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Motivated with various responses of world governments to COVID-19, here we develop a toy
model of the dependence epidemics spreading on the availability of tests for disease. Our model,
that we call SUDR+K, is based on usual SIR model, but it splits the total fraction of infected
individuals into two components: those that are undetected and those that are detected through
tests. Moreover, we assume that available tests increase at a constant rate from the beginning of
epidemics but are consumed to detect infected individuals. Strikingly we find a bi-stable behavior
between a phase with a giant fraction of infected and a phase with a very small fraction. We show
that the separation between these two regimes is governed by a match between the rate of testing
and a rate of infection spread at given time. We also show that the existence of two phases does not
depend on the mathematical choice of the form of the term describing the rate at which undetected
individuals are tested and detected. Presented research implies that a vigorous early testing activity,
before the epidemics enters into its giant phase, can potentially keep epidemics under control, and
that even a very small change in rate of testing can increase or decrease the size of the whole
epidemics of various orders of magnitude. For the real application of realistic model to ongoing
epidemics, we would gladly collaborate with field epidemiologists in order to develop quantitative
models of testing process.

I. INTRODUCTION

The recent outbreak of the SARS-CoV-2virus and the
associated illness COVID-19 has triggered, in this cen-
tury, unprecedented containment measures around the
world including the complete lock-down of the popu-
lations of all towns in Italy and and China, [1]. The
World Health Organization has declared the diffusion of
COVID-19 to be a pandemics and issued a strong warning
of a severe global threat[2]. In the case of the COVID-
19 epidemics there is also an infodemic of true and false
news about the danger, the diffusion and the treatments
of COVID-19 [3]. This context muddles the attempts
to understand the epidemics and confuses the people. At
the same time we assist to lively debates among scientists
following the epidemics on all social media and platforms.
Some of important questions are: (i) how many infected
people are undetected? (ii) how the number of tests and
testing policies affects the dynamics of epidemics? (iii)
Is there a benefit in early testing? Some of those ques-
tions are addressed with different methods in the con-
text of different epidemics or are recently addressed with-
out explicit modeling effort. In [4], authors statistically
evaluate different strategies of testing in the context of
ebola epidemics and show the importance of early test-
ing. They found that availability of early testing would
reduce epidemics by one third. In [5] authors review lab-
oratory testing for influenza, which is often mentioned
as similar to SARS-CoV-2in methods of spreading, and
lay out all the possible ways in which early tests can be
used in fighting the diffusion of such a disease. In [6]
authors conclude that undocumented infections present

main channel of geographic spread of SARS-CoV-2.

There is an ongoing effort in estimating modelling the
dynamics of this epidemics and to set the values of the
model parameters significantly affecting the diffusion [7–
9]. In this letter we adopt the available numerical esti-
mates published in this studies. Parameters, whose cal-
ibration is impossible due to lack of data are implicitly
kept within realistic ranges.

In order to explicitly take into account the different
impacts on the spreading dynamics of undetected and
detected infected individuals, and the contribution of the
available number of testing kits to put the epidemics un-
der control, here we extend the usual SIR model to a
novel “SUDR + K” one. In the model we propose four
states of population - S (susceptible), U (undetected),
D (detected) and R (removed), and one additional vari-
able K which models the number of available test kits.
Susceptible are those in population which can acquire
disease. Infected individuals can be detected or unde-
tected, therefore I = U +D. Detected are those that are
positively tested, and undetected are infected of which
no one knows of although some may be suspected for in-
fection. Removed are those individuals that either healed
and acquired immunity or are deceased. Total number of
people in population is N . Lower case letters represent
fraction of population, s+u+d+r = 1 (u+d = i = I/N),
and k = K/N represents available number of tests per
capita.

Even though in reality there are different kinds of tests
(including Nasopharyngeal and oropharyngeal swabs,
Bronchoalveolar lavage, serum testing, CT etc. [10]), we
gather all the kinds in a single family of tests.
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The model we propose is defined by the following equa-
tions:

ṡ = −βsu (1)

u̇ = βsu− δuk − γu (2)

ḋ = δuk − γd (3)

ṙ = γ(u+ d) (4)

k̇ = α− εδuk (5)

Equation (1) is just the usual equation of SIR model
that represents the dynamics from susceptible to infected
after exposure. Here we put u instead of i, because we
assume that after detection the probability of contagion
becomes negligible [11].

Equation (2) needs a more detailed explanation. The
first term just represents the fraction of individuals that
changed their state from susceptible to infected. The sec-
ond term models the change of undetected to detected by
random testing. If there are no tests no one can get de-
tected, if there are no undetected again no one can get
detected. It is then proportional to both the numbers
of undetected and of kits. It is motivated by the idea
that infected individuals report to hospital on the ba-
sis of symptoms (proportional to u) and get tested with
higher probability if there is abundance of kits or lower
if there is a scarcity of kits. The third term represents
just the fraction of individuals that gets removed without
ever been detected. Equation (3) has terms of opposite
sign with respect to the second and the third previous
equation and and additional removal term of detected
individuals. Although The removal of a undetected indi-
vidual happens only through healing (direct death with-
out a transition to d can be neglected), while the removal
of a detected individual can be due to both healing and
death, it is reasonable that both detected and undetected
individuals are removed with equal probability (4), to re-
duce the number of parameters. Equation (1) represents
growth of fraction of kits. The first term in the equa-
tion represents a constant growth of the number of kits
(fixed produced kits per time unit). The second term
means that kits are used proportionally to the number
of undetected individuals and the number of available
kits, which makes sense and also prevents the number of
kits to become negative. The parameter ε measures how
many more tests have to be done to switch an undetected
individual to detected, this term always has to be equal
or larger than the corresponding term δuk in equations
(2) and (3).

Of course there can be higher order contributions in
all equations, however in our opinion Eqs. (1)-(5) are the
simplest possible to get plausible dynamics.

II. MODELS FOR DETECTION

An alternative model for detection can be obtained in
the following way. First, let us assume that for each time

FIG. 1. Red line represents detected fraction of population,
through time; blue - undetected and black - susceptible for
parameters β = ln 2, δ = 0.5, γ = ln 2/7, α = 0.02, ε = 1.

increment K new kits are produced, and that a fraction
of 0 < δ′ < 1 of available kits is used for people accepted
in the hospitals. This means that the number of kits
used on hospitalized people is δ′K On the other hand
the number of people arriving at hospitals with symp-
toms is proportional to number of undetected therefore
δ′ = δu. Moreover let us hypothesize that each of this
newly detected individuals had previously infected other
βs individuals and therefore we could expect that the
number of newly detected is

∆D = δuK(1 + βs) = uΦ(K, sδ, β) (6)

∆d = ∆D/N = uφ(k, s, δ, β) . (7)

Consequently the model equations become:

ṡ = −βsu (8)

u̇ = βsu− uφ− γu (9)

ḋ = uφ− γd (10)

ṙ = γ(u+ d) (11)

k̇ = α− εφ . (12)

Alternative couplings between detected and unde-
tected can in principle be also:

uδk = uφ(uδ−1, k) , (13)

which is a term often used in chemical kinetics in A+B →
C [12], and the

k
u

δs+ u
= uφ(k, s, u, δ) (14)

which is also typical in the kinetics of chemical reactions
[12]. As δ < 1, the interpretation is that each unit of
kits will be used on either susceptible or undetected peo-
ple, but undetected individuals are more probable to be
tested, therefore δ reduces the susceptible cohort. The
number of new detected subjects in a single time step is
given by the ratio between u and all of the people sub-
jected to tests (which can be either susceptible or unde-
tected). The rate of finding is then proportional to k and
this factor. In Eq. (10) we have assumed that spreading
of disease and testing happen at the same time. More
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FIG. 2. For different values of parameter δ , using β = 0.25,

realistic model could include expected incubation time τ
and then the term would become delayed with

δuk(1 + βs(t− τ)) = uφ(k, s, β, τ). (15)

All the above terms can be collected in a single function

uφ(u, k, δ, β, s) , (16)

that we will use later.

III. RESULTS

Whichever model we choose, we qualitatively observe
the same qualitative behavior. Generally speaking, we
find a difference between the two different peaks of de-
tected and undetected individuals both in size and in
their position, as seen in Figure 1. Depending on the
values of the parameters we choose values and ordering
of peaks heights can vary, but the peak of undetected
individuals is always higher than the peak of detected
ones.

In Figure 2 we show that, for the chosen parameters
values, the initial growth of detected subjects is initially
a power-law with exponent ≈ 2 in line with results by
Maier and Brockman [13]. The reason for this is very
similar to their model in the sense that there is a reduc-
tion of the epidemic spreading for those individual that
enter into this new compartment. This is also checked
from the analytical point of view and an expression very
similar to the one found in [13] is obtained. However one
can see that the fraction of infected individuals in such
power-law regime, multiplied by the Italian population
predicts less than one single individual, and therefore this
very initial theoretical regime is unobserved in real data
for Italy. On the contrary, in Figure 3 one can see that
for a range of parameters values a successive exponential
growth is obtained as expected in any epidemics dynam-
ics. In this respect it is noteworthy that the exponential
rate in the model is always smaller than the one observed

in real cases. Parameters which are modeled for SIR have
β − γ as exponent on the onset of epidemics, while ours
is given by β − φ − γ. Using the parameters measured
for SIR changes the slope (depending on the strength of
testing term).

FIG. 3. Red squares are detected through time, blue circles
are undetected and black diamonds are susceptible for param-
eters β = ln 2, δ = 0.5, γ = ln 2/7, α = 0.05, ε = 0.15.

One of the most interesting aspects of our new model
is the appearance of two different peaks in the dynam-
ical evolution of the densities of the two sub-classes of
infected people, undetected and detected. The peak re-
lated to undetected individuals is in general occurring
before the peak of detected ones. The earlier the peak
of detected happens the smaller is the number of total
infected at the end of epidemics. We have found a very
interesting relationship between the time tD,max at which
the peak of detected occurs and the parameter α giving
the production rate of the testing kits:

tD,max ∼ α−η. (17)

This relationship is very clear in Figure 4.

FIG. 4. For β = ln 2 and γ = 0.099 and for different α and δ,
one can observe the relationship 17

The most surprising result of our model is represented
by Figures 5 and 6.

In Figure 5, we can see that for very realistic values
of α, one can observe a switching behavior between two
phases, one with a full blow epidemics, and the other one
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FIG. 5. For the usual choice of parameters β = ln 2, γ =
0.099, δ = 10 we see bi-stability and a strong response of the
system to jump from phase of full blown epidemics to almost
disappearing one for 2 close but different α. Both detected
and undetected are depicted.

FIG. 6. For the usual choice of parameters β = ln 2, γ =
0.099, α = 7.14·10−5 we see bi-stability and a strong response
of the system to jump from phase of full blown epidemics to
almost disappearing one for two different δ. Only undetected
persons are depicted.

in which epidemics practically disappears before macro-
scopic spreading in the population. The values of α for
which we observe this bifurcation between these two very
different behaviors are very close one to each other and
are suggesting the possibility of a huge effect on the epi-
demics diffusion even for a change of few percentiles of
the number of new available testing kits per day.

In Figure 6, we can see that in a certain range of val-
ues of the δ parameter, one can also observe a switching
behavior between the two phases, one with a full blow
epidemics, and other in which epidemics diffusion stays
limited and then vanishes. These observations strongly
suggest that the coupling between kits and the fractions
of undetected and detected individuals is crucial for the
possible evolution of the epidemics.

Since a similar behavior is observed also for other kinds
of coupling, that we have seen in Sect. II, we give a more
general argument for this behavior about Eq. (2). By
focusing on the temporal location of the maximum of
the fraction of undetected subjects, obtained by solving
the equation u̇(tc) = 0, we notice that

s(tc) =
δ

β
k(tc) +

γ

β
. (18)

In Fig. 7 the right side of the equation 18 is depicted
for both choice of parameters that lead to exploding or
suppressed phase that are represented with the number
of susceptible individuals through time., and it is clear
that it give place to a switch between the two aforemen-
tioned phases of the epidemics. In order to generally
explain this transition, we make use of the general cou-
pling term (16) in the model equations. As long as the
function φ is strictly positive and continuous we will have
the same behavior, but with changed temporal location
of the switch. In that case the switch will arise naturally
by setting u̇(tc) = 0 which, from Eq. (2), means through
the solution tc of the equation :

φ(u(tc), k(tc), α, δ) = βs(tc)− γ (19)

In order to proceed to a classification of the two phases,
we have to study the second time derivative of the frac-
tion of undetected individuals ü:

ü(tc) = βṡu− uφ̇. (20)

Clearly tc will be location of local maximum if ü(tc) < 0,
therefore for

βṡ < φ̇ (21)

growth of undetected is subdued. Equation 21 says that
the change of the rate βs with which new undetected are
produced has to be smaller then the change of the rate
φ with which new undetected are found.

IV. DISCUSSION

A simple interpretation of this result is that when the
rate of successful testing and the rate of recovery equals
the rate of transmission of the infection (i.e. transforma-
tion of individuals from susceptible to the infected state),
and the changes of this rates also coincide, the pandemic
enters into a dynamical stationary state. Note that this
does not mean that there are no newly infected, but sim-
ply that the number of new undetected per day is kept
below a certain value. When the two rates equate, we
have a clear separation between the region with small
and manageable population of u and full blow up of the
epidemics. The repercussion of this result is that test-
ing can have an immense impact if it is done in time
and in a smart calibrated on the rate of transmission of
the infection in the population. Indeed it is important
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FIG. 7. Two different phases of susceptible and Eq. 18 for pa-
rameters that lead to the phase with extinguishing epidemics.

to stress that the way Singapore handled the Covid-19
crisis [14] is very similar to our model. Moreover Japan
and Hong Kong are also managing well the diffusion of
the epidemics during the writing of this paper: indeed
α = 0.0002, as reported for the Hong Kong case [15],
is within the meaningful range of parameters we used
in this model. This leads us to believe that developed
countries which are adopting testing policies postponing
a widespread testing activity until they have full blown
epidemics are probably wrong. This result would also
suggest that sharing of tests among nations is fundamen-

tal in order to mitigate the epidemics diffusion.

In the end we would like to once again stress that here
we present toy model which is not calibrated and suitable
to any kind of quantitative predictions. We believe that
the testing strategy, and the modeling of detection of
cases is of fundamental importance for the epidemics of
COVID19 as well as for all possible future epidemics of
unknown pathogens, and we would love to collaborate
with institutions and researchers which are working on
real testing to model it as best as possible.
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