming a pT-independent B2 value. The hollow and 
dashed areas correspond to the mean pT of protons and deuterons calculated by 
using the Blast-Wave parameters that simultaneously fit to the pion, kaon and pro-
ton spectra.

the system evolution after the collision, namely after the kinetic 
freeze-out.

3.4. Deuteron-to-proton ratio

Fig. 8 shows the ratio between the pT-integrated yield of 
deuterons and protons as a function of multiplicity, including all 
the presently available measurements performed at the LHC. For 
computing the multiplicity-dependent ratio in pp collisions at √

s = 7 TeV, the deuteron yields reported in Table 3 are used. 
The dN/dy of protons are those reported in [26]. In a naive ap-
proach, one would predict an increase of the deuteron-to-proton 
ratio since the number of nucleons increases with the charged-
particle multiplicity. In pp collisions, the observed trend of the d/p 
ratio is in qualitative agreement with this expectation, further sup-
ported by the fact that the systematic uncertainties are expected to 
be largely correlated across multiplicity. In more sophisticated co-
alescence models [4], the source volume is also taken into account 
and the rise of the d/p ratio is expected to be the result of an 
enhanced nucleon density, and not simply related to the nucleon 
abundances. The prediction of [4] qualitatively describes the data if 
the rise in the nucleon abundance dominates over the increase in 
the volume size in pp collisions. No significant multiplicity depen-
dence of the d/p ratio is observed in Pb–Pb collisions within the 
achieved experimental precision [14], in agreement with expecta-
tions from thermal-statistical models [18,37].

4. Conclusions

The transverse-momentum spectra of deuterons and anti-
deuterons in pp collisions at 

√
s = 7 TeV have been presented in 

five multiplicity classes. They are combined with the primary pro-
ton spectra to extract the coalescence parameter B2. The latter ex-
hibits an approximately constant behaviour with the transverse 
momentum per nucleon in multiplicity classes in the measured 
pT/A range, in agreement with a simple coalescence model, where
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Fig. 8. Ratio between the pT-integrated yield of deuterons and protons as a function 
of charged-particle multiplicity at mid-rapidity in pp (this work) and Pb–Pb colli-
sions [14] at the LHC. The deuteron-to-proton ratio measured in inelastic pp colli-
sions at √s = 0.9, 2.76 and 7 TeV [15] has also been reported.

uncorrelated particle emission from a point-like source is assumed. 
A simple coalescence picture cannot, however, explain the multi-
plicity dependence of the B2 parameter at fixed transverse mo-
mentum (pT/A = 0.75 GeV/ c), observed also in Pb–Pb collisions. 
Instead, these observations point toward a dependence of the coa-
lescence process on the volume of the particle-emitting source. In 
fact, the increasing volume of the particle-emitting source with 
multiplicity plays an effective role in reducing the coalescence 
probability as predicted by more elaborate models. These mod-
els are able to describe data even in the smallest colliding system 
at the LHC, as reported in this letter, where the spatial extension of 
the source is comparable to the deuteron size. Coalescence model 
calculations, precisely correlating the size of the hadronic emission 
region with the multiplicity, need to be performed to quantita-
tively support the current interpretation of the results.

The mean transverse momentum of deuterons has been mea-
sured as a function of the charged-particle multiplicity. In pp 
collisions, the hydrodynamic-inspired Blast-Wave model, which 
assumes that the particles are emitted thermally from an ex-
panding source, does not describe the production of nuclei with 
identical freeze-out conditions as lighter hadrons. While in cen-
tral Pb–Pb collisions there is evidence that nuclei and anti-nuclei 
participate in the expansion of the fireball together with non-
composite light hadrons, in pp collisions such evidence is missing.

All presently available measurements of the pT-integrated d/p 
ratio at the LHC have been discussed as a function of the charged-
particle multiplicity. The observed multiplicity dependence of the 
d/p ratio suggests that the rise with multiplicity of the number 
of nucleons available for coalescence is faster than the increase 
of the source volume in small colliding systems at the LHC. The 
multiplicity dependence of d/p, as well as that of B2, hints at a 
continuous evolution of deuteron production from low-multiplicity 
pp to Pb–Pb collisions. Measurements at intermediate multiplici-
ties, such as those reached in p–Pb collisions, are being performed 
to confirm this picture.

The observed similarities between pp and heavy-ion collisions 
can be traced back to common underlying production mechanisms 
of light (anti-)nuclei. The differences, such as the one appearing in 
the mean transverse momentum of deuterons, are extremely inter-
esting because they can shed light on the possibility that nuclei 
may emerge at different stages of the collision depending on the 
initial conditions.
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