Shell evolution of N = 40 isotones towards %°Ca: First spectroscopy of 92Ti
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Abstract

Excited states in the N = 40 isotone 52Ti were populated via the 53V (p, 2p)®2Ti reaction at ~200 MeV /nucleon at the
Radioactive Isotope Beam Factory and studied using v-ray spectroscopy. The energies of the 21 — Ogs and 41 — 2
transitions, observed here for the first time, indicate a deformed 9?Ti ground state. These energies are increased
compared to the neighboring %4Cr and %Fe isotones, suggesting a small decrease of quadrupole collectivity. The present
measurement is well reproduced by large-scale shell-model calculations based on effective interactions, while ab initio
and beyond mean-field calculations do not yet reproduce our findings. The shell-model calculations for 62Ti show a
dominant configuration with four neutrons excited across the N = 40 gap. Likewise, they indicate that the N = 40
island of inversion extends down to Z = 20, disfavoring a possible doubly magic character of the elusive %°Ca.
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Our understanding of atomic nuclei largely derives from
the concept of nuclear shell structure. Within this picture,
the arrangement of nucleons inside the nucleus can be ex-
plained by the filling of discrete energy levels. Sizable gaps
between these orbits disfavor the population of the higher-
energy levels, and are interpreted as closed shells, which
give rise to magic numbers. Such shell closures can be ev-
idenced by a relatively high-lying first excited 2 state, a
relatively small electric quadrupole transition probability
to the ground state, B(E2)|, and a steep decrease of the
separation energy. Experimental evidence collected in the
last decades, particularly since the advent of radioactive
ion beams, has shown that shell structure undergoes signif-
icant changes for isotopes far from stability El] Examples
of these changes are the appearance of new magic neutron
numbers at N = 32,34 in the Ca isotopes and neighboring
isotopic chains |2, B, @, B, , B, , @], and at N = 16 for
O isotopes IE, ,E], as well as the disappearance of the
shell closure at N = 8 [13, 14, [15, [16], N = 20 [17, [1§] and
N =28 [19, 2] in various neutron-rich isotopes.

Given that N = 40, which corresponds to the filling
of the neutron pf shells, is a harmonic oscillator magic
number, the study of the structure of N = 40 isotones can
provide insight into the mechanisms governing shell evolu-
tion. Indeed the characteristics of this isotonic chain vary
with the number of protons. For ®Ni (Z = 28), a high
E(2}) energy and a low B(E2)] have been observed [21).
However, due to the parity change between the pf shell
and the gg/o orbit, the 21" state involves at least two neu-
trons across N = 40. Such a neutron-dominated excita-
tion could result in a large F(2]) energy and low B(E2)]
value without a large shell gap @] For the neutron-rich
Fe (Z = 26) and Cr (Z = 24) isotopes, a monotonous de-
crease of the E(2]) when approaching N = 40 and beyond
has been observed [lﬁ, @, @, @] This decrease indicates
a rapid development of collectivity when removing pro-
tons from the f7/5 shell. In contrast, the measurement of
the E(2]) of ®869Ti (Z = 22) only showed a moderate
decrease towards N = 40 [27, [28]. The very exotic Ca
(Z = 20), where the Ca isotopic chain meets the N = 40
isotones, is a key nucleus for shell evolution [@, @], but
difficult to reach experimentally. Only recently its ex-
istence has been established |, supporting theoretical
predictions for a bound °Ca. However, the heaviest Ca
isotope with known spectroscopic information is **Ca [@]

Theoretical calculations in the shell-model framework [@]

concluded that the development of collectivity in N = 40
nuclei is due to quadrupole correlations that give rise to
deformed ground states, dominated by intruder neutron
orbits beyond the pf shell. This leads to an island of
inversion below ®Ni, similar to the one formed around
32Mg @] These calculations predict an increase in the
E(27) energy of the more exotic N = 40 isotones 52Ti
and %°Ca, while conserving the intruder character in the
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ground state. On the other hand, symmetry conserving
configuration mixing calculations with the Gogny interac-
tion predict a conservation of the N = 40 gap [@] These
results agree with calculations performed using the five-
dimension collective Hamiltonian, which suggest an energy
gap of about 4 MeV at N = 40, predicting spherical 52Ti
and %°Ca m, @] It is noted that the beyond-mean-field
and the shell model calculations provide similar results for
64Cr and 6Fe, while they substantially diverge for %°Ca
and %2Ti. Therefore, spectroscopy of 52Ti offers a crucial
test between the two different pictures. In addition, the
properties of Ca isotopes have been extensively studied
with coupled-cluster theory @] and valence-shell interac-
tions [3, 137], in both cases using two-nucleon (NN) and
three-nucleon (3N) interactions from chiral effective field
theory. Such calculations agree well with experimental en-
ergy levels and binding energies up to **Ca, and predict
the drip line to be located around ®°Ca. This is in con-
trast to density functional theories based on the mean field
approach which predict, depending on the selected interac-
tion, Ca isotopes to be bound up to A = 68 — 76. Beyond
N = 40, coupled-cluster theory suggests the existence of
two-neutron halos and Efimov states in ®?Ca @]

Clearly, spectroscopic information on exotic isotopes
around %°Ca is necessary to deepen our understanding of
the nuclear structure at N = 40 and to benchmark the
theoretical predictions towards the neutron drip line. In
the present work, the first spectroscopy of 62Ti is pre-
sented. This isotope represents the closest nucleus to °Ca
for which spectroscopic studies can be performed at exist-
ing radioactive beam facilities.

The experiment was carried out at the Radioactive Iso-
tope Beam Factory, operated by the RIKEN Nishina Cen-
ter and the Center for Nuclear Study of the University
of Tokyo. A primary beam of "°Zn with an energy of
345 MeV /nucleon and an average intensity of 240 pnA
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Figure 1: Particle identification plot for the outgoing fragments mea-
sured with the SAMURAI dipole magnet and related detectors. In-
coming 93V isotopes were selected with BigRIPS. 62Ti isotopes are
indicated by the ellipse.



was fragmented on a 3-mm thick Be target to produce a
cocktail of secondary beams which included 53V. The frag-
ments of interest were selected with the Bp — AE — Bp
technique using two wedge-shaped aluminium degraders
situated at the dispersive focal planes of BigRIPS [39].
Event-by-event identification was performed by an energy
loss measurement in an ionization chamber, position and
angle measurements in parallel plate avalanche counters
at different focal planes, and the time-of-flight measured
between two plastic scintillators. The %3V isotopes were
delivered to the focus area in front of the SAMURALI dipole
magnet [40], with an average intensity of 3 pps and an av-
erage energy of 239 MeV /nucleon. At this location the MI-
NOS device [41], composed of a 151.3(13) mm long liquid
hydrogen target surrounded by a Time Projection Cham-
ber (TPC), was placed. The efficiency of MINOS to detect
at least one proton was measured as 93(4)% and the res-
olution for the vertex reconstruction was estimated to be
better than 2 mm (o) [42]. Following proton knockout re-
actions in the liquid hydrogen target, the 62Ti fragments
had an average energy of 154 MeV /nucleon and were iden-
tified using the SAMURALI dipole magnet and associated
detectors |40]. Figure [1l shows the particle identification
obtained with SAMURAI when selecting %3V as incom-
ing beam. A total of 1880 events corresponding to the
63V (p, 2p)®2Ti reaction was reconstructed. The transmis-
sion of the unreacted 53V beam along the beam line was
measured to be 50.9(11)% and the inclusive (p,2p) cross
section was determined to be 4.0(1) mb.

MINOS was surrounded by the high-efficiency ~-ray
detector array DALI2T, composed of 226 Nal(Tl) detec-
tors covering angles between ~15° and ~118° with respect
to the center of the target [43, 44]. The array was en-
ergy calibrated using standard %°Co, ®8Y, 133Ba, and ¥7Cs
sources. The full-energy-peak efficiency of the array was
determined using a detailed GEANT4 [45] simulation and
was found to be 30% at 1 MeV with an energy resolution
of 11% for a source moving at 0.6c.

Doppler corrected v-ray spectra were obtained using
the reaction vertex and the velocity of the fragment recon-
structed with MINOS. Peak-to-total ratio and detection
efficiency improved by adding-up the energies of v-rays
deposited in detectors up to 10 cm apart. To avoid the
reconstruction of add-back events from the large atomic
background, y-rays with energies below 100 keV were not
taken into account in the analysis. The Doppler corrected
spectrum obtained for the ®3V(p, 2p)%2Ti reaction is dis-
played in Fig. Ph). Two peaks are clearly visible and the
v — 7y coincidence analysis demonstrates their coincidence
(Fig.2b). Using a 2-dimensional x? minimization, the en-
ergies of the transitions were deduced to be 683(10) keV
and 823(20) keV. In this minimization procedure, the sim-
ulated response of DALI2 " to transitions of different ener-
gies were fitted in steps of 5 keV to the experimental data
and the x? value was obtained for each combination of
energies. The simulation included the experimental reso-
lution of each crystal and a double exponential background
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Figure 2: a) Doppler corrected 7-ray spectrum of 2Ti obtained
from proton knockout from 63V. The spectrum was fitted by the
convolution of the simulated response of DALI2T to the observed
transitions and a double exponential background. Two additional
transitions are included to improve the fit (see text for details). b)
Coincidence spectrum obtained when applying the gate indicated by
the blue area.

was assumed for the fit. The parameters of these exponen-
tial functions were chosen based on a consistent analysis of
the spectra of proton knockout reactions producing °°Ar
and %°Ti. The errors on the transition energies include the
statistical error from the fit, as well as the systematic error
arising from the calibration of the ~y-ray detectors and the
possible lifetime of the states. Given that global system-
atic fits |46] suggest a lifetime of the 27 state below 30 ps,
an uncertainty of 15 4+ 15 ps was considered for the decay
of the 2], while the 4] was considered short lived. The
best total fit as well as the individual response functions of
DALI2" are shown in Fig.[2l The relative intensities of the
peaks suggest the tentative assignment of the 683(10) keV
and the 823(20) keV peaks to the 2] — 0/ and 47 — 27
transitions, respectively.

A structure in the y-ray spectrum above the estimated
background was observed between 1000 and 1500 keV.
Two additional transitions at energies of 1222(37) keV and
1328(45) keV, were used to reproduce this structure. The
significance levels of these peaks are 20 and 30, respec-
tively. The inclusion of more transitions did not provide
any further improvement on the x? of the fit. A structure
at 320 keV was observed with a significance level of 1lo.
The existence of this peak could not be firmly established,
therefore it was not considered, and its possible contribu-
tion to the partial cross section was assumed to be within
the error bars of the analysis. These possible transitions
indicate the presence of different states being populated in
the reaction, but the limited resolution of DALI2" and the
low statistics did not allow to identify them nor to perform
a coincidence analysis. The existence of such transitions,
which potentially feed the 2 or 4] states, implies a frag-
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Figure 3: Systematics of E(2]) (filled symbols) and E(4]) (open
symbols) for even-even N = 40 isotones. The circles represent
the present measurement. The black, blue, and red lines represent
LSSM, SCCM, and VS-IMSRG calculations, respectively (see text
for details).

mented spectroscopic strength.

Exclusive cross sections to populate the (2) and (47)
states, from which additional feeding should be subtracted,
were calculated based on the fitted ~y-ray intensities, the
total transmission of the isotopes and the efficiency of MI-
NOS. Cross sections of 1.5(3) mb and 0.8(1) mb were ob-
tained for the (2]) state and the (4]) state, respectively.
The cross sections measured for the possible transitions
at 1222(37) keV and 1328(45) keV were determined to be
0.2(1) mb and 0.3(1) mb, respectively. As no firm state-
ment can be made regarding these transitions, we limit
the interpretation to their possible direct feeding to the
2f state. For this, the average value between 100% feed-
ing and no feeding was considered and the error increased
to cover both possibilities, giving a exclusive cross section
of 1.3(4) mb for the (27) state.

The evolution of measured E(2]) and E(4]) energies
for the N = 40 isotones between Ti and Ge [47] is pre-
sented in Fig. Bl The E(2]) and E(4]) reported in this
Letter for 2Ti have a similar value than the ones measured
for %Fe, higher than those of 54Cr. It is pointed out that
64Cr, with a E(2]) of 420 keV, has the largest quadrupole
deformation observed in the region |26, 48]. Our results
show the first increase of E(2]) along the N = 40 iso-
tones towards °Ca. This increase establishes a parabolic
trend and suggests a decrease in quadrupole collectivity.
This, in turn, could be interpreted as a sign of a signifi-
cant N = 40 shell gap, and gives the possibility of a doubly
magic character for °Ca.

Large Scale Shell Model (LSSM) calculations, shown
by the black lines in Fig. Bl were carried out with the
LNPS interaction [32] using a “®Ca core and a valence
space which included the full pf shell for protons and the
0f5/2, 1p3/2, 1p1/2, Ogg/g, and 1d5/2 orbits for neutrons.
This interaction has already successfully reproduced the

E(27) of the heavier N = 40 isotones |32]. The LSSM
calculations reproduce very accurately the data for both
the F(2]) and E(4]) of the N = 40 isotones including
our values for 2Ti. This agreement strengthens the tenta-
tive spin and parity assignment for these states. As shown
in Ref. |32], the calculations predict a reduction of the
0fs5/2 —0g9/2 gap when going from 68Ni to 9°Ca, as well as
the closeness of the quadrupole partner orbits Ogg/» and
1ds/2- Due to this proximity, quadrupole correlations pro-
duce a gain in energy that largely overcomes the cost of
exciting neutrons across the N = 40 gap, thereby favor-
ing many-particle-many-hole configurations. This situa-
tion resembles the behavior at N = 20 and suggests an
island of inversion for N = 40 isotones below 58Ni. For
62T, a gap of about 1 MeV is predicted, with a resulting
wave function dominated by 4p-4h excitations (63%) and
a significant 6p-6h component (22%) [32]. Furthermore,
a ground-state deformation parameter 3 = 0.28 for 52Ti
is obtained. The agreement with the measured energies
of the N = 40 isotones, including %2Ti, indicates that the
island of inversion in this region extends down to °Ca.
It is particularly remarkable that although the E(2]) for
60Ca is predicted to be 1.35 MeV, which represents an in-
crease with respect to the neighboring isotones, a 4p-4h
configuration dominance (59%) prevails |32].

Symmetry conserving configuration mixing (SCCM) cal-
culations using the Gogny D18 effective interaction |49, 50]
were performed for 62Ti, 64Cr, and 6Fe, and are indicated
by the blue lines in Fig. For the calculations, each in-
dividual nuclear state was defined as the linear combina-
tion of multiple intrinsic many-body states with different
quadrupole (axial and triaxial) shapes |51, 33]. Cranked
or octupole deformed states were not included, therefore,
a systematic stretching of the levels with respect to the
experimental values is expected |52, [53]. The E(2]) pre-
dicted for %*Cr and %Fe lie very close to the LSSM pre-
dictions, and are in fair agreement with the experimental
data. However, when going to %2Ti, a more abrupt in-
crease of the F(2]) is obtained. For the E(4]) energies,
the calculations overestimate the experimental values by
about 500 keV, although the minimum value for %4Cr is
maintained. It is noted that for %4Cr and ®°Fe, where the
deformation is well described by the model, the inclusion
of cranking would further improve the agreement with the
experimental data. Within this model, the energy gap at
N = 40 is conserved, leading to a ground state of 52Ti
highly mixed with the spherical configuration. This is also
the case for %°Ca, which is predicted as a doubly magic
nucleus with an F(2]) of 4.73 MeV [53]. It is noted that
although this calculation yields a spherical ground state
for 62Ti, the 2] and 4] states belong to a deformed band
starting at the 0; state. This band can correspond to the
predictions of the LSSM calculations and indicate that the
SCCM calculations overestimate the N = 40 gap in this
region.

Ab initio valence-space in-medium similarity renormal-
ization group (VS-IMSRG) [54, 155, 56, 157, [58] calculations



were also performed for 52Ti, 4Cr, and %Fe, as shown
by the red lines in Fig. Bl The chiral NN+3N interaction
labeled 1.8/2.0 (EM) in Refs. |59, [60] was used, which is
based on the NN potential from Ref. [61] and 3N forces
fitted to light systems up to *He only. With this NN+ 3N
interaction, ground-state energies up to Sn [5&, 159, 162, [63]
are generally well reproduced. As the VS-IMSRG cap-
tures 3N forces between valence nucleons via an ensemble
normal ordering [57], a separate valence-space interac-
tion is decoupled for each nucleus of interest. Here, the
same model space as the LNPS Hamiltonian is considered
(adding the 2s;,5 neutron orbital for 5>Ti). Using the
Magnus formulation of the IMSRG [64], operators at the
two-body level are truncated in the so-called IMSRG(2)
approximation. The VS-IMSRG interaction is diagonal-
ized with the code ANTOINE [65], including, for the first
time in the VS-IMSRG, both intruder quadrupole part-
ners, such as Ogg/o— 1ds/2 [66]. The VS-IMSRG overesti-
mates the E(2]) and E(4]) excitation energies in %2Ti,
64Cr, and %6Fe, predicting all states as spherical. Cross-
shell excitations to the Ogg/o— 1d5 /2 orbits stay at the 1p-1h
level because of the substantial N = 40 shell gap, 3.7 MeV
in %2Ti. Within this model, a E(2]) of around 7 MeV
is predicted for °°Ca, an overestimation which is also ob-
served at other shell closures with the VS-IMSRG [59, 63,
67). This limitation has been related to the IMSRG(2)
truncation [66], which may not fully capture correlations
associated with cross-shell excitations. Preliminary com-
parisons with coupled-cluster theory indicate that keeping
operators at the three-body level will improve the results.
Also, choosing a deformed reference state, instead of spher-
ical as in the present work, may capture quadrupole cor-
relations more efficiently |68, 69].

Single-particle theoretical cross sections were computed
in the DWIA framework [70]. The single-particle wave
functions and the nuclear density were obtained by the
Bohr-Mottelson single-particle potential |71]. The opti-
cal potentials for the distorted waves in the initial and
final channels were constructed by the microscopic folding
model [72] with the Melbourne G-matrix interaction |73
and with the calculated nuclear density. The spin-orbit
part of each distorting potential was disregarded. As for
the transition interaction, the Franey-Love effective proton-
proton interaction was adopted [74]. Cross sections at dif-
ferent beam energies, from 240 MeV /nucleon at the en-
trance of the target to 154 MeV /nucleon at the exit, were
calculated and weighted according to the energy loss in the
target. Theoretical cross sections (oiheo) Were obtained by
weighting the single particle cross sections by the calcu-
lated spectroscopic factors.

The spin and parity of the ground state of %3V are
not known experimentally. The LSSM calculation sug-
gests it to be 3/27, although states with spin and parity
of 5/27 and 7/27 appear very close in energy, suggesting
the presence of isomeric states. No experimental evidence
of such states has been reported so far and available data
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Figure 4: Partial proton removal cross sections for the 63V(p7 2p)62 Ti
reaction. Panel a) shows the experimental results. Panels b) to d)
show LSSM calculations using the LNPS interaction assuming the
ground state of 63V as 3/27, 5/27 and 7/27, respectively.

are consistent with a 3/27 assignment |[75]. Results of
the calculations for the three cases are shown in Table [I]
and displayed in Fig. [ together with the experimental
results. It can be seen that neither the absolute value or
the general trend shown by the data are reproduced by the
calculation in any scenario. The calculation for the ground
state of J™ = 3/27 resembles better the experimental data
in terms of the number of states that are populated, while
for the cases of J™ =5/27 and J™ = 7/2 a considerable
population of the 6?‘ state would be expected. In particu-
lar for the case of J™ = 7/27 a population of the 6] state
higher than the one of the 2f state would be expected,
at odds with the experimental result. It is noted that the
calculated spectroscopic factors add up to less than half of
the total strength in the three cases. Therefore, popula-
tion of higher lying states is expected by the calculations.
Such a scenario would lead to unobserved transitions feed-
ing the 4f or the 2f states directly, which can account
for the excess of the measured cross section in comparison
with the calculations. Although not in good agreement,
the low measured and calculated partial cross sections, as
well as the apparent fragmentation of the spectroscopic



Table 1: Experimentally deduced excitation energies and cross sections for 52Ti following the 63V (p, 2p)62Ti reaction, and comparison with
theoretical cross sections obtained with the LSSM calculation. The spectroscopic factors and corresponding cross sections are shown for
the three possible values of the spin and parity of the ground state of 3V. The experimental ground-state cross section was calculated by
subtracting the cross sections of the measured transitions from the inclusive cross section.

B (kV) oo (mb) | B (kev) g7 1, e (WD) I =3/ JT=5/2" JT=1/2
C?S  Otheo (mb) | C2S  Otheo (mb) | C2S  Gipeo (mb)

0 1.4(4) 0 of P32 1.56 0.03 0.05 0.04 0.58
fr/2 1.46 — 0.03 0.4

683(10) 1.3(4) 720 of P32 154 0.06 0.61 0.01 0.97 0.02 0.07
fr/2 1.44 0.36 0.66 0.03

1506(22)  0.8(1) 1570 4 P32 150 o 1.30 0.04 0.38 0.04 0.44
fr/2 1.41 0.92 0.23 0.27

strength, are consistent with the collective nature of the
62Ti ground state discussed in this work. However, the
large error bars prevent a firmer conclusion.

In summary, first spectroscopy of 52Ti was obtained by
means of the 43V (p, 2p)52Ti reaction at ~200 MeV /nucleon.
Transitions at 683(10) keV and 823(20) keV were assigned
to the decay of the 2 and 4] states at 683(10) keV and
1506(22) keV, respectively. Our result shows for the first
time an increase of the E(2]) for N = 40 isotones to-
wards 5°Ca. LSSM calculations were in good agreement
with the experimental findings. The calculations suggest
that although the collectivity decreases approaching %°Ca,
with an ensuing increase of F(2]), quadrupole correla-
tion contributions remain and lead to the extension of the
N = 40 island of inversion down to %°Ca. SCCM cal-
culations overestimate the measured F(2]) and E(4]) of
62T1i, predicting a doubly magic character of ®°Ca and a
weakly deformed ground state in %2Ti, at variance with
the LSSM calculations. For these calculations the N = 40
spherical gap is too large to produce the inversion between
the quasi-spherical and deformed 0% states. VS-IMSRG
calculations, which provide a good description of excited
states in Ca isotopes, largely overestimate the F(2]) and
E(47) energies of 52Ti, even after the inclusion of the neu-
tron Ogg/o, 1ds/2 and 2s;,5 orbitals. The spectroscopic
information presented in this Letter offers an important
benchmark for our understanding of nuclear structure ap-
proaching %°Ca and the location of the neutron drip line.
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