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D-80805 München, Germany

Rudjer Boskovic Institute, Theoretical Physics Division, HR-10002 Zagreb, Croatia

E-mail: gorand@thphys.irb.hr

A. Khodjamirian

Theoretische Physik 1, Fachbereich Physik, Universität Siegen, D-57068 Siegen,

Germany

E-mail: khodjam@hep.physik.uni-siegen.de

Th. Mannel

Theoretische Physik 1, Fachbereich Physik, Universität Siegen, D-57068 Siegen,

Germany

E-mail: mannel@hep.physik.uni-siegen.de

B. Melić
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1. Introduction

The form factors of heavy-to-light transitions at large energies of the final hadrons are

among the most important applications of QCD light-cone sum rules (LCSR) [1]. In this

paper we concentrate on the B → π transition form factors f+
Bπ, f0

Bπ and fT
Bπ of the

electroweak vector b→ u and penguin b→ d currents, respectively. Previously, these form

factors have been calculated from LCSR in [2, 3, 4, 5, 6, 7, 8, 9, 10], gradually improving

the accuracy.

The main advantage of LCSR is the possibility to perform calculations in full QCD,

with a finite b-quark mass. In the sum rule approach, the B → π matrix element is

obtained from the correlation function of quark currents, rather than estimated directly

from a certain factorization ansatz. This correlation function is conveniently “designed”,

so that, at large spacelike external momenta, the operator-product expansion (OPE) near

the light-cone is applicable. Within OPE, the correlation function is factorized in a series

of hard-scattering amplitudes convoluted with the pion light-cone distribution amplitudes

(DA’s) of growing twist. To obtain the B → π form factors from the correlation function,

one makes use of the hadronic dispersion relation and quark-hadron duality in the B-meson
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channel, following the general strategy of QCD sum rules [11]. More details can be found

in the reviews on LCSR, e.g., in [12, 13, 14]. A modification of the method, involving

B-meson distribution amplitudes and dispersion relation in the pion channel was recently

suggested in [15]; the analogous sum rules for B → π form factors in soft-collinear effective

theory (SCET) were derived in [16].

LCSR provide analytic expressions for the form factors, including both hard-scattering

and soft (end-point) contributions. Because the method is based on a calculation in full

QCD, combined with a rigorous hadronic dispersion relation, the uncertainties in the result-

ing LCSR are identifiable and assessable. These uncertainties are caused by the truncation

of the light-cone OPE, and by the limited accuracy of the universal input, such as the

quark masses and parameters of the pion DA’s. In addition, a sort of systematic uncer-

tainty is brought by the quark-hadron duality approximation adopted for the contribution

of excited hadronic states in the dispersion relation. Importantly, B → π form factors are

calculable from LCSR in the region of small momentum transfer q2 (large energy of the

pion), not yet directly accessible to lattice QCD.

The B → πlνl decays, with continuously improving experimental data, provide nowa-

days the most reliable exclusive Vub determination. Along with the lattice QCD results, the

form factor f+
Bπ(q2) obtained [10] from LCSR is used for the |Vub| extraction. Furthermore,

the LCSR form factors f+,0
Bπ (q2) can provide inputs for various factorization approaches to

exclusive B decays, such as QCD factorization [17], whereas the penguin form factor fT
Bπ

is necessary for the analysis of the rare B → πl+l− decay. Having in mind the importance

of B → π form factors for the Vub determination and for the phenomenological analysis of

various exclusive B decays, we decided to reanalyze and update the LCSR for these form

factors. One of our motivations was to recalculate the O(αs) gluon radiative correction to

the twist-3 part of the correlation function. Only a single calculation of this term exists

[9, 10], whereas the O(αs) corrections to the twist-2 part have been independently obtained

in [4] and [5]. In what follows, we derive and present the explicit expressions for all O(αs)

hard-scattering amplitudes and their imaginary parts for the twist-2 and twist-3 parts of

the correlation function and some of these expressions are new.

In the OPE of the correlation function the MS mass mb(µ) is used, a natural choice

for a virtual b-quark propagating in the hard-scattering amplitudes, calculated at large

spacelike momentum scales ∼ mb. Importantly, in the resulting sum rules we keep using

the MS mass. Note that the value of mb(mb) is rather accurately determined from the

bottomonium sum rules. In previous analyses, the one-loop pole mass of the b-quark was

employed in LCSR. The main motivation was that the pole mass was used also in the

two-point sum rule for the B-meson decay constant fB, needed to extract the form factor

from LCSR. In the meantime, the fB sum rule is available also in MS-scheme [18], and we

apply this new version here.

Furthermore, we fix the most uncertain input parameters, the effective threshold and

simultaneously, the Gegenbauer moments of the pion twist-2 DA, by calculating the B-

meson mass and the shape of f+
Bπ(q2) from LCSR and fitting these quantities to their

measured values. In addition, the nonperturbative parameters of the twist-3,4 pion DA’s

entering LCSR are updated, using the results of the recent analysis [19].
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The paper is organized as follows. In sect. 2 the correlation function is introduced and

the leading-order (LO) terms of OPE are presented, including the contributions of the pion

twist-2,3,4 two-particle DA’s and twist-3,4 three-particle DA’s. In sect. 3 the calculation

of the O(αs) twist-2 and twist-3 parts of the correlation function is discussed. In sect. 4

we present LCSR for all three B → π form factors. Sect. 5 contains the discussion of

the numerical input and results, as well as the estimation of theoretical uncertainties, and

finally, the determination of |Vub|. Sect. 6 is devoted to the concluding discussion. App. A

contains the necessary formulae and input for the pion DA’s. The bulky expressions for

the O(αs) hard-scattering amplitudes and their imaginary parts are collected in App. B,

and the sum rule for fB is given in App. C.

2. Correlation function

The vacuum-to-pion correlation function used to obtain the LCSR for the form factors of

B → π transitions is defined as:

Fµ(p, q) = i

∫
d4x eiq·x〈π+(p)|T

{
ū(x)Γµb(x),mbb̄(0)iγ5d(0)

}
|0〉

=

{F (q2, (p+ q)2)pµ + F̃ (q2, (p + q)2)qµ , Γµ = γµ

F T (q2, (p+ q)2)
[
pµq

2 − qµ(qp)
]
, Γµ = −iσµνq

ν

(2.1)

for the two different b→ u transition currents, For definiteness, we consider the B̄d → π+

flavour configuration and, for simplicity we use u instead of d in the penguin current,

which does not make difference in the adopted isospin symmetry limit. Working in the

chiral limit, we neglect the pion mass (p2 = m2
π = 0) and the u-, d-quark masses, whereas

the ratio µπ = m2
π/(mu +md) remains finite.

At q2 ≪ m2
b and (p+ q)2 ≪ m2

b , that is, far from the b-flavour thresholds, the b quark

propagating in the correlation function is highly virtual and the distances near the light-

cone x2 = 0 dominate. It is possible to prove the light-cone dominance, following the same

line of arguments as in [15]. Contracting the b-quark fields, one expands the vacuum-to

pion matrix element in terms of the pion light-cone DA’s of growing twist. The light-cone

expansion [20] of the b-quark propagator is used (see also [3]):

〈0|biα(x)b̄jβ(0)|0〉 = −i

∫
d4k

(2π)4
e−ik·x

[
δij /k +m

m2 − k2

+gs

1∫

0

dvGµνa(vx)

(
λa

2

)ij
(

/k +m

2(m2 − k2)2
σµν +

1

m2 − k2
vxµγν

)]

αβ

, (2.2)

where only the free propagator and the one-gluon term are retained. The latter term gives

rise to the three-particle DA’s in the OPE. Diagrammatically, the contributions of two-

and three-particle DA’s to the correlation function are depicted in Fig. 1. In terms of

perturbative QCD, these are LO (zeroth order in αs) contributions. The Fock components

of the pion with multiplicities larger than three, are neglected, as well as the twists higher
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p + q
q

ud

b

π(p)

p + q
q

ud

b

π(p)

Figure 1: Diagrams representing the leading-order terms in the correlation function involving the

two-particle (left) and three-particle (right) pion DA’s shown by ovals. Solid, curly and wave lines

represent quarks, gluons, and external currents, respectively.

than 4. This truncation is justified by the fact that the twist-4 and three-particle corrections

to LCSR obtained below turn out to be very small.

In addition we include the O(αs) gluon radiative corrections to the dominant twist-2

and twist-3 parts of the correlation function. The OPE result for the invariant amplitude

F is then represented as a sum of LO and NLO parts:

F (q2, (p+ q)2) = F0(q
2, (p + q)2) +

αsCF

4π
F1(q

2, (p+ q)2), (2.3)

and the same for F̃ and F T . The leading-order (LO) invariant amplitudes F0, F̃0, and F T
0

including twist 2,3,4 contributions have been obtained earlier in [3, 6, 7, 21]. We present

them here switching to the new notations [19] of the twist-3,4 DA’s:

F0(q
2, (p + q)2) = m2

bfπ

1∫

0

du

m2
b − (q + up)2

{
ϕπ(u) +

µπ

mb
uφp

3π(u)

+
µπ

6mb

[
2 +

m2
b + q2

m2
b − (q + up)2

]
φσ

3π(u) −
m2

bφ4π(u)

2
(
m2

b − (q + up)2
)2

−
u

m2
b − (q + up)2

u∫

0

dvψ4π(v)

}

+

1∫

0

dv

∫
Dα

[
m2

b −
(
q + (α1 + α3v)p

)2]2

{
4mbf3πv(q · p)Φ3π(αi)

+m2
bfπ

(
2Ψ4π(αi) − Φ4π(αi) + 2Ψ̃4π(αi) − Φ̃4π(αi)

)}
, (2.4)
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F̃0(q
2, (p+ q)2) = mbfπ

1∫

0

du

m2
b − (q + up)2

{
µπφ

p
3π(u)

+
µπ

6

[
1 −

m2
b − q2

m2
b − (q + up)2

]
φσ

3π(u)

u
−

mb

m2
b − (q + up)2

u∫

0

dvψ4π(v)

}
,

(2.5)

F T
0 (q2, (p + q)2) = mbfπ

1∫

0

du

m2
b − (q + up)2

{
ϕπ(u) +

mbµπ

3(m2
b − (q + up)2)

φσ
3π(u)

−
1

2(m2
b − (q + up)2)

(
1

2
+

m2
b

m2
b − (q + up)2

)
φ4π(u)

}

+mbfπ

1∫

0

dv

∫
Dα

[
m2

b −
(
q + (α1 + α3v)p

)2]2

{
2Ψ4π(αi) − (1 − 2v)Φ4π(αi)

+2(1 − 2v)Ψ̃4π(αi) − Φ̃4π(αi)

}
, (2.6)

where Dα = dα1dα2dα3δ(1−α1 −α2 −α3), and the definitions of the twist-2 (ϕπ), twist-3

(φp
3π, φσ

3π, Φ3π) and twist-4 (φ4π, ψ4π, Φ4π, Ψ4π, Φ̃4π, Ψ̃4π) pion DA’s and their parameters

are presented in App. A. Note that all twist-4 terms are suppressed with respect to leading

twist-2 terms, with an additional power of the denominator 1/(m2
b−(q+up)2) compensated

by the normalization parameter δ2π ∼ Λ2
QCD of the twist-4 DA’s.

The calculation of the NLO amplitudes F1, F̃1, F
T
1 will be discussed in the next section.

3. Gluon radiative corrections

In the light-cone OPE of the correlation function (2.1) each twist component receives gluon

radiative corrections. To obtain the desired NLO terms, one has to calculate the O(αs)

one-loop diagrams shown in Fig. 2, convoluting them with the twist-2 and two-particle

twist-3 DA’s, respectively. The diagrams are computed using the standard dimensional

regularization and MS scheme. In addition, in our calculation the reduction method from

[22] is employed.

The invariant amplitude F1 in (2.3) is obtained in a factorized form of the convolutions:

F1(q
2, (p + q)2) = fπ

∫ 1

0
du

{
T1(q

2, (p + q)2, u)ϕπ(u)

+
µπ

mb

[
T p

1 (q2, (p + q)2, u)φp
3π(u) + T σ

1 (q2, (p+ q)2, u)φσ
3π(u)

]}
, (3.1)
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Figure 2: Diagrams corresponding to the O(αs) gluon radiative corrections to the correlation

function.

where the hard-scattering amplitudes T1, T
p,σ
1 result from the calculation of the diagrams

in Fig.2. The two other NLO amplitudes F̃1 and mbF
T
1 have the same expressions with

T1 → T̃1, T
p,σ
1 → T̃ p,σ

1 , and T1 → T T
1 , T1 → T Tp,σ

1 , respectively. The resulting expressions

for all hard-scattering amplitudes are presented in App. B. Note that the LO expressions for

the correlation functions in (2.4)-(2.6) also have a factorized, albeit a much simpler form,

with the zeroth-order in αs hard-scattering amplitudes stemming from the free propagator

of the virtual b-quark. In particular, the twist-2 component in F0 is a convolution of

T0 = m2
b/[m

2
b − (q + up)2] with ϕπ(u).

Let us mention some important features of the O(αs) terms of OPE. The currents ūγµb

and mbb̄iγ5d in the correlation function are physical and not renormalizable. Hence, the

ultraviolet singularities appearing in T1 and T̃1 are canceled by the renormalization of the

heavy quark mass. For T T
1 an additional renormalization of the composite qσµνb operator

has to be taken into account. Furthermore, in the twist-2 term in (3.1) the convolution

integral is convergent due to collinear factorization. As explicitly shown in [4, 5], the

infrared-collinear divergences of the O(αs) diagrams are absorbed by the well known one-

loop evolution [23] of the twist-2 pion DA. As a result of factorization, a residual dependence

on the factorization scale µf enters the amplitude T1 and the twist-2 DA ϕπ. This scale

effectively separates the long- and short (near the light-cone) distances in the correlation

function. In the twist-3 part of F1, the complete evolution kernel has to include the mixing

of two- and three-particle DA’s. To avoid these complications, and following [9], the twist-3

pion DA’s in (3.1) are taken in their asymptotic form: φp(u) = 1 and φσ(u) = 6u(1 − u),

whereas the nonasymptotic effects in these DA’s are only included in the LO part F0. We

checked that the infrared divergences appearing in the amplitudes T p
1 and T σ

1 cancel in the

sum of the φp and φσ contributions with the one-loop renormalization of the parameter µπ

(i.e., of the quark condensate density). Finally, in accordance with [9, 10], all renormalized

hard-scattering amplitudes are well behaved at the end-points u = 0, 1, regardless of the
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form of the DA’s.

After completing the calculation of OPE terms with the LO (NLO) accuracy up to

twist-4 (twist-3), we turn now to the derivation of the sum rules.

4. LCSR for B → π form factors

In the LCSR approach the B → π matrix elements are related to the correlation function

(2.1) via hadronic dispersion relation in the channel of the b̄γ5d current with the four-

momentum squared (p + q)2. Inserting hadronic states between the currents in (2.1) one

isolates the ground-state B-meson contributions in the dispersion relations for all three

invariant amplitudes:

F (q2, (p+ q)2) =
2m2

BfBf
+
Bπ(q2)

m2
B − (p+ q)2

+ . . .

F̃ (q2, (p+ q)2) =
m2

BfB [f+
Bπ(q2) + f−Bπ(q2)]

m2
B − (p+ q)2

+ . . .

F T (q2, (p + q)2) =
2m2

BfBf
T
Bπ(q2)

(mB +mπ)(m2
B − (p+ q)2)

+ . . . (4.1)

where the ellipses indicate the contributions of heavier states (starting from B∗π). The

three B → π form factors entering the residues of the B pole in (4.1) are defined as:

〈π+(p)|ūγµb|B̄d(p + q)〉 = 2f+
Bπ(q2)pµ +

(
f+

Bπ(q2) + f−Bπ(q2)
)
qµ , (4.2)

〈π+(p)|ūσµνq
νb|B̄d(p+ q)〉 =

[
q2(2pµ + qµ) − (m2

B −m2
π)qµ

] ifT
Bπ(q2)

mB +mπ
, (4.3)

and fB = 〈B̄d|mbb̄iγ5d|0〉/m
2
B is the B-meson decay constant.

Substituting the OPE results for F , F̃ and F T in l.h.s. of (4.1), one approximates

the contributions of the heavier states in r.h.s. with the help of quark-hadron duality,

introducing the effective threshold parameter sB
0 . After the Borel transformation in the

variable (p+ q)2 →M2, the sum rules for all three B → π form factors are obtained. The

LCSR for the vector form factor reads:

f+
Bπ(q2) =

em
2
B

/M2

2m2
BfB

[
F0(q

2,M2, sB
0 ) +

αsCF

4π
F1(q

2,M2, sB
0 )

]
, (4.4)

where F0(1)(q
2,M2, sB

0 ) originates from the OPE result for the LO (NLO) invariant ampli-

tude F0(1)(q
2, (p + q)2).

The LO part of the LCSR has the following expression:

F0(q
2,M2, sB

0 ) = m2
bfπ

1∫

u0

du e−
m2

b
−q2ū

uM2

{
ϕπ(u)

u

+
µπ

mb

(
φp

3π(u) +
1

6

[2φσ
3π(u)

u
−

(
m2

b + q2

m2
b − q2

)
dφσ

3π(u)

du

])
− 2

(
f3π

mbfπ

)
I3π(u)

u

+
1

m2
b − q2

(
−

m2
b u

4(m2
b − q2)

d2φ4π(u)

du2
+ uψ4π(u) +

u∫

0

dvψ4π(v) − I4π(u)

)}
, (4.5)
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where ū = 1 − u, u0 = (m2
b − q2)/(sB

0 − q2) and the short-hand notations introduced for

the integrals over three-particle DA’s are:

I3π(u) =
d

du

( u∫

0

dα1

1∫

(u−α1)/(1−α1)

dv Φ3π(αi)

∣∣∣∣∣ α2 = 1 − α1 − α3,

α3 = (u− α1)/v

)
,

I4π(u) =
d

du

( u∫

0

dα1

1∫

(u−α1)/(1−α1)

dv

v

[
2Ψ4π(αi) − Φ4π(αi)

+2Ψ̃4π(αi) − Φ̃4π(αi)

]∣∣∣∣∣α2 = 1 − α1 − α3,

α3 = (u− α1)/v

)
. (4.6)

The NLO term in (4.4) is cast in the form of the dispersion relation:

F1(q
2,M2, sB

0 ) =
1

π

sB
0∫

m2
b

dse−s/M2

ImsF1(q
2, s)

=
fπ

π

sB
0∫

m2
b

dse−s/M2

∫ 1

0
du

{
ImsT1(q

2, s, u)ϕπ(u)

+
µπ

mb

[
ImsT

p
1 (q2, s, u)φp

3π(u) + ImsT
σ
1 (q2, s, u)φσ

3π(u)
]}

, (4.7)

where the bulky expressions for the imaginary parts of the amplitudes T1,T
p
1 ,T σ

1 are pre-

sented in App. B.

The LCSR following from the dispersion relation for the invariant amplitude F̃ in (4.1)

reads:

f+
Bπ(q2) + f−Bπ(q2) =

em
2
B

/M2

m2
BfB

[
F̃0(q

2,M2, sB
0 ) +

αsCF

4π
F̃1(q

2,M2, sB
0 )

]
, (4.8)

where

F̃0(q
2,M2, sB

0 ) = m2
bfπ

1∫

u0

du e−
m2

b
−q2ū

uM2

{
µπ

mb

(
φp

3π(u)

u
+

1

6u

dφσ
3π(u)

du

)

+
1

m2
b − q2

ψ4π(u)

}
. (4.9)

Here the contributions of twist-2 and of three-particle DA’s vanish altogether. Combining

(4.4) and (4.8) one is able to calculate the scalar B → π form factor:

f0
Bπ(q2) = f+

Bπ(q2) +
q2

m2
B −m2

π

f−(q2) . (4.10)
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Finally, the LCSR for the penguin form factor obtained from the third dispersion

relation in (4.1) has the following expression:

fT
Bπ(q2) =

(mB +mπ)em
2
B/M2

2m2
BfB

[
F T

0 (q2,M2, sB
0 ) +

αsCF

4π
F T

1 (q2,M2, sB
0 )

]
, (4.11)

where

F T
0 (q2,M2, sB

0 ) = mbfπ

1∫

u0

du e−
m2

b
−q2ū

uM2

{
ϕπ(u)

u
−

mbµπ

3(m2
b − q2)

dφσ
3π(u)

du

+
1

m2
b − q2

(
1

4

dφ4π(u)

du
−

m2
b u

2(m2
b − q2)

d2φ4π(u)

du2
− IT

4π(u)

)}
, (4.12)

and

IT
4π(u) =

d

du

( u∫

0

dα1

1∫

(u−α1)/(1−α1)

dv

v

[
2Ψ4π(αi) − (1 − 2v)Φ4π(αi)

+2(1 − 2v)Ψ̃4π(αi) − Φ̃4π(αi)

]∣∣∣∣∣α2 = 1 − α1 − α3,

α3 = (u− α1)/v

)
. (4.13)

The NLO parts F̃1 and mbF
T
1 in LCSR (4.8) and (4.11), respectively, are represented in

the form similar to (4.7), and the corresponding imaginary parts are collected in App. B.

For fB entering LCSR we use the well known two-point sum rule [24] obtained from

the correlator of two mbq̄iγ5b currents. The latest analyses of this sum rule can be found

in [18, 25]; here we employ the MS version [18]. For consistency with LCSR, the sum rule

for fB is taken with O(αs) accuracy. For convenience, this expression is written down in

App. C.

Note that the expressions for LCSR in LO are slightly modified as compared to the ones

presented in the previous papers. We prefer not to use the so-called “surface terms”, which

originate from the powers of 1/(m2
b − (q + up))n with n > 1 in the correlation functions.

Instead, we use a completely equivalent but more compact form, with derivatives of DA’s.

The twist-2 NLO part of LCSR for f+
Bπ, hence, the expressions for T1 and ImT1 in

App. B, after transition to the pole scheme (the additional expressions necessary for this

transition are also presented in App. B) coincide with the ones obtained in [4]. We have

also checked an exact numerical coincidence with the twist-2 NLO part of the sum rule

in [5], written in a different analytical form. The explicit expressions for the amplitudes

T p,σ
1 , T̃1, T̃

p,σ
1 , and T T

1 ,T Tp,σ
1 and their imaginary parts presented in App. B are new. The

O(αs) spectral density entering the LCSR for f+
Bπ is given in [10] in a different form, that

is, with the u-integration performed, making an analytical comparison of our result with

this expression very complicated. The numerical comparison is discussed below, in sect. 6.

Furthermore, in [26] the LCSR for the form factor f0
Bπ was obtained, and the imaginary
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Figure 3: Replacing the integration intervals by the contours in the complex planes of u and s

variables in the alternative procedure of the numerical integration of NLO amplitudes.

part of T̃1 was presented. A comparison with our expression for ImT̃1 reveals, however,

some differences.

Since the imaginary parts of the hard-scattering amplitudes have a very cumbersome

analytical structure, we carried out a special check of these expressions. Each hard-

scattering amplitude T1, ... taken as a function of u, q2, (p+ q)2 was numerically compared

with its dispersion relation in the variable (p+ q)2 = s, where the expression for ImsT1, ...

was substituted. Note that one has to perform one subtraction in order to render the

dispersion integral convergent.

In addition, we applied a new method which completely avoids the use of explicit

imaginary parts of hard-scattering amplitudes, allowing one to numerically calculate the

NLO parts of LCSR, e.g., F1(q
2,M2, sB

0 ) in (4.7), analytically continuing integrals to the

complex plane. We make use of the fact that the hard-scattering amplitudes T1, T
p
1 , T

σ
1 are

analytical functions of the variable s = (p + q)2 in the upper half of the complex plane,

because of iǫ’s in Feynman propagators. Consider, as an example the twist-2 part of F1

given by the integral over s in the second line of (4.7). Since the integration is performed

along the real axis, the operation of taking the imaginary part can be moved outside the

integral. To proceed, one has to shift the lower limit of the s-integration to any point at

q2 < s < m2
b . This is legitimate because all T1’s are real at s < m2

b . Then one deforms

the path of the s-integration, replacing it by a contour in the upper half of the complex

plane, as shown schematically in Fig. 3, so that all poles and cuts are away from the

integration region. Only when s is approaching the upper limit sB
0 , one nears the pole

at u = (m2
b − q2)/(sB

0 − q2) while performing the integration over u. Because this pole

does not touch the limits u = 0, 1, it is possible to avoid it by moving the contour of the

u-integration into the upper half of the complex u-plane (see Fig. 3). After that, both

numerical integrations become completely stable. Note, that in both s- and u-integrations,

we integrate over the semi-circle, but the contour of the integration can be deformed in

an arbitrary way in the upper half of the complex plane. The numerical integrations of T1

over these contours yield an imaginary part which represents the desired answer for F1. We

have checked that the numerical results obtained by this alternative method coincide with
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twist Parameter Value at µ = 1 GeV Source

2 aπ
2 0.25 ± 0.15 average from [19]

aπ
4 −aπ

2 + (0.1 ± 0.1) πγγ∗ form factor [30]

aπ
>4 0

µπ 1.74+0.67
−0.38 GeV GMOR relation; mu,d from [28]

3 f3π 0.0045 ± 0.0015 GeV2 2-point QCD SR [19]

ω3π −1.5 ± 0.7 2-point QCD SR[19]

4 δ2π 0.18 ± 0.06 GeV2 2-point QCD SR [19]

ǫπ
21
8 (0.2 ± 0.1) 2-point QCD SR [19]

Table 1: Input parameters for the pion DA’s.

the ones obtained by the direct integration over the imaginary parts, thereby providing an

independent check.

5. Numerical results

Let us specify the input parameters entering the LCSR (4.4), (4.8) and (4.11) for B → π

form factors and the two-point sum rule (C.1) for fB.

The value of the b-quark mass is taken from one of the most recent determinations

[27]:

mb(mb) = 4.164 ± 0.025 GeV , (5.1)

based on the bottomonium sum rules in the four-loop approximation. Note that (5.1) has

a smaller uncertainty than the average over the non-lattice determinations given in [28]:

mb(mb) = 4.20 ± 0.07 GeV . However, as we shall see below, the uncertainty of mb(mb)

does not significantly influence the “error budget” of the final prediction. Furthermore,

in our calculation, the scale-dependence mb(µm) is taken into account in the one-loop

approximation which is sufficient for the O(αs)-accuracy of the correlation function. Note

that using the MS mass inevitably introduces some scale-dependence of the lower threshold

m2
b in the dispersion integrals in both LCSR and fB sum rule. However, this does not

create a problem, because the imaginary part of the OPE correlation function obtained

from a fixed-order perturbative QCD calculation is not an observable, but only serves as

an approximation for the hadronic spectral density.

The QCD coupling αs(µr) is obtained from αs(mZ) = 0.1176 ± 0.002 [28], with the

NLO evolution to the renormalization scale µr. In addition to µm and µr, one encounters

the factorization scale µf in the correlation function, at which the pion DA’s are taken. In

what follows, we adopt a single scale µ = µm = µr = µf in both LCSR and two-point SR

for fB. The numerical value of µ will be specified below.

The input parameters of the twist-2 pion DA include fπ = 130.7 MeV [28] and the

two first Gegenbauer moments aπ
2 and aπ

4 normalized at a low scale 1 GeV. For the latter
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we adopt the intervals presented in Table 1. The range for aπ
2 (1GeV) is an average [19]

over various recent determinations, including, e.g., aπ
2 (1GeV) = 0.26+0.21

−0.09 calculated from

the two-point sum rule in [29]. For aπ
4 we use, following [10], the constraint aπ

2 (1GeV) +

aπ
4 (1GeV) = 0.1 ± 0.1, obtained [30] from the analysis of πγγ∗ form factor. Having in

mind, that at large scales the renormalization suppresses all higher Gegenbauer moments,

we set aπ
>4 = 0 in our ansatz for ϕπ(u) specified in App. A. The uncertainties of aπ

2,4(1GeV)

remain large, hence we neglect very small effects of their NLO evolution taken into account

in [4].

The normalization parameter µπ(1GeV) of the twist-3 two-particle DA’s presented in

Table 1 is obtained adopting the (non-lattice) intervals [28] for the light quark masses:

mu(2 GeV) = 3.0 ± 1.0 MeV, md(2 GeV) = 6.0 ± 1.5 MeV. Correspondingly, the quark-

condensate density given by GMOR relation is:

〈q̄q〉(1GeV) = −
1

2
f2

πµπ(1GeV) = −(246+28
−19 MeV)3 , (5.2)

where very small O(m2
u,d) corrections are neglected. We prefer to use the above range,

rather than a narrower “standard” interval 〈q̄q〉(1GeV) = −(240 ± 10 MeV)3 employed

in the previous analyses. In fact, (5.2) is consistent with 〈q̄q〉(1GeV) = (254 ± 8 MeV)3

quoted in the review [31], as well as with the recent determination of the light-quark

masses from QCD sum rules with O(α4
s) accuracy [32]: mu(2 GeV) = 2.7 ± 0.4 MeV,

md(2 GeV) = 4.8 ± 0.5 MeV.

The remaining parameters of the twist-3 DA’s (f3π, ω3π) and twist-4 DA’s (δ2π, ǫπ)

presented in Table 1 are taken from [19], where they are calculated from auxiliary two-

point sum rules. The latter are obtained from the vacuum correlation functions containing

the local quark-gluon operators that enter the matrix elements (A.6), (A.7) and (A.12),

(A.13). The one-loop running for all parameters of DA’s is taken into account using the

scale-dependence relations presented in App. A. Note that the small value of f3π effec-

tively suppresses all nonasymptotic and three-particle contributions of the twist-3 DA’s.

Furthermore, the overall size of the twist-4 contributions to LCSR is very small. Hence,

although the parameters of the twist-3,4 DA’s have large uncertainties, only the accuracy

of µπ plays a role in LCSR1. Finally, in the sum rule (C.1) for fB the gluon condensate den-

sity 〈αs/πGG〉 = 0.012+0.006
−0.012 GeV4 and the ratio of the quark-gluon and quark-condensate

densities m2
0 = 0.8 ± 0.2 GeV2 [31] are used, the accuracy of these parameters playing a

minor role.

The universal parameters listed above determine the “external” input for sum rules.

The next step is to specify appropriate intervals for the “internal” parameters: the scale

µ, the Borel parameters M and M and the effective thresholds sB
0 and sB

0 . In doing that,

we take all external input parameters at their central values, allowing only aπ
2 and aπ

4 to

vary within the intervals given in Table 1.

From previous studies [4, 5, 8, 10] it is known that an optimal renormalization scale

is µ ∼
√
m2

B −m2
b ∼

√
2mbΛ̄ (where Λ̄ does not scale with the heavy quark mass),

1We also expect that the use of the recently developed renormalon model [33] for the twist-4 DA’s,

instead of the “conventional” twist-4 DA’s [34] used here, will not noticeably change the numerical results.
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and simultaneously, µ has the order of magnitude of the Borel scales defining the average

virtuality in the correlation functions. In practice, M andM are varied within the “working

windows” of the respective sum rules, hence one expects that also µ has to be taken in a

certain interval.

Calculating the total Borel-transformed correlation function (that is, the sB
0 → ∞

limit of LCSR) we demand that the contribution of subleading twist-4 terms remains very

small, < 3% of the LO twist-2 term, thereby diminishing the contributions of the higher

twists, that are not taken into account in the OPE. This condition puts a lower bound

M2 ≥ M2
min = 15 GeV2. In addition, in order to keep the αs-expansion in the Borel-

transformed correlation function under control, both NLO twist-2 and twist-3 terms are

kept ≤ 30% of their LO counterparts, yielding a lower limit µ ≥ 2.5 GeV. Hereafter a

“default” value µ = 3 GeV is used.

Furthermore, we determine the effective threshold parameter sB
0 in LCSR for each

M2 ≥ M2
min. We refrain from using equal threshold parameters in LCSR and two-point

sum rule for fB, as it was done earlier, e.g. in [4, 8]. Instead, we control the duality

approximation by calculating certain observables directly from LCSR and fitting them to

their measured values. Importantly, we include in the fitting procedure not only sB
0 , but

also the two least restricted external parameters aπ
2 and aπ

4 , under the condition that both

Gegenbauer moments remain within the intervals of their direct determination given in

Table 1.

The first observable used in this analysis is the B-meson mass. In a similar way, as

e.g., in [10, 18], m2
B is calculated taking the derivative of LCSR over −1/M2 and dividing it

by the original sum rule. The B-meson mass extracted from LCSR has to deviate from its

experimental value mB = 5.279 GeV by less than 1 %. Secondly, we make use of the recent

rather accurate measurement of the q2-distribution in B → πlν by BABAR collaboration

[35]. We remind that LCSR for B → π form factors are valid up to momentum transfers

q2 ∼ m2
b − 2mbΛ̄ , typically at 0 < q2 < 14 − 15 GeV2. To be on the safe side, we

take the maximal allowed q2 slightly lower than in the previous analyses and calculate

the slope f+
Bπ(q2)/f+

Bπ(0) from LCSR at 0 < q2 < 12 GeV2. The obtained ratio is then

fitted to the slope of the form factor inferred from the data. We employ the result of

[36], where various parameterizations of the form factor f+
Bπ(q2) are fitted to the measured

q2-distribution. Since all fits turn out to be almost equally good, we adopt the simplest

BK-parameterization [37]:

f
+(BK)
Bπ (q2)

f
+(BK)
Bπ (0)

=
1

(1 − q2/m2
B∗)(1 − αBKq2/m2

B)
(5.3)

with the slope parameter αBK = 0.53 ± 0.06 from [36] (close to αBK fitted in [35]).

After fixing sB
0 for each accessible M2, we demand that heavier hadronic states con-

tribute less than 30% of the ground-state B meson contribution to LCSR. This condition

yields an upper limit M2 < M2
max = 21 GeV2. The resulting spread of the threshold

parameter and Gegenbauer moments when M2 varies between M2
min and M2

max is very

small: sB
0 = 36 − 35.5 GeV2, aπ

2 (1GeV) = 0.15 − 0.17, aπ
4 (1GeV) = 0.05 − 0.03. The
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Figure 4: The LCSR prediction for the form factor shape f+

Bπ(q2)/f+

Bπ(0) fitted to the BK param-

eterization of the measured q2-distribution. The two (almost indistinguishable) curves are the fit

and the parameterization (5.3) at αBK = 0.53.

quality of the fit is illustrated in Fig. 4 where the two curves: the calculated q2-shape of

the form factor and the BK-parameterization (5.3) are almost indistinguishable. Thus, in

our numerical analysis we “trade” the q2-dependence predicted from LCSR for a smaller

uncertainty of the Gegenbauer moments and for a better control over the quark-hadron

duality approximation.

In the final stage of the numerical analysis we turn to the two-point QCD sum rule for

fB presented in App. C and find that at the adopted value of the renormalization scale µ = 3

GeV the interval M
2

= 5.0±1.0 GeV2 satisfies the same criteria as the ones imposed in the

numerical analysis of LCSR: the smallness of higher power terms in OPE, and suppression

of the heavier hadronic contributions. The threshold parameter sB
0 = 35.6−0.9

+2.1 GeV2 is

fixed by calculating m2
B from this sum rule. This time the deviation from the experimental

value is even less than 0.5 %. For completeness, we quote the resulting interval fB = 214−5
+7

MeV. Note that the O(α2
s) correction taken into account in [18] is not included here. As

usual, employing the sum rule for fB in order to extract the form factor from the LCSR for

the product fBf
+
Bπ turns out to be extremely useful. One observes a partial cancellation

of the αs-corrections in both LCSR and two-point sum rule and a better stability with

respect to the variation of scales.

To demonstrate some important numerical features of the LCSR prediction, in Fig. 5

(left) we plot the M2-dependence of the form factor f+
Bπ(0) with all other inputs fixed at

their central values. The observed stability, far beyond the adopted “working” interval in

M2, serves as a usual criterion of reliability in QCD sum rule approach. The µ-dependence

plotted in Fig. 5 (right) is very mild from µ = 2.5 GeV up to µ = 6 GeV. The numerical

size of the gluon radiative corrections in LCSR is illustrated in Fig. 6.

The numerical analysis yields the following prediction for the vector B → π form factor
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Figure 5: Dependence of f+

Bπ(0) on the Borel parameter (left) and renormalization scale (right).
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Figure 6: Gluon radiative corrections to the twist-2 (dotted line) and twist-3 (solid line) parts of

LCSR for f+

Bπ(q2), as a function of q2. The part proportional to φσ (φp) is shown separately by

dashed (dash-dotted) line.

at zero momentum transfer:

f+
Bπ(0) = 0.263 +0.004

−0.005

∣∣∣∣
M,M

+0.009
−0.004

∣∣∣∣
µ

± 0.02

∣∣∣∣
shape

+0.03
−0.02

∣∣∣∣
µπ

± 0.001

∣∣∣∣
mb

, (5.4)

where the central value is calculated at µ = 3.0 GeV, M2 = 18.0 GeV2, sB
0 = 35.75

GeV2, aπ
2 (1GeV) = 0.16, aπ

4 (1GeV) = 0.04, M
2

= 5.0 GeV2 and sB
0 = 35.6 GeV2. The

percentages of different contributions to the central value in (5.4) are presented in Table 2.

In (5.4) the first (second) uncertainties are due to the variation of the Borel parameters

M and M (scale µ) within the intervals specified above. The third uncertainty reflects the

error of the experimental slope parameter. In addition, we quote the uncertainties due

to limited knowledge of the “external” input parameters. We have estimated them by

simply varying these parameters one by one within their intervals and fixing the central

values for all “internal” input parameters. Interestingly, the largest uncertainty of order

of 10% is due to the error in the determination of light-quark masses transformed into

the uncertainty of µπ, the coefficient of the large twist-3 LO contribution. The spread
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caused by the current uncertainty of mb(mb) is much smaller, hence, does not influence the

resulting total uncertainty, even if one increases the error of mb-determination by a factor

of two. Remaining theoretical errors caused by the current uncertainties of αs, twist-3,4

DA’s parameters and higher-dimensional condensates are very small, and for brevity they

are not shown in (5.4).

Finally, we add all uncertainties in
b-quark mass MS pole

input central set II from [10]

f+
Bπ(0) 0.263 0.258

tw2 LO 50.5% 39.7%

tw2 NLO 7.4% 17.2 %

tw3 LO 46.7% 41.5 %

tw3 NLO -4.4% 2.4 %

tw4 LO -0.2% -0.9%

Table 2: The form factor f+

Bπ at zero momen-

tum transfer calculated from LCSR in two different

quark-mass schemes and separate contributions to

the sum rule in %.

quadrature and obtain the interval:

f+
Bπ(0) = 0.26+0.04

−0.03 , (5.5)

which is our main numerical result. It can

be used to normalize the experimentally

measured shape, e.g., the one in (5.3),

yielding the form factor f+
Bπ(q2) in the

whole q2-range of B → πlνl.

With this prediction at hand, we are

in a position to extract |Vub|. For that we

use the interval

|Vub|f
+
Bπ(0) =

(
9.1 ± 0.6

∣∣
shape

± 0.3
∣∣
BR

)
× 10−4 , (5.6)

inferred [36] from the measured q2-shape [35] and average branching fraction of B → πlνl

[38]. We obtain:

|Vub| =

(
3.5 ± 0.4

∣∣
th

± 0.2
∣∣
shape

± 0.1
∣∣
BR

)
× 10−3 , (5.7)

where the first error is due to the estimated uncertainty of f+
Bπ(0) in (5.5), and the two re-

maining errors originate from the experimental errors in (5.6). A possible small correlation

between the shape uncertainty of our prediction for the form factor and the experimental

shape uncertainty is not taken into account.

The remaining two B → π form factors can now be predicted without any additional

input. In particular, we adopt the same Borel parameter M2 and effective threshold sB
0 ,

assuming that they only depend on the quantum numbers of the interpolating current for

B meson. The scalar form factor f0
Bπ(q2), obtained by combining the LCSR for f+

Bπ and

(f+
Bπ+f−Bπ), and the penguin form factor fT

Bπ(q2) are presented in Fig. 7, in comparison with

f+
Bπ(q2). The predicted interval for the penguin form factor at zero momentum transfer is

:

fT
Bπ(0) = 0.255 ± 0.035 , (5.8)

adopting µ = 3 GeV as the renormalization scale of the penguin current.

6. Discussion

In this paper, we returned to the LCSR for the B → π form factors. We recalculated the

O(αs) gluon radiative corrections to the twist-2 and twist-3 hard-scattering amplitudes and
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Figure 7: The LCSR prediction for form factors f+

Bπ(q2) (solid line), f0
Bπ(q2) (dashed line) and

fT
Bπ(q2) (dash-dotted line) at 0 < q2 < 12 GeV2 and for the central values of all input parameters.

presented the first complete set of expressions for these amplitudes and their imaginary

parts. For the radiative corrections to the twist-2 part of the LCSR for f+
Bπ we reproduced

the results of [4, 5]. For the radiative corrections to the twist-3 part we confirmed the

cancellation of infrared divergences observed in [9, 10] in the case of asymptotic DA’s.

Including the nonasymptotic effects in these radiative corrections demands taking into

account the mixing between two- and three-particle DA’s. In fact, the parameter f3π

determining the size of nonasymptotic twist-3 corrections is numerically small, hence these

corrections are not expected to influence the numerical results.

Throughout our calculation and in the final sum rule relations we used the MS-mass

of the b quark, which is the most suitable mass definition for short-distance hard-scattering

amplitudes. Indeed, as follows from our numerical analysis, the O(αs) corrections to the

sum rules turn out to be comparably small. To demonstrate that, we returned to the

pole-mass scheme in LCSR and used exactly the same input as in [10] (the preferred “set

2” with mpole
b = 4.8GeV). We calculated the total form factor and separate contributions

to the sum rule in both quark-mass schemes and compared them in Table 2. Note that

the twist-2 NLO correction is distinctively smaller in the MS-mass scheme. In the twist-3

part of the sum rule the αs-correction is small in both schemes. In the MS scheme, as seen

from Fig. 6, this correction is dominated by the contribution of the DA φp
3π. In the pole

scheme there is a partial cancellation between the contributions of the two twist-3 DA’s.

Our numerical results for the form factors f+,0,T
Bπ (q2) in the pole scheme are very close to

the ones obtained in [10]. It is however difficult to compare separate contributions, because

they are not presented in [10]. We also cannot confirm the numerical values of the twist-3

NLO corrections to the form factor f+
Bπ(q2) plotted in the figure presented in the earlier

publication [9].

Further improvements of LCSR are possible but demand substantial calculational ef-

forts. For example, obtaining radiative corrections to the three-particle twist-3,4 contribu-

tions is technically very difficult. Again, we expect no visible change of the predicted form
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factors because three-particle terms are already very small in LO. A more feasible task is

to go beyond twist-4 in OPE and estimate the twist-5,6 effects, related to the four-particle

pion DA’s, at least in the factorization approximation, where one light quark-antiquark

pair is replaced by the quark condensate (In LCSR for the pion electromagnetic form

factor these estimates have been done in [39]).

The numerical analysis of LCSR was improved due to the use of the q2-shape measure-

ment in B → πlν. A smaller theoretical uncertainty of LCSR predictions can be anticipated

with additional data on this shape, as well as with more accurate determinations of b- and,

especially, u, d-quark masses.

In this paper, all calculations have been done in full QCD with a finite b-quark mass. At

the same time, the whole approach naturally relies on the fact that mb is a very large scale

as compared with ΛQCD and related nonperturbative parameters. Our results demonstrate

that the twist-hierarchy as well as the perturbative expansion of the correlation function

work reasonably well. An interesting problem is the investigation of the mb → ∞ limit of

LCSR and various aspects of this limiting transition, e.g., the hierarchy of radiative and

nonasymptotic corrections. This problem remaining out of our scope was already discussed

in several papers: earlier, in [7] at the LO level, in [5],[40] at NLO level and more recently,

in [16].

[ref.] f+
Bπ(q2) calculation f+

Bπ(q2) input |Vub| × 103

[41] lattice (nf = 3) - 3.78±0.25±0.52

[42] lattice (nf = 3) - 3.55±0.25±0.50

[43] - lattice ⊕ SCET B → ππ 3.54 ± 0.17 ± 0.44

[44] - lattice 3.7 ± 0.2 ± 0.1

[45] - lattice ⊕ LCSR 3.47 ± 0.29 ± 0.03

[10, 36] LCSR - 3.5 ± 0.4 ± 0.1

this work LCSR - 3.5 ± 0.4 ± 0.2 ± 0.1

Table 3: Recent |Vub| determinations from B → πlνl

Finally, in Table 3 we compare our result for |Vub| with the one of the previous LCSR

analysis and with the recent lattice QCD determinations obtained at large q2 and ex-

trapolated to small q2 with the help of various parameterizations. The observed mutual

agreement ensures confidence in the continuously improving Vub determination from exclu-

sive B decays.
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A. Pion distribution amplitudes

For convenience, we specify the set of the pion DA’s and their parameters used in this

paper. The notations and parameters for twist-3 and 4 DA’s are taken from [19], where

the earlier studies [34, 46] are updated.

The two-particle DA’s of the pion enter the following decomposition of the bilocal

vacuum-pion matrix element (for definiteness, π+ in the final state):

〈π+(p)|ūi
ω(x1)d

j
ξ(x2)|0〉x2

→0 =
iδij

12
fπ

∫ 1

0
du eiup·x1+iūp·x2

(
[/pγ5]ξωϕπ(u)

−[γ5]ξωµπφ
p
3π(u) +

1

6
[σβτγ5]ξωpβ(x1 − x2)τµπφ

σ
3π(u)

+
1

16
[/pγ5]ξω(x1 − x2)

2φ4π(u) −
i

2
[(/x1 − /x2)γ5]ξω

u∫

0

ψ4π(v)dv

)
, (A.1)

In the above, the product of the quark fields is expanded near the light-cone, that is,

xi = ξix, where ξi are arbitrary numbers, and x2 = 0; ū = 1 − u. The path-ordered

gauge-factor (Wilson line) is omitted assuming the fixed-point gauge for the gluons. The

light-cone expansion includes the twist-2 DA ϕπ, two twist-3 DA’s φp
3π, φσ

3π and two twist-

4 DA’s φ4π and ψ4π. The usual definitions of DA’s are easily obtained, multiplying both

parts of (A.1) by the corresponding combinations of γ matrices and taking Dirac and color

traces.

The decomposition of the three-particle quark-antiquark-gluon matrix element is:

〈π+(p)|ūi
ω(x1)gsG

a
µν(x3)d

j
ξ(x2)|0〉x2

→0 =
λa

ji

32

∫
Dαie

ip(α1x1+α2x2+α3x3)

×

[
if3π(σλργ5)ξω(pµpλgνρ − pνpλgµρ)Φ3π(αi)

−fπ(γλγ5)ξω

{
(pνgµλ − pµgνλ)Ψ4π(αi) +

pλ(pµxν − pνxµ)

(p · x)
(Φ4π(αi) + Ψ4π(αi))

}

−
ifπ

2
ǫµνδρ(γλ)ξω

{
(pρgδλ − pδgρλ)Ψ̃4π(αi) +

pλ(pδxρ − pρxδ)

(p · x)

(
Φ̃4π(αi) + Ψ̃4π(αi)

)}]
.

(A.2)

including one twist-3 DA Φ3π and four twist-4 DA’s : Φ4π, Ψ4π, Φ̃4π and Ψ̃4π. Here the

convention ǫ0123 = −1 is used, which corresponds to Tr{γ5γµγνγαγβ} = 4iǫµναβ .

The following expressions for the DA’s entering the decompositions (A.1) and (A.2)

are used:

• twist-2 DA:

ϕπ(u) = 6uū
(
1 + a2C

3/2
2 (u− ū) + a4C

3/2
4 (u− ū)

)
, (A.3)

where, according to our choice, the first two Gegenbauer polynomials are included in

the nonasymptotic part, with the coefficients having the following LO scale depen-
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dence:

a2(µ2) = [L(µ2, µ1)]
25CF
6β0 a2(µ1), a4(µ2) = [L(µ2, µ1)]

91CF
15β0 a4(µ1) (A.4)

with L(µ2, µ1) = αs(µ2)/αs(µ1), β0 = 11 − 2nf/3.

• twist-3 DA’s :

Φ3π(αi) = 360α1α2α
2
3

[
1 +

ω3π

2
(7α3 − 3)

]
(A.5)

with the nonperturbative parameters f3π and ω3π defined via matrix elements of the

following local operators:

〈π+(p)|ūσµνγ5Gαβd|0〉 = if3π

[
(pαpµgβν − pβpµgαν) − (pαpνgβµ − pβpνgαµ)

]
,(A.6)

〈π+(p)|ūσµλγ5[Dβ , Gαλ]d−
3

7
∂β ūσµλγ5Gαλd|0〉 = −

3

14
f3πω3πpαpβpµ . (A.7)

The scale dependence of the twist-3 parameters is given by:

µπ(µ2) = [L(µ2, µ1)]
−

4
β0 µπ(µ1) , f3π(µ2) = [L(µ2, µ1)]

1
β0

“

7CF
3

+3
”

f3π(µ1) ,(A.8)

(f3πω3π)(µ2) = [L(µ2, µ1)]
1

β0

“

7CF
6

+10
”

(f3πω3π)(µ1) . (A.9)

The corresponding expressions for the twist-3 quark-antiquark DA are:

φp
3π(u) = 1 + 30

f3π

µπfπ
C

1/2
2 (u− ū) − 3

f3πω3π

µπfπ
C

1/2
4 (u− ū),

φσ
3π(u) = 6u(1 − u)

(
1 + 5

f3π

µπfπ

(
1 −

ω3π

10

)
C

3/2
2 (u− ū)

)
. (A.10)

• twist-4 DA’s:

Φ4π(αi) = 120δ2πεπ(α1 − α2)α1α2α3 ,

Ψ4π(αi) = 30δ2π(µ)(α1 − α2)α
2
3[

1

3
+ 2επ(1 − 2α3)] ,

Φ̃4π(αi) = −120δ2πα1α2α3[
1

3
+ επ(1 − 3α3)] ,

Ψ̃4π(αi) = 30δ2πα
2
3(1 − α3)[

1

3
+ 2επ(1 − 2α3)] , (A.11)

are the four three-particle DA’s, where the nonperturbative parameters δ2π and ǫπ are

defined as

〈π+(p)|ūG̃αµγ
αd|0〉 = iδ2πfπpµ , (A.12)

and (up to twist 5 corrections):

〈π+(p)|ū[Dµ, G̃νξ ]γ
ξd−

4

9
∂µūG̃νξγ

ξd|0〉 = −
8

21
fπδ

2
πǫπpµpν , (A.13)

with the scale-dependence:

δ2π(µ2) = [L(µ2, µ1)]
8CF
3β0 δ2π(µ1) , (δ2πǫπ)(µ2) = [L(µ2, µ1)]

10
β0 (δ2πǫπ)(µ1) . (A.14)
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Note that the twist-4 parameter ω4π introduced in [19] is replaced by ǫπ = (21/8)ω4π .

Correspondingly, the two-particle DA’s of twist 4 are:

φ4π(u) =
200

3
δ2πu

2ū2 + 8δ2πǫπ

{
uū(2 + 13uū) + 2u3(10 − 15u+ 6u2) lnu

+2ū3(10 − 15ū+ 6ū2) ln ū
}
, (A.15)

ψ4π(u) =
20

3
δ2πC

1/2
2 (2u− 1) . (A.16)

These DA’s are related to the original definitions [34] as

φ4π(u) = 16
(
g1(u) −

u∫

0

g2(v)dv
)
, ψ4π(u) = −2

dg2(u)

du
. (A.17)

B. Formulae for gluon radiative corrections

Here we collect the expressions for the hard-scattering amplitudes entering the factoriza-

tion formulae (3.1) and the resulting imaginary parts of these amplitudes determining the

radiative correction (4.7) to LCSR (4.4) for f+
Bπ, as well as the analogous expressions for

LCSR (4.8) and (4.11) for the other two form factors.

To compactify the formulae, we use the dimensionless variables

r1 =
q2

m2
b

, r2 =
(p+ q)2

m2
b

, (B.1)

(in the imaginary parts r2 = s/m2
b) and the integration variable :

ρ = r1 + u(r2 − r1)

1∫

0

du =

r2∫

r1

dρ

r2 − r1
, (B.2)

and introduce the combinations of logarithmic functions

G(x) = Li2(x) + ln2(1 − x) + ln(1 − x)

(
ln
m2

b

µ2
− 1

)
, (B.3)

where Li2(x) = −
∫ x
0

dt
t ln(1 − t) is the Spence function, and

L1(x) = ln

(
(x− 1)2

x

m2
b

µ2

)
− 1 , L2(x) = ln

(
(x− 1)2

x

m2
b

µ2

)
−

1

x
. (B.4)

The imaginary parts of the hard-scattering amplitudes are taken at fixed q2 < m2
b

(r1 < 1), analytically continuing these amplitudes in the variable s = (p+ q)2 (or r2). The

result contains combinations of θ(1−ρ), θ(ρ−1) and δ(ρ−1) and its derivatives. To isolate

the spurious infrared divergences which one encounters by taking the imaginary part, we

follow [4] and introduce the usual plus-prescription

∫ r2

r1

dρ

({
θ(1 − ρ)

θ(ρ− 1)

}
g(ρ)

ρ− 1

)

+

φ(ρ) =

∫ r2

r1

dρ

{
θ(1 − ρ)

θ(ρ− 1)

}
g(ρ)

ρ− 1

(
φ(ρ) − φ(1)

)
, (B.5)
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for generic functions φ(ρ), g(ρ). Furthermore, to make the formulae for imaginary parts

more explicit, we partially integrate the derivatives of δ(ρ− 1) using, e.g.:

∫ r2

r1

dρ δ′(ρ− 1)φ(ρ) =

∫
dρδ(ρ − 1)

(
−
d

dρ
+ δ(r2 − 1)

)
φ(ρ) , (B.6)

omitting the terms with δ(r2 − 1) in all cases where φ(1) = 0.

B.1 Amplitudes for f+
Bπ LCSR

1

2
T1 =

(
1

ρ− 1
−

r2 − 1

(r2 − r1)2u

)
G(r1) +

(
1

ρ− 1
+

1 − r1
(r2 − r1)2(1 − u)

)
G(r2)

−

(
2

ρ− 1
−

r2 − 1

(r2 − r1)2u
+

1 − r1
(r2 − r1)2(1 − u)

)
G(ρ)

+
1

r2

(
r2 − 1

ρ− 1
−

r2 − 1

(r2 − r1)(1 − u)

)
ln(1 − r2)

+
1

r2

(
r2 − 2

2ρ
−

r2
2ρ2

+
r2 − 1

(r2 − r1)(1 − u)

)
ln(1 − ρ)

+
ρ+ 1

2(ρ− 1)2

(
3 ln

(
m2

b

µ2

)
−

3ρ+ 1

ρ

)
, (B.7)

−
1

2π
ImsT1 = θ(1 − ρ)

[
1 − r1

(r2 − r1)(r2 − ρ)
L1(r2) +

(
L2(r2)

ρ− 1

)

+

+
1

(r2 − ρ)

(
1

r2
− 1

)]

+θ(ρ− 1)

[
1 − r1

(r2 − r1)(r2 − ρ)
L1(r2) +

1 + ρ− r1 − r2
(r1 − ρ)(r2 − ρ)

L1(ρ) +

(
L2(r2) − 2L1(ρ)

ρ− 1

)

+

+
1

2ρ

(
1 −

1

ρ
−

2

r2

)]

+δ(ρ− 1)

[(
ln
r2 − 1

1 − r1

)2

−

(
1

r2
− 1 + ln r2

)
ln

(r2 − 1)2

1 − r1
+

1

2

(
4 − 3 ln

(
m2

b

µ2

))

+Li2(r1) − 3Li2(1 − r2) + 1 −
π2

2
−

(
4 − 3 ln

(
m2

b

µ2

))(
1 +

d

dρ

)]
, (B.8)
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r2 − r1
2

T p
1 =

(
1

ρ− 1
−

4r1 − 1

(r2 − r1)u

)
G(r1) −

(
r1

ρ− 1
+

1 + r1 + r2
(r2 − r1)(1 − u)

)
G(r2)

+

(
−

1 − r1
ρ− 1

+
1 + r1 + r2

(r2 − r1)(1 − u)
+

4r1 − 1

(r2 − r1)u

)
G(ρ)

−

(
r1

ρ− 1
+

2r1
(r2 − r1)u

)
ln(1 − r1)

+
1

r2

(
r1 + r2 − r1r2

ρ− 1
+
r1 − r2 − r2(r1 + r2)

(r2 − r1)(1 − u)

)
ln(1 − r2)

+
1

2

(
3(3 − r1)

ρ− 1
+

6(1 − r1)

(ρ− 1)2
− 1

)
ln

(
m2

b

µ2

)

+

(
1 − r1
ρ− 1

−
1

2
−
r1 − r2 − r2(r1 + r2)

r2(r2 − r1)(1 − u)
+

2r1
(r2 − r1)u

−
2r1 + r2 − 3r1r2

2r2ρ
−

r1
2ρ2

)
ln(1 − ρ) +

2(r1 − 3)

ρ− 1
+

1

2
−
r1
2ρ

−
4(1 − r1)

(ρ− 1)2
,

(B.9)

r2 − r1
2π

ImsT
p
1 = θ(1 − ρ)

[
1 + r2

r2(r2 − ρ)
+

1 + r1 + r2
r2 − ρ

L2(r2) − (1 − r1L2(r2))

(
1

ρ− 1

)

+

]

+θ(ρ− 1)

[
1 + r1 + r2
r2 − ρ

L1(r2) −

(
4r1 − 1

ρ− r1
−

1 + r1 + r2
ρ− r2

)
L1(ρ)

+

(
r1L2(r2) + (1 − r1)L1(ρ) + r1 − 2

ρ− 1

)

+

+
1

2
+

2r1 + r2 − 3r1r2
2r2ρ

+
r1
2ρ2

+
2r1
r1 − ρ

]

+δ(ρ− 1)

[
−

(
ln
r2 − 1

1 − r1

)2

+ (r1 + 1) ln

(
r2 − 1

1 − r1

)
L1(r2)

− ln(r2 − 1)

(
2
r1
r2

+ 3(1 − r1) + (r1 − 1) ln r2

)
+ ln(1 − r1)

(
r1
r2

+ 1 − ln r2

)

−
π2

6
(4r1 + 1) +

1

2
(r1 − 3)

(
3 ln

(
m2

b

µ2

)
− 4

)
− Li2(r1) + (1 − 2r1)Li2(1 − r2)

+(1 − r1)

(
4 − 3 ln

(
m2

b

µ2

))(
d

dρ
− δ(r2 − 1)

)]
, (B.10)
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3T σ
1 =

(
−

1

(ρ− 1)2
+

2(1 − 2r1)

(1 − r1)(ρ− 1)
−

1 − 4r1
(r2 − r1)2u2

−
2(1 − 2r1)

(1 − r1)(r2 − r1)u

)
G(r1)

+

(
−

r1
(ρ− 1)2

+
2r2

(r2 − 1)(ρ− 1)
+

1 + r1 + r2
(r2 − r1)2(1 − u)2

+
2r2

(r2 − r1)(r2 − 1)(1 − u)

)
G(r2)

+

(
1 + r1

(ρ− 1)2
+

2(1 − 2r1 − 2r2 + 3r1r2)

(1 − r1)(r2 − 1)(ρ− 1)
−

1 + r1 + r2
(r2 − r1)2(1 − u)2

+
1 − 4r1

(r2 − r1)2u2

−
2r2

(r2 − r1)(r2 − 1)(1 − u)
+

2(1 − 2r1)

(1 − r1)(r2 − r1)u

)
G(ρ)

+

(
−

r1
(ρ− 1)2

+
2r1

(r2 − r1)2u2

)
ln(1 − r1) +

(
r1 − r2 − r1r2
r2(ρ− 1)2

+
4

ρ− 1
−
r1 − r2 − r2(r1 + r2)

r2(r2 − r1)2(1 − u)2
+

4

(r2 − r1)(1 − u)

)
ln(1 − r2)

−

(
3(1 + r1)

(ρ− 1)2
+

1 + 3r2 + 8r1 − 10r1r2 − 3r21 + r21r2
(1 − r1)(r2 − 1)(ρ− 1)

+
r22 + r1r2 + r2 − r1
r2(r2 − r1)2(1 − u)2

+
2r1

(r2 − r1)2u2
+

5r22 + r1r2 − 2r2 + r1 + 1

r2(r2 − r1)(r2 − 1)(1 − u)
−

1 − 3r1 − 4r21
r1(1 − r1)(r2 − r1)u

+
r1
ρ3

+
2r1 − r2 − 3r1r2

2r2ρ2
+
r2r

2
1 − r21 − r2r1 − r1 + r2

r1r2ρ

)
ln(1 − ρ)

−

(
6(1 + r1)

(ρ− 1)3
+

5r1 − 3

2(ρ− 1)2
+

1 + r2 + 3r1 − 4r1r2 − r21
(1 − r1)(r2 − 1)(ρ− 1)

+
1 + r1 + r2

(r2 − r1)(r2 − 1)(1 − u)
−

1 − 4r1
(1 − r1)(r2 − r1)u

)
ln

(
m2

b

µ2

)

−
1 − 4r1 − r2 + 3r1r2 + 2r21 − r21r2

(1 − r1)(r2 − 1)(ρ − 1)
+

r1
r2(r2 − r1)(r2 − 1)(1 − u)

−
1 − 2r1

(1 − r1)(r2 − r1)u
+

8(1 + r1)

(ρ− 1)3
−

2(1 − 2r1)

(ρ− 1)2
−
r1
ρ2

+
2r1(r2 − 1) + r2

2r2ρ
, (B.11)
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3

π
ImsT

σ
1 = θ(1 − ρ)

[
(1 + r1L2(r2))

(
1

ρ− 1

)

+

d

dρ
− 2

(
1 +

r2L2(r2)

r2 − 1

)(
1

ρ− 1

)

+

−

(
1 + r1 + r2
(ρ− r2)2

−
2r2

(r2 − 1)(ρ− r2)

)
L2(r2) −

1 + r2
r2(ρ− r2)2

+
2

ρ− r2

]

+θ(ρ− 1)

[(
(1 + r1)

(
1 − L1(ρ)

ρ− 1

)

+

+ (1 + r1L2(r2))

(
1

ρ− 1

)

+

)
d

dρ

+2

(
3 +

1

r2 − 1
−

1

1 − r1

)(
L1(ρ)

ρ− 1

)

+

+

(
−

2r2
r2 − 1

L2(r2) +
1 + r1
ρ

+
2(2 + r1)

r2 − 1
+

1 − 8r1 + r21
1 − r1

)(
1

ρ− 1

)

+

−

(
1 + r1 + r2
(ρ− r2)2

−
2r2

(r2 − 1)(ρ− r2)

)
L2(r2)

−

(
1 − 4r1

(r1 − ρ)2
+ 2

1 − 2r1
(r1 − 1)(r1 − ρ)

+
2r2

(r2 − 1)(ρ − r2)
−

1 + r1 + r2
(r2 − ρ)2

)
L1(ρ)

+
r1
ρ3

+
2r1

(r1 − ρ)2
−

3r22 + r1r2 + r1 + 1

r2(r2 − 1)(ρ − r2)
+

(r2 − 1)(1 + r1 + r2)

r2(r2 − ρ)2

−
r2 + r1(3r2 − 2)

2r2ρ2
−
r1(−r2r1 + r1 + r2 + 1) − r2

r1r2ρ
+

(1 + r1)(1 − 4r1)

r1(1 − r1)(r1 − ρ)

]

+δ(ρ− 1)

[
π2

3

(
1

2
(1 − 4r1)

d

dρ
+

3 − 2r1
1 − r1

+
4

r2 − 1

)

+
[
ln2(1 − r1) − (1 − 2r1) ln2(r2 − 1) + Li2(r1) − (1 + 2r1)Li2(1 − r2)

−

(
2 − r1 −

r1
r2

+ 2r1 ln(r2 − 1) − r1 ln r2

)
ln(1 − r1)

+2

(
2 + r1 −

r1
r2

− r1 ln r2

)
ln(r2 − 1) + 2(2 − r1)

+

(
−

5 − 3r1
2

+ (1 − r1) ln
1 − r1
r2 − 1

)
ln

(
m2

b

µ2

)] d
dρ

−2

(
2 −

1

1 − r1

)
ln2(1 − r1) − 2

(
1

1 − r1
+

2

r2 − 1

)
ln2(r2 − 1)

−2

(
2 −

1

1 − r1

)
Li2(r1) + 2

(
3 −

1

1 − r1
+
r2 + 1

r2 − 1

)
Li2(1 − r2)

−2 + r1

(
1 −

1

r2 − 1

)
+

1

1 − r1

−2

(
−3 +

1

r2 − 1
+

1

1 − r1
+

r2
r2 − 1

ln r2 −
2r2
r2 − 1

ln(r2 − 1)

)
ln(1 − r1)

−2

(
2

1 − r1
−

3 + r1
r2 − 1

−
2r2
r2 − 1

ln r2

)
ln(r2 − 1)

+

(
4 −

3

1 − r1
+

2 + r1
r2 − 1

− 2

(
2 −

r2
r2 − 1

−
1

1 − r1

)
ln(1 − r1)

−2

(
1

r2 − 1
+

r1
1 − r1

)
ln(r2 − 1)

)
ln

(
m2

b

µ2

)

−(1 + r1)

(
4 − 3 ln

(
m2

b

µ2

))(
d2

dρ2
− δ(r2 − 1)

d

dρ

)]
. (B.12)
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As already mentioned, the above formulae are obtained in the MS scheme. To switch

to the one-loop pole mass of b quark the following expressions

∆T1 = −
2ρ
(
3 ln

(
m2

b

µ2

)
− 4
)

(ρ− 1)2
, (B.13)

∆T p
1 =

(r1 − ρ)(ρ+ 1)
(
3 ln

(
m2

b

µ2

)
− 4
)

(r2 − r1)(ρ− 1)2
, (B.14)

∆T σ
1 =

((3 − 2ρ)ρ+ r1(ρ+ 3) + 3)
(
3 ln

(
m2

b

µ2

)
− 4
)

6(ρ− 1)3
. (B.15)

have to be added to the hard-scattering amplitudes T1, T
p
1 and T σ

1 . respectively. The

corresponding additions to the imaginary parts are
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B.2 Amplitudes for (f+
Bπ + f−Bπ) LCSR
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B.3 Amplitudes for fT
Bπ LCSR
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1 = −δ(ρ− 1)

(
3 ln

(
m2

b

µ2

)
− 4

)(
d

dρ
+

(
d2

dρ2
− δ(r2 − 1)

d

dρ

))
.(B.40)

C. Two-point sum rule for fB

We use the sum rule with O(αs) accuracy with the perturbative part calculated in the MS

scheme for b-quark [18]:

f2
B =

em
2
B

/M
2

m4
B

[
3m2

b

8π2

sB
0∫

m2
b

dse−s/M
2

{
(s−m2

b)
2

s
+
αsCF

π
ρ1(s,m

2
b)

}

+m2
be

−m2
b
/M

2

{
−mb〈q̄q〉

(
1 +

αsCF

π
δ1(M

2
,m2

b) +
m2

0

2M
2

(
1 −

m2
b

2M
2

))

+
1

12
〈
αs

π
GG〉 −

16π

27

αs〈q̄q〉
2

M
2

(
1 −

m2
b

4M
2 −

m4
b

12M
4

)}]
, (C.1)

where M and sB
0 are, respectively, the Borel parameter and effective threshold. In the

above, the functions determining the spectral density of the O(αs) corrections to the per-

turbative and quark condensate terms are

ρ1(s,m
2
b) =

s

2
(1 − x)

{
(1 − x)

[
4Li2(x) + 2 lnx ln(1 − x) − (5 − 2x) ln(1 − x)

]

+(1 − 2x)(3 − x) lnx+ 3(1 − 3x) ln

(
µ2

m2
b

)
+

1

2
(17 − 33x)

}
, (C.2)

where x =
m2

b

s , and

δ1(M
2
,m2

b) = −
3

2

[
Γ

(
0,
m2

b

M
2

)
em

2
b
/M

2

− 1 −

(
1 −

m2
b

M
2

)(
ln

(
µ2

m2
b

)
+

4

3

)]
, (C.3)

respectively, and Γ(n, z) is the incomplete Γ function.
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