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Abstract
Studies ofmodelmicroswimmers have significantly contributed to the understanding of the principles
of self-propulsionwe have today.However, only a small number ofmicroswimmer types have been
amenable to analyticmodeling, and further development of such approaches is necessary to identify
the key features of these active systems.Herewe present a general perturbative calculation scheme for
swimmers composed of beads interacting by harmonic potentials and via hydrodynamics, driven by
an arbitrary force protocol. The approach can be usedwithmobilitymatrices of arbitrary accuracy,
andwe illustrate it with theOseen andRotne–Prager approximations.We validate our approach by
using 3 bead assemblies and comparing the results with the numerically obtained full-solutions of the
governing equations ofmotion, aswell aswith existing analyticmodels for the linear and the triangular
swimmer geometry.While recovering the relation between the force and swimming velocity, our
detailed analysis and the controlled level of approximation allow us tofind qualitative differences
already in the farfieldflowof the devices. Consequently, we are able to identify a behavior of the
swimmer that is richer than predicted in previousmodels. Given its generality, the framework can be
applied to any swimmer geometry, driving protocol and bead interactions, as well as in problems
involvingmany swimmers.

1. Introduction

The locomotion of swimmers at small scales has been an active area of research in recent years [1], with a variety
ofmicroswimmermodels being proposed, both experimental [2–11] and theoretical [12–21]. A number of these
models aims at understanding the propulsionmechanisms of small organisms such as bacteria or algae cells, or
at designing artificialmicroswimmers. Due to the time-independence of the Stokes equation,modeling
microswimmers has turned out to be a tradeoff between as little degrees of freedomas possible and enough
degrees to break the time-reversal symmetry [22].

Amilestone in thefield has been theminimalistic swimmer consisting of three spherical beads arranged in a
linear fashion, introduced byNajafi andGolestanian [12]. In theirmodel, each neighbouring pair of beads is
connected by an extendible armof a length that is prescribed as a function of time. Calculating the swimming
velocity to leading order in the extension of the arms gives rise to a simple intuition for the swimmer’s speed: the
displacement of the swimmer corresponding to one swimming stroke is proportional to the area enclosed by the
swimmer’s trajectory in the conformation space [13]. Thismodel has been used to investigate the hydrodynamic
properties ofmicroswimmers, including the flowfields they produce and theirmutual interaction [23–25], as
well as the interaction of a swimmerwith awall [26, 27].
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Despite its immense usefulness, thismodel suffers from the constriction of all internal degrees of freedomby
the swimming stroke, namely the internal dynamical behavior of the swimmer cannot react to its surrounding.
This was overcome by replacing the armswith springs and prescribing the forces acting on the beads rather than
the stroke itself [28, 20]. Importantly, the responsive elastic degree of freedom,which is typically associatedwith
the swimmer design, butwhich could also be in the fluid, is responsible for several interesting phenomena. For
example, it is the source of the optimal driving frequency in the overdamped regime [29] and it promotes
swimming based on theminimization of drag or enhancement of hydrodynamic interactions [20].
Furthermore, it is also responsible for the existence of a viscositymaximising the swimming velocity [30] and
synchronization effects of the stroke [20]. Similarfindings have been reported in investigations of bead-based
swimmers in a visco-elastic fluid [31, 32]. Recently, an altered version of the bead-springmodel has been
proposed, where the swimmerwas driven by periodic changes in the equilibrium lengths of the springs [33, 34].

The boundedness of the linear swimmer to one dimension is broken in a triangular swimmer geometry,
allowing for translational as well as rotationalmotion [35, 14, 16]. This geometry has also been used tomodel
Chlamydomonas reinhardtii and investigate in particular the synchronization between the beating of its two
flagella [18, 36, 19]. Experimentally, a triangular swimmerwith intrinsic elasticity has been realized by placing
ferromagnetic beads subject to an oscillatingmagnetic field at awater–air interface [10, 9] and a similar system
has been investigated bymeans of lattice Boltzmann simulations [29]. The full controllability of a triangular
swimmer in the 2D space has recently been shown analytically [21], expanding on the use of the bead-spring
model [20]. However, the perturbative calculations in [20, 30, 21] hold only in the limit of very large bead
separationswhere the swimming velocity becomes extremely small. Especially since this limit is inaccessible in
experiments (see [5, 9]) as external disturbances become exuberant and can break the swimmer, an investigation
of swimmers with smaller bead separations is required and still lacking.

In this paper, we fill this gap by presenting a general perturbative framework to calculate the full behavior of
arbitrarily shaped bead-spring swimmers, i.e. not only their stroke and swimming velocity, but also the average
deformation and the produced flowfield. The accuracy of the results in terms of the bead separation is tuned by
the choice of themobilitymatrix, whereas the precision in terms of the actuation strength is controlled by the
perturbation order. This is essentially different fromprevious calculations [28, 30, 21] as we split the equation of
motion by orders of the driving force and systematically solve the long-term limit of each order, while the
assumption of very large bead separation is notmadewithin the perturbation scheme, but is imposed by the
hydrodynamicmodel. Consequently, given a sufficiently precisemobilitymatrix, the presentedmethod
provides arbitrarily precise results for the swimming velocity.However, evenwithin the same approximation for
themobilitymatrix as used in previous approaches, our systematic perturbative scheme provides some
corrections. The latter are small for the symmetric linear swimmer, but grow strongly when the swimmer
becomes asymmetric or is no longer linear. As an example of the latter, we choose a triangular swimmer for
which, besides an accurate swimming velocity, wefind a transient phase of rotation towards a purely
translational stable steady state. Interestingly, under these conditions the swimmer produces a dipolarflowfield,
which has not been reported for the triangular bead-spring swimmer so far to our knowledge.

The remainder of the article is structured as follows: in the next sectionwe introduce the generalmodel of
bead-springmicroswimmers.We proceed by analyzing the equation ofmotion bymeans of perturbation theory
and present the calculation of the swimmer’s velocity, flowfield and the beads’s trajectories step by step in
section 3. Subsequently, in section 4, we apply this framework to the linear swimmer as a benchmark. Finally, in
section 5, we use it to investigate the triangular swimmer in both external and internal driving. Section 6 contains
the discussion and conclusion.

2.Model

Weconsider amicroswimmer composed of n spherical beads of respective radius ai ( =i n1 ,..., ) in the d-
dimensional space. Throughout the paper, vectors andmatrices on the d-dimensional configuration space
of a single beadwill be denotedwith arrows and hats respectively. For vectors andmatrices on the
( · )n d -dimensional configuration space of all beads, we use bold and underlined symbols respectively. Latin
indices run from1 ton, greek indices from1 to n·d. Some pairs of beads are connected by linear springswhich
we assume here to be harmonic corresponding to the interaction potential

f fº - = - -
     

( ) (∣ ∣) (∣ ∣ ) ( )R R R R
k

R R L,
2

. 1ij i j ij i j
ij

i j ij
2

Here,

Ri and


Rj are the positions of the beads, kij the stiffness and Lij the length of the spring connecting bead i

and j in the swimmer’smechanical equilibrium.Our approach can also easily be adopted tomore complex
interaction potentials, e.g.magneto-capillary potentials (see [37]). Note that the springs are not tied to a certain
direction but can freely rotate as the beadsmove in thefluid. The total spring potential of the device is given by
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åf f=
 

( ) ( ) ( )R R R, , 2ij i j
conn. pairs ij

wherewe sumover all pairs of beads that are connected and define =
 

( )R R R,..., n1 as a vector with n·d
components.

We assume that the Reynolds number of the beads in the fluid is small and that the relaxation of the fluid
takes place sufficiently fast [38] such that thefluid dynamics can be described by the Stokes equation

h -  =
     ( ) ( ) ( ) ( )p r t u r t f r t, , , . 32

Here,
( )p r t, denotes the pressure in the fluid,

 ( )u r t, the velocity of the fluid,
 ( )f r t, the force density applied

to thefluid and η its dynamic viscosity.

r and t denote position vector and time respectively. Thefluid is assumed

to be incompressible:

 =
  ◦ ( ) ( )u r t, 0, 4

with ◦ denoting the scalar product. Forces

Fi applied to all particles induce an instantaneousfluid flowfield ( )u r . This flowfield gives rise to hydrodynamic interactions between the particles in the fluid. Themathematical

complexity associatedwith the description of those hydrodynamics interactions increases greatly as the typical
distance between the particles decreases. In this article, to illustrate the precision and efficiency of ourmethod,
wewill restrict ourselves to the two simplest expressions for the hydrodynamic interaction. Nevertheless, any
expression can be used in ourmodel, which does not suffer from any restriction regarding the hydrodynamic
interactions considered. The simplest approximation is given by theOseen tensor and reads

ph
- =

-
+

- Ä -
-

 
 

   
 

⎛
⎝⎜

⎞
⎠⎟

ˆ ( )
∣ ∣

ˆ ( ) ( )
( )

( )T r r
r r

r r r r

r r

1

8
1 , 5

O
0

0

0 0

0
2

with⊗ the tensor product and 1̂ the d-dimensional unitymatrix. It describes two-body interactions only, where
theflowfield resulting from a force


Fi acting on a bead located at position


r0 is given by

= -
    

( ) ˆ ( ) ( )u r T r r F . 6i
O

0

For a large separation between two beads in terms of their radii, theOseen tensor is a sufficient description for
their interaction. For amore precisemodeling of the hydrodynamic interactions, wemake use of the Rotne–
Prager approximation [39], which is given by

ph
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Investigations of the hydrodynamic interactions inside a two-bead systemhave shown that the Rotne–Prager
approximation does deviate by less then 5% from the complete hydrodynamic interaction as long as Lij/ai> 3
[40]. Hence, we expect the Rotne–Prager approximation to be sufficient in this parameter range.More accurate
expressions are available in the literature [38, 41] and can be employed similarly for the subsequent calculation.
Under theOseen andRotne–Prager approximations, themobilitymatrix of an ensemble of n spheres is a

´( · ) ( · )n d n d matrix defined in terms of d×d blocks as

m m
ph

º =
=

- ¹

 
 

⎪

⎪

⎧
⎨
⎩

( ) (( ))
ˆ ( )
ˆ ( )

( )R R R
a i j

T R R i j
,...,

1 6 , for

, for
, 8n

i

i j
1

with T̂ either theOseen or the Rotne–Prager tensor. In (8), we account for both, the Stokes drag aswell as the
interaction of the beads due to the fluid.Note thatmore accurate approximations for the hydrodynamic
interaction [38, 41] do affect both diagonal and off-diagonal components of themobilitymatrix. The springs are
assumed to be not interacting with the fluid.

An oscillating force


( )RE t ,i withfixed frequencyω is acting on each bead i as

w a= +
 

( ) ( ) ( ) ( )R RE t A E t, sin , 9i i i i

withAi encoding the amplitude of the driving for each bead i and ai the phase shift associatedwith each bead.
The vector


( )REi is dimensionless and subject to a suitable normalization that will be chosen specifically for each

geometry and driving protocol. As indicated above, we allow for a dependence of the driving forces on the
current configuration of the swimmer R. This is required if e.g. the driving forces result from spatially dependent
magnetic or electricfields, or if certain demands to the driving protocol shall be fulfilled, like a constantly zero
total torque for an effectively rotating swimmer.

The temporal evolution of the system is governed by the constitutive equation of themobilitymatrix on the
( · )n d -dimensional configuration space of the beads as
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m= +( )[ ( ) ( )] ( )R R E R G R
t

t
d

d
, , 10

with

f= = -
 

( ) ( ( ) ( )) ( ) ( ) ( )E R R R G R Rt E t E t, , ,..., , , . 11Rn1

R denotes the gradient of a functionwith respect to all n·d components of R.We furthermore omit the
explicit t-dependence of R in our notation for the sake of clarity.

In view of the rescaling of the equations ofmotion, we introduce for each family of parameters a k L, ,i ij ij and
Ai a characteristic value (a k L, , andA, respectively) and define dimensionless parameters by

¢ ¢ ¢ ¢≔ ≔ ≔ ≔ ( )a a a k k k L L L A A A, , , , 12i i ij ij ij ij i i

which become 1 in the case of equal parameters of one type.

3. Analysis

To calculate how the swimmer behaves around a stablemechanical equilibrium, we develop a perturbative
approach that allows to split the equation ofmotion by orders of the driving force.Wefirstly rescale the equation
ofmotion using the characteristic length a and the characteristic time ph= ( )t a k6V [30], denoted as viscous
time. The latter describes the time scale emerging from the interplay of viscous drag and the spring force acting
on a bead. Any event taking place on a periodmuch larger than tVwill correspond to a quasi-static process
duringwhich the system relaxes at every time step toward equilibrium.On the contrary, short lived events
compared to tV give small responses from the systembecause of high viscous dissipation.

From the previous definitions, wefind the effective parameters to be n = a L the aspect ratio between bead
radius and separation, and wG = tV the rescaled driving frequency, comparing the time scale set by the external
driving to the viscous one. Finally,  = ( )A ka denotes the rescaled driving force amplitude, which in essence
quantifies the swimmer deformation by describing the strength of the actuation forceA relative to force needed
to extend the reference spring by one bead radius, namely ka. Small values of ò therefore correspond to small
swimmer deformations and are used for the development of the perturbative scheme.Depending on the
precision required,more terms corresponding to higher orders can be used in the perturbation scheme.
Rescaled variables aremarkedwith an additional dash and the rescaled time is t ≔ t tV . The equation of
motion can then be re-expressed as


t

m t¢ = ¢ ¢ ¢ ¢ + ¢ ¢( )[ ( ) ( )] ( )R R E R G R
d

d
, , 13

with

t t t¢ ¢ ¢ ¢ ¢
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≔ ( ) ( ) ≔ ( ( ) ( )) ( )R E R R R
a

R R
A

E t a E t a
1

,..., ; ,
1

, ,..., , , 14n V n V1 1

m ph m¢ ¢ ¢( ) ≔ ( ) ( )R Ra a6 , 15

and

¢ ¢ ¢( ) ≔ ( ) ( )G R G R
ka

a
1

. 16

The equation ofmotion(13) can be solvedwith a perturbative approach in the vicinity of ò=0. Therefore,
we employ a suitable power series ansatz in ò for the displacement out of the equilibrium

   x x x x¢ ¢ - ¢ = ¢ + ¢ + ¢ +≔ ( ) ( )( ) ( ) ( )R R , 17eq 1 2 2 3 3 4

where ¢R eq is the rescaled equilibrium configuration of the swimmer.We also omit in our notation the explicit
time-dependence of x¢. ATaylor expansion of all ¢R -dependent parts of(13) around ¢R eq yields

 


x x x x

x x x

x x x

t
m m m

t t t

¢ + ¢ = ¢ ¢ + ¶ ¢ ¢ ¢ + ¶ ¶ ¢ ¢ ¢ ¢ +
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a
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a
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2
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2

, ...

1
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... . 18

eq eq eq eq

eq eq eq

eq eq eq

a b, are summed over when appearing as a pair of upper and lower indices and go from1 to n·d, x¢a denotes
theαth component of x¢, and ¶a the derivative with respect to theαth component of ¢R . ‘×’highlights that a
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matrix-vector-multiplication is performed on the line break. The τ-derivative of ¢R eq is zero aswell as the spring
forces evaluated in the equilibrium ¢ ¢( )G R eq .

We proceed by replacing x¢ in (18) by its power series in ò (17). Ordering and splitting the resulting equation
by powers of ò yields a vectorial equation for each order =p 1, 2 ,... in ò. Onefinds that each of them is of the
generic form

x x
t

t¢ = ¢ ¢ + ¢ ( ) ( )( ) ( ) ( )SK
d

d
, 19p p p

with

m ¢ ¢ ¢ ¢ ¢¢≔ ( ) · ( )( ) ( )R G RK , 20R
eq eq

where ‘·’ denotes thematrixmultiplication and  ¢ ¢¢( )( )G RR
eq is the Jacobianmatrix of the spring forces,

evaluated at the swimmer’s equilibrium. ¢ ( )S p is a term that only depends on the displacements x x¢ ¢ -( ) ( ),..., p1 1

and on the derivatives (offirst and higher order) of m¢ ¢E, and ¢G , evaluated at ¢R eq. Since ¢ ( )S p does not depend
on x¢ ( )p , it can be considered as a source term that is known assuming (19) are solved in ascending order in p. The
first two source terms read

t m t¢ = ¢ ¢ ¢ ¢( ) ( ) ( ) ( )( )S R E R , , 211 eq eq

x x x

x x

t m t

m t

¢ = ¢ ¢ ¶ ¶ ¢ ¢ ¢ ¢ + ¶ ¢ ¢ ¢

+ ¶ ¢ ¢ ¢ ¢ ¢ + ¶ ¢ ¢ ¢

a b
a b

a
a

a
a

b
b

⎜ ⎟⎛
⎝

⎞
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( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

S R G R E R

R E R G R

1

2
,

, . 22

2 eq eq 1 1 eq 1

eq 1 eq eq 1

Thematrix ¢K maps thedisplacement vector x¢ to the velocity vector x xt t¢ = ¢ = ¢ ¢( ) ( )R Kd d d d that
emerges from thedisplacement in the situationof zero external forces.Weassume themobilitymatrix m¢ ¢( )R eq to be
positive definite and symmetric. The Jacobianof the spring forces,  ¢ ¢¢( )( )G RR

eq , has tobenegative semi-definite
due to the stability of the swimmer’s equilibriumand symmetric as it is theHessianof the springpotential. For the
lattermatrix,wedistinguishbetween eigenvalues being zero, associatedwith translations and rotations of thewhole
swimmer, andnegative eigenvalues, associatedwithdeformations of the swimmer.Given this, one can also show that
thematrix ¢K is diagonalizable andhas only non-positive eigenvalueswith zero eigenvalues associatedwith
translations/rotations andnegative eigenvalues associatedwith internal degrees of freedom [42].

The explicit way to solve a set of differential equations like(19), accounting for certain initial conditions, is
to split the initial conditions by orders of ò, find the full solution for each order, and adjust it to these initial
conditions by a suitable choice of the parameters in the homogeneous solution. Knowing that ¢K has only non-
positive eigenvaluesλ(κ), the solution to the homogeneous counterpart to(19) ( ¢ =( )S 0p ) can bewritten as

åx l t¢ =
k

k k
=

( ) ( )( )
·

( )X exp , 23p
n d

hom
1

with kX a suitably scaled eigenvectorof ¢K corresponding to the eigenvalueλ(κ). For translational and rotational
degrees of freedom,onehasl =k( ) 0 andhence a constant solution.Thedisplacements corresponding to the internal
degrees of freedomare exponentially decaying andhencego to zero for largeτ. Therefore, thehomogeneous solution
describes the relaxationof the swimmer in the absenceof driving fromarbitrary initial conditions.Consequently, all
solutions to the inhomogeneous equations ( ¢ ¹( )S 0p )differ onlyby the constanthomogeneous solution for largeτ. It
suffices tofinda single arbitrary solution to the full equation (19) inorder todetermine the swimmingvelocity and the
deformationof the swimmer. For afixed source term, the swimmer’s behavior is hence independentof the initial
conditions for largeτ. The eigenvaluesof ¢K corresponding to internal degreesof freedomareof theorderof 1, such
that thedisplacements corresponding to the internal degreesof freedomdecay exponentiallywith a characteristic time
of theorderof tV. In the following calculations,we are interested in thebehaviorof the swimmerafter a few tV,when the
swimmer’s strokehas equilibrated.Therefore,wewill neglect all termsdecaying exponentially at time scale tV arising
fromthe initial conditions in thedisplacements x x¢ ¢ -( ) ( ),..., p1 1 whencalculating the source termof eachorderp.

We point out here that if the system is not invariant under the translational or rotational degree of freedom,
e.g. because the driving forces are not invariant under these transformations, the source term t¢ ( )( )S p explicitly
depends on those degrees of freedom.Via that pathway, the initial conditionsmay actually have an impact on the
swimmer’s behavior. This will be the case for the triangular swimmer in external driving as it will be discussed in
section 5.1.

The rescaled flowfield ¢ ¢
 ( )u rfluid generated by the swimmer, expressed in dependence of the rescaled position

¢

r , is given by

åt t¢ ¢ = ¢ ¢ - ¢ ¢ ¢ + ¢ ¢
=

    )(( ) ˆ ( ) ( ) ( ) ( )E R G Ru r T r R, , , 24
i

n

i
i

fluid
1
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with ph¢ ¢ ¢
 ˆ ( ) ≔ ˆ ( )T x aT ax6 the rescaledOseen/Rotne–Prager tensor and ( )• i the ith part in a decomposition of

•into n partial vectors of length d, i.e. the components associatedwith the ith bead. Given the solutions of(19)
up to order p, the flowfield can be calculated up to the same order p in ò by expanding(24).We here state the
explicit expression up to the second order in ò
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eq eq eq 1

2

1

1 eq eq 1

1

eq eq 1 eq 2

eq 1 1 3

i i i
eq

with  ¢Ri
the gradient with respect to ¢Ri and

¢Ri
eq
the equilibriumposition of bead i. Note that having solved for

the displacements in advance, we simply need to insert them into(25) to obtain theflowfields produced by the
swimmer.

It is worth noticing that ourmethod, given the very general assumptions beingmade, does not suffer from
restrictions expected frommulti-scale approaches.More specifically, the system is characterized by the viscous
time tV and the time scale associatedwith the frequency of driving. Both time scales can be arbitrarily large or
small compared to another onewithout impairing ourmethod.However, the competition between these two
time scales yields interesting phenomena, including the increase of the swimming velocity with the increase of
viscosity [30] and the non-monotonous frequency response [29]. Themain limitation of the perturbative
scheme is related to the separation between the beads, as set by the choice of themodel for the hydrodynamic
interactions.

4. Linear three-bead swimmer

The simplest one-dimensional bead-spring swimmer able to swimat lowReynoldsnumber is the linear three-bead
swimmer (figure 1). A swimmerwith twobeads comeswithonly one internal degree of freedomwhich is not
sufficient to break the time-reversal symmetry [22]. The linear three-bead swimmerhas been studied indetail in
previous analyticalworks [28, 20, 30], where two similar perturbative calculationswere performed. In the latterworks
[20, 30], the results for the swimmingvelocitywere expanded and truncated inorders ofν.With theprecisionof the
Oseen tensor, this calculationdoesnot allow for a predictive result at higherorder than the leadingorderν2.

Wewill show that the result of our approach for the swimming velocity employing theOseen tensor is
correct up to order ν3 and that using the Rotne–Prager tensor hydrodynamics has an impact at orders n4 and
higher. The Rotne–Prager calculation thereby reproduces the results from theOseen approximation up to order
ν3, showing the consistency of our calculation scheme. Furthermore, wefind that our approach coincides at
leading order ν2 to the aforementioned previous results [28, 20, 30], but differs at order ν3, explainingwhy our
results also hold at order ν3.We verify this outcome by comparison to numerical solutions to the governing
equations ofmotion, which are independent of the choice of perturbation scheme.Wefind a very accurate
agreement to our analytical results.

The swimmer consists of three beads forwhichwe choose radii = =a a a1 2 and a3 respectively [28]. The
beads are connected by two identical harmonic springs of stiffness k and equilibrium length L. The driving forces

( )E ti , specified as

w w a= = + = - -
      

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )E t A t e E t A t e E t E t E tsin , sin , , 26x x1 2 3 1 2

Figure 1. Sketch of the linear three-bead swimmerwith driving forces


( )E ti .
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act on the beads, ensuring that the total force vanishes.

ex denotes the unit vector in x-direction. The second

derivative of ¢ ¢( )G R vanishes, because the swimmer is restricted to one dimension. Furthermore, the driving
forces are not spatially dependent and hence all their spatial derivatives vanish too.

We here calculate the displacement x¢ up to second order in ò, pointing out that the displacement to
higher order can be obtained analogously. Numerical investigations show that the second order is a good
approximation up to  » 1. The source term t¢ ( )( )S 1 from (21) composes of purely oscillating contributions
with frequencyΓ

t t t¢ = ¢ G + ¢ G( ) ( ) ( ) ( )( ) ( ) ( )S S Ssin cos , 27s c
1

1
1

1
1

with the indices s1 and c1 denotingfirst the correspondence to sin or cos and second indicating the argument of
the trigonometric function inmultiples ofΓτ. To safe efforts later, we calculate here the solution for amore
general source term given by

t t t¢ = ¢ G + ¢ G( ) ( ) ( ) ( )S S Sf fsin cos , 28sf cf

with f an arbitrary positive integer. Given the linear nature of(19), a suitable ansatz for the displacement is
x x xt t t¢ = ¢ G + ¢ G( ) ( ) ( )f fsin cossf cf . The resulting solutions to(19) read

x

x

¢ = G + ¢ G ¢ - ¢ ¢

¢ = - G + ¢ G ¢ + ¢ ¢

-

-

( ) ( )

( ) ( ) ( )

S S

S S

f K f K

f K f K

1 ,

1 , 29

sf cf sf

cf sf cf

2 2 2 1

2 2 2 1

with1 the ´( · ) ( · )n d n d unitmatrix. These results are in full agreement with [28].
Having calculated the first order displacement in ò, we proceed by calculating the second order source

term(22).Wefind that it contains oscillating terms of the frequency G2 and a constant contribution:

t t t¢ = ¢ G + ¢ G + ¢( ) ( ) ( ) ( )( ) ( ) ( ) ( )S S S Ssin 2 cos 2 . 30s c
2

2
2

2
2

const
2

Again, the linearity of(19) allows us to calculate its solution for each summand in(30) separately and to add up
the results to obtain a full solution. Firstly, the oscillating parts in the source term yield oscillating contributions
to the ò2-displacement (see (28), (29)), which contribute to the stroke of the swimmer. Secondly,(19)with the
constant source term alone can be easily solved by expressing the source term in the eigenbasis of ¢K , where this
matrix becomes diagonal and the equations separate.Wefind for each eigenvalueλ(κ), k = ·n d1 ,..., :

x x
t

t l t¢ = ¢ + ¢k
k

k k( ) ( ) ( )( )
( )

( ) ( )S
d

d
, 312 2

const
2

with the overline indicating the expression of a vector in the eigenbasis of ¢K and k• theκth of the n·d
components of •. For the translational and rotational degrees of freedomwith respect to ¢K wehave l =k( ) 0
and the solution is a linear function in time τ plus a constant whichwe neglect here, as it is determined by the
choice of initial conditions:

x t t¢ = ¢k k( ) · ( )( ) ( )S . 322
const

2

Hence, the second order swimming velocity and angular velocity are obtained from the components of ¢ ( )Sconst
2

associatedwith the translational and rotational degrees of freedom respectively. A detailed step-by-step
calculation is presented in appendix A. For the internal degrees of freedom, l <k( ) 0, the solution to(31) is
constant in time plus an exponentially decaying term that we neglect sincewe are only interested in the limit of
t tV :

x t
l

¢ º - ¢k

k

k( ) ( )( )

( )

( )S
1

. 332
const

2

In effect, this describes a deformation of the swimmer such that the beads do not oscillate around their
mechanical equilibriumbut around a different, deformed configuration.

Analyzing the eigensystemof ¢K , wefind that the linear three-bead spring swimmerwith equal radii
( =a a3 ) and restricted to one dimension has one translationalmode X1 and two internal eigenmodes X2 and X3

(see figure 2(a))with

n
n

= = - +
-

= -⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )X X X1, 1, 1 , 1, 2

6

9 4
, 1 , 1, 0, 1 . 341 2 3

Themode X3 is orthogonal (with respect to the standard scalar product) to X1 and X2. Themodes X1 and X2 are
in general not orthogonal to each other, but become orthogonal for n  0. In our calculation, the swimming
velocity can be read off from the component parallel to X1 in the decomposition of ¢ ( )Sconst

2 in terms of the
eigenvectors of ¢K (green arrow infigure 2(a)).
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In a previous work [28], the swimming velocity was effectively calculated as

å å¢ = ¢ ( ) ( )( )Su
a

a
1

, 35
p p i

i
i

0 const
2

with ¢ ( )S i
const

2 being the part of the constant source term associatedwith bead i. In the case of equal bead radii, this
calculation is equivalent to an orthogonal projection of the source termonto the vector X1 and reading off the
velocity from the projected source term inmultiples of X1 (blue arrow infigure 2(a)). Due to ^X X2 1 for
n  0, the axis projected onto is in this limit orthogonal to the two internalmodes and both the projection and
the decomposition of the source term yield the same result for the swimming velocity. This explains why both
calculations agree for n  0, but alsowhy they differ forfinite values of ν. This can also be seen in the explicit
ratio between our result uZ

O,lin (with the superscript denotingOseen approximation and linear swimmer),
given by

a n n n a
n n n

=
G + - - - G - +
- G + - G + -

( )( ( )( )) ( )( ( ) )
( )( ( ) )( ( ) )

( )u B
sin 16 3 3 4 7 4 4 9 4 2 cos 1

7 4 16 9 4 7 16 4 3
, 36Z

O,lin
2

2 2 2 2

with  n n n= G - +( ) ( ( ) )B a t 9 21 22 56V
2 2 , and the result u0 stated in [28]. This ratio (37) converges to 1 for

n  0:

n n
n n

=
- +
- +

( )
u

u

112 396 378

112 376 315
. 37Z

O,lin

0

2

2

The differences discussed above stem in part from the fact that the original perturbative approach [28]
calculates the oscillations of the beads around the undisturbed swimmer shape. In contrast, in the current

Figure 2.Comparison between the perturbative calculation from [28] and our approach, both for the swimmerwith equal beads and
to the second order in ò. (a)Displacements of the beads, as indicated by blunt arrows centred at the beads, are decomposed into a
translationalmode (X1) and two internalmodes X2 and X3. Themode X1 is associatedwith the swimming velocity. In the X2 mode
the central bead is in counterphase relative to the outer beads, two ofwhich are oscillating in phase. The X3 mode is associatedwith the
counterphasemotion of the two outer beads, while the central bead is at rest. Thesemodes are orthogonal only for n = 0. The
graph shows the decomposition of the constant contribution to the second order source term responsible for setting the swimming
velocity (32). In [28], the translation is a result of the orthogonal projection on the X1 axis (giving rise to u0), while the current
approach relies on the proper decomposition, and provides uZ. (b)Comparison of our analytical and numerical results to previous
outcomes. Analytical and numerical results are shown as fractions of the result from [28], showing increasing difference for increasing
asymmetry of the swimmer. Parameters:  a p= G = =1 10, 1, 2.
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scheme, the swimmer’s average shape and the oscillations of the beads around it are obtained simultaneously.
Actually, both themean deformation and the swimming velocity arise from the constant contribution to the
second order source term ¢ ( )Sconst

2 (30). The distances d1 between bead 1 and 2 and d2 between bead 2 and 3 in the
swimmer’smean configuration, aroundwhich the beads oscillate harmonically, are given up to order ò2 and for

=a a3 by

n
n n

= +
-

+ - +( )
· · ( )d L t u

20 63

56 9 22 21
, 38V Z1

O,lin

and

n
n n

= +
- +

+ - +( )
· · ( )d L t u

20 63

56 9 22 21
. 39V Z2

O,lin

Hence, the ratio between deformation and swimming velocity, both of order ò2, is a simple geometrical factor.
Also, the amplitude of the deformation obeys a similar frequency dependence as the swimming velocity itself
and decays similarly as 1/L2 for large bead separations (see below).

The comparison to numerical calculations, done by numerically integrating the equation ofmotion(13),
shows a very neat agreement between our result and the numerics with errors below 0.1% (figure 2(b)).
Comparing our result with the one obtained in [28], wefind for =a a3 (i.e. equal bead radii) and n » 1 10
small differences in the range of percents, but the difference increases drastically for increasing values of a3
(figure 2(b)), i.e. when the swimmer becomes asymmetric.We observe that for ¹a a3 , all pairs of eigenvectors
are in general nomore orthogonal, even in the limit n  0. Also,(35)describes nomore a projection onto X1

but onto ( )a1, 1, 3 . This explains why the difference between u0 and uZ
O,lin grows for increasing a3 infigure 2(b),

yet in the limit n  0 both still agree independently of a3.
Despite this quantitative difference to previous results [28], we recover the typical dependencies for bead-

spring swimmers which have been reported previously [28, 20, 30, 29]: the swimming velocity scales with the
square of the driving forces for small amplitudes, the swimming speed becomesmaximal in the vicinity of -tV

1

and decays as L1 2 for large bead separations.
The Rotne–Prager approximation (appendix B)has only an impact onto the swimming velocity at orders n4

and higher: using theRotne–Prager tensor instead of theOseen tensor yields an additional term to themobility
matrix scaling as r1 3 (see (7)), with r the distance between the beads. This results in additional terms to m¢ ¢( )R eq

and m¶ ¢ ¢a ( )R eq , scalingwith ν3 and n4 respectively. A closer investigation of the second order source term(22)
shows that the factormultiplied to m¢ ¢( )R eq is zero, such that the additional termdue to the Rotne–Prager

extension has an impact at order n4 and higher on the source term ¢ ( )S 2 and likewise on the swimming velocity.

5. Triangular swimmer

5.1. External driving
Triangular bead-spring swimmers have been studied in detail recently [21, 43], where the employed driving
protocol prescribes forces on each bead parallel to the adjoining sides of the triangle. By varying the amplitudes
of and the phase shifts between the driving forces, the swimmer can be steered on arbitrary trajectories. Both,
translational and rotationalmotionwere shown to scale with the square of the driving force. Also here, the
perturbative approach used in [21] does only hold in the limit n  0.

The triangular swimmer is composed of three spherical beads, each of radius a, connected by identical
springs of equilibrium length L and spring constant k. All beads are placed in the x–z-planewith orientation θ the
angle between the connection of bead 3 to themiddle between bead 1 and 2 and the x-axis (figure 3). Numerous
experimental realizations ofmicroswimmers rely on an externalfield, commonly an electric ormagnetic one
[11, 5, 2]. Therefore, wefirst consider here a toymodel swimmer that is subject to an external forcefieldwhich
shall act in one direction only (without restriction of generality the x-direction) for the sake of simplicity. For the
swimmer to be self-propelled, we demand that all forces acting on the three beads sumup to zero and also have
vanishing total torque.We determine the remaining degree of freedomby prescribing that the sumof the
squares of all forces is equal to a constant, 2A2, such that the forces explicitly are given by

w
w
w

= -

= -

= -

 
 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

E t z z z ce z z t

E t z z z ce z z t

E t z z z ce z z t

, , , sin ,

, , , sin ,

, , , sin , 40

x

x

x

1 1 2 3 3 2

2 1 2 3 1 3

3 1 2 3 2 1
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with

=
- + - + -( ) ( ) ( )

( )c
A

z z z z z z

2
. 41

3 2
2

1 3
2

2 1
2

With this definition, all three beads are treated on an equal basis, experiencing forces that depend explicitly on
the configuration of the swimmer, in order to satisfy the force-free and torque-free condition throughout the
whole swimming stroke.Moreover, at a given orientation of the swimmer, the three driving force amplitudes
can be scaled by the same factor, yet the force- and the torque-free conditions will still be fulfilled. Furthermore,
setting the square of all three driving force amplitudes equal to a constant allows us to keep the power input at the
same order ofmagnitude, as the power input is known to scale with the square of the force for a bead in the
viscous regime [20]. Later in this section, we apply ourmethod to the driving protocol used in [21, 43] for
comparison. Throughout thewhole section on triangular swimmers, wemake use of theOseen approximation
for the hydrodynamic interactions of the beads.

In numerical studies, we observe that the swimmer typically undergoes a transient phase duringwhich it
both rotates and translates. Itfinally reaches a steady state inwhich themotion is purely translational
(figure 4(a)). A closer numerical investigation shows that the angular velocity of the swimmer averaged over one
stroke depends in sinusoidal fashion on the instantaneous orientation of the swimmer (figure 4(b)). The
rotational dynamics of the externally driven triangular swimmer hence is equivalent to the one of an
overdamped pendulum. Perturbation theory and numerics consistently show that the angular velocityΩ atfixed
angle scales as

 nW ~ ( )424 4

and attains itsmaximum for driving frequencies close to the inverse viscous time, similarly to the translational
velocity. The time scale of the rotational relaxation hence can be estimated as  n~ W ~- - -Trelax

1 4 4. In the
parameter range forwhich the perturbation approach applies, this time scale is several orders ofmagnitude
larger than tV.

Wefind stable steady states of the swimmer at q = ·p 60 and unstable steady states at
q = -  =( ) ·p p1 2 60 , 1 ,..., 6 (see figure 4(c)). Obviously, the swimmer in external driving is invariant
under a 3-fold rotation. Furthermore, a 180° rotation inverts the swimming direction but does not affect the
stroke in internal coordinates, showing that the stability of states is invariant under a 6-fold rotation.Hence, all
stable steady states can be considered equivalent and likewise all unstable states. The swimmer is found to always
rotate towards the stable steady state closest to the initial orientation as shown infigure 4(b). The existence of
stable and unstable steady states results fromprescribing the driving forces with respect to the laboratory frame
compared to their prescription in the swimmer’s frame of reference [21]. In the latter protocol, the forces are
held constant in the internal coordinates throughout the rotation of the swimmer and hence the swimmer
undergoes constant translation and rotation.

In the steady states of the externally driven swimmer, we find for the swimming velocity in theOseen
approximation the following expression

Figure 3. Sketch of the triangular swimmer.
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 n n n n
n n n

= -
G - + -

- G + - G + -
( )

( )( ( ) )( ( ) )
( )u

a

t

12 3 2835 8640 5568 1024

9 8 64 9 8 15 256 9 8 9
. 43x

V

O,tri
2 2 2 3 2

2 2 2 2

Adetailed calculation is presented in appendix C. Performing an expansion and truncation of(43) to leading
order of ν shows that this result is in agreementwith the result presented in [21].We recover the typical ~u 2

dependence for small force amplitudes and n~u 2 in the limit n  0, which seem characteristic for bead-
spring swimmers.We can understand the latter dependence from the fact that swimming emerges from the
interplay between the hydrodynamic interaction of parts of the swimmer and variations in their distance,
suggesting a swimming speed scalingwith the gradient of the hydrodynamic interaction and hencewith ν2. In
the range of >L a3 , wefind that expression(43) is negativemeaning that the swimmer swims towards the base
(with respect to the symmetry) of the triangle (see figure 5(a)). For sufficiently small amplitudes of the driving,
we observe that the beads 1 and 2move on ellipsoidal trajectories that are tilted towards themiddle axis of the
swimmer. In the orientation q p= 2, exemplaric for the unstable steady states, the swimmer swims at the same
speed as in a stable state(43).We point out that this property is sensitive to theway the normalization of the
forces is done (see (40)), i.e. it holds only if the sumof the squares isfixed. In contrast to the stable states, the
swimming direction is here pointing towards the tip of the triangle and also the trajectories of the beads 1 and
2 are in this case tilted towards the base of the triangle (figure 5(b)).

Analysis of the analytically computed flowfields shows that in contrast to previous works, which reported
that triangular swimmers produce in average neutral flowfields at second order in the driving force [21, 43], we
herefind a non-vanishing average dipolar flowfield at order ò2 in both states (see figures 5(c), (d)). Going from
stable to the unstable state comes with an exact inversion of the flowfield, transforming the puller-like swimmer
in the stable state into a pusher-like swimmer in the unstable one.

5.2. Internal driving andflowfield
In order to provide deeper insights into the swimmer’s pusher or puller character, we repeat the calculation of
theflowfield for a purely translational driving protocol defined in the swimmer’s frame of reference, presented
similarly in [21]. The swimmer is oriented symmetrically with respect to the z-axis with bead 1 at the top and

Figure 4.Rotational relaxation of the equilateral triangular swimmer in external driving. (a)The time-dependent average orientation
(short-time behavior in the inset) and position of the swimmer. (b)Angular velocity in dependence of the orientation of the triangular
swimmer. (c) Sketch of the stable (blue solid) and unstable (red dashed) steady states, where the lines drawn represent the swimmer’s
middle axis (seefigure 3).

11

New J. Phys. 21 (2019) 113017 S Ziegler et al



bead 2 and 3 defining the base of the swimmer. The center ofmass of the swimmer is located at the origin of the
coordinate system. The forces


Fij that act between each pair of beads i, j are defined as

w w g w a= = = +
     ( ) ( ) ( ) ( ) ( ) ( ) ( )F t A t e F t A t e F t A t esin , sin , sin , 4412 12 13 13 23 2 2 23

with

eij the unit vector connecting bead i to bead j. The application of the perturbative approach presented here

and the analysis of the resulting average flowfield shows that the fields at order ò2 (in dependence of the rescaled
position ¢


r ) can be approximated to leading order as a superposition of two force dipoles

a gá ñ ¢ = ¢ ¢ - ¢ ¢
     ( )( ) ( ) ( ˆ ˆ ) ( ˆ ˆ ) ( )u r f G r e e G r e e, , , , , , 45D x x D z zfluid 2 2

with

¢ ¢  ¢ ¢¢
       ( )( ) ≔ ◦ ˆ ( ) ◦ ( )G r d e d T r e, , . 46D r


e denotes the direction inwhich the forces act,


d the separation vector of the two forces of the dipole and  ¢


r the

gradient with respect to rescaled coordinates. In the direction orthogonal to the swimmer plane, the two force
dipoles cancel up to order y1 4, such that in this direction only the quadrupolarflowfield, scaling as y1 3,
remains. Investigation of themagnitude of the dipolarflowfield shows that a swimmer can be tuned from
pusher to puller by changingα2 and γ2 (figure 6, black curve).

Comparison of the strength of the force dipole a g( )f ,2 2 produced by the swimmer and the swimming
velocity uswim in z-direction shows that their ratio is a function of ν only:

Figure 5.Bead trajectories and ò2-flow fields of the triangular swimmer in stable and unstable states. Sketch of the bead trajectories and
swimming velocity in the (a) stable and (b) unstable steady state. Flow fields in the swimmer plane for the (c) stable and (d) unstable
state and flow fields in the orthogonal plane containing the swimmer’s symmetry axis for the (e) stable and (f)unstable state. The color
scale indicates themagnitude of theflow field.
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- +
( ) ( )

( )
( )f
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, 4 3 40 81

128 360 135
. 472 2

swim
2

This ratio is positive for >L a 2.25, associating a swimmingmotion towards the tip of the triangle with a
pusher flowfield andmotion towards the basewith a pullerflowfield. For g = 1 22 and a p=2 , we recover the
driving of the stable steady state, showing that the swimmer behaves as a puller. The unstable steady state is
recovered for g  ¥2 making the corresponding swimmer a pusher. Plots of the average ò2-flowfields in the
swimmer plane and in the orthogonal plane through the symmetry axis of the swimmer (figures 5(c)–(f))
illustrate the dipolar character of theflow in the plane of the swimmer and its fast decay orthogonal to the
swimmer plane.

The complexity of theflowfield at order ò2 increases when the radius of bead 1 is chosen differently, in
particular the form (45) does not hold and the fast decay of themagnitude in y-direction is lost. Also the curve
determining the pusher/puller behavior in dependence ofα2 and γ2 is sensitive to changes in the parameter a1
(figure 6). Still, the labels of the pusher and puller area are positioned such that they do not only hold for =a a1

(solid line) but also for =a a 31 (dotted–dashed line) and =a 31 (dashed line).

6.Discussion and conclusions

Wepresented a general perturbative approach to calculate the trajectories, internal dynamics and the flowfields
of swimmers consisting of beads interacting by harmonic potentials and hydrodynamic interactions, organized
in an arbitrary geometry and subject to a force protocol of choice. To illustrate and address the efficiency and
precision of ourmethod, two descriptions of the hydrodynamics interactions were considered, namely the
Oseen andRotne–Prager approximation.

Wefirst appliedourperturbationmethod to the linear swimmer as abenchmark.Comparison toprevious results
showed that our approach, combinedwith theOseen tensor, yields a swimmingvelocity that is correct up toorderν3,
whereasprevious approaches areonly correctup toorderν2. This is due to thedifferentwaysof extracting the
swimmingvelocity fromthe constant contribution to the source term.The current formulationmaintains consistency
andprovides corrections thatwere to thebest of ourknowledgeunaccounted for inpreviousperturbation schemes.
The consequencesof these termsarenegligible in the caseof the symmetric swimmer forwhich the swimmingmodes
areorthogonal.However, since thedeviations fromorthogonality increasewith enhancing the asymmetryof the linear
design, important quantitativedifferences canbeobserved in the swimmingvelocity.

We further investigated the dynamics of an externally driven triangular swimmerwith equal bead radii and
discovered the existence of stable and unstable rotational steady states.We showed that the swimmer propagates
at the same speed in both states, but in opposite directions with respect to the symmetry axis of the swimmer. In
contrast to previous results [21], the average flowfield produced by the swimmerwas shown to be puller- or
pusher-like, depending on the forces driving the swimmer. Actually, the character of the dipolar flowfield for
the internal driving can be directly associatedwith the swimming direction, which is, unlike in the stroke-based

Figure 6.Behavior of the equilateral triangular swimmerwith variable size of bead 1 in the internal driving in dependence ofα2 and γ2.
Parameters: nG = =1, 1 10.
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models, a consequence of the driving. Interestingly, the average flowfield of the triangular swimmerwith equal
bead radii is strong near the swimmer plane, but shows a quick decay in the direction orthogonal to the swimmer
plane, in contrast to the linear swimmerwhich produces a rotationally symmetric flowfield. Thismay prove to
be important when considering assemblies of swimmers.

To demonstrate that our perturbationmodel can be coupledwith any choice of approximation for the
hydrodynamic interactions, wemoreover investigate the changes in the swimming velocity when employing the
Rotne–Pragermobilitymatrix. Naturally, we reproduce the result of theOseen calculation up to order ν3

demonstrating the consistency of our approach, and furthermore capture the swimming velocity at the next
higher order in the inverse bead separation. In this context, we do lift the restriction of very large bead
separations, which previous approaches camewith. Actually, the current perturbation scheme can yield
arbitrarily precise results for the swimming velocity, by improving the accuracy of themobilitymatrix.

In the light of the abovediscussion, a natural next step is to investigate the accuracy of our analytical results at
small bead separations,whennearfield effects play a role. Fromthe analysis of the two-beadmobilitymatrix ([44, 40])
and the comparisonof theperturbative calculations for three-sphere swimmerswith latticeBoltzmann simulations
([30, 39]), this regime is expected at separationsof <L a 3.Notably, thenearfield correctionswere recently
addressed in the context of the stroke-based three-sphere swimmer [45]. Indeed, previous perturbative approaches,
basedonperturbation around the rest shapeof the swimmer, allowed for a fullmappingbetween the stroke and force
basedprotocols [39].However, this cannot bedone in the current case since ourmodel predicts a deformationof the
swimmer’s average shapedue to acting forces.Hence, addressingnearfield corrections inmodeling the
hydrodynamic interactions requires thedevelopmentof a new force-basednumerical framework,which is an
interesting researchdirection topursue in future. Such a scheme couldbeparticularly useful for studies of complex
microsystems,where the accuratemodelingofmany-body interactionsmaybe imperative.

Our perturbative approach,moreover,may be also applied in a three-dimensional setting, both in the
context of a single swimmer design orwhen considering an ensemble of interactingmicroswimmers.With small
reformulations, our approach allows for a calculation of relative and absolute translational and angular velocities
of a swimmer in the presence of an arbitrary configuration of other ones. Themodel is, therefore, well suited to
provide a comprehensive study of themechanisms underlying the interaction ofmicroswimmers.While this
issue has been addresed in part for dumbbell-shaped swimmers [46, 47], the stroke-based linear swimmer
[24, 25] and recently, for a force-based linear swimmer [34], a full discussion of the interaction between bead-
basedmicroswimmers is still pending. The tools presented herein can be used as the foundation of such analysis,
which is a task that we intend to address in future work.
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AppendixA. Calculation of the swimming velocity for the linear swimmer

Weprovide a step-by-step calculation of the swimming velocity of the linear three-sphere swimmerwith equal
bead radii in theOseen approximation.We use n=3 and d=1 as the system is confined to a one-dimensional
subspace. The calculations presented herewere donewithMathematica [48]. From (26), we find the rescaled
driving forces

t t
t

a t a t
a t a t

¢ ¢ º ¢ ¢ =
G

G + G
- G - + G
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. A.1eq

For this swimmer, the driving forces do not depend on the positions of the beads ¢R , so all spatial derivatives
thereof are zero.With
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wefind the rescaledmobilitymatrix from (5), (8) and (15) as

m ¢ =
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which can be easily evaluated for ¢R eq:

m

n n

n n

n n

¢ =

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( ) ( )R

1

1

1

. A.4eq

3

2

3

4
3

2

3

2
3

4

3

2

The source term t¢ ( )( )S 1 is calculated according to (21) as

t m t¢ = ¢ ¢ ¢ ¢( ) ( ) ( ) ( )( )S R E R , , A.51 eq eq

wherewe perform amatrix-vectormultiplication.We separate the resulting terms by tG( )sin and tG( )cos and
find
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For the linear swimmer, thematrix ¢K is given by

n n n
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Via (29)with f=1we are able to calculate thefirst order displacements of the beads, which are purely oscillatory
x x xt t¢ = ¢ G + ¢ G( ) ( )( ) ( ) ( )sin coss c

1
1
1

1
1 and too lengthy to be printed here explicitly.

We proceedwith calculating the second order source term t¢ ( )( )S 2 given by (22). Each derivative∂ applied to
a tensorial quantity increases its order by one. In each product a summation is performed over pairwise
appearing upper and lower indicesα andβ, both running from1 to n·d. In the case of the linear three-sphere
swimmer, the first summand of (22) vanishes because the second derivative of the spring forces is zero and
because the driving forces do not depend on ¢R . The second summand yields a lengthy result which is not shown
here. Next, the obtained result for the second order source termhas to be separated into its constant part ¢ ( )Sconst

2

and into oscillating contributions of the form t¢ G( )( )S sin 2s2
2 and t¢ G( )( )S cos 2c2

2 . This can be done after explicitly
calculating ¢ ( )S 2 , or before by separating all appearing factors x¢ ( )1 and t¢ ¢( )E R ,eq by their τ-dependence and
combining them according to common trigonometric rules.

Thefinal task is to extract from the constant second order source term the actual swimming velocity.We
therefore need to decompose the constant source termwith respect to the eigenbasis of ¢K and keep only the
components associatedwith the translational degree of freedom. From the eigenmodes of ¢K , given by (34), we
construct the change of basis ¢M (given below) transforming vectors expressed in the eigensystem of ¢K into
vectors expressed in standard coordinates. Furthermore, ¢Q selects thefirst component of a vector and can
hence be used to obtain from the source term expressed in the eigensystem of ¢K the part associatedwith the
translational degree of freedom.

¢ = - +
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We then calculate the swimming velocity (in standard coordinates) as

¢ = ¢ ¢ ¢ ¢-· · · ( )( )u SM Q M . A.91
const

2

This vector ¢u composes of n similar copies of the velocity vector ¢

u of the swimmer in real space. As d=1, this

vector only has one component and gives directly rise to (36).
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Appendix B. Velocity of the linear swimmer in theRotne–Prager approximation

The result for the swimming velocity of the linear swimmer in the Rotne–Prager approximation is given by

 n a a= G + +( ( ) ( ) ) ( )u
a

t
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AppendixC. Calculation of the swimming velocity of the triangular swimmer in the stable
steady state

Wepresent the explicit calculation of the swimming velocity of the equilateral triangular swimmer in the
external driving in the stable steady state θ=0.We use theOseen tensor and set n=3 and d=2. The
calculation follows the same steps as in the case of the linear swimmer. The vector ¢R and the swimmer’s
equilibrium configuration ¢R eq are
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where bead 3 has been placed in the origin of the coordinate system. The driving forces (40) are given in the
manuscript and evaluate to
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Wedirectly give themobilitymatrix for the equilibrium configuration ¢R eq, as the unevaluated expression
becomes too lengthy:
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From this, thefirst order source term is
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Thematrix ¢K needed for the calculation of the  1-displacements reads
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The resulting displacement x¢ ( )2 is calculated from (29).
We proceedwith the calculation of the second order source term (22), where the second derivative of the

spring forces (a rank 3 tensorwhichwe do not state explicitly) and the spatial derivatives of the driving forces
both do not vanish in the case of the triangular swimmer. Evaluated at ¢R eq, the latter one reads
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To obtain the swimming velocity, we separate constant and oscillating parts of the source term as before. The
eigensystemof ¢K decomposes into two translationalmodes (in x and z-direction), one rotationalmode and
three internal (deformation)modes. The corresponding change of basis and the correspondingmatrix ¢Q ,
selecting only translational and rotational components, read
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The swimming velocity is again calculated by (A.9). Only its x-component is non-zero, giving rise to (43).
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