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Abstract: The genetic code defines nucleotide patterns that code for individual amino 
acids and their complementary, i.e., antisense, pairs. Peptides specified by the 
complementary mRNAs often bind to each other with a higher specificity and efficacy. 
Applications of this genetic code property in biomedicine are related to the modulation of 
peptide and hormone biological function, selective immunomodulation, modeling of 
discontinuous and linear epitopes, modeling of mimotopes, paratopes and antibody 
mimetics, peptide vaccine development, peptidomimetic and drug design. We have 
investigated sense-antisense peptide interactions and related modulation of the peptide 
function by modulating the effects of α-MSH on hepatoprotection with its antisense 
peptide LVKAT. First, transcription of complementary mRNA sequence of α-MSH in 
3’→5’ direction was used to design antisense peptide to the central motif that serves as α-
MSH pharmacophore for melanocortin receptors. Second, tryptophan spectrofluorometric 
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titration was applied to evaluate the binding of α-MSH and its central pharmacophore 
motif to the antisense peptide, and it was concluded that this procedure represents a simple 
and efficient method to evaluate sense-antisense peptide interaction in vitro. Third, we 
showed that antisense peptide LVKAT abolished potent hepatoprotective effects of α-
MSH in vivo. 

Keywords: α-MSH; antisense; peptide; fluorescence; binding; hepatoprotection 
 

1. Introduction 

Peptides specified by the complementary RNAs often bind to each other with higher specificity and 
efficacy [1-5]. This may result from the genetic code property that codons for the hydrophilic amino 
acids are complemented by codons for the hydrophobic amino acids and vice versa [1-11]. The use of 
antisense peptides in biomedicine has been successfully applied to the modeling of more than 40 
complementary peptide-receptor systems and became a valuable tool for deriving new biologically 
active peptides and antibodies, and performing selective peptide-receptor modulation [1-11]. Despite 
many in vitro studies confirming the validity of the concept, there is little evidence of direct in vivo 
modulation of the biological response to the bioactive peptide hormone using complementary peptides. 

Alpha-melanotropin (α-MSH) is an ancient, evolutionally conserved, tridecapeptide derived by the 
proteolytic cleavage from the pro-opiomelanocortin (POMC) hormone [12-14]. It is currently the most 
widely studied melanocortin peptide in the context of tissue inflammation and cytoprotection [12-14]. 
Recently, Turčić et al. [15,16] showed that α-MSH exerts potent hepatoprotective effects in the mouse 
model of acetaminophen induced hepatotoxicity. 

In this investigation we evaluated the binding of antisense peptide to α-MSH, and its effects on α-
MSH mediated hepatoprotection. First, we derived an antisense peptide to the central region of α-MSH 
that serves as the pharmacophore for melanocortin receptors by the transcription of complementary 
mRNA sequence of α-MSH in 3’→5’ direction (Scheme 1) [1-6]. Second, tryptophan spectro-
fluorometric titration was applied to evaluate in vitro binding of α-MSH to the antisense peptide. 
Third, we showed that antisense peptide abolishes hepatoprotective effects of α-MSH in vivo. 

Scheme 1. Antisense peptide to the central region of α-MSH molecule [1-6]. 

α-MSH:   S Y S M E H F R W G K P V 

mRNA sequence:  ucc uac ucc aug gag cac uuc cgc ugg ggc aag ccg gug 

3'→5' mRNA antisense:  cuc gug aag gcg acc 

antisense peptide:   L V K A T 
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2. Results and Discussion 

2.1. Molecular Recognition of Amino Acids and Related Antisense Peptides 

The Standard Genetic Code defines nucleotide patterns that code for individual amino acids and 
their complementary, i.e., antisense, pairs [1-8]. The genetic code has 64 codons consisting of three 
nucleotide bases, each triplet coding for one amino acid [1-8]. Sixty one of them code 20 amino acids 
and three are stop signals for the protein synthesis. Genetic coding of specific, possibly interacting, 
amino acids was first discussed by Mekler, Idlis and Biro [2,3]. Root-Berstein, Blalock and others 
investigated applications and evaluation of the complementary peptide-receptor interactions [1-11,17-19]. 

The molecular recognition procedure based on the genetic code patterns uses sense-antisense 
peptide pairs constructed from the complementary mRNA sequences transcribed in either 3’→5’ (left 
to right) or 5’→3’ (right to left) direction [1-11,17-20], as illustrated in Scheme 1 and Table 1. During 
this process four nucleotide bases are used: uracil (u) is transcribed into its complement adenine (a) 
and cytosine (c) is transcribed into complement guanine (g), or vice versa. 

Table 1. Amino acids and their antisense pairs obtained from the genetic code [1,5]. 

Amino acid Codons for amino acids 
Kyte-Doolittle 

hydropathy scale Antisense 

subgroup value 3'→5' 5'→3' 
R (arginine) cgc, cga, cgg, cgu, aga, agg polar −4.5 A, S* A, S*, P*, T* 
K (lysine) aaa, aag polar −3.9 F F, L 
Q (glutamine) caa, cag polar  −3.5 V L 
N (asparagine) aac, aau polar −3.5 L I, V 
E (glutamic acid) gag, gaa polar −3.5 L L, F 
D (aspartic acid) gac, gau polar −3.5 L I, V 
H (histidine) cac, cau polar −3.2 V V, M 
P (proline) ccc, cca, ccu, ccg neutral −1.6 G G, W, R* 
Y (tyrosine) uac, uau neutral −1.3 M*, I* I*, V* 
W (tryptophan) ugg neutral  −0.9 T P 
S (serine) ucg, uca, agc, agu, ucu, ucc neutral −0.8 S, R* G, R*, T, A* 
T (threonine) aca, acg, acc neutral  −0.7 W, C* G, S, C*, R* 
G (glycine) ggg, ggu, gga, ggc neutral  −0.4 P P, S, T, A* 
A (alanine) gcg, gcu, gcc, gca nonpolar  1.8 R R, G*, S*, C* 
M (methionine) aug nonpolar  1.9 Y* H 
C (cysteine) ugu, ugc nonpolar  2.5 T* T*, A* 
F (phenylalanine) uuu, uuc nonpolar  2.8 K K, E 
L (leucine) uug, uua, cuc, cuu, cug, cua nonpolar  3.8 D, E, N E, Q, K 
V (valine) guu, guc, gug, gua nonpolar  4.2 H, Q H, D, N, Y* 
I (isoleucine) aua nonpolar  4.5 Y* N, D, Y* 

* Deviations from polarity patterns in Molecular Recognition Theory. 

Amino acid pairs arising from this genetic code feature are given in Table 1. Complementary 
codons within the genetic code define in most cases opposite patterns of hydrophilic and hydrophobic 
amino acids (Table 1 and Figure 1) [1-11,20]. Uracil is the middle base for most hydrophobic 
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(nonpolar) amino acids and adenine is the middle base for most hydrophilic (polar) amino acids, and as 
a result of this code property sense and antisense peptides have mutually complementary hydropathy 
patterns, which according to Blalock et al. [1-11,20] may result in their interaction. The number of 
possibly interacting sense-antisense amino acid pairs within complementary peptides depends on the 
direction of the sequence transcription. A total number of 27 possible antisense amino acid pairs arises 
when the nucleotide sequence is transcribed in 3’→5’ direction and 52 antisense pairs are found if it is 
transcribed in the 5’→3’ direction (Table 1) [1,5,17-22]. For practical purposes it is more convenient 
to model binding of different short antisense peptide motifs by the sequences transcribed into 3’→5’ 
direction (since there are significantly less antisense peptides per sequence length) [5,17-22]. 
Pentapeptide LVKAT, used as an antisense in this study, was obtained by complementary 3’→5’ 
sequence transcription of α-MSH (Scheme 1). 

Figure 1. Clustering of complementary amino acid pairs by means of Kyte & Doolittle 
hydropaty values (3’→5’ direction). Paired group algorithm with Gower similarity 
measure reveals a strong correlation coefficient of 0.878 [23]. 

 

Within 3’→5’ arrangement of the complementary amino acid sequences there are 13 amino acid 
pairs consisting of two different amino acids (e.g., GP/PG, WT/TW, etc.) and one self-similar pair of 
two serines (Figure 1). Small changes of the amino acid molecular polarity influence the secondary 
protein structure [20], which is relevant for the interaction of sense and antisense peptides [5,10,11]. 
Blalock et al. showed [1-8,11,20-22] that in opposite RNA strands hydrophilic and hydrophobic 
patterns of amino acids are interchanged, while the neutral remain unchanged. Almost 30% (8/27) of 
the sense-antisense pairs deviations from this rule were observed (Table 1, Figure 1), and this may be 
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the reason why in some cases the patterns of interacting sense-antisense peptides do not follow 
theoretical assumptions [3,5,10,11]. 

With respect to the theoretical biology issues complementary 3’→5’ readings of the messenger 
RNA are more convenient since they correspond to the patterns of transfer RNA anticodons used 
during the natural peptide synthesis on the ribosome, i.e. during translation process [5]. 3’→5’ 
arrangement of amino acid pairings related to the genetic coding of the protein structure has been 
observed by Root-Bernstien, and assumed to be possible on a parallel β ribbon [17-19]. At this time it 
is not clear whether the molecular structure of antisense peptide arising from the transcription in 
3’→5’ or 5’→3’ direction favors the binding to its sense peptide ligand [3,5,11]. Currently there are no 
applicable models that link affinity measurement of the sense-antisense peptide binding to 2D and 3D 
structures of the molecules or the complex [5,22]. However, many examples of successful 
complementary peptide interactions have emerged from the transcription design in both directions and 
several physiologically important ligand-receptor systems have been shown to follow predicted amino 
acid binding patterns [1-11,17-22]. 

2.2. Tryptophan Fluorescence Reveals Sense-Antisense Peptide Interaction 

Tryptophan fluorescence was used to detect binding of antisense pentapeptide LVKAT to the 
central binding region of α-MSH molecule. All spectra in fluorescence titrations were analyzed with 
the Specfit software [24-27] and only two spectrally active species were suggested by singular value 
decomposition (SVD) statistical analysis. One was attributed to α-MSH and the other to its complex 
with antisense pentapeptide LVKAT. This analysis also suggested 1 to 1 complex formation and did 
not indicate any higher order complexes. Consequently, the proposed model is given by Equation (1) 
and Equation (2), where Kd is the dissociation constant of the complex: 

SENSE - LVKAT ⇄ SENSE + LVKAT                                             (1) 

[ ][ ]
[ ]LVKAT-SENSE

LVKATSENSE
d =K

                                                          
(2) 

The dissociation constant for the complex equilibrium of α-MSH with LVKAT was 7.9 ± 0.9 mM. 
The binding constant of α-MSH to LVKAT is relatively high and implies significant binding affinity 
of the two peptides. We also investigated binding of the central part of α-MSH sequence (EHFRW) 
used to derive LVKAT antisense (Scheme 1) and the dissociation constant was 0.20 ± 0.02 mM. These 
results indicate stronger binding of EHFRW to LVKAT than α-MSH to LVKAT, which can be 
expected due to the considerably longer peptide chain of α-MSH and consequently sterical and 
dynamic blocking of binding to LVKAT. 

Fluorescence titration was performed with D-α-MSH enantiomer also, but it did not give 
satisfactory results in terms of the obtained data suggesting very weak (if any) binding under the same 
experimental conditions. The result of the fluorescence titration of D-α-MSH with LVKAT antisense 
peptide is consistent with the findings of Turčić et al. [15,16] showing that D-α-MSH does not bind 
antibody to L-α-MSH. 
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Figure 2. A typical titration of 2.5 μM solution of α-MSH (sense) with LVKAT (antisense) 
at 25 °C, pH = 7.4, 10 mM phosphate buffer. The concentration of LVKAT was varied 
from 50 to 750 μM. Fluorescence units (f.u.) are given as a ratio of signals obtained from 
sample and reference PMTs. Inset: Fitting curve at 360 nm according to the Equation (1) 
and Equation (2). 
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Figure 3. A typical titration of 25 μM solution of EHFRW (sense) with LVKAT 
(antisense) at 25 °C, pH = 7.4, 10 mM phosphate buffer. The concentration of LVKAT was 
varied from 50 to 500 μM. Fluorescence units (f.u.) are given as a ratio of signals obtained 
from sample and reference PMTs. Inset: Fitting curve at 360 nm according to the Equation 
(1) and Equation (2). 
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Other methods have been also used for the evaluation of complementary peptide interactions. The 
microtiter plate assay method and high-performance affinity chromatography enabled direct 
quantitative characterization of peptide recognition [1,28,29]. Electrospray ionization mass 
spectrometry, NMR spectroscopy, biosensor based surface plasmon resonance and resonant mirror 
analyses are useful spectroscopy methods to evaluate noncovalent peptide-antisense peptide 
interactions [3,9,10,19,30,31]. It is, however, worth mentioning that tryptophan fluorescence method 
that we used for the evaluation of peptide interactions in this study proved to be relatively simple and 
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efficient. With respect to the measurement and experimental settings the interaction of dissolved 
peptides is within the range of physicochemical parameters (pH, temperature, etc.) that resembles 
physiological situation [15]. The structure of peptides did not significantly affect binding, since short 
peptides have often undefined structure and observed α-MSH enantiomers exhibit predominantly 
random coil structure when dissolved in 10 mM phosphate buffer at 25 °C and pH = 7.4 [15].  

2.3. Modulation of α-MSH Hepatoprotection with Antisense Pentapeptide 

The hepatoprotective effects of α-MSH were modeled in vivo, by means of its antisense 
pentapeptide. We tested peptides on the experimental model of acetaminophen (APAP)-induced liver 
lesions in male CBA mice, a useful animal model of hepatitis often used for the screening of 
hepatoprotective drugs [32-34]. Turčić et al. [15,16] recently showed that α-MSH, a well known 
melanocortin peptide with anti-inflammatory and cytoprotective properties, exhibits strong and dose 
dependent hepatoprotective effects in this model. 

The effects of α-MSH and its antisense peptide LVKAT on the APAP induced liver lesions (scores 
on scale 0-5 [15,16,32]) are presented in Figures 4-6. Significantly less liver lesions were observed in 
α-MSH treated animals (2 ± 0.75, mean ± SD), compared to the untreated controls (4.8 ± 0.46, mean ± SD, 
p < 0.05, Figure 4). The administration of LVKAT antisense together with α-MSH abolished 
protective effects of α-MSH in vivo since the liver lesions of animals treated with equimolar mixture 
of both peptides (5 ± 0, mean ± SD) did not differ from the untreated controls (p > 0.05, Figure 4). The 
treatment with antisense peptide was also ineffective (5 ± 0, mean ± SD), which suggested that 
antisense peptide is not hepatoprotective per se (p > 0.05, Figure 4). 

Figure 4. Modulation of α-MSH induced hepatoprotection by means of its antisense 
pentapeptide LVKAT. Effects of peptides on liver necrosis produced by acetaminophen 
(150 mg/kg i.g.). 
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Histopathology findings were confirmed by the measurement of plasma alanine aminotransferase 
(ALT) and aspartate aminotransferase (AST) presented in Figure 5 and Figure 6, respectively. 
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Figure 5. Modulation of α-MSH induced hepatoprotection by means of its antisense penta-
peptide LVKAT. Alanine aminotransferase activity (ALT) in plasma of the control and 
treated animals 24 h after acetaminophen administration. 
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Figure 6. Modulation of α-MSH induced hepatoprotection by means of its antisense 
pentapeptide LVKAT. Aspartate aminotransferase activity (AST) in plasma of the control 
and treated animals 24 h after acetaminophen administration. 

control (0
.9% NaCl)

-MSH (2.5 mg/kg)

α

-MSH (2.5 mg/kg) + antisense

α

antisense
0

5000

10000

15000

20000

25000

AS
T 

(U
/L

)

 

We observed significantly lower levels of blood AST (539.5 ± 459.6 U/L, mean ± SD) and ALT 
(585.8 ± 1424 U/L, mean ± SD) in α-MSH treated animals, compared to the untreated controls  
(6091 ± 4275 U/L AST, 10087 ± 9595 U/L ALT, mean ± SD), which confirmed the hepatoprotective 
effects of α-MSH. The administration of LVKAT antisense abolished protective effects of α-MSH  
in vivo since the blood levels of AST (14595 ± 2704 U/L, mean ± SD) and ALT (4827 ± 5555 U/L, 
mean ± SD) in animals treated with equimolar mixture of peptides did not differ from the AST and 
ALT in untreated controls (p > 0.05, Figure 5 and Figure 6). The treatment with antisense peptide 
LVKAT was also ineffective (15040 ± 3217 U/L AST, 5843 ± 4428 U/L ALT, mean ± SD), which 
confirmed the results of histopathology stating that antisense peptide is not hepatoprotective (p > 0.05, 
Figure 5 and Figure 6). Blood levels of AST and ALT levels are, together with the histopathology 
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evaluation of liver lesions, standard markers of hepatic damage in experimental hepatitis [15,16,33,34]. 
Histopathologic evaluation of lesions is a gold standard for the in vivo evaluation of the 
hepatoprotection, and the levels of blood AST and ALT are essential enzymatic blood markers of the 
liver damage [15,16,32-34]. Consequently, our results strongly indicate that antisense peptide LVKAT 
abolishes hepatoprotective effects of α-MSH on the APAP induced hepatic lesions.  

We showed that antisense peptide binds in vitro α-MSH and abolishes in vivo its biological effects. 
α-MSH peptide represents the first 13 amino acids of the ACTH 1-24 molecule [1,5,12-16]. Our in vitro 
results of pentapeptide LVKAT binding to α-MSH obtained by means of tryptophan fluorescence 
titration are in line with the findings reported by Blalock and Bost for ACTH 1-24 by means of the 
solid phase binding assay with 125I-ACTH [1]. Additionally, we showed that antisense peptide LVKAT 
successfully blocks hepatoprotective effects of α-MSH in vivo. Our results indicate that antisense 
peptides directed to the receptor binding region of the peptide hormone, i.e., to the functionally 
important part of the molecule, could modulate its function and abolish its protective effects. 

The biological modulation and/or neutralization of sense peptide effects by means of antisense 
peptides may arise from: (1) peptides binding into molecular complexes (leaving none or low levels of 
sense peptide to elicit its expected biological effects); (2) partial antagonization of the sense peptide 
receptor by means of sense-antisense complex; (3) combination of the first two factors; (4) other 
biological effects of antisense peptide that may not be explained by the involvement of sense peptide 
and its receptors (e.g. generation of bioactive antibodies to peptides and/or their complexes) [5]. 

Antisense peptide-based molecular recognition is a useful heuristic algorithm for the rational 
peptide design of the interacting ligand-receptor sequences ranging in length from ≥4 to <30 amino 
acids [1-6,8-11,17-22,28-31,35,36]. Despite of the large body of experimental data verifying this 
theoretical concept a straightforward method for an efficient antisense peptide modelling is still 
missing. Possible applications of antisense peptides in biomedicine are related to the modulation of 
peptide and hormone biological function, selective immunomodulation, modelling of discontinuous 
and linear epitopes, modelling of mimotopes, paratopes and antibody mimetics, peptide vaccine 
development, peptidomimetic and drug design [1-6,8-11,17-22,28-31,35,36]. In order to achieve better 
efficiency the algorithm of sense-antisense molecular recognition has to be combined to several other 
procedures: molecular hydropathy analyses, secondary structure prediction methods and protein 
database search [20-22]. The limitation of the combined antisense-hydropathy analyses is in the fact 
that it cannot explain 3D protein interactions, but it can be a valuable starting point for more complex 
computational and experimental analyses [22]. 

3. Experimental 

3.1. Test Compounds 

Test peptides were: (1) L- and D-enantiomers of α-MSH (Ac-SYSMEHFRWGKPV-NH2, mw 
1664.9, >95% purity; GenScript, Piscataway, NJ, USA); (2) central region of α-MSH that serves as the 
pharmacophore for melanocortin receptors (EHFRW, mw 773.86, >95% purity; GenScript); and (3) 
pentapeptide antisense to central region of α-MSH that serves as the pharmacophore for melanocortin 
receptors (LVKAT, mw 530.67, >95% purity; GenScript). 
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3.2. Tryptophan Fluorescence Experiment 

Fluorescence spectra were measured at 25 °C by OLIS RSM 1000F spectrofluorimeter (Olis, 
Bogart, GA, USA) equipped with thermostatted cell holder. The excitation wavelength was 280 nm 
and only the sense substances (α-MSH and EHFRW) and their complexes exhibited fluorescence, 
whereas the antisense substance (LVKAT) did not. Data obtained from the titrations were analyzed 
with the Specfit software package [24-26]. 

3.3. Treatment Regimen (Hepatotoxicity Model) 

Experimental animals were male CBA mice, 12-16 weeks old, weighing 20-25 g and bred at the 
Ruđer Bošković Institute. Experiments were performed according to the ILAR Guide for the Care and 
Use of Laboratory Animals, Council Directive 86/609/EEC, and Croatian Animal Protection Act 
(Official Gazette 135/06). The animals were kept in a room with dark-light cycle (12h/12h) and 
constant temperature (22 ± 1 °C). Hepatotoxicity was induced according to the slightly modified 
procedure of Guarner et al. [15,16,37,38]. To induce hepatic drug-metabolizing enzymes mice were 
given 0.3 g/L phenobarbitone-sodium (Kemika, Zagreb, Croatia) for 7 days. Mice were fasted 
overnight with free access to water 24 hours prior to inducing liver damage by acetaminophen. (Krka, 
Novo Mesto, Slovenia) 150 mg/kg was given intragastrically (i.g.), via a gastric tube, in a volume of 
0.5 mL. Mice were re-fed after 4 hours. α-MSH (2.5 mg/kg), antisense peptide LVKAT (0.8 mg/kg) 
and their equimolar mixture was given intraperitoneally (i.p.) 1 hour before acetaminophen 
administration, in a volume of 0.2 mL. Control animals were treated with saline (0.9% NaCl). The size 
of experimental groups was 6-8. Mice that spontaneously died were excluded from histopathological 
or biochemical analysis. The starting number of animals was eight per experimental group, none of the 
animals died in control and α-MSH treated groups, two animals died in groups treated with antisense 
peptide (LVKAT) and equimolar mixture of antisense peptide and α-MSH. However, the difference 
was not statistically significant. 

3.4. Histopathological and Transaminase Estimation of Liver Damage 

Mice were sacrificed 24 hours after acetaminophen application. Sections of the liver were fixed in 
10% phosphate buffered formalin, embedded in paraffin, sectioned at 4 µm, and stained with 
hematoxilin and eosin. Sections were examined by using light microscope, and grading of the liver 
lesions was done on 0-5 point scale according to Silva et al. [32] (0 = no lesions, 1 = minimal, 2 = 
mild, 3 = moderate, 4 = marked and 5 = severe lesions). Alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) activity was determined from plasma by standard laboratory techniques. 
Plasma was separated by 5 min centrifugation at 8000 g, and was stored at −20 °C before transaminase 
activity determination [15,16]. In normal animals ALT values in plasma were 37.7 ± 7.7 U/L  
(mean ± SD), and AST values were 109.3 ± 25.3 U/L (mean ± SD). Acetaminophen (APAP) produces 
enormous rise of both aminonotrasferases in the experimental model of hepatotoxicity in male CBA 
mice and hepatoprotective effect of the tested substance is evaluated by comparing plasma 
transaminase values and liver lesions in control and substance treated groups [15,16]. 
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3.5. Data Analysis 

Statistical analysis was made using KyPlot version 4, and graph plotting was done using GraphPad 
Prism version 5 for Windows [15,16]. Kruskall-Wallis test and Steel’s test were used to test the 
differences between effects of applied peptide doses and control group (0.9% NaCl). All applied tests 
were two-tailed. p ≤ 0.05 were considered as statistically significant. 

4. Conclusions 

(1) Transcription of α-MSH sequence in 3’→5’ direction was used to design antisense peptide 
(LVKAT) to the central region of α-MSH that serves as a pharmacophore for melanocortin 1, 3, 
4 and 5 receptors.  

(2) Tryptophan fluorescence titration is a simple and efficient method to evaluate the binding of 
antisense peptide LVKAT to the α-MSH molecule in vitro. 

(3) Antisense peptide LVKAT abolished hepatoprotective effects of α-MSH in vivo. 
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