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Abstract 

Due to its capability for high-throughput screening 1H nuclear magnetic resonance (NMR) 

spectroscopy is commonly used for metabolite research. However, the key problem in 1H NMR 

spectroscopy of multicomponent mixtures is overlapping of component signals and that is 

increasing with the number of components, their complexity and structural similarity. This makes 

metabolic profiling, that is carried out through matching acquired spectra with metabolites from 

the library, a hard problem. Here, we propose a methodology for nonlinear blind separation of 

highly correlated components spectra from smaller number of, including one only, 1H NMR 

mixture spectra. The method transforms related nonnegative underdetermined blind source 

separation problem into multiple high-dimensional reproducible kernel Hilbert Spaces 

(mRKHSs). Therein, highly correlated components are separated by sparseness constrained 

nonnegative matrix factorization (sNMF) in each induced RKHS. Afterwards, analytes are 

identified through comparison of separated components with the library comprised of 160 pure 

components, whereas significant number of them is expected to be related with diabetes. The 

method is exemplified on: (i) annotation of five components spectra separated from two and one 

1H NMR model mixture spectra; (ii) annotation of 55 metabolites separated from 1H NMR 

mixture spectra of urine of subjects with and without diabetes type 2. Arguably, it is for the first 

time to propose method for blind separation of large number of components from single 

nonlinear mixture. Moreover, proposed method pinpoints urinary creatine, glutamic acid and 5-

hydroxyindoleacetic acid as the most prominent metabolites in samples from diabetic subjects, 

when compared to healthy controls. We also provide metabolic interpretation of obtained results.  
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1. Introduction 

Metabolic profiling aims to identify and quantify small-molecule analytes (a.k.a. metabolites or 

pure components) present in complex multicomponent mixture samples acquired in drug 

development [1, 2], toxicology studies [3], disease diagnosis [4,5], food, nutrition and 

environmental sciences [6-8]. Metabolic profiling technologies are mainly based on nuclear 

magnetic resonance (NMR) spectroscopy and mass spectrometry, because both techniques 

provides structural information on chemical classes in a single analysis. NMR spectroscopy is a 

quantitative, non-destructive, robust and reliable technique that provides detailed information of 

structurally diverse metabolites. NMR spectroscopy-based non-targeted metabolite profiling aims 

to identify as many metabolites as possible in a targeted sample [9]. Candidates for biomarkers 

are then obtained through matching acquired spectra with those from the library [9, 10], such as 

the BioMagResBank metabolomics database [11] or Wiley 1H NMR database [12]. However, 

since many metabolites are structurally similar, their NMR spectra are highly correlated, with 

many overlapping peaks [13, 8]. That is especially true for 1H NMR spectroscopy [9], which, due 

to its capability for high-throughput screening [14], is routinely used for metabolite biomarker 

research. The presence of a large number of metabolites in the studied samples makes metabolic 

profiling a notoriously difficult problem. 1H-1H J-couplings generates broad multiplets that keep 

the exact elucidation of the chemical structure ambiguous [15, 16, 8]. Many of metabolites are 

not species dependent, thus, allowing translation of some specific biomarkers from preclinical 

studies directly in clinical studies [17]. Quantitative metabolomic profiling of patients with 
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inflammatory bowel disease characterized 44 serum, 37 plasma, and 71 urine metabolites using 

1H NMR spectroscopy [18]. Therefore, for the presented study an in-house library comprised of 

160 1H NMR spectra of pure components, whereas many of them are known to be present in the 

urine samples of diabetic patients, is built. The primary reason for building the in-house library 

was to solve problems associated with annotations of components recorded at NMR 

spectrometers with different strengths of the magnetic field [19]. That is, 1H NMR spectra of the 

same compound recorded at different spectrometers will have peaks at slightly displaced 

chemical shifts. If similarity measures, such as correlation, are not invariant to these shifts that 

will affect accuracy of the annotation.  

 To extract metabolic information, and enable sample classification and biomarker 

discovery, computational methods for multivariate analysis of complex metabolomic datasets are 

of utmost importance [20, 21, 13, 8]. Algorithmic approaches to solve peak overlapping problem 

may be grouped in three main categories. The scoring methods assess the matches between the 

experimental and theoretical spectra. To reduce the false alarm rate, a various similarity scores 

are developed [23, 24]. It is clear that this approach fails if number of analytes in a mixture 

spectra increases. Machine learning approaches try to learn a classifier using reference 

components from the library and apply it to experimental spectra [24, 25]. Accuracy of this 

approach is affected by the size of the training set, but also by the overlapping of analytes 

spectra. The third category of methods is known as a source separation or deconvolution 

methods. It is properly pointed out in [26] that the term "deconvolution" is essentially wrong, 

since it actually denotes inversion of a convolution, a particular kind of integral transform that 

describes input-output relations of linear systems with memory [27]. As opposed to that, 

separation of analytes from mixtures of overlapped NMR spectra is related to solving of 

(non)linear equations that describe memoryless (instantaneous) system with multiple inputs 
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(analytes) and multiple outputs (mixtures spectra). The source separation methods, a.k.a. 

multivariate curve resolution (MCR) methods, extract concentration and spectra of individual 

components from multicomponent mixtures spectra [28]. In particular, blind source separation 

(BSS) [29, 13] refers to class of multivariate data analysis methods capable of blind 

(unsupervised) separation of analytes from mixtures spectra only. However, under stated 

conditions related inverse problem is highly ill-posed. To narrow-down infinite number of 

solutions to, ideally, unique one, constraints have to be imposed on analytes spectra. Typically, 

constraints include uncorrelatedness, statistical independence, sparseness and nonnegativity. 

This, respectively, leads to principal component analysis (PCA) [30], independent component 

analysis (ICA) [31, 32], sparse component analysis (SCA) [33, 34] and nonnegative matrix 

factorization (NMF) [35]. These methods have already been applied successfully to separation of 

components from various types of spectroscopic mixtures [36-41]. PCA, ICA and many NMF 

algorithms require that the unknown number of analytes is less than or equal to the number of 

mixtures spectra available. That makes them inapplicable for the analysis of complex 

multicomponent mixtures spectra. The same conclusion applies to many other "deconvolution" 

methods [42]. Sparseness-based approaches to BSS are presently highly active research area in 

signal processing. Unlike PCA and ICA, SCA enables solution of an underdetermined BSS 

problem, i.e. separation of more analytes than mixtures available [38-40]. Sparseness implies that 

at each chemical shift coordinate only very small number of analytes is present. Moreover, 

majority of SCA algorithms require that each analyte is present at certain chemical shift region 

alone [38-40, 43, 44]. In case of 1H NMR spectroscopy, due to reasons elaborate previously, it is 

impossible to satisfy this assumption when complexity of multicomponent mixtures grows. Some 

development in blind separation of positive and partially overlapped sources requires that each 

analyte is dominant, instead of present alone, at a certain chemical shift region [45]. 
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Nevertheless, for complex multicomponent mixture 1H NMR spectra the same conclusion 

applies as above. Furthermore, blind separation of analytes from mixtures of 1H NMR spectra by 

means of sparseness and nonnegativity constrained BSS methods is additionally limited by an 

assumption that 1H NMR spectrum is linear mixture of spectra of analytes. That is true at 

chemical shifts where only one analyte is present. Otherwise, the mixture is becoming more 

nonlinear when complexity of the mixture grows, i.e. when number of overlapped peaks is 

increasing [46]. 

 Herein, we propose a method for blind separation of nonnegative correlated sources from 

smaller number of nonlinear mixtures, (nonnegative nonlinear underdetermined BSS problem) 

including single nonlinear mixtures as a special, but clinically most relevant, case.  Developed 

methods are applied to separation of correlated analytes spectra from model mixtures (laboratory 

made) as well as from experimental (urine of subjects with and without diabetes type II) 1H NMR 

mixtures spectra. The method, through use of implicit (kernel-based) nonlinear transform, maps 

original underdetermined BSS problem into new one in reproducible kernel Hilbert space 

(RKHS) [47]. In so doing, the method increases significantly the number of mixtures, while 

number of new components generated by nonlinear transform is increased only modestly. That, 

in combination with sparse distribution of amplitudes of analytes 1H NMR spectra, enables 

separation of highly correlated analytes spectra by means of sparseness constrained NMF 

(sNMF) in mapping induced RKHS. Analytes are identified through comparison of separated 

components with the pure components in the library. That distinguishes proposed methodology 

from RKHS-based BSS methods developed recently for separation of analytes from mixtures of 

mass spectra [48-50]. Proposed methodology is demonstrated on two experiments: (i) separation 

and annotation of five correlated components spectra from two as well as only one model 1H 

NMR mixture spectra and (ii) separation and annotation of components present in 1H NMR 
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mixtures spectra of diabetic and non-diabetic urine samples. To the best of our knowledge, we 

are the first to demonstrate method for blind separation of large number of components from 

single 1H NMR nonlinear mixture spectra. Furthermore, proposed method emphasized urinary 

creatine, glutamic acid and 5-hydroxyindoleacetic acid as the most prominent metabolites in 

samples from diabetic subjects, when compared to healthy controls.  The rest of the paper is 

organized as follows. Section 2 presents nonlinear mixture models of multicomponent 1H NMR 

spectra, solvability conditions and analysis, nonlinear transformations of multiple mixtures and 

single mixture nonlinear BSS problem as well as criterions for evaluation of separation and 

annotation quality. Section 3 describes experiments and materials used for comparative 

performance analysis of methods for nonlinear blind separation of components from multiple and 

single 1H NMR spectra of model and experimental mixtures. Results related to separation and 

annotation performances of developed algorithms are presented in section 4. Section 5 discusses 

metabolic interpretation of the most prominent metabolites in urine of diabetic patients. 

Conclusion is presented in section 6. 

 

2. Theory and methods 

2.1 Nonlinear mixture model of multicomponent 1H NMR spectra  

Linear mixture model (LMM) is commonly used in NMR spectroscopy [28, 36-40]. It is the 

model upon which linear instantaneous BSS methods are based, [29, 31-35]. In case of NMR 

signals, which are intrinsically time domain harmonic signals with amplitude decaying 

exponentially with some time constant, LMM applies to either time domain or Fourier transform 
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domain representations. The model in the Fourier (chemical shift) domain in the absence of 

additive noise reads out as: 

 

  X AS          (1) 

 

where  1

1
: ( )

NN T T
n n n

C FT C 


   X X x  represents mixture matrix such that each row of X 

contains one multicomponent complex 1H NMR mixture signal, obtained as Fourier transform 

(FT) of related time domain equivalent xn, comprised of complex (real and imaginary parts) 

values at T chemical shift instants, and symbol " =:" means "by definition". 

 10 0 1
:

MN M N
m m

R R 

  
  A a  represents mixture (a.k.a. concentration) matrix, whereas each 

column vector represents concentration profile of one of the M analytes across the N mixtures. 

 1

1
: ( )

MM T T
m m m

C FT C 


   S S s  is a matrix with the rows representing 1H NMR complex 

signals of the analytes present in the mixture signals X. However, as shown in [46], amplitudes 

of the NMR mixture spectra,  1
0 0 1

:
NN T T

n n
R R 

  
  X X ,  are nonlinear mixtures of the 

amplitudes of the components NMR spectra,  0 0 1
:

MM T m T
m m

R R 

  
  S S .  Thus, instead of 

LMM (1) we assume nonlinear mixture model (NMM) for 1H NMR amplitude spectra: 

 

   X f S         (2) 
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where 0 0: M N
 f  stands for an unknown nonlinear mapping      1: ...

T

Nf f   f S S S  

acting observation-wise. We also assume that  1
0 0 1

T
M

t
t

K




 S , where 
0tS  is indicator 

function that counts number of non-zero entries of tS  and K denotes maximal number of 

sources that can be present (active) at any observation coordinate t. Nonlinear BSS problem (2) 

implies that amplitude spectra of pure components S  ought to be inferred from mixture 

amplitude 1H NMR spectra  X  only. Since nonlinear BSS methods that will be developed 

herein are aimed to be used for metabolic profiling we assume: 

 

 A1) N1 

 A2) M>N 

 

Thus, nonlinear BSS problem (2) is underdetermined. Since peaks in amplitude spectra are not 

statistically related, the pure components are treated as independent and identically distributed 

(i.i.d.) random variables. Hence, we propose herein methodology for blind separation of mutually 

dependent but individually i.i.d. nonnegative pure components from smaller number of, including 

only one, their nonlinear mixtures. To the best of our knowledge, existing methods cannot 

address the nonlinear BSS problem under assumed scenario. Compared with methods proposed 

herein existing methods either: (i) address determined case, where the number of sources equals 

the number of mixtures [51-60]; (ii) do not take into account nonnegativity constraint [51-63]; 
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(iii) assume that sources [52-54, 57-59, 61-64] or their derivatives [60] are statistically 

independent or that sources are individually correlated [58, 61-63]. Herein, we use empirical 

kernel map (EKM), [47], for observation-wise mapping of mixture spectra in RKHS.  

 As it is seen from A1, nonlinear BSS problem (2) also includes clinically most relevant 

scenario of single mixture, i.e. N=1. Algorithms for single-mixture BSS first have to transform 

the single- to the pseudo multi-mixture BSS problem [65-75]. Subsequently, some existing 

multivariate algorithms are used to perform BSS. As in [50], we use an explicit feature map 

(EFM) for observation-wise nonlinear mapping of the recorded mixture 1H NMR spectra into 

pseudo multiple mixtures spectra. Pseudo multiple mixture data are mapped observation-wise in 

high-dimensional RKHS using EKM.  

 The proposed single-mixture nonlinear BSS algorithm differs from the existing single-

mixture BSS algorithms in the following aspects: (i) algorithms [65-75] address the linear BSS 

problem, while the proposed method addresses the nonlinear BSS problem, and (ii) the hard 

constraints imposed on the source signals by single-mixture BSS algorithms [65-75] do not apply 

to the pure component 1H NMR amplitude spectra that are of interest in this study. This 

statement is supported through the following analysis. The method [65] assumed that the source 

signals have disjoint support. The method [65] partitions single-channel time series to yield a 

pseudo multichannel mixture, and an independent component analysis (ICA) algorithm was then 

applied to extract the sources. The disjoint support assumption does not hold for the overlapped 

pure component 1H NMR amplitude spectra. The algorithm [66] used empirical mode 

decomposition to decompose the single-channel mixture into intrinsic mode functions (IMFs) 

that represent the pseudo multichannel mixture. For separation by ICA algorithms, sources of 

interest are required to be IMFs, which does not hold for the pure component 1H NMR amplitude 
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spectra. In [67], the wavelet transform is used to generate a pseudo multichannel mixture from a 

single-channel version. In this way, mother wavelets have to be non-orthogonal and have to 

match the shapes to the sources of interest. Thus, this wavelet-ICA method is applicable to the 

separation of the specific source signals, such as vibration signals [68, 69]. Many of single-

channel BSS algorithms are derived to separate acoustic signals by factorizing a nonnegative 

spectrogram (magnitude of the short time Fourier transform) [70-75].  

 The essential differences of multiple- and single-mixture nonlinear BSS methods 

proposed herein in comparison with multiple, [49], and single-mixture nonlinear BSS method 

[50] are: (i) while only one RKHS was induced in [49, 50] the methods proposed herein map 

mixture spectra onto multiples RKHSs induced by Gaussian and polynomial  kernels or by 

Gaussian kernel with different values of the variance; (ii) after separation library of in-house 

recorded pure components 1H NMR spectra is used to annotate separated components. Thus, 

proposed methods are based upon implicit assumption that spectral library is rich enough to 

contain pure components that correspond to metabolites expected to be present in mixture 

spectra. The nonlinear BSS method proposed in [76] is also based on mapping of nonlinear 

mixtures onto multiple RKHSs. However, BSS in mapped spaces is organized as joint sparseness 

constrained NMF such that LMMs in induced RKHSs have different basis (mixing) matrices but 

share the same representation (source) matrix. As opposed to [76] the methodology proposed 

herein performs BSS based on sparseness constrained NMF in each induced RKHS separately. 

Afterwards, library of pure components 1H NMR mixture spectra is used to annotate components 

separated from all RKHSs. As it can be seen in Table 1, nonlinear BSS method proposed herein 

significantly outperforms the nonlinear BSS method [76]. 
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2.2 Solvability of underdetermined nonlinear system and sparse probabilistic model of 1H NMR 

components spectra 

Without loss of generality, we further assume the following: 

 

 A3) 0 1 1,..., 1,..., ,mt m M t T    S  

 A4) mtS  is i.i.d. random variable that obeys  exponential distribution on (0, 1] interval 

 and discrete distribution at zero, see Eq. (3), 

 A5) Components of the vector-valued function      1: ...
T

Nf f   f S S S are  

 differentiable up to second-order. 

 

Assumptions A3 to A5 are shown in [49] to be relevant for separation of pure components from 

nonlinear mixtures of mass spectra. They hold for separation of pure components from amplitude 

1H NMR spectra as well, whereas A4 is confirmed below. To be useful solution of any BSS 

problem is expected to be essentially unique [29]. However, even for linear underdetermined 

BSS problem hard (sparseness) constraints ought to be imposed on pure components [77, 48-50] 

to obtain essentially unique solution. The quality of separation heavily depends on degree of 

sparseness, i.e. the value of K. To make nonlinear underdetermined BSS problem tractable we 

assume, as in [48], that amplitudes of the source signals comply with sparse probabilistic model 

[77]: 
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        *( ) 1 1,..., and 1,...mt m mt m mt mtp g m M t T         S S S S     (3) 

 

Herein, we assume that the 1H NMR components spectra comply with sparse probabilistic model 

represented by exponential distribution: 

  

      1 expmt m mt mg  S S   m=1,...,M      (4). 

 

We performed least square fitting of exponential distribution (4) to histograms of the 

experimental analytes 1H NMR amplitudes spectra and obtained m0.0387.  For exponential 

prior (4) with given m and given probability p(0< mtS s) the value of s  is obtained as: s-

mln(1-p).  For p=0.99 and m=0.0387 it follows s=0.1782. Thus, in probability the 1H NMR 

components spectra will have very small values. That will justify cancellation of the higher order 

terms in the nonlinear transform that follows.  Under sparse probabilistic prior (4) the nonlinear 

mixture model (3) simplifies to [49]: 

 



14 

 

 

   

2
21

1

21
2(1)2

, 1
, 1

...
...

...
...

M
M

M
M

i j
i j

i j
i j

HOT HOT




 
   
   
   
   
      
   
   
   
    

 

S
S

S

X J S H S B
S

S S
S S

   (5) 

 

where J stands for Jacobian matrix, H(1) stands for mode-1 unfolded third-order Hessian tensor, 

1
(1)2

   B J H  stands for the overall mixing matrix and HOT stands for higher order terms. Since 

original nonlinear problem (2) is underdetermined the equivalent linear problem (5) is even more 

underdetermined because it is comprised of the same number of mixtures, N, but of the P=2M + 

M(M-1)/2 dependent sources. When degree of the overlap of the sources in (2) is K degree of the 

overlap of new sources in (5) is Q2K + K(K-1)/2. Uniqueness of the solution of (5) depends on 

the triplet (N,P,Q). For deterministic mixing matrix B the necessary condition for uniqueness is 

N=O(Q2) [78]. Thus, it becomes virtually impossible to obtain an essentially unique solution of 

the underdetermined nonlinear BSS problem (5) with overlapped sources. Separation quality can 

however, be increased through nonlinear mapping of mixture data: 

 

     1 1
0 0 1

T
N N

t t t

 

 


  X X       (6) 

 

where explicit feature map (EFM)  t X  maps data into, in principle, infinite dimensional 

feature space. To make calculations in mapped space computationally tractable, 
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    
1

:
T

t t
  X X needs to be projected to a low-dimensional subspace of induced space 

spanned by     
1

:
D

d d
  V v . Projection known as EKM, see definition 2.15 in [47], maps 

data from the input space onto RKHS:  

 

         , ,
T

    X V V X X V       (7)  

 

where   0, D T
 X V  denotes Gram or kernel matrix with the elements 

      
,

, 1
,

D TT

t d d t
d t

   X v v X . It is shown in [48, 49] that under sparse probabilistic prior 

(3), Eq.(7) becomes: 

 

   

 

1

, 1

,
T

M

i j
i j





 
 
 

   
 
 
 

0

X V G S E

S S

      (8) 

 

 

where G denotes a nonnegative mixing matrix of appropriate dimensions, 01T stands for row 

vector of zeros and E  stands for an approximation error. The uniqueness condition for system 

(8) becomes: D=O(Q2), [78]. For D>>N uniqueness condition can be fulfilled with greater 

probability than uniqueness condition for system (5): N=O(Q2). Thus, the role of nonlinear EKM-

based mapping is to "increase number of 1H NMR mixture spectra". 
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2.3 Nonlinear transformation of the original multiple mixtures nonlinear BSS problem   

To increase probability of separation of highly correlated analytes from 1H NMR spectra the 

number of mixture spectra N has to be increased to D>>N.  For this purpose the nonlinear 

mapping, known as EKM, 0 0: N D
    was proposed in (7)/(8). The mapping performed 

chemical shift-wise, i.e.      0 0
1

,
T

N D
t t

t
 


  X X V  is kernel dependent:  

 

    

     

     

1 1 1

1

, ... ,

, ... ... ...

, ... ,

T

D T D

 
 
  
 
  

X v X v

X V

X v X v



   

   

   (9) 

 

In machine learning problems the Gaussian kernel      2

2
, exp  X v X v     and 

the polynomial kernel      , 1
c

T X v v X    are used most often. Use of Gaussian 

kernel, as well as other shift invariant kernels such as exponential and multi-quadratic, can be 

justified due to its universal approximation property [79]. It is, however, unclear how to select 

the optimal value of the kernel variance 2 for Gaussian kernel or degree c for polynomial kernel. 

It is known that value of 2 depends on signal-to-noise-ratio (SNR) [80]. If SNR is low, large 

value of 2 ought to be selected and vice versa. It is however hard to know SNR value in practice. 
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Hence, as opposed to [49] we proposed herein mapping of original 1H NMR mixture spectra onto 

multiple RKHSs: 

 

    0 0 1
,

i

I
N T D T

i

 

 


  X X V      (10) 

 

The role of basis  10 1

DN
d d



 
v  is to approximately span the induced space: 

 

        1 1

TD

d td t
span span

 
v X         (11) 

 

Eq. (11) holds under assumption that [48-50]: 

 

       1 1

TD

d td t
span span

 
v X        (12) 

 

The basis  10 1
:

DN
d d



 
 V v  can be estimated from |X| by k-means clustering algorithm. 

Evidently, it can be used in all the mappings in (10). It is however demonstrated in Nyström 

approximation problem, [81], that more accurate approximation is obtained when k-means 
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centers are used in kernel domain. In relation to the basis selection problem considered herein, it 

makes sense to select basis that is kernel dependent, i.e. :
i

V V , such that k-means clustering is 

performed in induced  RKHS. Hence, kernel k-means [82]. In the experimental section, we have 

used the k-means clustering algorithm, implemented with MATLAB function kmeans, to cluster 

  
1

T

t t
X  into pre-specified number of D cluster centers which represent basis matrix V. To 

estimate 
i

V  we have used the k-means clustering algorithm, implemented with MATLAB 

function kmeans, to cluster kernel matrix    , , X X X X  into pre-specified number of 

D cluster centers. Indices of found cluster centers are used to identify 
i

V  in the input data space. 

Hence, mapping of original 1H NMR mixture spectra onto multiple RKHSs has the form:  

 

    0 0
1

,
i i

I
N T D T

i

 

 


  X X V       (13) 

 

The sNMF algorithms can now be applied to  ,
i

 X V  in (10) or to  ,
i i

 X V   in (13) in 

order to separate analytes amplitude spectra. By executing sNMF on data mapped into multiple 

RKHSs and by combining obtained results we can increase probability to separate correlated 1H 

NMR component spectra from the small number, including one only, of mixtures spectra.  Thus, 

we separate analytes 1H NMR spectra through:  
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      ( , )
1

ˆ , 1,...,
i

D

m i
m

sNMF i I


   S X V          (14) 

      ( , )
1

ˆ , 1,...,
i i

D

m i
m

sNMF i I


   S X V           (15)  

 

Regarding SNMF algorithm, we have used, as in [48, 49], the nonnegative matrix 

underapproximation  (NMU) algorithm [83] with a MATLAB code freely available [84]. A main 

reason for preferring the NMU algorithm over other sNMF algorithms is that there are no 

regularization constants related to sparseness constraint that require a tuning. It is important to 

notice that in (14) or (15) initial number of components to be extracted was set to D even though 

expected number of components is smaller. That comes as a benefit of using EKM-based 

mapping and alleviates difficult problem related to a priori setting of the number of components 

to be separated. That, in general, is a hard problem in computer science with, so far, no algorithm 

agreed to work well on data of diverse origins.  

 Components separated in (14) or (15) are compared with the pure components spectra 

stored in the library, 
1

J

m m
S  , using normalized correlation coefficient as a similarity measure. 

That is, component m=1,...,D separated from  either  ,
i

 X V  or   ,
i i

 X V  , i=1,...,I  is 

paired with pure component j*{1, ..., J} according to : 

 

 
( , )*

1,...,
( , )

ˆ ,
arg max 1,..., 1,...,

ˆ

m i j

j J
m i j

j m D i I


    
S S

S S
    (16) 
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Afterwards, normalized correlation coefficients: 

 
*

*

*

( , )

( , , )

( , )

ˆ ,
1,..., 1,...,

ˆ

m i j

m i j

m i j

c m D i I    
S S

S S
     (17) 

 

are ranked in descending order. Finally, the list is refined by removing from it all the components 

( , )
ˆ

m iS  paired with the same pure component *j
S  with the exception of one with the largest 

correlation coefficient. Thus, we obtain the final list of separated components annotated to only 

one pure component from the library to which it is most similar in terms of metric based on 

normalized correlation coefficient. Number of pure components J stored in the library can in 

general be large, for example J100000 for the Wiley 1H NMR spectral library [12]. Herein, we 

used the in-house built library comprised of J=160 1H NMR spectra of pure components. The 

proposed algorithm based on (14) is named EKM-mRKHS-VInput. The proposed algorithm based 

on (15) is named EKM-mRKHS-VRKHS. When these algorithms are applied to data mapped in 

one RKHS only they are named, respectively, as EKM-sRKHS-VInput and EKM-sRKHS-VRKHS. 

The algorithms EKM-mRKHS-VInput and EKM-mRKHS-VRKHS are summarized in Algorithm 1.  

 

 

 



21 

 

Algorithm 1. Summary of the EKM-mRKHS-VInput and EKM-mRKHS-VRKHS algorithms. 

Required: 

0
N TC 

X , D,  2 2
1 ,..., I   for Gaussian kernel and/or  1,..., Ic c  for 

polynomial kernel.  

1. Execute Fast Fourier transform on each row of X: 

  1
( )

N

n n n n
FFT


X X X . Scale X  to satisfy A3.  

2. Use kernel k-means algorithm to estimate bases  
1i

I

i


V  that comply 

with (11). Alternatively, use k-means algorithm to estimate basis V that 
complies with (12). 
3. Executed mappings according to (10) or (13). 
4. Use NMU algorithm to separate 1H NMR components spectra 
according to (14) or (15). 
5. Annotate separated analytes spectra with the pure components spectra 
from the library according to procedure (16), (17) and the succeeding 
paragraph. 

 

 

2.4 Nonlinear transformation of the original single mixture nonlinear BSS problem   

As it is seen from A1, nonlinear BSS problem (2) also includes clinically most relevant scenario 

of single mixture, i.e. N=1. As mentioned previously, algorithms for single-mixture BSS first 

have to transform the single- to the pseudo multi-mixture BSS problem [65-75].  For single-

mixture case, EFM (6) reduces to [50]: 

 

     10 0 1

T
N

t t t



 


  X X       (18) 
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To obtain pseudo multi-mixture data, EFM  t X  has to satisfy two conditions: (i) it has to be 

of finite order and (ii) it has to have analytic form. Hence, we provide in (19) analytic 

expressions for EFM obtained by factorization of Gaussian kernel: 

 

   

2

2
2

, 0

1 2
e

!

r

r

r r





 

  
  

  

X
α

α

X X
α




      (19) 

where 0
rα , 1 ... r  α   , 1! ! ... !r  α    and 1

1 ... r

r  X X X
  

. Approximate 

explicit feature map (aEFM) of order d is obtained for 0rd<. Hence, Gaussian kernel induces 

infinite dimensional RKHS, while aEFM associated with it induces RKHS of dimension d that 

determines order of the approximation. Hence, for mapping associated with RKHS induced with 

Gaussian kernel instead of (18) we use: 

 

     ( 1) 1
0 0 1

T
d

t d t t

 

 


  X X       (20) 

where: 

  

 

2

2
2

2

2
2

, 0

2

1 2
e

!

2 2 2 1
e 1 ... 1,...,

!

t

i

i

t

i

d
r

d
t tr

i
r r

T
d

d

t t td
i i i

i I
d



 



  
  

  

 
   

  

X

α

α

X

X X
α

X X X








  

 (21) 
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The best results reported in the experimental section were obtained for order of aEFM d=2. Thus, 

single-mixture 
0

1 T



X  is mapped into pseudo multi-mixture according to: 

 

    
0

1 3
2 0

T T



 

  X X        (22) 

 

 2 X  can now be mapped into RKHS in the manner equivalent to (10): 

   

       3
2 0 2 0

1
,

i

I
T D T

i

 

 


  X X V      (23) 

 

where basis V is found by k-means clustering of  2 X . Mapping of  2 X  into RKHS 

equivalent to (13) was not possible because it was not possible to find basis 
i

V by using kernel 

k-means clustering in RKHS induced by Gaussian kernel with 2<1. The reason is that there was 

not enough diversity in pseudo multi-mixture data  2 X , i.e. in Gram matrix 

    2 2,  X X  when 2<1. Hence, we separate analytes 1H NMR spectra through:  

  

       ( , ) 2
1

ˆ , 1,...,
i

D

m i
m

sNMF i I


   S X V           (24)  
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Due to the same reasons as in section 2.3 we have used the NMU algorithm [83] for sparseness 

constrained NMF.  Components separated in (24) are compared with the pure components spectra 

stored in the library,  
1

J

m m
S  , using normalized correlation coefficient as a similarity measure. 

They are paired with pure components from the in-house library comprised of  J=160 1H NMR 

spectra of pure components  j*{1, ..., J}  according to : 

 

 
( , )*

1,...,
( , )

ˆ ,
arg max 1,..., 1,...,

ˆ

m i j

j J
m i j

j m D i I


    
S S

S S
    (25) 

 

Afterwards, normalized correlation coefficients: 

 

 
*

*

*

( , )

( , , )

( , )

ˆ ,
1,..., 1,...,

ˆ

m i j

m i j

m i j

c m D i I    
S S

S S
     (26) 

 

are ranked in descending order. Finally, the list is refined by removing from it all the components 

( , )
ˆ

m iS  paired with the same pure component *j
S  with the exception of one with the largest 

correlation coefficient. Thus, we obtain the final list of separated components annotated to only 
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one pure component from the library to which it is most similar in terms of metric based on 

normalized correlation coefficient.  

 The proposed algorithm for single-mixture nonlinear BSS is named aEFM-EKM-

mRKHS-VInput. When this algorithm is applied to data mapped in one RKHS only it is named 

aEFM- EKM-sRKHS-VInput. Analogously, aEFM-EKM-sRKHS-VRKHS stands for single-mixture 

nonlinear BSS algorithm for 
i

V estimated by kernel k-means from     2 2,  X X  with 

2=1. The algorithm aEFM-EKM-mRKHS-VInput is summarized in Algorithm 2.  

 

Algorithm 2. Summary of the single-mixture nonlinear BSS algorithm aEFM-EKM-mRKHS-

VInput. 

Required: 

1
0

TC 

x , D,  2 2
1 ,..., I   for Gaussian kernel.  

1. Execute Fast Fourier transform on x: ( )FFTx X x . Scale X  to 

satisfy A3.  

2. Use k-means algorithm to estimate basis V from  2 X . 

3. Executed mappings according to (23). 
4. Use NMU algorithm to separate 1H NMR components spectra 
according to (24). 
5. Annotate separated analytes spectra with the pure components spectra 
from the library according to (26) and the succeeding paragraph. 
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2.5 Criteria for evaluation of the qualities of separation and annotation   

After the separated components are annotated and ranked, the most desirable outcome is that top 

M components on the ranking list correspond with the M pure components present in the mixture 

spectra. However, given the fact that possibly large number of correlated pure components 1H 

NMR spectra ought to be separated from small number, including one only, of their nonlinear 

mixture spectra, it is certain that the quality of separation will be limited. Consequently, some 

number of separated components will be annotated incorrectly. Thus, we propose four criteria to 

compare the separation and annotation results achieved by nonlinear BSS methods proposed 

herein with the results of the state-of-the-art competitors: 

 

Criterion 1 (C1) counts number of correctly annotated components out of M separated 

components ranked first on the list. If the separation is perfect, all first M separated components 

would be annotated correctly. 

 

Criterion 2 (C2) is related to penalized mean normalized correlation between the first M 

separated components and pure components they are correctly annotated with: 

 

  *
ˆ ,

c

i i j
i I

penalized meancorrelation c M


 
  
 
 S S    (27) 
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where Ic denotes index set of correctly annotated components among first M ranked separated 

components. Hence, it applies for cardinality of the set Ic: #IcM. Thus, when all first M ranked 

separated components are annotated correctly we have #Ic=M. Then, the penalized mean 

correlation equals the mean correlation.  

 

Criterion 3 (C3) is related to penalized mean normalized correlation between all separated 

components and pure components they are correctly annotated with. Thus, the difference with 

respect to C2 is that in case of C3 the whole space of latent variables is considered. It applies 

C2C3 with the equality in case of perfect separation. For the EKM-mRKHS-VInput, EKM-

mRKHS-VRKHS and aEFM-EKM-mRKHS-VInput algorithms the overall dimensionality of 

induced RKHSs is DI. Hence, we want to benefit from mapping the original input mixture 

spectra onto multiple high-dimensional RKHSs.   

 

Criterion 4 (C4) is related to the mean rank of correctly annotated separated components: 

 

   1
. . # :

M

i c ii
Meanrank m R s t I i M m R


        (28) 

 

where R equals dimensionality of the space of latent variables. As an example, for EKM-

mRKHS-VInput, EKM-mRKHS-VRKHS and aEFM-EKM-mRKHS-VInput algorithms it applies 

R=DI. C4 simultaneously takes into account two factors: (i) increase of dimensionality of 
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induced space increases probability that all separated components will be annotated with the pure 

components from the library; (ii) it penalizes annotated components with large indicies in the 

latent space as well as those components that are not annotated at all. Thus, if separation is 

perfect and all first M ranked components are annotated correctly the value of C4 will be (very) 

small, i.e. lim 0.
D

C4  Since with the increase of dimension of induced space the probability of 

both correct and incorrect annotation is increased the C4 is sensitive to (in)correct annotation 

related to dimension of induced spaces.  

 

3.0 Experiment and materials 

3.1 Algorithms to be compared 

We have proposed family of algorithms for nonlinear BSS from multiple mixtures: EKM-

mRKHS-VRKHS, EKM-mRKHS-VInput, EKM-sRKHS-VRKHS, EKM-sRKHS-VInput, as well as 

from single mixture: EFM-EKM-mRKHS-VInput, aEFM- EKM-sRKHS-VInput and aEFM- EKM-

sRKHS-VRKHS. These algorithms are compared with the following methods capable to address 

(non)linear underdetermined BSS problem: (i) the NMR-NMU algorithm [46], i.e. the NMU [83] 

with a MATLAB code provided at [84] is applied to the squares of amplitude spectra of 

mixtures. The NMR-NMU assumes LMM and can extract more sources than mixtures spectra. 

Thus, for benchmark problem comprised of M sources we have separated 2M components used 

for annotation with the pure components from the library. Thus, for NMR-NMU it applies 

R=2M.; (ii) Sparse component analysis (SCA) method [38] capable to extract multiple sources 

from two linear mixtures. The algorithm estimates mixing matrix in the wavelet domain and 1H 

NMR components amplitude spectra in Fourier domain solving linear programs at each chemical 
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shift. The critical assumption upon which SCA method is built is that for each source component 

at least one point in wavelet domain exists where only this component is dominantly present. 

This assumption is hard to fulfill for metabolic components that are structurally similar and 

correlated. In the experiment reported below and related to two-mixtures problem dimensionality 

of the latent space was R=6. It corresponds with the number of source components inferred from 

data directly. (iii) multi-view NMF method (mvNMF) [76]. This method treats each mapped 

mixture data as one view of the original mixture data. It assumes LMM for each view with view 

dependent mixing matrix but the same source components matrix for all the views. Hence, the 

method is less general than the ones proposed herein because it assumes that RKHSs induced 

with different kernels or same kernel with different parameters are equally suitable for all source 

components. Dimensionality of the latent space for this method is R=D. Multiple RKHSs were 

induced with Gaussian kernel and variances  2 1.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001i  . When 

single RKHS was used it was generated with Gaussian kernel with variance 2
1 1  . We also have 

combined RKHSs induced with Gaussian kernel with the RKHSs induced with polynomial 

kernel with degrees  1,2,3,4,5,6,7ic  . We named such algorithms EKM-GP-mRKHS-VRKHS 

and EKM-GP-mRKHS-VInput. 

 

3.2 Recording of 1H NMR spectra of 160 pure components 

We have recorded in-house library comprised of 1H NMR spectra of 160 pure components 

expected to correspond with small organic molecules present in samples such as tissue, blood, 

urine etc. Among them there are six pairs with amplitude spectra correlated above 0.9, eight pairs 

with correlation above 0.8, twelve pairs with correlations above 0.7, twenty-two pairs with 
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correlations above 0.6, thirty-four with correlations above 0.5 and fifty-nine with correlations 

above 0.4. Thus, spectral library contains many structurally similar components because of what 

annotation will be incorrect when separation quality is modes or poor. Library content is 

presented in Table S-5 of the Supplementary material. All measurements were performed on a 

Bruker AVANCE 600 MHz spectrometer, operating at 298 K. Samples were dissolved in 700 µL 

phosphate buffer (100 mM, pH 7.2 prepared with D2O) prior to NMR measurement. 3-

(Trimethylsilyl)-1-propanesulfonic acid sodium salt was used as an internal standard. Water 

suppression using excitation sculpting with gradients was applied [85]. 1H spectra at a spectral 

width of 6.700 Hz with 16K data points and a digital resolution of 0.41 Hz per point were 

measured with 64 scans (time delay 2 sec, acquisition time 1.22 sec, pulse with 90).  

 

3.3 1H NMR spectroscopy measurements of two model mixtures 

To validate methods proposed for nonlinear BSS problems two mixtures of five pure components 

were prepared in the laboratory. Compounds 4-aminoantipyrine (S1), 4-aminobutyric acid (S2), 

allantoin (S3), cholic acid (S4) and naphtoic acid (S5) 30 mg of each, were mixed together. From 

the resulting crude mixture, 2 samples of 10 mg were taken and their NMR spectra were recorded 

as described above for the pure components. Mixture X2 was used for validation of single-

mixture nonlinear BSS methods aEFM-EKM-mRKHS-VInput, aEFM- EKM-sRKHS-VInput and 

aEFM- EKM-sRKHS-VRKHS. 
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3.4 Urine samples collection, preparation and 1H NMR spectroscopy measurements 

Urine aliquots were obtained from residual routine samples from 33 unrelated patients with 

diabetes type 2 (age range: 30 – 84 years; 17 males). Urine samples were collected in the 

morning, during the regular outpatient checkup in the clinical laboratory affiliated to the tertiary-

level diabetes clinic. Patients were categorized and treated according to the current World Health 

Organization (WHO) recommendations at the University Clinic Vuk Vrhovac, Zagreb, that is the 

WHO collaborating center for diabetes. The study protocol was approved by the institutional 

Ethics Committee and patients gave their written consent for using their residual samples. The 

group of control subjects included 30 healthy, unrelated consenting adult volunteers, matched for 

age and sex to diabetic subjects. To each of them glucose level was measured before taking of 

urine and they were all normoglycemic. All study subjects were Caucasians. Morning urine 

samples were stored at -200C until clean-up procedure that is performed by C18 SampliQ Solid 

Phase Extraction (SPE) (Agilent Technologies, USA). C18 polymer sorbents was first 

conditioned by passing MeOH (3x5 mL) and then equilibrated by passing QH2O (3x5 mL). Urine 

sample (3x5 mL) was loaded into the column and fraction after cleaning was collected in 

separate tubes.  All the steps were performed at a flow rate of 1 mL min−1. Thereafter, samples 

were frozen by immersion in liquid nitrogen followed by evaporation in vacuum chamber of 

freeze dryer to dryness (under controlled temperature and reduced pressure). 10 mg of each dry 

sample was further used for spectroscopic analysis. NMR spectra of urine samples were recorded 

as described for the pure components. Due to the clinical character of this problem only single-

mixture method aEFM-EKM-mRKHS-VInput was applied to 33 1H NMR mixtures spectra of 

urine obtained from diabetic patients and 30 1H NMR mixtures spectra of urine collected from 

subjects without diabetes. 
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3.5 Software environment  

All the experiments were executed on the PC running under 64-bits Windows 10 operating 

system with 256 GB of RAM using Intel Xeon CPU E5-2650 v4 2 processors and operating with 

a clock speed of 2.2 GHz. All codes are run using MATLAB 2017a environment. 

 

4. Results 

4.1 Blind separation and annotation of five correlated amplitude 1H NMR component spectra 

from two 1H NMR model spectra 

1H amplitude NMR spectra of two model mixtures are shown in Figure 1. 1H NMR amplitude 

spectra of pure components S1 to S5 as well as spectra of annotated components separated by the 

EKM-mRKHS-VRKHS algorithm are shown in Figure 2, whereas dimension of each induced 

RKHS is D=2000. Table 1 summarizes separation and annotation results for dimension of 

induced RKHSs D=2000 in terms of criteria C1 to C4 and additional information related to 

computation time and correlation coefficients and ranking of annotated components.  

Corresponding results for dimensions D=100 and D=1000 are presented in Tables S-1 and S-2 in 

Supplementary material.  The following conclusions are drawn from results presented in Tables 

1, S-1 and S-2: (i) there is insignificant increase in quality of separation and annotation between 

dimensions of induced RKHSs D=1000 and D=2000.  However, there is roughly threefold 

increase in computational complexity between D=2000 and D=1000. (ii) Combination of 

RKHSs induced with Gaussian and polynomial kernels brings insignificant increase in 

performance in comparison with RKHSs induced with Gaussian kernels only (EKM-mRKHS-

VRKHS  vs. EKM-GP-mRKHS-VRKHS). (iii) There is notable increase in performance when basis 
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is estimated for each induced RKHS separately (EKM-mRKHS-VRKHS  vs. EKM-mRKHS-

VInput). (iv) There is very significant increase in performance when separation is performed in 

multiple RKHSs as opposed to single RKHS (EKM-mRKHS-VRKHS  vs. EKM-sRKHS-VRKHS ).  

Separated components shown in Figure 2 and annotated to pure components 1 to 5 were selected 

from RKHSs induced by Gaussian kernel with variances in respective order 0.05, 0.01, 0.1, 0.005 

and 0.05. Hence, a recommendation for separation of pure components 1H NMR amplitude 

spectra from small number of their mixtures is to use either  EKM-mRKHS-VRKHS  or EKM-

mRKHS-VInput  algorithms with Gaussian kernel and  2 1.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001i   

with dimension of individual RKHS 1000D2000. 

 

Figure 1. 1H NMR amplitude spectra of two mixtures: X1 and X2. 
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Figure 2. 1H NMR amplitude spectra of pure components S1 to S5 (first column) and annotated 

components separated by the EKM-mRKHS-VRKHS algorithm (second column). Dimension of 

each induced RKHS D=2000. 
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Table 1. Separation and annotation results from two 1H NMR mixtures for dimension of induced 

RKHSs D=2000. Numerical codes assigned to acronyms of compared algorithms are as follows: 

1: EKM-mRKHS-VRKHS , 2: EKM-sRKHS-VRKHS, 3: EKM-mRKHS-VInput, 4: EKM-sRKHS-

VInput , 5: EKM-GP-mRKHS-VRKHS , 6: EKM-GP-mRKHS-VInput , 7: mvNMF-VRKHS , 8: 

mvNMF -VInput,  9: NMR-NMU and 10: SCA. 

 1 2 3 4 5 

C1 1 1 1 1 1 

C2 0.1276 0.1354 0.1259 0.1354 0.1259 

C3 0.4372 0.1354 0.3886 0.1354 0.4354 

C4 0.0158 4.0005 0.0196 4.0005 0.0113 

Ranking and 
correlations 
of correctly 
annotated 

components   
1 to 5 

23:   0.4461 
1:     0.6295 
64:   0.3491 
114: 0.2341 
19:    0.4641 

NOT FOUND  
1: 0.6772 
NOT FOUND 
NOT FOUND 
NOT FOUND 

16:   0.4457 
1:     0.6297 
125: 0.1946 
119: 0.2125 
14:    0.4769 

NOT FOUND  
1: 0.6772 
NOT FOUND 
NOT FOUND 
NOT FOUND 

27:   0.4753 
1:     0.6295 
67:   0.3684 
123: 0.233 
29:   0.4700 

CPU time  167 745 s 24 366 s 150 159 s 21 667 s 333 977 s 
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Table 1. Continuation. 

 6 7 8 9 10 

C1 1 0 0 1 2 

C2 0.1259 0 0 0.1151 0.1479 

C3 0.4274 0.0293 0.0278 0.1151  0.1479 

C4 0.0089 0.0223 0.0155 4.1 3.5 

Ranking and 
correlations 
of correctly 
annotated 

pure 
components 

1:5 

15:  0.4894 
2:    0.6297 
82:   0.3193 
131: 0.2285 
19:    0.4701 

78: 0.0282 
113: 0.0267 
18: 0.0318 
91: 0.0284 
12: 0.0327 

77: 0.0256 
17: 0.0293 
18: 0.0292 
78: 0.0255 
27: 0.0286 

 NOT FOUND 
1: 0.5754 
NOT FOUND 
NOT FOUND 
NOT FOUND 

1: 0.4570 
2: 0.4305 
NOT FOUND 
NOT FOUND 
NOT FOUND 

CPU time  313 816 s 18 554 s 430 s 0.7155 s 291.9 s 

 

4.2 Blind separation and annotation of five correlated amplitude 1H NMR component spectra 

from one 1H NMR mixture spectrum 

As mentioned in section 3.3, mixture X2 was used for validation of single-mixture nonlinear BSS 

methods. Based on recommendations from section 4.3 only RKHSs induced with Gaussian 

kernels with variances   2 1.0, 0.5, 0.1, 0.05i   were used to evaluate single-mixture BSS 

algorithms. There was not enough diversity in EKMs (23) generated with smaller variances.  Due 

to the same reason it was infeasible to estimate basis V using kernel k-means algorithm for 2<1. 

Thus, only algorithms aEFM-EKM-mRKHS-VInput,  aEFM- EKM-sRKHS-VInput and aEFM- 
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EKM-sRKHS-VRKHS were compared herein. Evidently, clinically the most relevant single-

mixture scenario has limitation in comparison with multiple mixtures scenario. Table 2 

summarizes separation and annotation results for dimension of induced RKHSs D=2000 in terms 

of criteria C1 to C4 and additional information related to computation time and correlation 

coefficients and ranking of annotated components.  Corresponding results for dimensions D=100 

and D=1000 are presented in Tables S-3 and S-4 in Supplementary material.  Only dimension of 

individual induced RKHSs equal to D=2000 enabled detection of three (out of five) pure 

components with all three BSS algorithms where the aEFM-EKM-mRKHS-VInput has best 

performance.  In agreement with the "no free lunch theorem" this algorithm has highest 

computational complexity.  It can be seen from Tables 1 and 2 that separated components 

annotated with the true pure components are mostly not placed at the top of the ranking list. 

Thus, in the real world scenario related to separation and annotation of metabolites from single 

1H NMR mixture of biological sample such as urine, an interpretation of the list of ranked 

annotated components by domain expert will be necessary. 
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Table 2. Separation and annotation results from one 1H NMR mixture for dimension of induced 

RKHSs D=2000. Numerical codes assigned to acronyms of compared algorithms are as follows: 

1: aEFM-EKM-mRKHS-VInput, 2: aEFM- EKM-sRKHS-VInput and 3: aEFM- EKM-sRKHS-

VRKHS. 

 1 2 3 

C1 1 1 1 

C2 0.1185 0.1186 0.1188 

C3 0.2290 0.2234 0.2420 

C4 2.005 2.454 2.1625 

Ranking and 
correlations 
of correctly 
annotated 

components   
1 to 5 

28:  0.2327 
1:    0.5925 
NOT FOUND 
NOT FOUND 
13:  0.3198 

634:    0.2072 
1:        0.5931 
1985:  0.0355 
NOT FOUND 
288:    0.2810 

276: 0.2594 
1: 0.5934 
NOT FOUND 
NOT FOUND 
48: 0.3572 

CPU time  42 915 s 24 261 s 26 583 s 

 

4.3 Blind separation and annotation of correlated amplitude 1H NMR component spectra from 

one 1H NMR mixture spectrum of urine of diabetic and non-diabetic subjects 

Following discussion in section 4.2 we applied the aEFM-EKM-mRKHS-VInput algorithm to 

separate and annotate components present in the single 1H NMR spectra of 33 urine samples of 

patients with diabetes type II and 30 urine samples of non-diabetic subjects. Also based on 

discussion in section 4.2, dimension of individual induced RKHs was selected to be D=2000. We 
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provide in Tables S-6 to S-68 in Supplementary materials results of separation and annotation of 

55 metabolites, expected to be related to diabetes, obtained by means of the aEFM-EKM-

mRKHS-VInput algorithm from each individual 1H NMR spectra. Summarized results for all 55 

metabolites are presented in Table S-69 in Supplementary materials. The most prominent 

metabolites in samples from diabetic subjects, when compared to healthy controls, were urinary 

creatine, glutamic acid and 5-hydroxyindoleacetic acid. Table 3 presents aggregate separation and 

annotation related performance measures: number of times detected, mean and median ranks in 

the latent space composed of 160 pure components (size of the library) as well as mean and 

median correlation between separated and annotated pure components. It is seen from the 

correlation values that related nonlinear single mixture BSS problem is very hard. Nevertheless, 

metabolites such as urinary creatine, glutamic acid and 5-hydroxyindoleacetic acid are detected 

in practically all the spectra and are more distinguished in spectra of urine of diabetic patients.  

 

 

 

 

 

 

 



40 

 

Table 3. Separation and annotation performance of metabolites urinary creatine, glutamic acid 

and 5-hydroxyindoleacetic acid obtained by means of aEFM-EKM-mRKHS-VInput algorithm 

from 1H NMR spectra of 33 urine samples of patients with diabetes type II and 30 urine samples 

of non-diabetic subjects. 

Metabolite Number 

detected 

of times  

 

Mean rank /  Median 
rank 

Mean 
correlation  

/  Median 
correlation 

 33 diabetic 
patients 

30 
control 
subjects 

Diabetic 
patients 

Control 
subjects 

Diabetic 
patients 

Control 
subjects 

creatine 

32  30 10.78 / 7 

 

21.37 / 13 0.319 / 0.318 0.287 / 0.286 

glutamic acid 

32  29 20.93 /  8 

 

31.45 /21 0.274 / 0.299 

 

0.224 / 0.211 

5-
hydroxyindoleace
tic acid 

32  30 31.5 / 15.5 

 

39.17 / 28 0.226 / 0.260 

 

0.194 / 0.193 

 

5. Discussion 

Metabolomic studies of diabetes and metabolic syndrome, using both targeted and non-targeted 

approach by either mass spectrometry or 1H NMR spectroscopy so far demonstrated the 

significant association of plasma branched chain amino acids: isoleucine, leucine and valine, as 

well as two aromatic amino acids: tyrosine and phenylalanine with the development of type 2 

diabetes [86]. Furthermore, lipidomic-oriented studies identified plasma glycine, 

lysophosphatidylcholine 18:2 and acetylcarnitine as predictors of prediabetes and type 2 diabetes, 

[87]. Several studies reported on the associations between various phospholipids, hexoses and 

metabolites generated from oxidative damage, such as 2-aminoadipic acid, with incident diabetes 
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[88, 89]. These plasma metabolites were linked to the organ-specific processes and pathways 

involved in the pathogenesis of type 2 diabetes [86]. Urinary metabolic profiling in diabetes is 

less prominent. That is partly because of the complexity of matrix, containing approximately 

3100 so far identified metabolites [90] and partly because of the limitations of current 

methodology, both analytical and computational in separation of the signals generated by 

structurally similar molecules. The nonlinear single-mixture BSS method proposed herein was 

able to distinguish 3 metabolites which are involved in diverse pathways relevant for diabetes 

pathogenesis: urinary creatine, glutamic acid and 5-hydroxyindoleacetic acid. Glutamic acid, in 

the form of its monosodium salt is a well-established neurotransmitter responsible for the 

synaptic plasticity. It has been hypothesized that abnormal glutamate homeostasis might 

contribute to diabetes pathogenesis by direct and indirect mechanisms mediating a progressive 

loss of insulin-producing pancreatic β-cells [91]. Recent study provided evidence on an increased 

plasma glutamate level in diabetic patients and mice, as well as β-cell lines following short-term 

exposure to high glucose in vitro. Enzymatic degradation of glutamate was able to normalize 

insulin secretion [92]. A toxic effect of an excess of glutamate in retinal cells was proposed as 

one of the mechanisms involved in the pathogenesis of diabetic retinopathy [93]. Thus, it seems 

that elevated level of glutamate plays a significant role in diabetes pathology. Urinary 5-

hydroxyindoleacetate (5-HIAA) is an established indicator of serotonin levels and is routinely 

used as a laboratory test for carcinoid tumor diagnosis. Serotonin, synthesized by tryptophane 

hydroxylation in the brainstem serves as a neurotransmitter involved in regulation of multiple 

physiological functions of the brain, such as behavior and learning, as well as appetite and 

glucose homeostasis. However, peripherally produced serotonin serves as a hormone, which is 

involved in the regulation of function of the organs involved in the metabolic homeostasis at both 

glucose and lipid level [94]. A process called serotonylation was identified as an important 
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modulating mechanism of the insulin production and secretion within the β-cells [95]. It was 

reported that high level of plasma 5-HIAA in the stage of metabolic syndrome indicate a 

deranged serotonin metabolism with a presumed significant role for the development of 

cardiovascular complications via serotonin-mediated enhanced platelet aggregation and 

vasoconstriction [96]. Furthermore, regarding diabetes, it was recently proposed that an increased 

plasma 5-HIAA level in diabetic patients may play a role in the pathogenesis of microvascular 

complications [97]. The accumulated body of evidence pinpoints serotonin as a potential 

therapeutic target for type 2 diabetes and obesity [98]. Creatine (N-methyl-N-guanyxlglycine) is 

an essential guanidine compound widely distributed throughout human cells, which is equally 

provided by dietary sources and endogenous synthesis from arginine and glycine [99]. 

Phosphorylated creatine serves as the major endogenous phosphagenic substrate necessary for 

ATP synthesis within pathway catalyzed by creatine kinase. Creatine depletion, either acquired or 

inherited, seems to affect a variety of organs, with muscle and brain being the most interesting 

targets [100, 101]. Despite a pronounced popularity, presumed improvement of muscle mass and 

athletic performance by the oral supplementation of creatine remained ambiguous, but the 

widespread use of creatine for fitness purposes demonstrated its safety in healthy adults [102]. It 

was recently proposed that creatine deficiency due to the aging-related reduction of muscular 

mass may be responsible for age-related neurodegenerative diseases, and creatine 

supplementation emerged as an interesting treatment approach for a variety of geriatric disorders 

[103]. Pleiotropic effects of creatine seem to go beyond the creatine-kinase system of energy 

metabolism and involve various metabolic pathways, including glucose homeostasis [104]. 

Studies carried out in newly-diagnosed patients with type 2 diabetes demonstrated that short-term 

oral ingestion of creatine elicited a reduction of plasma glucose in which was equal to the effects 

obtained by two common oral antihyperglycaemic agents: sulfonylurea [105] and metformin 
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[106]. As evidenced in the recent meta-analysis [107], longer-term supplementation of creatine 

yielded indeterminate results regarding glycemic control, but creatine supplementation could be 

regarded as an adjuvant nutritional therapy with hypoglycemic effects, particularly when used in 

combination with exercise. In vitro studies revealed that creatine was able to improve glucose-

stimulate insulin release [108] and to facilitate translocation of muscular glucose transporter 

GLUT4 [109]. More recent research showed that AMPK signaling may be implicated in the 

GLUT4 effects of creatine supplementation on glucose uptake in type 2 diabetes [110]. However, 

the mechanism(s) involved in the glucoregulatory action of creatine is far from being elucidated. 

Results of the present study indicate that urinary creatine secretion was significantly more 

pronounced in diabetic patients than healthy controls, which is a novel finding. Considering so 

far collected evidence on the role of creatine on the glucose homeostasis, it could be speculated 

that type 2 diabetes may be associated with a disturbed utilization of creatine associated with an 

increased renal loss, possibly due to glomerular hyperfiltration, which is commonly associated 

with diabetes [111].  

 

6. Conclusions 

Blind separation of structurally similar (overlapping) components from small number of their 

nonlinear mixtures is a hard inverse problem. It becomes notoriously difficult when only single 

mixture is at a disposal. Yet, separation of structurally similar components from a single 

nonlinear mixture is of potentially high clinical relevance and it is known as metabolic profiling. 

Driven by this motivation, the paper presented methodology for the blind separation and 

annotation of components present in the 1H NMR amplitude mixture spectra. In addition to 
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model (laboratory prepared) mixtures the methodology was tested on separation and annotation 

of metabolites present in urinary samples collected from diabetic patients and healthy controls. 

The ability of our method to identify metabolite-related differences between the groups, albeit in 

the very early pilot-stage, revealed an interesting and novel pattern of metabolic components 

within various pathways, which are known to be influenced by diabetes. In particular, the method 

pinpointed urinary creatine, glutamic acid and 5-hydroxyindoleacetic acid as the most prominent 

metabolites in samples from diabetic subjects, when compared to healthy controls. Since 

presented study is at a pilot stage, our results do not allow any metabolic interpretation. However, 

our method was able to differentiate diabetic from non-diabetic subjects by identifying 

potentially relevant metabolites depicting pathways relevant for diabetes pathology. Further 

studies are needed to validate this method in terms of obtaining reproducible and clinically 

relevant results. 
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